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A B S T R A C T

We review several existing text analysis methodologies and explain their formal application processes using
the open-source software R and relevant packages. Several text mining applications to analyze central bank
texts are presented.
. Introduction

The information age is characterized by the rapid growth of data,
ostly unstructured data. Unstructured data is often text-heavy, includ-

ng news articles, social media posts, Twitter feeds, transcribed data
rom videos, as well as formal documents.1 The availability of this
ata presents new opportunities, as well as new challenges, both to
esearchers and research institutions. In this paper, we review several
xisting methodologies for analyzing texts and introduce a formal pro-
ess of applying text mining techniques using the open-source software
. In addition, we discuss potential empirical applications.

✩ This paper does not necessarily reflect the views of the Bank of Israel, the Federal Reserve Bank of Richmond or the Federal Reserve System. The present paper
erves as the technical appendix of our research paper (Benchimol et al., 2020). We thank the Editor, anonymous referees, Itamar Caspi, Shir Kamenetsky Yadan,
riel Mansura, Ben Schreiber, and Bar Weinstein for their productive comments. The replication files are available at https://doi.org/10.24433/CO.1132001.v1.

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
adge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.
∗ Corresponding author.
E-mail addresses: jonathan.benchimol@boi.org.il (J. Benchimol), sophia.kazinnik@rich.frb.org (S. Kazinnik), yosis@boi.org.il (Y. Saadon).

1 Usually in Adobe PDF or Microsoft Word formats.
2 See, for instance, Carley (1993), Ehrmann and Fratzscher (2007), Lucca and Trebbi (2009), Bholat et al. (2015), Hansen and McMahon (2016), Bholat et al.

2019), Bruno (2017), Calomiris and Mamaysky (2020), Hansen et al. (2019), Benchimol et al. (2021), Correa et al. (2021), and Ter Ellen et al. (2022).
3 See, for instance, Lexalytics, IBM Watson AlchemyAPI, Provalis Research Text Analytics Software, SAS Text Miner, Sysomos, Expert System, RapidMiner

ext Mining Extension, Clarabridge, Luminoso, Bitext, Etuma, Synapsify, Medallia, Abzooba, General Sentiment, Semantria, Kanjoya, Twinword, VisualText,
IFT, Buzzlogix, Averbis, AYLIEN, Brainspace, OdinText, Loop Cognitive Computing Appliance, ai-one, LingPipe, Megaputer, Taste Analytics, LinguaSys, muText,
extualETL, Ascribe, STATISTICA Text Miner, MeaningCloud, Oracle Endeca Information Discovery, Basis Technology, Language Computer, NetOwl, DiscoverText,
ngoos KnowledgeREADER, Forest Rim’s Textual ETL, Pingar, IBM SPSS Text Analytics, OpenText, Smartlogic, Narrative Science Quill, Google Cloud Natural
anguage API, TheySay, indico, Microsoft Azure Text Analytics API, Datumbox, Relativity Analytics, Oracle Social Cloud, Thomson Reuters Open Calais, Verint
ystems, Intellexer, Rocket Text Analytics, SAP HANA Text Analytics, AUTINDEX, Text2data, Saplo, SYSTRAN, and many others.

This paper offers a primer on how to systematically extract quan-
titative information from unstructured or semi-structured text data.
Quantitative representation of text has been widely used in disciplines
such as computational linguistics, sociology, communication, political
science, and information security. However, there is a growing body
of literature in economics that uses this approach to analyze macroe-
conomic issues, particularly central bank communication and financial
stability.2

The use of this type of text analysis is growing in popularity and has
become more widespread with the development of technical tools and
packages facilitating information retrieval and analysis.3
ttps://doi.org/10.1016/j.mlwa.2022.100286
eceived 1 March 2021; Received in revised form 9 March 2022; Accepted 9 Marc
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An applied approach to text analysis can be described by several
sequential steps. Given the unstructured nature of text data, a consistent
and repeatable approach is required to assign a set of meaningful
quantitative measures to this type of data. This process can be roughly
divided into four steps: data selection, data cleaning, information ex-
traction, and analysis of that information. Our tutorial explains each
step and shows how it can be executed and implemented using the
open-source R software. For our sample data set, we use a set of
monthly communications published by the Bank of Israel.

In general, an automatic and precise understanding of financial
texts allows for the construction of relevant financial indicators. There
are many potential applications in economics and finance, as well as
other social science disciplines. Central bank publications (e.g., inter-
est rate announcements, minutes, speeches, official reports, etc.) are
of particular interest, considering what a powerful tool central bank
communication is (Benchimol et al., 2020). This quick and automatic
analysis of the underlying meaning conveyed by these texts should
allow for fine-tuning of these publications before making them public.
For instance, a spokesperson could use this tool to analyze the orienta-
tion of a text, such as an interest rate announcement, before making it
public.

The remainder of the paper is organized as follows. The next section
covers theoretical background behind text analysis and interpretation
of text. Section 3 describes text extraction and Section 4 presents
methodologies for cleaning and storing text data for text mining. Sec-
tion 5 presents several common approaches to text data structures used
in Section 6, which details methodologies used for text analysis, and
Section 7 concludes.

2. Theoretical background

The principal goal of text analysis is to capture and analyze all
possible meanings embedded in the text. This can be done both qual-
itatively and quantitatively. The purpose of this paper is to offer an
accessible tutorial to the quantitative approach. In general, quantitative
text analysis is a field of research that studies the ability to decode data
from natural language with computational tools.

Quantitative text analysis takes roots in a set of simple computa-
tional methods, focused on quantifying the presence of certain key-
words or concepts with a text. These methods, however, fail to take
into account the underlying meaning of text. This is problematic be-
cause, as shown by Carley (1993), two identical sets of words can
have very different meanings. This realization and subsequent need
to capture meaning embedded in text gave rise to the development of
new methods, such as language network models, and, specifically, se-
mantic networks (Danowski, 1993; Diesner, 2013). Today, the common
approach in quantitative text mining is to find relationships between
concepts, generating what is known as a semantic network.

Semantic network analysis is characterized by its ability to illustrate
the relationships between words within a text, providing insights into
its structure and meaning. Semantic networks rely on co-occurrence
metrics to represent proximity concepts (Diesner, 2013; Diesner & Car-
ley, 2011a, 2011b). For instance, nodes in a network represent concepts
or themes that frequently co-occur near each other in a specific text. As
a result, semantic network analysis allows meaning to be revealed by
considering the relationships among concepts.

In this paper, we cover both of the approaches mentioned above. We
first discuss term-counting methods, such as term frequency and rela-
tive frequency calculations. We follow with networks-based methods,
such as cluster analysis, topic modeling, and latent semantic analysis.
Overall, the field of natural language processing (NLP) has progressed
rapidly in recent years, but these methods still remain to be essential
and relevant building blocks of quantitative language analysis.

