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Abstract
In robust combinatorial optimization, we would like to find a solution that performs 
well under all realizations of an uncertainty set of possible parameter values. How 
we model this uncertainty set has a decisive influence on the complexity of the 
corresponding robust problem. For this reason, budgeted uncertainty sets are often 
studied, as they enable us to decompose the robust problem into easier subproblems. 
We propose a variant of discrete budgeted uncertainty for cardinality-based 
constraints or objectives, where a weight vector is applied to the budget constraint. 
We show that while the adversarial problem can be solved in linear time, the robust 
problem becomes NP-hard and not approximable. We discuss different possibilities 
to model the robust problem and show experimentally that despite the hardness 
result, some models scale relatively well in the problem size.

Keywords Robust optimization · Combinatorial optimization · Budgeted 
uncertainty · Knapsack uncertainty

1 Introduction

Uncertainty can manifest in various forms, such as imprecise data or the inherent 
unpredictability of the future. A notable case study utilizing linear programs (Ben-
Tal and Nemirovski 2000) demonstrated that even slight changes in problem data can 
significantly shift an optimal solution towards infeasibility, rendering it practically 
useless. Consequently, a range of decision-making approaches under uncertainty 
have been developed, including stochastic programming (Kail and Mayer 2005), 
fuzzy optimization (Lodwick and Kacprzyk 2010), and robust optimization (Ben-
Tal Aharon et al. 2009). Often, such approaches make the resulting decision-making 
problems more challenging to solve than their nominal counterparts. The focus of 
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this paper is on robust combinatorial decision problems, which have the distinct 
advantage that a probability distribution on the uncertain data does not need to be 
known. More formally, consider some nominal combinatorial problem

where we write vectors in bold and use the notation [n] to denote sets {1,… , n} . In 
addition, assume that the data ccc in the objective function is not known exactly. Given 
a set of possible data values U , the classic min-max approach to robust optimization 
is to solve the problem

Many more variants of robust optimization problems exist, see e.g. Goerigk and 
Schöbel (2016), Kasperski and Zieliński (2016) and Buchheim and Kurtz (2018) for 
an overview. What they have in common is that a set U containing all scenarios 
can be formulated by the decision maker, and is made available to the optimization 
problem. Data-driven robust optimization (Bertsimas et al. 2018) aims at automating 
this step by formulating suitable uncertainty sets based on available data (e.g., by 
using on the risk preference of the decision maker).

There is typically a trade-off between the modeling capabilities of the uncertainty 
set U and the complexity of the resulting problem. A discrete scenario set U offers 
broad flexibility as it allows direct utilization of any amount of historical data 
observations in the model. However, it comes with a drawback that the robust 
versions of relevant combinatorial problems are already computationally difficult 
(NP-hard) even when considering only two scenarios (Kasperski and Zieliński 
2016). Representing U using a general polyhedron, defined by its inner or outer 
description, suffers from the same limitation (Goerigk et al. 2022).

A significant breakthrough was made with the introduction of budgeted 
uncertainty sets, also known as the Bertsimas–Sim approach (2003, 2004). This 
approach addresses an uncertain linear objective ccc⊺xxx , where each coefficient i ∈ [n] 
is bounded by a lower bound c

i
 and an upper bound ci . Moreover, only a fixed integer 

Γ of coefficients are allowed to deviate simultaneously from their lower to upper 
bounds. In other words, U incorporates a cardinality constraint of the following 
form:

The introduction of this simple idea has had a profound impact on the field of 
robust optimization. The two papers that presented this idea continue to be widely 
cited, highlighting their significance. The appeal of uncertainty sets of this nature 
lies in their simplicity and intuitive nature. Furthermore, it has been demonstrated 
that the robust min–max problem can be decomposed into a manageable number 

min
∑

i∈[n]

cixi (Nom)

s.t. xxx ∈ X ⊆ {0, 1}n

min
xxx∈X

max
ccc∈U

∑

i∈[n]

cixi (RO)

UΓ =

{
ccc ∈ ℝ

n ∶ ∃��� ∈ {0, 1}n s.t. ci = c
i
+ (ci − c

i
)�i,

∑

i∈[n]

�i ≤ Γ

}
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(specifically, O(n)) of nominal-type problems (Nom). This decomposition allows 
for increased modeling flexibility without incurring significant computational 
complexity. If the nominal problem can be solved in polynomial time, the 
corresponding robust problems can be solved in polynomial time as well.

The advantages offered by budgeted uncertainty sets have resulted in their 
widespread and varied applications to real-world problems. These applications 
encompass a range of domains, including portfolio management (Bertsimas and 
Pachamanova 2008), wine grape harvesting (Bohle et  al. 2010), supply chain 
control (Bertsimas and Thiele 2006), furniture production planning (Douglas 
and Morabito 2012), train load planning (Bruns et  al. 2014), and many others. 
The versatility of budgeted uncertainty sets has made them a valuable tool in 
addressing uncertainty and optimizing decision-making in numerous practical 
scenarios.

A noteworthy characteristic of UΓ is that if Γ is an integer, we can utilize 
continuous deviations ��� ∈ [0, 1]n without altering the problem. This is due to 
the fact that when finding an optimal strategy for the adversary in the problem 
maxccc∈U ccc

⊺xxx given a fixed solution xxx , it is sufficient to sort the items chosen by 
xxx based on the potential cost deviation ci − c

i
 , and select the Γ largest values. 

Consequently, the equivalence between “discrete” and “continuous” budgeted 
uncertainty holds. However, this equivalence does not generally hold in the case 
of multi-stage robust problems, where recourse actions can be taken after the cost 
scenario has been revealed (see, e.g., the discussion in Goerigk et al. (2022)).

The effectiveness of budgeted uncertainty sets has led to the emergence of 
various variants and generalizations of this approach. In the paper by Bertsimas 
et al. (2004), norm-based uncertainty sets were introduced. It was demonstrated 
that the traditional budgeted uncertainty set can be constructed using a specific 
norm known as the D-norm. Another variant is multi-band uncertainty (Büsing 
and D’andreagiovanni 2012), which involves a system of deviation values 
d1
ij
< d2

ij
< … < dK

ij
 with both lower and upper bounds on the number of possible 

deviations from each band k ∈ [K] . In variable budgeted uncertainty (Poss 2013), 
the number of deviations � taken into account may depend on the size ‖xxx‖1 of the 
solution xxx for which the adversarial problem is being solved.

