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Abstract

The smearing effect of kernel estimates of the local density, local proportions and local

means is used as a means for the construction of anonymized maps. The standard anonymiza-

tion criteria were derived for the display of case numbers of a predefined area system. However,

for kernel estimates there does not exist such a defined area system. We discuss the resulting

difficulties of the application of these criteria for kernel estimates. Besides, there are some

de-anonymization risks which are specific for kernel estimates. We discuss these topics for

data from 1.9 million Berlin taxpayers with known exact address and taxable income. In the

conclusions we vote for a much stronger emphasis on the output format of a map and the

labelling of the displayed values in the map.1

Keywords: Regional maps, Kernel density estimation, Anonymity, Choropleth maps,

Taxpayers.
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1 Introduction

Regional maps based on georeferenced data have become a topic of increased interest for social sci-

entists and political consulting of targeted programs. This interest in detailed regional information

is confronted with the need to protect the confidentiality of the data. Although data protection

and confidentiality of individual data are a general concern the access to regional information at

a small geographic scale is highly sensitive to the risk to disclose the anonymity of the individual

information. The more precise the regional information is and the lower the number of persons in

a specified area is the easier it is to identify a person in a survey.

The display of maps is a specific form of regional data analysis. There are two basic schemes:

frequency maps, which display the number of persons with a certain characteristic in the respective

areas, and mean value maps, which display the average value of a metric variable of interest in the

respective areas.

A straightforward approach to establish confidentiality is to apply the privacy rules developed

for tabular analysis in official statistics, see Hundepool et al. (2012) and Eurostat (2025). In

regional analysis the cells of the tables are either defined by administrative entities, like counties,

municipality areas or neighbourhoods, or by regular grids cells of different sizes. Cells which

fail the anonymity criterion are suppressed in the map, for example, by graying them. Or, they

are collapsed with neighbouring cells until they meet the anonymity criteria, see Lagonigro et

al. (2021) or Haddam et al.(2020). A different approach is the so-called cell key method, which

basically adds random noise to cell counts in a regularized form, see Meindl (2023). Here all

cells counts below a critical value are either shifted above this limit or set to zero, depending on

a pseudo-random mechanism (see, for instance, the example in Hundepool (2024)2) This feature

prevents the suppression of the respective areas in the map, see, for example, the German Census-

Atlas 2022 (Destatis 2024) as an example of the application of the cell key method (Enderle and

Kleber 2024).

The kernel smoothing approach as an anonymisation strategy was proposed by de Jonge and

de Wolf (2016) and de Wolf and de Jonge (2018). They use smoothing by kernel density estimates

2https://sdctools.github.io/handbookSDC/05-frequency-tables.html#sec-CKM_freq
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(Silverman 1986) in the case of frequency data and the nonparametric Nadaraya-Watson regression

estimator (Härdle 1991) in the case of mean value maps. Because of the smearing effect of the

kernel function one may expect a high anonymization effect on the resulting maps. Meanwhile the

kernel smoothing approach is available in the R-Package sdcSpatial (de Jonge 2022).

We regard the kernel density smoothing as a means to produce anonymized output on the basis

of non-anonymized data. With respect to the output one may distinguish different types of maps:

1. The map may be in an interactive format with machine-readable values, or be a static picture

(digital or print).

2. The users may or may be not allowed to zoom-in the map below a predefined level.

3. The users may have access to the exact values of the estimated kernel density, or be restricted

to maps with interval labeling, say, six intervals.

4. The users may or may not have access to the exact geocoordinates of the population displayed

in the maps.

5. The users may or may not have access to the information on the kernel function and the

smoothing value which were used for the generation of the map.

The maps are to be distinguished from maps which are based on already anonymized geo-

coordinates like area aggregates or geo-masked individual data. In this case the anonymization

of the geo-coordinates may be regarded as a measurement error of the true geo-coordinates. This

measurement error has to be considered in the estimation of the original density (Rendtel and

Schmid 2024). In the case of regional aggregates one has to simulate geo-coordinates. These

simulated coordinates are the basis of kernel smoothing routines, see Groß et al. (2017,2020) and

Erfurth et al. (2022). But also in the case of geo-masked data one can improve the accuracy of

a naive use of randomly disturbed geo-coordinates, see Hossain (2023). As the output bases on

already anonymized data one expects no further privacy problems.