The next three sections present a comprehensive set of steps for
text analysis, starting with common methodologies for cleaning and
storing text, as well as discussing several common approaches to text
data structures.
2

3. Text extraction

For this exercise, we use a set of interest rate announcements
published by the Bank of Israel from 1997 to 2017. Overall, we have
220 documents of this type. We use this set of documents as input using
package tm (Feinerer et al., 2008) within the open-source software R.4
This package can be thought as a framework for text mining applica-
tions within R, including text preprocessing. There is a core function
called corpus embedded in the tm package. This function takes a
predefined directory, which contains the input (a set of documents) as
an argument, and returns the output, which is the set of documents
organized in a particular way. Here, we use the term corpus to reference
a relevant set of documents.

We define our corpus in R in the following way. First, we apply a
function called file.path that defines a directory where all of our
text documents are stored.5 In our example, it is the folder that stores
all 220 text documents, each corresponding to a separate interest rate
decision meeting. After defining the working directory, we apply the
function corpus from the package tm to all of the files in the working
directory. This way, the function captures and interprets each file as a
document and formats the set of text documents into a corpus object
class as defined internally by the tm package.

file.path < - file.path(".../data/folder")
corpus < - corpus(DirSource(file.path))

Now, we have our documents organized as a corpus object. The
content of each document can be accessed and read using the write-
Lines function. For example:

writeLines(as.character(corpus[[1]]))

Using this command line, we can access and view the content of
document number one within the corpus. This document corresponds
to the interest rate discussion published in December 2007. Below are
the first two sentences of this document:

Bank of Israel Report to the public of the Bank of Israel’s discussions before
setting the interest rate for January 2007 The broad-forum discussions
took place on December 24, 2006, and the narrow forum discussions on
December 25, 2006, January 2007 General Before the Governor makes
the monthly interest rate decision, discussions are held at two levels.
The first discussion takes place in a broad forum, in which the relevant
background economic conditions are presented, including real and monetary
developments in Israel’s economy and developments in the global economy.

There are other approaches to storing a set of texts in R, for example
by using the functions data.frame or tibble. However, we will
oncentrate on tm’s corpus approach as it is largely more intuitive, and
as a greater number of corresponding functions explicitly written for
ext analysis.

. Cleaning and storing text

Once the relevant corpus is defined, and read into the program,
e can transform it into an appropriate format for further analysis.
s mentioned previously, each document can be thought of as a set
f tokens. Tokens are sets of words, numbers, punctuation marks, and
ny other symbols present in the given document.

4 Unnecessary elements (characters, images, advertisements, etc.) are
emoved from each document to constitute our clean set of documents.

5 The folder should contain text documents only. If there are other files in
hat location (i.e., R files) than the corpus function will include the text in

the other files.
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Not all of the tokens carry meaningful information. Therefore, the
next necessary step is text cleaning, one of the crucial steps in text
analysis. Text cleaning (or text preprocessing) makes an unstructured
set of texts uniform across and within and eliminates idiosyncratic
characters or meaningless terms.6 Text cleaning can be loosely divided
into a set of steps as shown below.

The text excerpt presented in Section 3 contains some useful infor-
mation about the content of the discussion, but also a lot of unnecessary
details, such as punctuation marks, dates, ubiquitous words. Therefore,
the first logical step is to remove punctuation and idiosyncratic charac-
ters from the set of texts. This includes any strings of characters present
in the text, such as punctuation marks, percentage or currency signs, or
any other characters that are not words.

One way to eliminate punctuation marks is with the removePunc-
tuation function. This function removes a set of predefined punctu-
ation characters.

corpus < - tm_map(corpus, removePunctuation)

The text below shows our original excerpt, with the aforementioned
punctuation characters removed:

The broad forum discussions took place on December 24 2006 and the
narrow forum discussions on December 25 2006 January 2007 General
Before the Governor makes the monthly interest rate decision discussions
are held at two levels The first discussion takes place in a broad forum in
which the relevant background economic conditions are presented including
real and monetary developments in Israel’s economy and developments in
the global economy

Additionally, any numbers present in the texts of our corpus can be
removed using the removeNumbers function, as in the below code:

corpus < - tm_map(corpus, removeNumbers)

Now, the text below shows our original excerpts, but without any
punctuation marks or digits:

The broad forum discussions took place on December and the narrow
forum discussions on December January General Before the Governor
makes the monthly interest rate decision discussions are held at two levels
The first discussion takes place in a broad forum in which the relevant
background economic conditions are presented including real and monetary
developments in Israels economy and developments in the global economy

The current text excerpt is slightly more concise than the original,
but there is still much unnecessary information. Therefore, the next step
would be to remove the so-called stop words from the text.

What are stop words? Words such as “the”, “a”, “and”, “they”, and
many others can be defined as stop words. Stop words usually refer
to the most common words in a language, and because they are so
common, they do not convey specific information. Since these terms
do not carry any meaning as standalone terms, they are not valuable
for our analysis. In addition to a pre-existing list of stop words, ad hoc
stop words can be added to the list.

We apply a function from the package tm onto our existing corpus
as defined above in order to remove the stop words. There is a coercing
function called removeWords that erases a given set of stop words
from the corpus. There are different lists of stop words available, and
we use a standard list of English stop words.

However, before removing the stop words, we need to turn all of our
existing words within the text into lowercase. Why? Because converting
to lowercase, or case folding, allows for case-insensitive comparison.

6 Specific characters that are not used to understand the meaning of a text.
3

This is the only way for the function removeWords to identify the
words subject for removal.

Therefore, using the package tm, and a coercing function tolower,
we convert our corpus to lowercase:

corpus < - tm_map(corpus, tolower)

Below is the example text excerpt following the command men-
tioned above:

the broad forum discussions took place on december and the narrow forum
discussions on december january general before the governor makes the
monthly interest rate decision discussions are held at two levels the first
discussion takes place in a broad forum in which the relevant background
economic conditions are presented including real and monetary develop-
ments in israels economy and developments in the global economy

We can now remove the stop words from the text:

corpus < - tm_map(corpus, removeWords,
stopwords("english"))

Here, tm_map is a wrapper function that takes the corpus and
pplies character processing function removeWords onto all of the

contents of the corpus (all 220 documents). It returns the modified
documents in the same format, a corpus, but with the changes already
applied. The following output shows our original text excerpt with the
stop words removed:

broad forum discussions took place december narrow forum discussions
december january general governor makes monthly interest rate decision
discussions held two levels first discussion takes place broad forum relevant
background economic conditions presented including real monetary devel-
opments israels economy developments global economy

The next and final step is to stem the remaining words. Stemming is
a process of turning several words that mean the same thing into one.
For example, after stemming, words such as “banking”, “banks”, and
“banked” become “bank”. As stemming reduces inflected or derived
words to their word stem or root. This can be thought of as word
normalization. Stemming algorithm allows us not to count different
variations as the same term as separate instances.