Additionally, there is knapsack uncertainty (Poss 2018), which can be 
represented as follows:

Here, the set of possible scenarios is bounded by m linear knapsack constraints. 
When the value of m is fixed, similar results to those obtained for the original set 
UΓ can be derived. A special case of this type of set is locally budgeted uncertainty, 
see Goerigk and Lendl (2021) and Yaman (2023), where each of the knapsack 
constraints affects a subset of variables, and these subsets are disjoint between 
constraints. These variants and generalizations of budgeted uncertainty sets provide 

Uknap =

{
ccc ∈ ℝ

n ∶ ∃��� ∈ [0, 1]n s.t. ci = c
i
+ (ci − c

i
)�i,

∑

i∈[n]

aji�i ≤ bj, j ∈ [m]

}
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additional flexibility and adaptability to various problem settings, enhancing the 
robustness of decision-making under uncertainty.

In this paper we consider a new type of uncertainty set, applicable to an objective 
or constraints that involve the cardinality1 ‖xxx‖1 , e.g., to problems where the task is 
to maximize the size of a set, or where this cardinality is not allowed to fall below 
a certain threshold. The motivation to consider such sets comes from a real-world 
problem involving the composition of teams to take on a set of jobs under uncertain 
skill requirements (see Anoshkina and Meisel 2019; Anoshkina et al. 2020). In such 
problems, one would like to compose teams that can take on the maximum possible 
number of jobs. From an adversarial perspective, the task is to change the job skill 
requirements in a way that minimizes the number of jobs that can be carried out 
successfully. From a more theoretical perspective, the study of robust combinatorial 
problems often makes use of selection-type problems (see, e.g., Averbakh 2001; 
Dolgui and Kovalev 2012; Deineko and Woeginger 2013; Kasperski et al. 2015). In 
the most basic form, the selection problem requires us to select p out of n possible 
items, i.e., to solve

with known costs ddd ∈ ℝ
n
+
 . While this nominal problem is trivial to solve, treating 

robust variants becomes more complex. A new perspective on problems of this type 
is to locate the uncertainty not (only) on the item costs; instead, items have different 
degrees of reliability, and an adversary tries to violate the constraint 

∑
i∈[n] xi ≥ p.

Motivated by these two problems, but being applicable to a wider range of 
problems as well, the “budgeted interdiction” approach that we thus propose is to 
consider uncertainty sets of the form

with www ∈ ℕ
n and B ∈ ℕ . The adversary can therefore interdict a solution (i.e., 

let items fail), but has a specified budget for this purpose. Throughout the paper, 
we assume that each wi is not larger than B; otherwise, its coefficient cannot be 
attacked and is therefore not uncertain. The uncertainty can affect a cardinality 
objective function (111 − ccc)⊺xxx that should be maximized, or a cardinality constraint 
(111 − ccc)⊺xxx ≥ p . Note that in the corresponding nominal problems, vector ccc is not 
present, but is introduced in the robust problem to model the uncertainty of the 
vector 111 . Cardinality constraints also play a role in many optimization problems 
that allow a cut-based formulation. For example, the shortest path problem can be 
written as

min

{
ddd⊺xxx ∶

∑

i∈[n]

xi ≥ p , xxx ∈ {0, 1}n
}

U =

{
ccc ∈ {0, 1}n ∶

∑

i∈[n]

wici ≤ B

}

1 As xxx is binary, it corresponds to a subset X of [n], where X = {i ∈ [n] ∶ x
i
= 1} . The notion of cardi-

nality refers to �X� = ‖xxx‖
1
.



259Robust combinatorial optimization problems under budgeted…

with S = {S ⊆ V ∶ s ∈ S, t ∉ S} . Cut-based problem formulations are also used 
for the generalized Steiner tree, spanning tree, feedback vertex set, or traveling 
salesperson problems (Korte and Vygen 2018).

Observe that this definition of uncertainty set is essentially the budgeted 
uncertainty set UΓ “upside down”: while UΓ has a bound on the number of 
coefficients that can deviate and the effect of deviation is given by some parameter 
ci − c

i
 , here we want to maximize the number of deviations and each deviation has a 

cost parameter wi . Note that different to Uknap , there is a single budget constraint, we 
consider a discrete instead of continuous deviation, and in particular, the vector ccc is 
binary.

As an example, consider the selection problem

where the cardinality constraint 
∑

i∈[4] xi ≥ 1 is uncertain and thus can be attacked 
by an adversary. The cardinality constraint of the robust counterpart of this example 
becomes

where the function �(xxx) represents the number of items that can fail. To further 
illustrate this setting, let us assume that

that is, in the definition of U , we use B = 10 and w = (3, 7, 4, 10)⊺ . A possible 
solution to the robust problem is to pick items 1, 2 and 3 at cost 2 + 3 + 4 = 9 . The 
adversary can attack items 1 and 3, but does not have sufficient budget to let all three 
items fail. An even better solution is to pick items 1 and 4 at cost 2 + 5 = 7 . In this 
case, the adversary can only attack one of the two items.

The remainder of this paper is structured as follows. In Sect. 2, we discuss the 
complexity of the robust problem with budgeted interdiction uncertainty, and 
prove that the problem is not approximable. Furthermore, we provide five compact 
formulations to solve problems with cardinality constraints under interdiction 
uncertainty set in Sect.  3. Experimental results illustrating the performance of 
the models for the selection, job assignment and 2-edge-connected subgraph 
problems are collected in Sect.  4. We summarize our findings and pointing out 

min
∑

i∈E

dexe

s.t.
∑

e∈�(S)

xe ≥ 1 ∀S ∈ S

xe ∈ {0, 1}

min

{
2x1 + 3x2 + 4x3 + 5x4 ∶

∑

i∈[4]

xi ≥ 1,xxx ∈ {0, 1}4
}

min
ccc∈U

(111 − ccc)⊺xxx =
∑

i∈[n]

xi −max
ccc∈U

ccc⊺xxx =
∑

i∈[n]

xi − �(xxx) ≥ 1

�(xxx) = max

{ ∑

i∈[n]

xici ∶ 3c1 + 7c2 + 4c3 + 10c4 ≤ 10,ccc ∈ {0, 1}4
}
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further research questions in Sect. 5. The detailed information on how to model the 
compact formulation of both job assignment and cut-based problems are provided in 
Appendix A and B, respectively.