In order to demonstrate the problems and benefits which arise from the use of kernel smoothing

techniques we use geo-coded data on tax payers in Berlin. Within the Amt für Statistik Berlin-

Brandenburg we got access to 1.9 million tax payer records of the 2019 tax cohort including
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access to their exact addresses. This data set served as a gold standard in the measurement error

framework of anonymization by aggregation. Here we compared the statistical properties of the

density estimates based on the anonymized data with the kernel density estimates based on the

exact geocoordinates. As a by-product we could study the smoothing effect of the kernel density

estimation as an anonymization tool. These results are reported here.

Before we study the anonymization by kernel smoothing we present an empirical result which

displays the low capacity of the standard choropleth maps to unfold regional clusters which are

easily detected by kernel smoothing. Section 3 shortly introduces three kernel smoothing estimates

for (a) density estimation, (b) local proportions of a subpopulation and (c) the local mean of a

metric variable. We then display the anonymization criteria which were derived in the context

of tabular analysis. We report the difficulties which arise from the application of these criteria

in the context of kernel smoothing maps. Section 5 demonstrates the smoothing effect of kernel

estimates of regional ratios. In Section 6 we study the effect of area suppression as a function

of different minimum frequency rule rules. There we also discuss a mixture of area suppression

and local proportion estimates via kernel estimates. There are also de-anonymization risks which

are specific for kernel density estimates. They are discussed in Section 7. These risks arise from

isolated observations and the detection of individual values from access to machine-readable kernel

estimates. Here we also discuss the role of the kernel smoothing parameter as an anonymization

parameter. In the concluding remarks we summarize and stress the importance of the output

format of the maps.

xg (g = 1, . . . , G)

2 Kernel density smoothing as an alternative to Choro-

pleth maps

The standard maps are based on area counts. In the geographic literature these maps are called

choropleth maps. If the area system refers to meaningful entities, like municipalities or neighbor-

hoods, these counts have a direct interpretation. However, if we change to regular grid data there
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is no such immediate interpretation. On the contrary, the smaller the grid-size becomes, the more

noisy becomes the resulting choropleth map. Here a density approach results in maps where local

population clusters are easily identified.

As example we use a 10 percent simple random subsample of the Berlin taxpayers which has

still 190 thousand observations. The reason for subsampling was twofold: first to reduce the

computational burden and second to preserve the anonymity of the data. Figure 1a displays the

count data of taxpayers on a 100m × 100m grid. The map displays also three types of unsettled

areas: lakes and rivers in blue, forests and parks in green and other unsettled ares in grey. Such

a map gives no real impression where the Berlin taxpayers live. If we magnify the presentation

scale (Figure 1b) the noise effect becomes even more pronounced. The noisy feature is somewhat

dampened if we increase the gridsize to 800m in Figure 2a. The scale is the same as in Figure 1a,

the number of taxpayers on a 100m × 100m grid. However, the value is equal for all 64 100m ×

100m grids, which constitute one 800m × 800m grid. Note the smoothing effect on the resulting

density values which reduces to the density range to 0 – 15 while in Figure 1a it is 0 – 50. Thus,

the density of the choropleth is smoothed by the use of larger grid sizes. If we switch, however, to

a kernel density estimate3 the resulting map in Figure 2b clearly represents the cluster structure

of the taxpayer population. Here we multiplied the density value by the area of the 100m × 100m

grid to obtain expected case numbers for the grid. Therefore the scale is comparable with the scale

in Figures 1a and 2a.

We may normalize the grid counts to a density function fAGG(x) and compare it with the kernel

density estimate fKDE(x). The root mean integrated squared error (RMISE) compares the two

densities across all grid points x} (} = 1, . . . , G) which were used for the display of the map:

RMISE =

√∑
}

(fAGG(x})− fKDE(x}))2

The RMISE distance of fAGG(x) and fKDE(x) is displayed for various grid lengths in Figure

3. We computed the RMISE distance for 100 replications of the sub-sampling. These replicated

values created the boxes which are displayed in Figure 3. There is almost no variation of the

3We evaluated the density values on a 100m × 100m grid.
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Figure 1: Maps of the Berlin taxpayer population (1/2).