Below, we use a coercing function called stemDocument, that
stems words in a text document using Porter’s stemming algorithm
(Porter, 1980). This algorithm removes common morphological and
inflectional endings from words in English, as described in the previous
paragraph.

corpus < - tm_map(corpus, stemDocument)

Once we have applied several of these character processing func-
tions to our corpus, we would like to examine it in order to view the
results. Overall, as a result of the above procedures, we end up with
the following:

broad forum discuss took place decemb narrow forum discuss decemb
januari general governor make month interest rate decis discuss held two
level first discuss take place broad forum relev background econom condit
present includ real monetari develop israel economi develop global economi

This last text excerpt shows what we end up with once the data
cleaning manipulations are done. While the excerpt we end up with
resembles its original only remotely, we can still figure out reasonably

well the subject of the discussion.
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Table 1
Document Term Matrix - Excerpt.

Document 𝑖 Term 𝑗

Accord Activ Averag . . .

May 2008 3 9 4 . . .
June 2008 6 4 16 . . .
July 2008 5 3 7 . . .
August 2008 4 9 12 . . .
September 2008 5 8 22 . . .
October 2008 3 20 16 . . .
November 2008 6 5 11 . . .
. . . . . . . . . . . . . . .

Note: This table presents an excerpt of a document term matrix (dtm).

5. Data structures

Once the text cleaning step is done, R allows for several convenient
ways of storing our results. We discuss the two most popular formats,
a document term matrix and a tidy object. While there may be more
ways to store text, these two formats are the most convenient when
working with text data in R. We explain each of these formats next.

5.1. Document term matrix

Document term matrix is a mathematical matrix that describes
the frequency of terms that occur in a collection of documents. Such
matrices are widely used in the field of NLP. In a document term
matrix, each row corresponds to a specific document in the collection
and each column corresponds to the count of specific terms within
that document. In essence, a document term matrix is a vector-space
representation of a set of documents. An example of a document term
matrix is shown in Table 1.

This type of matrix represents the frequency for each unique term
in each document in corpus. In R, our corpus can be mapped into a
dtm object class by using the function DocumentTermMatrix from
the tm package.

dtm < - DocumentTermMatrix(corpus)

The goal of mapping the corpus onto a dtm is twofold; the first is
to present the topic of each document by the frequency of semantically
significant and unique terms, and second, to position the corpus for
future data analysis. The value in each cell of this matrix is typically
the word frequency of each term in each document. This frequency can
be weighted in different ways. The default weighting scheme function
is called term frequency (tf).

Another common approach to weighting is called term frequency–
inverse document frequency (tf-idf). While the tf weighting scheme
is defined as the number of times a word appears in the document, tf-
idf is defined as the number of times a word appears in the document
but is offset by the frequency of the words in the corpus, which helps to
adjust for the fact that some words appear more frequently in general.

Why is the frequency of each term in each document important? A
simple counting approach such as term frequency may be inappropriate
because it can overstate the importance of a small number of very
frequent words. Term frequency is the most normalized one, measuring
how frequently a term occurs in a document with respect to the
document length, such as:

𝚝𝚏(𝑡) =
Number of times term 𝑡 appears in a document

Total number of terms in the document (1)

more appropriate way to calculate word frequencies is to employ
he tf-idf weighting scheme. It is a way to weight the importance
f terms in a document based on how frequently they appear across
 t

4

ultiple documents. If a term frequently appears in a document, it is
mportant, and it receives a high score. However, if a word appears
n many documents, it is not a unique identifier, and it will receive a
ow score. Eq. (1) shows how words that frequently appear in a single
ocument will be scaled up, and Eq. (2) shows how common words
hich appear in many documents will be scaled down.

𝚍𝚏(𝑡) = ln
(

Total number of documents
Number of documents with term 𝑡 in it

)

(2)

Conjugating these two properties yield the tf-idf weighting scheme:

𝚝𝚏 − 𝚒𝚍𝚏(𝑡) = 𝚝𝚏(𝑡) × 𝚒𝚍𝚏(𝑡) (3)

In order to employ this weighting scheme in Eq. (3), we can assign
this option within the already familiar function dtm:

dtm < - DocumentTermMatrix(corpus,
control = list(weighting = weightTfIdf))

The above-mentioned steps provide us with a suitable numeric
matrix under the name of dtm. In this matrix, each cell contains an
integer, corresponding to a (perhaps weighted) number of times a
specific term appeared in each document within our corpus. However,
most cells in such dtm will be empty, i.e., zeros, because most terms
do not appear in most of the documents. This property is referred to as
matrix sparsity.

Most term-document matrices tend to be high-dimensional and
sparse. This is because any given document will contain only a subset of
unique terms that appear throughout the corpus. This will result in any
corresponding document-row having zeros for terms that were not used
in that specific document. Therefore, we need an approach to reduce
dimensionality.

Function RemoveSparseTerms takes our existing dtm, and a
certain numerical value called sparse, and returns an adjusted dtm,
where the number of elements is reduced, depending on the value set
for sparse. This numerical value is defined as the maximum allowed
sparsity, as is set in the range of zero to one.

In reference to RemoveSparseTerms, sparsity refers to the thresh-
old of relative document frequency of a term, above which the term
will be removed. Sparsity becomes smaller as this threshold approaches
one. In a way, this process can be thought of as removing outliers. For
example, the code below will yield a dtm where all terms appearing in
at least 90% of the documents will be kept.

dtm < - RemoveSparseTerms(dtm, 0.1)

Now, we have a dtm that is ready for the initial text analysis. An
example of output following this weighting scheme and subsequent
sparsity reduction of a certain degree might yield Table 2.

5.2. Tidytext table

This section provides an overview of the tidytext R package, de-
tailed in Wickham (2014). This framework was developed specifically
for the R software, and for the sole purpose of text mining. tidytext
allows a set of documents to be presented as a one-term-per-document-
per-row data frame. This is done with the help of the unnest_tokens
function within the tidytext.

This one-observation-per-row structure contrasts the way text is of-
ten stored in alternative frameworks.7 For tidytext , the observation
(or token) that is stored in each row is most often a single term, but can

7 This is different from other formats where each word corresponds with
he document from which it comes. In addition, it is possible to convert the
idytext format into the dtm format.
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Table 2
Document Term Matrix — Excerpt with tf-idf.

abroad acceler accompani account achiev adjust ...
01-2007 0.0002 0.000416 0.000844 0.000507 0.000271 0.000289 ...
01-2008 0.00042 0.000875 0.000887 0.000152 9.49E-05 0.000304 ...
01-2009 0.000497 0 0 9.01E-05 0.000112 0.000957 ...
01-2010 0.000396 0 0 7.18E-05 8.95E-05 0.000954 ...
01-2011 0.000655 0 0.000691 0.000119 7.39E-05 0.000552 ...
01-2012 0.000133 0 0.001124 9.65E-05 6.01E-05 0 ...
01-2013 0.00019 0.000395 0 0.000138 8.56E-05 0.000274 ...
01-2014 0 0.000414 0 0.000144 8.98E-05 0 ...
01-2015 0 0.00079 0 6.88E-05 8.57E-05 0.000183 ...
01-2016 0 0.000414 0 0 0.00018 0.000192 ...
01-2017 0 0.000372 0.000755 6.48E-05 0.000323 0.000689 ...
01-2018 0.000581 0 0.002455 0.000211 0 0 ...