2  Complexity analysis

In order to check the complexity level of the robust selection problem under 
interdiction budgeted uncertainty, we first need to introduce the compact formulation 
of it, thus we have

where the adversary problem is

for a given xxx ∈ {0, 1}n . There is a trivial algorithm to solve this problem; namely, 
we sort items i with xi = 1 by non-decreasing weight wi , and pack items in this order 
until the budget B cannot accommodate any further items. Hence, the adversarial 
problem can be solved in O(n) time (as it is not necessary to sort the complete vector, 
see, e.g. (Korte and Vygen 2018,  Chapter  17.1). Now we show that the decision 
version of the robust selection problem with interdiction uncertainty affecting the 
constraints (ROSel) is hard.

Theorem 1 The following decision problem is NP-complete: Given ddd ∈ ℕ
n , www ∈ ℕ

n , 
B ∈ ℕ , and V ∈ ℕ , is there a vector xxx ∈ {0, 1}n with 

∑
i∈[n] xi − �(xxx) ≥ 1 and ∑

i∈[n] dixi ≤ V?

Proof Observe that it is trivial to check if 
∑

i∈[n] xi − �(xxx) ≥ 1 and 
∑

i∈[n] dixi ≤ V  for 
a given xxx , which means that the decision problem is indeed in NP.

To show NP-completeness, we make use of the partition problem: Given positive 
integers v1,… , vn , is there a set S ⊆ [n] such that 

∑
i∈S vi = V  with V =

∑
i∈[n] vi∕2?

Given such an instance of the partition problem, we construct a robust problem 
with budgeted interdiction in the following way. Set di = wi = vi and B = V − 1 . 
Then the constraint

with

min
∑

i∈[n]

dixi

s.t.
∑

i∈[n]

xi − �(x) ≥ p ∀c ∈ U

x ∈ {0, 1}n

�(xxx) = max

{ ∑

i∈[n]

xici ∶
∑

i∈[n]

wici ≤ B , ci ∈ {0, 1} ∀i ∈ [n]

}

∑

i∈[n]

xi − �(xxx) ≥ 1
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requires us to pack items of total weight strictly greater than V − 1 to avoid having 
all items interdicted. This means that the partition problem is a Yes-instance if and 
only if there is a feasible solution xxx ∈ {0, 1}n with objective value less or equal to 
V. As the partition problem is well-known to be NP-complete (Garey and Johnson 
1979), the claim follows.   ◻

This brief analysis shows that we lose a main advantage of classic budgeted 
uncertainty, where the robust problem can be decomposed into a set of nominal 
problems. Note that Theorem 1 applies to optimization problems with an uncertain 
cardinality constraint and an objective 

∑
i∈[n] dixi that should be minimized, but 

it also applies to the case of having one linear constraint 
∑

i∈[n] dixi ≤ V  and an 
uncertain cardinality objective that should be maximized. In particular, in the latter 
case this means that it is NP-complete to find a solution with a non-zero objective 
value; in other words, it is not possible to find a polynomial-time approximation 
algorithm for this setting, unless P = NP. Hence we conclude the following result.

Corollary 2 The optimization problem maxxxx∈X minccc∈U
∑

i∈[n](1 − ci)xi is not approxi-
mable, even if maxxxx∈X

∑
i∈[n] xi can be solved in polynomial time.

Proof Given a partition problem as in the proof of Theorem  1, set 
X = {xxx ∈ {0, 1}n ∶

∑
i∈[n] vixi ≤ V} . Then there is a solution with objective value 

greater or equal to one if and only if the partition problem is a Yes-instance. Hence, 
there cannot be an �-approximation for any 𝛼 > 0 , unless P = NP.   ◻

3  Model formulations

In this section, we introduce five compact formulations of the robust problem, where 
we focus on an uncertain cardinality constraint 

∑
i∈[n] xi ≥ p for ease of presentation. 

Additional constraints on xxx may be considered, which are assumed to be modeled 
indirectly in the set X ⊆ {0, 1}n . That is, we consider reformulations of the following 
type of robust problem with cardinality constraints:

where the nominal problem corresponds to the case ccc = 000 . In addition, without 
loss of generality, we assume that the items are sorted based on their weights ( wi ), 
non-decreasingly.

�(xxx) = max

{ ∑

i∈[n]

xici ∶
∑

i∈[n]

vici ≤ V − 1

}

min
∑

i∈[n]

dixi

s.t.
∑

i∈[n]

(1 − ci)xi ≥ p ∀ccc ∈ U

xxx ∈ X
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3.1  IP‑1

The first idea to find a compact formulation of the problem is only applicable 
to the case p = 1 with integer weights www . This means we only need to have one 
item after the adversary attacks, a case that remains hard, as Theorem 1 shows. 
Therefore, it suffices to pack items with minimum cost whose total weight strictly 
exceeds the adversarial budget B. This idea can be formulated as follows:

3.2  IP‑2

We now consider the general case of arbitrary values for p. As noted, the 
adversarial problem �(xxx) can be solved in polynomial time by packing items with 
smallest weight first. Therefore, we introduce variables �k ∈ {0, 1} for all k ∈ [n] , 
where �k is active if and only if we attack the first k items (note that the case k = 0 
can be ignored, as we can always attack at least one item, due to each wi being 
not larger than B). An attack only incurs costs on the interdiction budget if xi = 1 . 
Hence, we obtain the following integer program:

By Constraint (3), we can only choose one of the candidate attacks represented by 
�k . Due to Constraint (2), we cannot use attack �k if 

∑
i∈[k] wixi > B . It is easy to see 

that we can relax the integrality constraints of �k , which gives an LP formulation for 
�(xxx) . By using linear programming duality, we thus can obtain the formulation for 
the robust problem under budgeted interdiction uncertainty:

min
∑

i∈[n]

dixi (IP-1)

s.t.
∑

i∈[n]

wixi ≥ B + 1

xxx ∈ X

(1)�(xxx) = max
∑

k∈[n]

(
∑

i∈[k]

xi)�k

(2)s.t.

(
∑

i∈[k]

wixi − B

)
�k ≤ 0 ∀k ∈ [n]

(3)
∑

k∈[n]

�k ≤ 1

(4)�k ∈ {0, 1} ∀k ∈ [n]
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This formulation is nonlinear due to the products (wi�k − 1)xi . As xxx is binary, we can 
linearize the model using �ik = �kxi for all k ∈ [n] , i ∈ [k] as follows:

3.3  IP‑3

We now consider a third option to model the robust problem. As an alternative 
formulation for IP-2, here the adversarial problem is obtained by considering the 
ratio of items weight divided by the budget B. Thus the model is as follows:

where 0 < 𝜖 < 1 . Observe that 1 − ⌊
∑

i∈[k] wixi

B+�
⌋ ≤ 0 if and only if 

∑
i∈[k] wixi > B . 