(a) Choropleth on a 100m × 100m grid.

(b) Detail in enlarged scale.
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Figure 2: Maps of the Berlin taxpayer population (2/2).

(a) Choropleth on a 800m × 800m grid.

(b) Kernel density estimate on the basis of the true addresses.
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Figure 3: Impact of the grid size on the RMISE criterion

RMISE value over the replications. The line which connects the centers of the boxes is generated

by a spline interpolation of the medians. It indicates that a grid of 800m × 800m is the best

representation with respect to the RMISE criterion. The corresponding density map is displayed

in Figure 2a.

3 Kernel density smoothing

The basic idea of the kernel density approach is the smearing of the location of an observation by

a kernel function k(x). The kernel function can be interpreted as a density function on R2 which

is symmetric, i.e. k(x) = k(−x), positive and normed

∫
R2

k(x)dx = 1

The kernel density estimator is defined by:

f̂H(x) =
1

n det(H)1/2

n∑
i=1

k(H−1/2(x− xi)) (1)

where the xi (i = 1, . . . , n) are the locations of n observations and H is a positive-definite

smoothing matrix which scales the distance of the i-th observation xi and the place x where the
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density is evaluated. The factor 1/(n det(H)1/2) normalizes f̂H(x) to a density over R2. If H is a

diagonal matrix with equal entries h equation 1 reduces to

f̂h(x) =
1

nh2

n∑
i=1

k

(
(x− xi)

h

)
(2)

For notational convenience, we use the simplified scaling below.

The kernel density estimator may be interpreted as a nonparametric estimate of an underlying

density f where the n observations come from, i.e. the xi are iid observations from a distribution

with density f , see, for example, Silverman (1986). There exist several kernel functions which are

in use, for example, the bivariate normal distribution, the uniform distribution over an rectangle

or the Epanechnikov kernel which is a radial symmetric parabola, see Silverman (1986) for details.

The essential parameter, however, is the smoothing factor h. Here Wand and Jones (1994) derived a

plug-in solution which minimizes an approximation of the Mean Integrated Squared Error (MISE):

MISE = E

[∫
R2

(f̂h(x)− f(x))2dx

]
Density estimators for different populations may be written in a unique fashion by the use of

indicator functions

1P (i) =

 1, if unit i belongs to population P;

0, else.

Then the density of population P is estimated by

f̂P (x) =
1

h2
1∑n

i=1 1P (i)

n∑
i=1

1P (i)k(
x− xi
h

) (3)

where
∑n

i=1 1P (i) = nP is the size of population P .

With this notation we can easily display population ratios. If Q is a subpopulation of population

P the local ratio rQ|P (x) of the subpopulation Q at location x may be estimated by:
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r̂Q|P (x) =
nQf̂Q(x)

nP f̂P (x)
(4)

=

∑n
i=1 1Q(i)k(x−xi

h
)∑n

i=1 1P (i)k(x−xi

h
)

(5)

if the denominator
∑n

i=1 1P (i)k(x−xi

h
) > 0, else the ratio of Q and P is set to zero.

As the population Q in the nominator is more rare than the population P in the denominator

the optimal smoothing parameter for population Q is larger than for population P . Thus, in order

to stabilize the ratio the larger smoothing parameter for population Q should be used.

The ratio is a special case of a mean when the dependent variable is a 0/1- variable like the

membership indicator of population Q in the above case. For a general continuous variable with

observation gi at coordinate xi we may estimate the mean of the g-values in population P at

coordinate x by:

m̂P (x) =

∑n
i=1 gi1P (i)k(x−xi

h
)∑n

i=1 1P (i)k(x−xi

h
)

(6)

This is the Nadaraya-Watson estimator (Härdle 1990, ch. 5) of the local mean mP (x) of g-values

at coordinate x.

4 Statistical disclosure criteria for maps

4.1 Criteria derived from tabular data

The statistical disclosure criteria for regional maps were derived from criteria for the publication

of tabular data (Hundepool et al. 2012). In this context a map is nothing else but a table with

geographically arranged cells where local counts, ratios and means are displayed. A table cell

which fullfills the disclosure criteria below is called a ”safe area” (deJonge and deWolf 2016).