Notes: This table presents an excerpt of a dtm with tf-idf weighting methodology. The highest values
for the selected sample are highlighted in gray.
c
i
c
s
t

Fig. 1. Histogram - tidytext.
ote: Histogram containing most popular terms within the tidytext table.

lso be an n-gram, sentence, or paragraph. In general, a token refers to
unit by which we analyze the text.

Tokenization by word is one of the most intuitive units of analysis,
ut there are cases where we may want to break the data into other
nits. For example, an n-gram is an adjacent sequence of n terms from
given sample of text. One might choose this unit when it is important

o capture certain expressions, or sets of words that go together.
For example, Fig. 1 presents the most frequent words in the corpus

s produced by the tidytext package. The below code selects words
hat appear in the corpus at least 1200 times or more and plots their
requencies. Here, n is the word count, i.e., how many times each word
ppears in the corpus:

idy.table <- tidy.table %>%
ount(word, sort = TRUE) %>%
ilter(n > 1200) %>%
utate(word = reorder(word, n)) %>%
gplot(aes(word, n)) + geom_col() + xlab(NULL)
coord_flip()

Besides being more intuitive, the tidytext package has the capa-
bility for better graphics.
5

5.3. Data exploration

Given a dtm with reduced dimensions, as described above, we
an apply exploratory analysis techniques to find out what kind of
nformation the corpus as a whole, or each document within the corpus,
ontains. As with the text cleaning procedures, there are several logical
teps, and the first would be to find out what are the most frequent
erms within the dtm.

The following piece of code sums up the columns within the dtm,
and then sorts them in descending order within a data frame. We can
then view terms with the six highest and the lowest frequencies by
using functions head and tail, respectively:

term.frequencies < - colSums(as.matrix(dtm))
order.frequencies < - order(term.frequencies)
head(order.frequencies, 6)
tail(order.frequencies, 6)

Table 3 is an example of an output following these commands,
showing the top six most frequent words and their corresponding
frequencies.

Another, and perhaps easier, way to identify the frequency terms
within the dtm is to use the function findFreqTerms, which is a
part of the package tm. This function returns a list of terms, which meet
two ad-hoc criteria of upper and lower bounds of frequency limits:

findFreqTerms(dtm, lowfreq = 1800, highfreq = 5000)

Here is an example of an output following these commands. Fig. 2
shows a histogram of the terms that appear at least 1800 within our
corpus.

Another way to look at the most popular terms is to use the dtm
with the tf-idf frequency weighted terms. Fig. 3 shows a histogram
of some of the most common terms within the corpus, as weighted by
the tf-idf approach.

Once we know some of the most frequent terms in our corpus,
we can explore the corpus further by looking at different associations
between some of them. This can be done with the function find-
Assocs, part of the package tm. This function takes our dtm, and a
user-selected specific term such as “bond”, “increas”, “global”, etc., and
an inclusive lower correlation limit as an input, and returns a vector of
matching terms and their correlations (satisfying the lower correlation
limit corlimit ):

findAssocs(dtm, "bond", corlimit = 0.5)
findAssocs(dtm, "econom", corlimit = 0.35)
findAssocs(dtm, "fed", corlimit = 0.35)

Table 4 is an example of an output following these for the term
“bond”.
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Fig. 2. Histogram - Corpus.
Note: Histogram containing most popular terms within the corpus.

Fig. 3. Histogram - tf-idf.
Note: Histogram containing most popular terms within the corpus, with tf-idf

eighting.

While this might not be the best way to explore the content of each
ext or the corpus in general, it might provide some interesting insights
or future analysis. The math behind the findAssocs function is
ased on the standard function cor in R’s stats package. Given two
umeric vectors, corlimit computes their correlation.

Another way to explore the contents of our corpus is to create a so-
alled word cloud. A word cloud is an image composed of words used
n a particular text or corpus, in which the size of each word indicates
ts frequency. This can be done with the use of the wordcloud
6

Table 3
Top 6 Frequent Words in dtm.

Term 𝑗

Percen 9927
Rate 9127
Increas 5721
Month 5132
Interest 4861
Bank 4039

Note: top six most frequent words with their
corresponding frequencies.

Table 4
Correlation - bond.

Term 𝑗

Yield 0.76
Month 0.62
Market 0.61
Credit 0.60
Aviv 0.58
Rate 0.58
Bank 0.57
Indic 0.57
Announc 0.56
Sovereign 0.55
Forecast 0.55
Held 0.54
Measur 0.54
Treasuri 0.52
Germani 0.52
Index 0.51

Note: Terms most correlated with the term “bond”.

package.8 Below, we plot word clouds using two different approaches to
calculating the frequency of each term in the corpus. The first approach
uses a simple frequency calculation. We use the function set.seed
here to ensure all results and figures are reproducible. We can also vary
the min.freq parameter to select the minimum frequency threshold
of each term.

set.seed(123)
wordcloud(names(freq), freq, min.freq = 400,
colors=brewer.pal(8, "Dark2"))

The function wordcloud provides a nice and intuitive visualiza-
ion of the content of the corpus, or if needed, of each document
eparately. Figs. 4 and 5 provide several examples of an output fol-
owing these commands. For instance, Figs. 4 and 5 show word clouds
ontaining word terms that appear at least 700, 1000, and 2000,
espectively.

Alternatively, to explore the frequency of terms within the corpus,
ne can use the tf-idf weighting scheme, and reproduce the figures.
t is clear that with the new weighting scheme, other terms are empha-
ized more. As an example, Figs. 6 and 7 show word clouds with word
requencies above 0.06, 0.08 and 0.1.

Another way to explore relationships between terms is to employ
etwork analysis, as it allows for a more comprehensive approach to
xploring relationships within the corpus terms. In general, network
nalysis allows texts to be modeled as networks, with connections
etween nodes representing relations between them. A common way
o model text in this framework is to apply a clustering algorithm
o visualize it with a type of dendrogram or adjacency diagram. We
rovide examples for both types next.

Clustering algorithms provide a way of identifying clusters of nodes
hat are densely connected to each other on the network. The clustering
ethod can be thought of as an automatic text categorization. The basic

8 https://cran.r-project.org/web/packages/wordcloud/wordcloud.pdf

https://cran.r-project.org/web/packages/wordcloud/wordcloud.pdf
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Fig. 4. Word Cloud - 400 and 700 Terms.
Note: Word cloud containing terms that appear at least 400 (left panel) and 700 (right panel) times in the corpus, with word frequencies above 0.06.
Fig. 5. Word Cloud - 1000 and 2000 Terms.
Note: Word cloud containing terms that appear at least 1000 and 2000 times in the corpus (left and right panel, respectively), with word frequencies above 0.06.
idea behind document or text clustering is to categorize documents into
groups based on likeness criteria. For example, one could calculate the
Euclidean, or geometric, distance between the terms to get a measure
of likeness. Terms are then grouped on some distance related criteria.