Analogously to IP-2, �(xxx) represents the highest number of items that can be 
attacked by the adversary. By using linear programming duality, we can find the 
following formulation for the robust problem:

min
∑

i∈[n]

dixi

s.t.
∑

i∈[n]

xi − � ≥ p

∑

i∈[k]

(wi�k − 1)xi ≥ B�k − � ∀k ∈ [n]

�k ≥ 0 ∀k ∈ [n]

� ≥ 0

xxx ∈ X

min
∑

i∈[n]

dixi (IP-2)

s.t.
∑

i∈[n]

xi − � ≥ p

∑

i∈[k]

(wi�ik − xi) ≥ B�k − � ∀k ∈ [n]

�ik ≤ kxi ∀k ∈ [n], i ∈ [k]

�ik ≤ �k ∀k ∈ [n], i ∈ [k]

�ik ≥ 0 ∀k ∈ [n], i ∈ [k]

�k ≥ 0 ∀k ∈ [n]

� ≥ 0

xxx ∈ X

�(xxx) = max
�

k∈[n]

�
1 −

�∑
i∈[k] wixi

B + �

��� �

i∈[k]

xi

�
�k

s.t.
�

k∈[n]

�k ≤ 1

�k ≥ 0 ∀k ∈ [n]
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The formulation is not linear. To eliminate the floor function, we introduce a new 
integer variable yk for k ∈ [n] with

This leads to products xiyk which are linearized using additional variables zik with

A compact formulation of the robust problem under knapsack uncertainty is hence 
as follows:

min
�

i∈[n]

dixi

s.t.
�

i∈[n]

xi − � ≥ p

� −

�
1 −

�∑
i∈[k] wixi

B + �

��� �

i∈[k]

xi

�
≥ 0 ∀k ∈ [n]

� ≥ 0

xxx ∈ X

�∑
i∈[k] wixi

B + �

�
≥ yk ∀k ∈ [n]

∑

i∈[k]

xiyk = zik ∀k ∈ [n]

min
�

i∈[n]

dixi (IP-3)

s.t.
�

i∈[n]

xi − � ≥ p

�

i∈[k]

(xi − zik) ≤ � ∀k ∈ [n]

zik ≤ yk ∀k ∈ [n], i ∈ [k]

zik ≤

�∑
j∈[n] wj

B + �

�
xi ∀k ∈ [n], i ∈ [k]

(B + �)yk ≤
�

i∈[k]

wixi ∀k ∈ [n]

zik ≥ 0 ∀k ∈ [n], i ∈ [k]

� ≥ 0

yyy ∈ ℤ
n

xxx ∈ X
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3.4  IP‑4

In the following, we assume that www is integer. Let Wk(xxx) be the smallest required weight 
to attack at least k items of xxx . If this is not possible then 

∑
i∈[n] xi < k and we set 

Wk(xxx) = ∞ . To calculate this value, consider the following selection problem:

where we define the minimum over an empty set to be infinity. This allows us to 
reformulate �(xxx) as a minimization problem in the following way:

where 
∑

k∈[n] yi represent the maximum number of items that can be attacked by 
the adversary. Therefore, if Wk(xxx) ≤ B , we need to set yk = 1 to have the constraint 
fulfilled; otherwise, we can choose yk = 0 . As �(xxx) is expressed as a minimization 
problem, the robust problem becomes

To replace Wk(xxx) , note that we can relax variables zi without changing the value 
of the corresponding minimization problem. This means that we can use linear 
programming duality again to arrive at the following problem formulation:

Wk(xxx) = min
∑

i∈[n]

wizi

s.t.
∑

i∈[n]

zi ≥ k

zi ≤ xi ∀i ∈ [n]

zzz ∈ {0, 1}n

�(xxx) = min

{
∑

k∈[n]

yk ∶ (B + 1)yk +Wk(xxx) ≥ B + 1 ∀k ∈ [n],yyy ∈ {0, 1}n

}

min
∑

i∈[n]

dixi

s.t.
∑

i∈[n]

xi ≥ p +
∑

k∈[n]

yk

(B + 1)yk +Wk(xxx) ≥ B + 1 ∀k ∈ [n]

yyy ∈ {0, 1}n

xxx ∈ X

(5)min
∑

i∈[n]

dixi

(6)s.t.
∑

i∈[n]

xi ≥ p +
∑

k∈[n]

yk

(7)(B + 1)yk + k�k −
∑

i∈[n]

�k
i
xi ≥ B + 1 ∀k ∈ [n]
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To avoid the non-linearity between �k
i
 and xi , we increase the weight wi sufficiently 

far if xi = 0 so that it will not be part of an attack within the available budget B. That 
is, we replace Constraint (8) with

and Constraint (7) with

The resulting model is called (IP-4).

3.5  IP‑5

In this final model, we again make the assumption that weights www are integer. For fixed 
k ∈ [n] , consider the constraint

with binary variable yk , which shows the attack of the adversary. As the adversary 
will attack items in the order from 1 to n if possible, the term 

∑
i∈[k] wixi gives 

the required budget to attack all items that xxx packed up to and including item k. 
This means that if xk = 1 and 

∑
i∈[k] wixi ≤ B , then item k will be attacked. In the 

constraint, this corresponds to the case that (B + 1)yk ≥ B + 1 −W with W ≤ B , so 
yk = 1 is the only feasible choice. On the other hand, if xk = 0 or 

∑
i∈[k] wixi ≥ B + 1 , 

it is possible to set yk = 0.
This discussion shows that the following compact formulation for the robust 

problem with budgeted interdiction uncertainty is correct:

(8)�k − xi�
k
i
≤ wi ∀k ∈ [n], i ∈ [n]

(9)�k
≥ 0 ∀k ∈ [n]

(10)�k
i
≥ 0 ∀k ∈ [n], i ∈ [n]

(11)yyy ∈ {0, 1}n

(12)xxx ∈ X

�k − �k
i
≤ wi + (B + 1)(1 − xi) ∀k ∈ [n], i ∈ [n]

(B + 1)yk + k�k −
∑

i∈[n]

�k
i
≥ B + 1 ∀k ∈ [n]

(B + 1)(1 − xk + yk) ≥ B + 1 −
∑

i∈[k]

wixi
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3.6  Model comparison

In Table 1, we summarize the five proposed models.
Column “# Cont. V.” gives the additional number of continuous variables, while 

“# Disc. V.” gives the additional number of discrete variables in the model (beyond 
variables xxx ∈ X  . Column “# Con.” shows the additional number of constraints that are 
created in comparison to the nominal model.

Some models require www to be integer. This property can be replaced with the 
more general requirement that we need to be able to determine some value 𝜖 > 0 in 
polynomial time such that for each ccc ∈ {0, 1}n , either wwwtccc ≤ B or wwwtccc ≥ B + � holds. 
For integer weights, � = 1 clearly fulfills this property.

Having five candidate models available (four of which are general), a natural 
question is to compare the strengths of their respective linear programming relaxations: 
Is it possible that one model dominates the other in the sense that any feasible solution 
of the linear programming relaxation of the first model corresponds to a feasible 
solution of the linear programming relaxation of the second model with the same 
objective value? As we show experimentally in the next section, this is not the case. For 
any pairwise comparison of models, there are instances where the LP relaxation of one 
model outperforms the LP relaxation of the other.

min
∑

i∈[n]

dixi (IP-5)

s.t.
∑

i∈[n]

xi ≥ p +
∑

k∈[n]

yk

(B + 1)(1 − xk + yk) ≥ B + 1 −
∑

i∈[k]

wixi ∀k ∈ [n]

yyy ∈ {0, 1}n

xxx ∈ X

Table 1  Comparison of model 
sizes

Model   # Cont. V   # Disc. V   # Con   Requirements

IP-1 0 0 0 p = 1 , www ∈ ℤ
n

+

IP-2 1

2
n
2 +

3

2
n + 1 0 n

2 + 2n

IP-3 1

2
n
2 +

1

2
n + 1 n n

2 + 3n

IP-4 n
2 + n n n

2 + n www ∈ ℤ
n

+

IP-5 0 n n www ∈ ℤ
n

+
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4  Experiments

In this section we check the performance of our IPs to solve three different 
problems under budgeted interdiction uncertainty. We start with the selection 
problem as the models are obtained with respect to this problem. We also show 
the results of our approaches applied to the job assignment and 2-edge-connected 
subgraph problem.

To evaluate solution times for each problem, and in addition to presenting the 
normal solution times, we use performance profiles as introduced in Dolan Elizabeth 
and Moré Jorge (2022). We briefly recall this concept: Let S be the set of considered 
models, K the set of instances and tk,s the runtime of model s on instance k. We 
assume tk,s is set to infinity (or large enough) if model s does not solve instance k 
within the time limit. The percentage of instances for which the performance ratio of 
solver s is within a factor � ≥ 1 of the best ratio of all solvers is given by:

Hence, the function ks can be viewed as the distribution function for the performance 
ratio, which is plotted in a performance profile for each model.

For all experiments of the selection problem, we use CPLEX version 12.8 on 
an Intel Xeon Gold 6154 CPU computer server running at 3.00  GHz with 754 
GB RAM. For the experiments of both the job assignment and 2-edge-connected 
subgraph problem we use CPLEX version 22.11 on an Intel pc-i440fx−7.2 
CPU computer server running at 2.00GHz with 15 GB RAM. All processes are 
restricted to one thread.

4.1  Selection

4.1.1  Setup

We conduct three types of experiments on robust selection problems of the type

with budgeted interdiction uncertainty in the cardinality constraint. In the first 
experiment, we compare the tightness of the lower bounds obtained by all five 
models when the size of n and p is fixed. The remaining experiments compare the 
solution times of the proposed models.

In the second experiment, we vary the size of n. This is done in two ways: once 
for a fixed value of p, and once for a value of p that increases with n. In the third 
experiment, we fix n and vary only the size of p. This way, we can thoroughly 
evaluate the effect these two parameters have on the performance of the models.

ks(𝜏) =
1

|K|
|||||

{
k ∈ K |

tk,s

minŝ∈Stk,ŝ
≤ 𝜏

}|||||

min

{
∑

i∈[n]

dixi ∶
∑

i∈[n]

xi ≥ p, xxx ∈ {0, 1}n

}
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We use two techniques to generate instances for the selection problem under 
budgeted interdiction uncertainty, called Gen-1 and Gen-2. In Gen-1, the 
weights are chosen independently from the corresponding costs, which meanst 
that there may be both particularly good items (with low ci and high wi ) and bad 
items. In Gen-2, the weight of items depend on their costs, which intuitively 
may lead to harder instances compared to Gen-1. The generation methods are 
considered as follows:

• Gen-1: for each i ∈ [n] we choose di,wi from {1,… , 100} independently random 
uniform

• Gen-2: for each i ∈ [n] the value of wi depends on the value of di , thus we choose 
di from {1,… , 100} and wi from {max(1, di − 5),… , min(100, di + 5)} randomly 
uniform

In both cases, we set

4.1.2  Experiment 1

Here we focus on the LP-relaxation of all models and compare the lower bounds 
obtained by each of them. In this experiment we fix n = 10 and p = 1 to include 
all models. We solve the LP relaxations of 1000 instances for each combination 
of generation and solution methods using CPLEX. We then perform a pairwise 
comparison of the resulting lower bounds.

B =

�∑
i∈[n] wi

4

�

Table 2  LB comparison (Gen-
1)

IP-1 IP-2 IP-3 IP-4 IP-5 %

IP-1 – 979 967 993 983 98.05
IP-2 21 – 5 368 92 12.15
IP-3 33 982 – 878 412 57.63
IP-4 7 628 118 – 9 19.05
IP-5 17 898 575 987 – 61.93

Table 3  LB comparison (Gen-
2)

IP-1 IP-2 IP-3 IP-4 IP-5 %

IP-1 – 1000 999 1000 1000 99.98
IP-2 0 – 0 999 586 39.63
IP-3 1 1000 – 1000 1000 75.03
IP-4 0 1 0 – 0 0.03
IP-5 0 414 0 1000 – 35.35
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The results of this experiment is presented in Tables  2 and 3 for Gen-1 and 
Gen-2, respectively. Each number shows how many times the method in the 
respective row provided a strictly better (in this case higher) lower bound than the 
model in the correspondence column. The last column shows the average of cases 
per row where the model has been better then the comparison model in percent.

Based on the information provided in Table  2 for Gen-1, we note that IP-1 
dominates all other models in over 98% of cases (which is not surprising, as it is 
the most specialized model). The next best model is IP-5, followed by IP-3. With 
some gap behind these two models follow IP-4 and IP-2. The weakest model, IP-2, 
is stronger than another model in only around 12% of cases.