One of the most intuitive ways to visualize relationships between
terms is with correlation maps. Correlation maps show how some of
the most frequent terms relate to each other in the corpus, based on a
certain ad-hoc correlation criteria. While this is not a directed graph,
ike ones used in semantic networks, it still reflects some information
bout the relationships between terms.

Below is the code example that can create a correlation map for a
iven dtm. To plot this object, one will need to use the Rgraphviz

package.9

correlation.limit < - 0.6
freqency.terms.dtm < - findFreqTerms(dtm.tf.idf)
plot(dtm.tf.idf, term = freqency.terms.dtm,
corThreshold=correlation.limit)

9 Available at: http://bioconductor.org/biocLite.R or through R console
uch as:
install.packages("BiocManager")
BiocManager::install("Rgraphviz")
7

We plot Figs. 8 and 9 following the above code.
Another way to visualize a network representing relationships be-

tween terms within the corpus is to create a dendrogram. This tech-
nique arranges the network into a hierarchy of groups according to a
specified method. Hierarchical clustering is an approach that allows to
identifying groups in the data set without pre-specifying the number of
clusters. Hierarchical clustering output can be visualized in a tree-based
representation of the observations, called a dendrogram. We can plot a
dendogram for our dtm using the following commands:

dendogram < - dist(t(dtm.sparse.01),
method = "euclidian")
dendogram.fit < - hclust(d = dendogram,
method = "ward.D")
plot(dendogram.fit, hang = -1)

Here, the clustering method is based on the Ward’s method, which
is based on the original function approach. It relies on choosing a min-
imum variance criterion that would minimize the total within-cluster
variance (Ward, 1963).

The following dendograms presented in Fig. 10 are built based on
tf and tf-idf weighting schemes, respectively.

Another quick and useful visualization of each document’s content is
allowed by heat maps. Heat maps can be used to compare the content

http://bioconductor.org/biocLite.R
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Fig. 6. Word Cloud - Word Frequencies Above 0.06.
Note: Word cloud containing word terms with word frequencies above 0.06.

of each document, side by side, with other documents in the corpus,
revealing interesting patterns and time trends.

Fig. 11 presents word frequencies for the word list on the bottom of
the heatmap. It demonstrates a simple distribution of word frequencies
throughout time. For example, the term accommod was used heavily
during the discussions that took place in mid and late 2001; however,
it was not mentioned at all in early 2002.

Fig. 12 presents a heatmap of word frequencies for the period
spanning the mid-1999 to early 2000. For example, the term “inflat”,
representing discussion around inflation, shows that this topic was
discussed heavily in early 2000, in particular in January of 2000. These
kinds of figures provide a quick and visual representation of any given
interest rate discussion.

This section sums up some of the most popular techniques for
exploratory text analysis, demonstrating how a set of texts can be sum-
marized and visualized in an easy and intuitive way. In the next section,
we talk about deriving text-based quantitative metrics, allowing us to
measure and summarize various aspects of text.

6. Text analytics

In this section we implement methods that allow us to conduct
analysis both within and between texts. Techniques such as sentiment
analysis and term frequency weighting can be used for the first purpose.
The second group is used for comparison between texts and refers
to techniques related to Latent Semantic Analysis (LSA) and Latent
Dirichlet Allocation (LDA). We describe these techniques in more detail
in this section. The majority of text analytic algorithms in R are written
with the dtm format in mind. For this reason, we will use dtm format
n order to discuss the application of these algorithms.

.1. Word counting

Dictionary-based text analysis is a popular technique due to its
implicity. This technique is based on selecting a predefined list of
ords that are relevant for the analysis of that particular text. For
xample, the most commonly used source for word classifications in the

iterature is the Harvard Psycho-sociological Dictionary, specifically,

8

Fig. 7. Word Cloud - Word Frequencies Above 0.08.
Note: Word cloud containing word terms with word frequencies above 0.08 (top panel)
and 0.1 (bottom panel).

the Harvard-IV-4 TagNeg (H4N) file. In general, dictionaries contain
lists of words that correspond to different categories, such as positive
or negative sentiment.

However, word categorization for one discipline (for example, psy-
chology) might not translate effectively into another discipline (for
example, economics or finance). Therefore, one of the drawbacks of
this approach is the importance of adequately choosing an appropriate
dictionary or a set of predefined words. Loughran and Mcdonald (2011)
demonstrate that some words that may have a negative connotation in
one context may be neutral in others. The authors show that dictio-
naries containing words like tax, cost, or liability that convey negative
sentiment in a general context, are more neutral in tone in the context
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Fig. 8. Correlation Map Using dtm - Simple Counting Weighting Scheme.
ote: The vertical axis represents the heights.

f financial markets. The authors construct an alternative, finance-
pecific dictionary to reflect tone in a financial text better. They show
hat, with the use of a finance-specific dictionary, they can predict asset
eturns better than other, generic, dictionaries.

In this tutorial, we use the Loughran and Mcdonald (2011) master
ictionary, which is available on their website. We divide the dictionary
nto two separate csv files into two sentiment categories. Each file
ontains one column with several thousand words; one is a list of
ositive terms, and one is a list of negative terms. We read in both
f these files into R as csv files.

ictionary.finance.negative < - read.csv(
negative.csv", stringsAsFactors = FALSE)[,1]
ictionary.finance.positive < - read.csv(
positive.csv", stringsAsFactors = FALSE)[,1]

For example, a word is a positive term if it belongs to a positive, or
‘hawkish’’ category: for example, “increas”, “rais”, “tight”, “pressur”,
strength”, and so on. A word is a negative term if it belongs to a
egative or ‘‘dovish’’ category: for example, “decreas”, “lower”, “loos”,
unsatisfi”, “worse”, and so on. A document is classified as positive if
he count of positive words is greater than or equal to the count of
egative words. Similarly, a document is classified as negative if the
ount of negative words is greater than the count of positive words.

The constructed indicator is presented in Fig. 14. We transform
oth files into two separate data frames, using function data.frame.
his function is used for storing data tables in a matrix form. We
pply the same text cleaning manipulation to the dictionary words as
pplied to the corpus texts themselves. The code below applies the
ext data cleaning principles to the two sentiment dictionaries that we
ave uploaded. The cleaning involves turning all terms within both
ictionaries to lowercase, stemming all of the terms, and dropping all
uplicate terms:

ictionary.negative < -
olower(dictionary.negative)
ictionary.negative < -
temDocument(dictionary.negative)
ictionary.negative < -
9

nique(dictionary.negative)

We then use the match function that compares the terms in both
ictionaries with each term in the corpus. This function returns a value
f one if there is a match, and a value of zero if there is no match.
his allows us to calculate the number of times each positive and each
egative term appeared in the corpus. We proceed to calculate the
elative frequency of each dictionary terms. The code below captures
he list of terms from the dtm by using the function colnames and
hen matches each of the terms in the corpus with the terms in each
f the dictionaries, calculating the total amount of matches for each
ictionary:

orpus.terms < - colnames(dtm)
ositive.matches < -
atch(corpus.terms, dictionary.positive, nomatch=0)
egative.matches < -
atch(corpus.terms, dictionary.negative, nomatch=0)

We then assign a value of one to each positive term (𝑃 ) in the
ocument, and a value of minus one to each negative term (𝑁) in a
ocument, and measure the overall sentiment score for each document
by the following formula:

𝑐𝑜𝑟𝑒𝑖 =
𝑃𝑖 −𝑁𝑖
𝑃𝑖 +𝑁𝑖

∈ [−1; 1] (4)

A document is classified as positive if the count of positive words
is greater than or equal to the count of negative words. Similarly, a
document is negative if the count of negative words is greater than
the count of positive words. The code below demonstrates a simple
calculation of this indicator:

document.score =
sum(positive.matches) - sum(negative.matches)
scores.data.frame =
data.frame(scores = document.score)

Fig. 13 presents the main indicators constructed using the dictionary
word count.