Interestingly, this ordering changes when using instances of type Gen-2, 
see Table 3. While IP-1 still outperforms other models other models in nearly all 
cases (over 99%), the second best model is IP-3, which performs relatively better 
than before. Similarly, IP-2 has improved in the ranking, while IP-5 (which was the 
second best choice in Table 2 is now relegated to fourth place. IP-4 can provide a 
better bound than another model in only one single instance.

4.1.3  Experiment 2

In this experiment, we vary the problem size in n ∈ {20, 25,… , 100} . The experi-
ment is divided into two parts. In the first part, we fix p to 1 so that all solution 
methods could be included, and also consider p = 5 to compare the performance of 
solution methods which can be applied to cases where p > 1 . In the second part, we 
use p =

n

5
 so that p grows linearly in n. For each combination of generation and solu-

tion methods we solved 50 instances using CPLEX and with a 600 s time limit. We 
always present a plot of average solution times and a performance profile.

Figure 1 shows the solution times for p = 1 . Clearly, IP-1 is the fastest model to 
solve instances for both Gen-1 and Gen-2, followed by IP-3. Other models also 
show similar behavior for both generation methods. Interestingly, IP-2 may even 
become faster as n increases, which seems counterintuitive, but can be explained by 
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Fig. 1  Selection—Exp2—solution times ( p = 1)
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the fact that p remains constant. The performance profiles (see Fig. 2) reflect a simi-
lar relative performance of the five models.

In Figs. 3 and 4, we show the average solution times and performance profiles 
for the case p = 5 , where IP-1 is not included. A similar behavior to the cases when 
p = 1 can be seen. As IP-1 is excluded, here IP-3 has the best average solution time. 

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1  4  16  64  256  1024

Ti
m

e 
Pe

rfo
rm

an
ce

Ratio

IP1
IP2
IP3
IP4
IP5

(a) Gen-1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1  4  16  64  256  1024

Ti
m

e 
Pe

rfo
rm

an
ce

Ratio

IP1
IP2
IP3
IP4
IP5

(b) Gen-2

Fig. 2  Selection—Exp2—performance profiles ( p = 1)
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Fig. 3  Selection—Exp2—solution times ( p = 5)
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Fig. 4  Selection—Exp2—performance profiles ( p = 5)
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The difference is that IP-3 fails to be faster than IP-5 for instances with smaller size 
of n. Similarly, in the performance profile, IP-3 dominates other models. The main 
difference compared to the case with p = 1 is that none of the models is always 
superior to others.

We now consider the case p =
n

5
 , i.e., p grows linearly with n. The average solu-

tion times and performance profiless of this experiment are presented in Figs. 5 and 
6, respectively.

The results of the second part is closely similar to the first part results when 
p = 5 . That is, IP-3 beats all formulations except IP-5 with n = 20, 30, 40 for Gen-
1 and n = 20, 30 for Gen-2. In addition, the behavior of IP-2 and IP-4 is similar, 
however their comparison is difficult because of the time limit. In this experiment, 
IP-4 has better solution time than IP-2 for Gen-1, but for Gen-2, IP-2 is slightly 
faster than IP-4.

4.1.4  Experiment 3

In this experiment, we fix the number of items n and change the number of items we 
want to select p. We consider the cases n = 20 and n = 40 . In both cases, p is chosen 
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Fig. 5  Selection—Exp2—solution times ( p = n∕5)
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from {1, 2,… , 10} . As before, we solved 50 instances using CPLEX with a 600-sec-
ond time limit for each combination of generation and solution methods. The results 
of this experiment is provided in Figs. 7, 8, 9 and 10.
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Fig. 7  Selection—Exp3—solution times ( n = 20)
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Fig. 8  Selection—Exp3—performance profiles ( n = 20)
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Fig. 9  Exp3, solution times for n = 40
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Interestingly, the experiment for instances with n = 20 shows that IP-2, IP-3 and 
IP-4 are dominated by IP-5 except for p = 1 for both Gen-1 and Gen-2. In this sin-
gle case, IP-5 is outperformed by IP-3. This experiment shows that the problem solved 
faster for larger value of p. This can be explained by the observation that for larger 
values of p, nearly all items need to be selected (recall that we need to pack more than p 
items to respect the uncertainty). Similar to other experiments, the performance profile 
(see Fig. 8) represents the obtained results for the average solution times also holds for 
the instance-wise comparisons of the given models.

The results depicted in Figs. 9 and 10 show that the problems first tend to become 
harder to solve and then the solution time falls. Notably, unlike the case with n = 20 , 
IP-3 has the best performance with regard to the solution time. Another difference is 
that IP-3 is always superior in comparison to the other mathematical formulations. In 
this case the problem in considerably harder to solve than cases with n = 20 . In this 
sense, the problem hits the time limit even for p = 1 , while IP-3 never reaches even 
close to the time limit. The performance profile shows that IP-3 is almost always faster 
than other IPs.

4.2  Job assignment

4.2.1  Setup

We now consider a job assignment problem with m jobs and n workers. Each job has 
a profit pj and workers demand of dj for all j ∈ [m] . Here, instead of weights for each 
item in the selection problem, we have a failure probability for each worker wi for all 
i ∈ [n] . Therefore, the robust job assignment problem under the budgeted interdiction 
uncertainty can be formulated as follows
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In this case and in order to see the performance of our IPs over the job assignment 
problem, we only consider IP-2, IP-3, IP-4 and IP-5. The compact formulations 
of these four IPs are collected in “Appendix  A”. Furthermore, we introduce two 
experiments, where in experiment  1 we fix the number of jobs and change the 
number of workers; while in experiment 2 we fix the number of workers and vary 
the number of jobs.

Similar to the experiments on the selection problem, we use two types of instance 
generation methods for the job assignment problem under budgeted interdiction 
uncertainty, called Gen-1 and Gen-2. In Gen-1, the job demands are chosen 
independently from the corresponding profits. In Gen-2, however, the profits of 
jobs depend on their demands. The generation methods are considered as follows:
Gen-1

• for each i ∈ [m] we choose di from {1,… ,
2n

m
} independently random uniform.

• for each i ∈ [m] we choose pi from {1,… , 25} independently random uniform.

Gen-2

• for each i ∈ [m] we choose di from {1,… ,
2n

m
} independently random uniform.

• for each i ∈ [m] the value of pi depends on the value of di . If di ≤
n

m
 then pi is 

chosen from {1,… , 25} , otherwise we choose pi from {10,… , 34} randomly 
uniform.

In both cases, we choose wi from {101,… , 150} randomly uniform for all i ∈ [n] . 
Then we set

4.2.2  Experiment 1

In this experiment, we fix the number of jobs (m) and change the number of workers 
(n). To this end, we consider the case when m = 5 and n = {5, 10,… , 40} . For each 
combination we solve 50 instances with a time limit of 600 s and show the average 
solution times. The results of this experiment is provided in Figs. 11 and 12.

max
∑

j∈[m]

pjz̄j

s.t.
∑

i∈[n]

(1 − ci)xij ≥ djz̄j ∀j ∈ [m],ccc ∈ U

∑

j∈[m]

xij ≤ 1 ∀i ∈ [n]

xij, z̄j ∈ {0, 1}

B =

�∑
i∈[n] 2wi

n

�
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The solution times presented in Fig.  11 show that all introduced IPs perform 
similarly over the given generation methods. It can be seen that the problem 
constantly tends to be harder to solve from n = 5 to n = 30 and then solution times 
for all IPs decrease slightly. Here, IP-4 and IP-5 (which is one of the best also for 
the selection problem) are the fastest IPs. The reason is they have fewer number of 
constraints.

Like the solution times, Fig. 12 illustrates that IP-5 leads to the best performance 
profile, meaning that for most of instances it is the fastest IP following by IP-4. In 
this setting IP-2 is the worst IP in terms of solution times.

4.2.3  Experiment 2

In the second experiment of the job assignment problem, we fix the number of 
workers ( n = 20 ) and change the number of jobs ( n = {2, 3,… , 9} ). Similarly, for 
each given combination we solve 50 instances with a time limit of 600 s and show 
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Fig. 11  Job assignment—Exp1—solution times ( m = 5)
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the average solution times. The time performance of this experimental setting is 
shown in Figs. 13 and 14.

Here, again the same trend as experiment 1 (4.2.2) can be observed in terms of 
both solution times and the corresponding performance profile. The results of the 
introduced generation methods are equivalent. However, the drop of the solution 
times for the larger case of instances are less noticeable. Likewise, IP-5 has both the 
best average and instance-wise solution times and the slowest IP is again IP-2.

4.3  2‑Edge‑connected spanning subgraph

4.3.1  Setup

In the NP-hard 2-edge-connected spanning subgraph problem, an undirected graph 
G = (V ,E) is given with edge weights ddd ∈ ℝ

|E|
+  . The objective is to find a subset of 

edges E′ with minimum weight such that G[E�] is 2-edge-connceted, i.e., there are 
two edge-disjoint paths between any pair of nodes (see, e.g., Woonghee 2004). We 

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 2  3  4  5  6  7  8  9

So
lu

tio
n 

Ti
m

e

Number of jobs (m)

IP-2
IP-3
IP-4
IP-5

(a) Gen-1

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 2  3  4  5  6  7  8  9

So
lu

tio
n 

Ti
m

e

Number of jobs (m)

IP-2
IP-3
IP-4
IP-5

(b) Gen-2

Fig. 13  Job assignment—Exp2—solution times n = 20
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consider a robust version where edges can fail, but the subgraph is still required to 
remain 2-edge-connected.

The nominal problem can be formulated as follows:

where C denotes the set of all cuts in the graph G. As there are exponentially many 
constraints, we use an iterative procedure. In “Appendix  B”, we describe models 
IP-2, IP-3, IP-4 and IP-5 for a subset C′ ⊆ C of cuts. We begine with C� = � , solve 
the corresponding formulation, and check if the resulting solution xxx is feasible with 
respect to all cuts C . To check if a cut is violated, we solve the following IP:

If a violated cut can be found, it is added to C′ , and the robust problem is solved 
again, until convergence is reached.

We introduce one experiment where the number of nodes of the given graph vary. 
We also set the density (D) of the graph equal to 0.8.

Unlike the experiments on both the selection and job assignment problem, we 
just introduce on approach of instance generation for the cut based problem under 
budgeted interdiction uncertainty. In this case our graph has n nodes and m edges, 
where m = D ×

n(n−1)

2
 . Here, for each e ∈ E we choose de from {1,… , 10} and we 

from {5,… , 10} randomly uniform. Moreover, we set B = 15.

4.3.2  Experiment

In the only experiment of the cut based problem, we change the number of nodes 
and thus choose n from {10, 12,… , 30} . Similarly, for each instance size we solve 
50 instances with a time limit of 600  s and show the average solution times. The 
time performance of this experimental setting is shown in Fig. 15.

min
∑

{i,j}∈E

dijxij

s.t.
∑

{i,j}∈C

xij ≥ 2 ∀C ∈ C

xij ∈ {0, 1} ∀{i, j} ∈ E

min
∑

e∈E

ye + �ze

s.t. zij ≥ ui − uj ∀{i, j} ∈ E

zij ≥ uj − ui ∀{i, j} ∈ E

1 ≤

∑

i∈[n]

ui ≤ n − 1

ye ≥ xe + ze − ce − 1 ∀e ∈ E
∑

e∈E

wece ≤ B

yi, ci, zi ∈ {0, 1} ∀i ∈ [m]

ui ∈ {0, 1} ∀i ∈ [n]
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The results gathered in Fig. 15 show that the given IPs perform similarly for both 
the job assignment and the cut based problem. Here, again IP-5 is the fastest IP, 
whose performance profile also dominates the other methods. The second best is 
IP-4 and the worst performance belongs to IP-2.

5  Conclusions

Tools to model uncertainty sets are of central importance in robust optimization. 
While classic budgeted uncertainty sets make the assumption that each “attack” 
(i.e., changing a parameter away from its nominal value) has the same costs, 
extensions such as knapsack uncertainty sets relax this constraint and allow 
different attacks to have different costs. However, for a discrete knapsack 
uncertainty set, this means that even evaluating a solution (i.e., calculating the 
worst possible attack) requires us to solve an NP-hard knapsack problem.

In this paper, we propose an alternative uncertainty set, where attacks may 
have different costs, but each attack leads to the same consequence. Such a model 
is particularly useful to model uncertainty in cardinality-based constraints or 
objectives. This type of uncertainty has the advantage that calculating a worst-
case attack is still possible in polynomial time, even though the corresponding 
robust problems become hard. We also demonstrated how this approach can be 
applied to a job assignment problem, and the problem of finding a minimum-cost 
2-edge-connected subgraph under failures.

We consider different ways to model the worst-case attack, which lead to a 
total of five compact integer programming formulations, none of which dominates 
the other. Our computational experiments for the selection prblem indicate that 
in particular models IP-3 (based on rounding down attack budgets with integer 
variables) and IP-5 (based on forcing a binary variable to become active if an 
item can be attacked) show promising performance and can solve problems to 
proven optimality with up to 100 items within seconds. However, given the job 
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assignment and finding minimum cost 2-edge-connected subgraph problem, IP-5 
has the best performance followed by IP-4.