Using the positive and negative sentiment indicators exposed in
Fig. 13, Fig. 14 shows the simple dictionary based sentiment indicator.

Fig. 15 demonstrates a distribution of positive and negative matches
throughout the corpus, as produced by the package tidytext.

To sum it up, word counting is a relatively straightforward way to
summarize the sentiment of any given document. The strength of this
approach is that it is intuitive, and easy to implement. In addition,
any given dictionary that is being used for document scoring can be
customized with ad-hoc words, related to the subject matter. This,
however, opens the door to a potential weakness of this approach.
There is a point where a customized dictionary list might lose its
objectivity. Dictionary-based sentiment measurement is the first step
in the sentiment extraction process, but there are more sophisticated
ways to capture sentiment. We discuss these in the next section.

6.2. Relative frequency

In this section we discuss text mining techniques that take into
account relative word usage within documents to reveal information
about text. Specifically, we discuss a semi-supervised algorithm called
wordscores, that estimates policy positions by comparing sets of
texts using the underlying relative frequency of words. This approach,
described by Laver et al. (2003), proposes an alternative way to locate
the policy positions of political actors by analyzing the texts they
generate. Mainly used in political sciences, it is a statistical technique
for estimating the policy position based on word frequencies. The
underlying idea is that relative word usage within documents should
reveal information of policy positions.
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a

The algorithm assigns policy positions (or ‘‘scores’’) to documents
n the basis of word counts and known document scores (reference
exts) via the computation of ‘‘word scores’’. One assumption is that
heir corpus can be divided into two sets (Laver et al., 2003). The first
et of documents has a political position that can be either estimated
ith confidence from independent sources or assumed uncontroversial.
his set of documents is referred to as the “reference” texts. The second
et of documents consists of texts with unknown policy positions. These
re referred to as the “virgin” texts. The only thing known about the
irgin texts is the words in them, which are then compared to the words
bserved in reference texts with known policy positions.

One example of a reference text describes the interest rate discus-
ion meeting that took place on November 11, 2008. We chose this text
s a reference because it is a classic representation of dovish rhetoric.
he excerpt below mentions a negative economic outlook, both in Israel
nd globally, and talks about the impact of this global slowdown on real
ctivity in Israel:

ecently assessments have firmed that the reduction in global growth will be
ore severe than originally expected. Thus, the IMF significantly reduced its
rowth forecasts for 2009: it cut its global growth forecast by 0.8 percentage
oints to 2.2 percent, and its forecast of the increase in world trade by 2
ercentage points, to 2.1 percent. These updates are in line with downward
evisions by other official and private-sector entities. The increased severity
f the global slowdown is expected to influence real activity in Israel. The
rocess of cuts in interest rates by central banks has intensified since the
revious interest rate decision on 27 October 2008.

Another example of the reference text describes the interest rate
iscussion meeting that took place on June 24, 2002. This text is a
lassic representation of hawkish rhetorics. For example, the excerpt
elow mentions a sharp increase in inflation and inflation expectations:

he interest-rate hike was made necessary because, due to the rise in actual
nflation since the beginning of the year and the depreciation of the NIS,
nflation expectations for the next few years as derived from the capital
arket, private forecasters, and the Bank of Israel’s models have also risen
eyond the 3 percent rate which constitutes the upper limit of the range
efined as price stability. Despite the two increases in the Bank of Israel’s
nterest rate in June, inflation expectations for one year ahead have risen
ecently and reached 5 percent.
10
Specifically, the authors use relative frequencies observed for each
f the different words in each of the reference texts to calculate the
robability that we are reading a particular reference text, given that
e are reading a particular word. This makes it possible to generate a

core of the expected policy position of any text, given only the single
ord in question.

Scoring words in this way replaces and improves upon the prede-
ined dictionary approach. It gives words policy scores, without having
o determine or consider their meanings in advance. Instead, policy
ositions can be estimated by treating words as data associated with
set of reference texts.10

In our analysis, out of the sample containing 220 interest rate state-
ents, we pick two reference texts that have a pronounced negative

or “dovish”) position and two reference texts that have a pronounced
ositive (or “hawkish”) position regarding the state of the economy
uring the corresponding month. We assign the score of minus one
o the two “dovish” reference texts and the score of one to the two
hawkish” reference texts. We use these known scores to infer the score
f the virgin, or out of sample, texts. Terms contained by the out of
ample texts are compared with the words observed in reference texts,
nd then each out of sample text is assigned a score, 𝑊 𝑜𝑟𝑑𝑠𝑐𝑜𝑟𝑒𝑖.

In R, we utilize the package quanteda, which contains the func-
ion wordfish. This function takes a predefined corpus and applies
he wordscores algorithm as described above. Once the selection
rocess of the reference documents is complete, the code is fairly
imple.

ordscore.estimation.results < - wordfish(corpus,
ir = c(1,5))

This function takes our corpus as an input, as well as the two se-
ected reference documents (here, document number one and document
umber five), and returns a set of estimation position, as related to each
ocument.

.3. Latent semantic analysis

Latent semantic analysis (LSA) is an unsupervised machine learning
lgorithm that allows for mapping texts into a vector space (Deerwester

10 However, one must consider the possibility that there would be a change
in rhetoric over time. Perhaps it would make sense to re-examine the approach
at certain points in time. This would depend on the time span of the data.
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Fig. 10. Dendogram - tf and tf-idf Frequency.
Notes: Dendograms for tf-idf (top) and tf-idf (bottom) frequencies. The vertical axes represent the heights.text mining text mining.
t al., 1990). LSA evaluates documents in order to find underlying
eaning or concept of these documents. LSA can be used for many

hings, such as comparing document similarity or clustering documents
ased on an ad-hoc criterion. LSA can decompose a document term
atrix into a reduced vector space that is assumed to reflect semantic

tructure.
LSA is similar to approaches described in the previous section, but

ne of its advantages is that it is fully unsupervised, and therefore
oes not rely on any subjective elements. In R, one can implement LSA
ith the use of quanteda package, thus creating a representation of
ocuments in the reduced 2-dimensional space:
11
lsa_model < - textmodel_lsa(dtm)

lsa_predict < - predict(lsa_model)

The output of an estimated LSA model allows for easier comparison

between documents, as well as mapping capabilities. Overall, there are

various downstream tasks that can be implemented once the latent

semantic space is created.
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Fig. 11. Heatmap tf-idf for 2010.
Note: Heatmap for documents published in 2010 (tf-idf weighted dtm). The color key corresponds to probabilities for each topic being discussed during the corresponding
interest rate decision meeting.
6.4. Topic models

Topic modeling is a method for classifying and mapping text into
a given number of topics. Largely, topic modeling is a set of algo-
rithms that automatically find and classify recurring patterns of words
throughout a set of documents. In this paper, we use the LDA algorithm
for the above task, which is a widely used algorithm in the field of
computer science (Blei et al., 2003).

This algorithm assumes that each of the documents within our cor-
pus consists of a mixture of corpus-wide topics. These topics, however,
are not observable but are instead hidden behind everyday words and
sentences. Specifically, LDA estimates what fraction of each document
in a corpus can be assigned to each of the topics. The number of topics
is set in advance. We do not observe the topics in the document, only
the words that those topics tend to generate. LDA is an algorithm that
employs an unsupervised learning approach, in that we do not set prior
probabilities for any of the words belonging to any given topic. Besides,
it is a mixed-membership model, and therefore the assumption is that
every word in the corpus simultaneously belongs to several topics and
the topic distributions vary over documents in the corpus.

To provide more intuition, consider an implicit assumption that a
given set of words relates to a specific topic. For example, consider the
following set of words: gain, employment, labor. Each of these
words would map into an underlying topic “labor market” with a higher
probability compared to what it would map into the topic of “economic
growth”. This algorithm has a considerable advantage, its objectivity.
It makes it possible to find the best association between words and
the underlying topics without preset word lists or labels. The LDA
algorithm works its way up through the corpus. It first associates each
word in the vocabulary to any given latent topic. It allows each word to
have associations with multiple topics. Given these associations, it then
proceeds to associate each document with topics. Besides the actual
12
corpus, the main input that the model receives is how many topics there
should be. Given those, the model will generate 𝛽𝑘 topic distributions,
the distribution over words for each topic. The model will also generate
𝜃𝑑 document distributions for each topic, where 𝑑 is the number of doc-
uments. This modeling is done using Gibbs sampling iterations, going
over each term in each document and assigning relative importance to
each instance of the term.

In R, we use the package topicmodels, with the default param-
eter values supplied by the LDA function. Specifying a parameter is
required before running the algorithm, which increases the subjectivity
level. This parameter, 𝑘, is the number of topics that the algorithm
should use to classify a given set of documents. There are analytical
approaches to decide on the values of 𝑘, but most of the literature set
it on an ad hoc basis. When choosing 𝑘 we have two goals that are in
direct conflict with each other. We want to correctly predict the text
and be as specific as possible to determine the number of topics. Yet,
at the same time, we want to be able to interpret our results, and when
we get too specific, the general meaning of each topic will be lost.

Let us demonstrate with this example by first setting 𝑘 = 2, meaning
that we assume only two topics to be present throughout our interest
rate discussions. Below are the top seven words to be associated with
these two topics. It can be seen below that while these two sets of words
differ, they both have overlapping terms. This demonstrates that each
word can be assigned to multiple topics but with a different probability.

Table 5 shows that Topic 1 relates directly and clearly to changes in
the target rate, while Topic 2 relates more to inflationary expectations.
However, these are not the only two things that the policymakers
discuss during interest rate meetings, and we can safely assume that
there should be more topics considered, meaning 𝑘 should be larger
than two.11

11 The supervised approach may help to determine the main theme of each
topic objectively.
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Fig. 12. Heatmap tf for 1999.
Notes: Heatmap for documents published in 1999 (tf weighted dtm). The color key corresponds to probabilities for each topic being discussed during the corresponding interest
rate decision meeting.
Table 5
Topic-relevant Words - Topics 1 to 2.

Topic 1 Topic 2

‘‘increas’’ ‘‘rate’’
‘‘rate’’ ‘‘interest’’
‘‘month’’ ‘‘expect’’
‘‘continu’’ ‘‘israel’’
‘‘declin’’ ‘‘inflat’’
‘‘discuss’’ ‘‘bank’’
‘‘market’’ ‘‘month’’
‘‘monetari’’ ‘‘quarter’’

Note: Terms with the highest probability of appearing
in Topic 1 and Topic 2.

Table 6
Topic-relevant Words - Topics 1 to 6.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6

‘‘declin’’ ‘‘bank’’ ‘‘increas’’ ‘‘continu’’ ‘‘quarter’’ ‘‘interest’’
‘‘monetari’’ ‘‘economi’’ ‘‘month’’ ‘‘rate’’ ‘‘year’’ ‘‘rate’’
‘‘discuss’’ ‘‘month’’ ‘‘interest’’ ‘‘remain’’ ‘‘rate’’ ‘‘israel’’
‘‘rate’’ ‘‘forecast’’ ‘‘inflat’’ ‘‘market’’ ‘‘growth’’ ‘‘inflat’’
‘‘data’’ ‘‘market’’ ‘‘hous’’ ‘‘term’’ ‘‘month’’ ‘‘expect’’
‘‘polici’’ ‘‘govern’’ ‘‘continu’’ ‘‘year’’ ‘‘expect’’ ‘‘discuss’’
‘‘indic’’ ‘‘global’’ ‘‘rate’’ ‘‘price’’ ‘‘first’’ ‘‘bank’’
‘‘develop’’ ‘‘activ’’ ‘‘indic’’ ‘‘growth’’ ‘‘point’’ ‘‘econom’’

Note: Terms with the highest probability of appearing in Topics 1 through 6.

To demonstrate the opposite side of the trade-off, let us consider
𝑘 = 6, i.e., we assume six different topics are being discussed. Below is
the top seven words with the highest probability to be associated with
these six topics:

The division between topics is less clear in Table 6 compared to
Table 5. While Topics 1, 2 and 3 relate to potential changes in interest
13
rate, Topic 4 relates to housing market conditions, and Topic 5 relates
to a higher level of expected growth taking into account monetary
policy considerations. Topic 6 covers economic growth and banking
discussions. We see that while we get more granularity in topics by
increasing the possible number of topics, we see increased redundancy
in the number of topics. Given this outcome, we could continue to
adjust 𝑘 and assess the result.