In further research, it will be interesting to explore if additive approximation 
algorithms may be possible, as multiplicative approximation guarantees are 
impossible to achieve. Furthermore, we intend to study budgeted interdiction 
sets in multi-stage environments such as two-stage and recoverable robust 
optimization.

A. Job assignment models

In this section we summarize the compact formulation of IP-2, IP-3, IP-4 and IP-5 that 
we obtained for the job assignment problem under the budgeted interdiction uncertainty 
set where the intermediate steps are excluded and only the final IPS are shown.

IP‑2

max
∑

j∈[m]

pjz̄j

s.t.
∑

i∈[n]

xij − 𝛽j ≥ djz̄j ∀j ∈ [m]

∑

i∈[k]

(wi𝜇ijk − xij) ≥ B𝛼kj − 𝛽j ∀j ∈ [m], k ∈ [n]

𝜇ijk ≤ kxij ∀j ∈ [m], k ∈ [n], i ∈ [k]

𝜇ijk ≤ 𝛼kj ∀j ∈ [m], k ∈ [n], i ∈ [k]

𝜇ijk ≥ 0 ∀j ∈ [m], k ∈ [n], i ∈ [k]

𝛼kj ≥ 0 ∀j ∈ [m], k ∈ [n]

𝛽j ≥ 0 ∀j ∈ [m]

xxx ∈ X
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IP‑3

IP‑4

max
�

j∈[m]

pjz̄j

s.t.
�

i∈[n]

xij − 𝛼j ≥ djz̄j ∀j ∈ [m]

�

i∈[k]

(xij − zijk) ≤ 𝛼j ∀j ∈ [m], k ∈ [n]

zijk ≤ yjk ∀j ∈ [m], k ∈ [n], i ∈ [k]

zijk ≤

�∑
l∈[n] wl

B

�
xij ∀j ∈ [m], k ∈ [n], i ∈ [k]

yjk ≤

∑
i∈[k] wixij

B
∀j ∈ [m], k ∈ [n]

zijk ≥ 0 ∀j ∈ [m], k ∈ [n], i ∈ [k]

𝛼j ≥ 0 ∀j ∈ [m]

yyy ∈ ℤ
n

xxx ∈ X

max
∑

j∈[m]

pjz̄j

s.t.
∑

i∈[n]

xij ≥ djz̄j +
∑

k∈[n]

ykj ∀j ∈ [m]

(B + 1)ykj + k𝛼k
j
−

∑

i∈[n]

𝛽k
ij
≥ B + 1 ∀j ∈ [m], k ∈ [n]

𝛼k
j
− 𝛽k

ij
≤ wi + (B + 1)(1 − xij) ∀j ∈ [m], k ∈ [n], i ∈ [n]

𝛼k
j
≥ 0 ∀j ∈ [m], k ∈ [n]

𝛽k
ij
≥ 0 ∀j ∈ [m], k ∈ [n], i ∈ [n]

yyy ∈ {0, 1}n

xxx ∈ X



282 M. Goerigk, M. Khosravi 

IP‑5

B. Cut‑based models

Let C′ be a subset of all cuts. For each cut C, denote by C = {e(C, 1),… , e(C, |C|)} 
the corresponding edges, sorted by their weight we . We have [|C|] = {1,… , |C|}.

IP‑2

max
∑

j∈[m]

pjz̄j

s.t.
∑

i∈[n]

xij ≥ djz̄j +
∑

k∈[n]

ykj ∀j ∈ [m]

(B + 1)(1 − xjk + ykj) ≥ B + 1 −
∑

i∈[k]

wixij ∀j ∈ [m], k ∈ [n]

yyy ∈ {0, 1}n

xxx ∈ X

min
∑

e∈E

dexe

s.t.
∑

e∈C

xe ≥ 2 + �C ∀C ∈ C
�

∑

�∈[k]

we(C,�)�C�k − xe(C,�) ≥ B�Ck − �C ∀C ∈ C
�, k ∈ [|C|]

�C�k ≤ kxe(C,�) ∀C ∈ C
�, k ∈ [|C|],� ∈ [k]

�C�k ≤ �Ck ∀C ∈ C
�, k ∈ [|C|]

xe ∈ {0, 1} ∀e ∈ E

�C ≥ 0 ∀C ∈ C
�

�Ck ≥ 0 ∀C ∈ C
�, k ∈ [|C|]

�C�k ≥ 0 ∀C ∈ C
�, k ∈ [|C|],� ∈ [k]
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IP‑3

where

IP‑4

min
∑

e∈E

dexe

s.t.
∑

e∈C

xe ≥ 2 + �C ∀C ∈ C
�

∑

�∈[k]

xe(C,�) − zC�k ≤ �C ∀C ∈ C
�, k ∈ [|C|]

zC�k ≤ yCk C ∈ C
�, k ∈ [|C|],� ∈ [k]

zC�k ≤ Mxe(C,�) ∀C ∈ C
�, k ∈ [|C|],� ∈ [k]

(B + �)yC,k ≤
∑

�∈[k]

we(C,�)xe(C,�) ∀C ∈ C
�, k ∈ [|C|]

xe ∈ {0, 1} ∀e ∈ E

�C ≥ 0 ∀C ∈ C
�

zC�k ≥ 0 ∀C ∈ C
�, k ∈ [|C|],� ∈ [k]

yCk ∈ ℤ ∀C ∈ C
�, k ∈ [|C|]

M =

�∑
e∈E we

B + �

�

min
∑

e∈E

dexe

s.t.
∑

e∈C

xe ≥ 2 +
∑

k∈[|C|]
yCk ∀C ∈ C

�

(B + 1)yCk + k�Ck −
∑

�∈[|C|]
�Ck� ≥ B + 1 ∀C ∈ C

�, k ∈ [|C|]

�Ck − �Ck� ≤ we(C,�) + (B + 1)(1 − xe(C,�)) ∀C ∈ C
�, k ∈ [|C|],� ∈ [|C|]

xe ∈ {0, 1} ∀e ∈ E

yCk ∈ {0, 1} ∀C ∈ C
�, k ∈ [|C|]

�Ck ≥ 0 ∀C ∈ C
�, k ∈ [|C|]

�Ck� ≥ 0 ∀C ∈ C
�, k ∈ [|C|],� ∈ [|C|]
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