Next, we demonstrate how we run this algorithm. First, we spec-
ify a set of parameters for Gibbs sampling. These include burnin,
iter, thin, which are the parameters related to the amount of Gibbs
sampling draws, and the way these are drawn.

burnin < - 4000
iter < - 2000
thin < - 500
seed < - list(2003, 5, 63, 100001, 765)
nstart < - 5

As discussed, the number of topics is decided arbitrarily, as an
educated guess, and can be adjusted as needed. Here, based on the
previous analysis we take the average of the two previous assumptions
and end up with four assumed topics.

k < - 4

The code below runs the LDA algorithm, using the set of parameters
as described above and our dtm:

lda.results < - LDA(dtm.sparse, k, method = "Gibbs",
control = list(nstart = nstart, seed = seed,
best = best, burnin = burnin, iter = iter, thin = thin))
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Fig. 13. Sentiment - Word Count.
Notes: Scaled count of positive (top panel), negative (middle panel), and uncertainty (bottom panel) words in each document using the dictionary approach.
These last lines write out and save the estimated topics as provided
by the LDA algorithm:

lda.topics < - as.matrix(topics(lda.results))
lda.results.terms < -
as.matrix(terms (lda.results,8))
lda.results.terms

Let us examine the topics presented in Table 7. Topic 1 relates to
current changes in interest rate and its goal of keeping inflation in
range. It mentions the interest rate, inflation expectations and the range
of inflation. Topic 2 relates to the actual inflation data and inflationary
expectations. Topic 3 relates to a high-level monetary policy discussion,
14
and Topic 4 relates to housing market conditions. LDA algorithm also
generates probability distribution of topics over the corpus.

Fig. 16 is a heat map containing a sample for the period of June
2007 to April 2008. Given an assumption that only four topics are
discussed during each interest rate meeting, the values presented in
the legend are probabilities for each topic being discussed during the
corresponding interest rate decision meeting.

For example, during the meeting of November 2008, the ‘‘Monetary
Policy’’ topic was discussed with greater probability compared to the
‘‘Inflation’’ topic. As can be seen from Fig. 16, this occurrence stands
out from the regular pattern.

Figs. 17 and 18 present the heat maps about the interest rate
announcements during the year 2007 and 2000, respectively.
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Fig. 14. Sentiment Indicator — Dictionary Approach.
Fig. 15. Sentiment Contributions.
Note: This figure represents how much each term contributes to the sentiment in each corresponding category. These categories are defined as mutually exclusive. Constraining
(top left), positive (top right), negative (bottom left), and uncertainty (bottom right) sentiments are represented.
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Fig. 17 shows that in a given set of documents, the bulk of the
discussion was spent on discussing the key interest rate set by the Bank
of Israel. In contrast, it can be seen that inflation was not discussed at
all during certain periods. Fig. 18 shows that the subject of discussion
was mainly monetary policy during this period of time.

The remaining question is how to determine whether the topics
selected by the LDA algorithm are a good fit for the underlying text.
For that, we can use topic coherence. Topic coherence allows for a set
of words, as generated by a topic model, to be rated for coherence
or interpretability, as shown in Newman et al. (2010). One way to
implement this in R is to use the topicdoc package, based on the
aper by Boyd-Graber et al. (2014). This package can be applied on
op of the analysis described in the previous section, and contains many
elpful functions that allow for diagnostics of the estimated LDA model.
 i

15
One can run a full set of diagnostics using topic_diagnostics,
function that takes the fitted LDA model as an input, and produces
set of measures that evaluate the fit, such as mean token length,

xclusivity, coherence, and document prominence of each topic.

Another way to explore and evaluate the output of an LDA model
s to visualize it. In R, this can be done with the help of LDAvis
ackage (Mabey, 2018; Sievert & Shirley, 2014). LDA visualization can
elp answer questions such as what is the meaning of each topic; how
revalent is each topic; and how the estimated topics relate to each
ther. Together with the shiny package, the LDAvis provides an
nteractive tool that can be used to create visualizations such as the
ntertopic distance map.
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Fig. 16. Probability Distribution — Topics 1 to 4 from 2007 to 2008.
Note: The color key corresponds to probabilities for each topic being discussed during the corresponding interest rate decision meeting.
Table 7
Topic-relevant Words — Topics 1 to 4.

Topic 1 Topic 2 Topic 3 Topic 4

‘‘expect’’ ‘‘increas’’ ‘‘interest’’ ‘‘month’’
‘‘continu’’ ‘‘declin’’ ‘‘rate’’ ‘‘increas’’
‘‘rate’’ ‘‘continu’’ ‘‘stabil’’ ‘‘rate’’
‘‘inflat’’ ‘‘rate’’ ‘‘israel’’ ‘‘forecast’’
‘‘interest’’ ‘‘expect’’ ‘‘bank’’ ‘‘bank’’
‘‘rang’’ ‘‘remain’’ ‘‘inflat’’ ‘‘indic’’
‘‘israel’’ ‘‘growth’’ ‘‘market’’ ‘‘growth’’
‘‘last’’ ‘‘term’’ ‘‘govern’’ ‘‘year’’
‘‘price’’ ‘‘nis’’ ‘‘year’’ ‘‘previous’’
‘‘bank’’ ‘‘year’’ ‘‘target’’ ‘‘index’’
‘‘econom’’ ‘‘data’’ ‘‘term’’ ‘‘hous’’

Note: Words with the highest probability of appearing in Topics 1 through 4.

The intertopic distance map is a visualization of the topics in a two-
dimensional space. The area of these topic circles is proportional to
the number of words belonging to each topic across the corpus. The
circles are plotted using a multidimensional scaling algorithm based on
the words they comprise, so topics that are closer together have more
words in common. This algorithm also considers the saliency of terms,
identifying the most informative or useful words for identifying topics
16
within the corpus. Higher saliency values indicate that a word is more
helpful in identifying a specific topic than a randomly selected term.

7. Conclusion

In this paper, we review some of the most commonly used text
mining methodologies. We demonstrate how text sentiment and topics
can be extracted from a set of text sources. Taking advantage of the
open-source software package R and related packages, we provide a
detailed step-by-step tutorial, including code excerpts that are easy to
implement and examples of output. The framework we demonstrate in
this paper shows how to process and utilize text data in an objective
and automated way.

As described, the ultimate goal of this tutorial is to show how
text analysis can help uncover the information embedded in monetary
policy communication and to be able to organize it consistently. We
first show how to set up a directory and input a set of relevant files
into R. We show how to represent and store this set of files as a corpus,
allowing for easy text manipulations. We then describe a series of text
cleaning procedures that sets the stage for further text analysis. In
the second part of the paper, we demonstrate approaches to initial
text analysis, showing how to create several summary statistics for
our existing corpus. We then describe two common approaches to text
sentiment extraction and one common approach to topic modeling.
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We also consider term-weighting and contiguous sequence of words
(n-grams) to better capture the subtlety of central bank communication.
We consider field-specific weighted lexicons, consisting of two, three,
or four-word clusters, relating to a specific policy term being discussed.
This approach provides an alternative and sometimes more precise
picture of the text content, as opposed to individual terms, and allows
us to find underlying patterns and linkages within text more precisely.

NLP methods have come a long way in the past few decades. These
methods continue to evolve rapidly, getting increasingly more adept
at capturing and understanding the nuances and context of language.
At the same time, the ability to capture signals such as sentiment,
topics, and semantic relationships in the text remains an important and

relevant building block of language processing.

17
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Note: The color key corresponds to probabilities for each topic being discussed during the corresponding interest rate decision meeting.
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Fig. 18. Probability Distribution — Topics 1 through 4 from 1999 to 2000.
Note: The color key corresponds to probabilities for each topic being discussed during the corresponding interest rate decision meeting.
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