These disclosure criteria were developed for choropleth maps with fixed reference areas.

There are basically three rules: The minimum frequency rule, the diversity rule and the dom-

inance rule. The minimum frequency rule states that each displayed cell j (j = 1, . . . , J)

10



should have a cell count Nj ≥ f where f is a predefined limit value. An exception are empty cells

with Nj = 0. The minimum frequency rule is thought to reduce the risk to identify a person in

the data set. Once a person is identified all information in the data set can be attributed to the

identified person. However, such a ”gain” from de-anomymization is only possible if the attacker

has access to this information which is inside the statistical agency. But here we consider only

the case that the map is published outside the agency with no access to the other variables.

The diversity rule refers to ratios. If a ratio rj in cell j is near 1 or 0 then one can conclude

that almost all elements in that cell belong to the population Q (rj ≈ 1) or do not belong to Q

(rj ≈ 0).

The dominance criterion refers to the total Gj of a variable g in area j. This total should

not be dominated by a contribution from a single value person. Here each single contribution

gi,j (i = 1, . . . , Nj) in cell j should not exceed a fixed percentage k of the total Gj. A similar

argument holds for regional percentages.

4.2 Application to maps

Since kernel maps do not know a fixed system of reference areas it is by no means clear how to

apply the above criteria to a kernel density map or a Nadaraya Watson estimator. Han et al.

(2019) introduced the concept of the resolution of a map. This is given by the grid of points

xg (g = 1, . . . , G) where the kernel function is evaluated. It is the finest possible resolution for

the use of a map. If a zoom-in facility is used the resolution value is a lower bound for the zoom-in.

The selection of the resolution is by no means neutral with respect to the anonymity criteria. The

smaller the grid size the harder it is to meet the minimum frequency criterion. The same holds for

the dominance criterion: the fewer values contribute to the cell total the more pronounced is the

effect of the maximum value on the total. Also cells with ratios near 0 and 1 become more frequent

with declining grid size. Han et al.(2019) demonstrated the substantial effect of the resolution on

the percentage of unsafe areas.

Besides the resolution one has to select also critical values which determine safe areas. Ideally,

the selction of these values should be linked to the probability of the disclosure of a person.
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However, the calculation of disclosure probabilities is a difficult task where strong support from

statistical modelling is needed, see, for example, Reiter (2005). Zhou et al. (2010) estimate

disclosure risks where the original addresses are masked by spatial smoothing. They assume that

the entire population enters the computation of the smoothed values. Such a condition is not met

if the database comes from a survey or if only a subsample of the population is used as in the

previous taxpayer example.

But even if one would be able to establish an explicit relationship of the critical values and the

probability of detection one would have to answer the question: is a detection probability of, say,

10 percent tolerable? Or should it be not more than 5 percent? The answer may depend on the

sensitivity of the variable of interest. In the taxpayer example it was the indicator ”the person is a

taxpayer”, which is not really sensitive. A more sensitive indicator might be whether a person has

a taxable income above the 90 percent quantile of all taxpayers. Because of the vague knowledge

of the true detection risks one may select the frequency parameter f or the dominance value k by

convenient choices as it is frequently done in official statistics. For example, one may chose the

parameters such that the resulting percentage of unsafe areas should be moderate.

In order to demonstrate the impact of the frequency limit f we display the unsafe areas in the

taxpayer example for a 100m × 100m resolution. Again only a 10 percent sample of the original

population is used, which still corresponds to 190 thousand observations. Figure 4a shows the grid

cells with less than f = 3 observations by a white coding color4. We have increased the scale of the

map to make it easier to identify the cells which fail the minimum frequency criterion. Even in the

center of the city one finds a lot of white grid cells. This analysis is repeated for f = 10 . As can be

seen from Figure 4b the percentage of unsafe areas has now become so frequent, that an irregular

pattern of areas remains white and it therefore hard to get an impression of the distribution of the

taxpayer population.

4The coding of the other colors corresponds to the original map in Figure 1a.
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Figure 4: Areas which fail the frequency criterion for different minimum values of f . Areas with
case numbers below f are coded by white color. Grid size: 100m × 100m. Total number of
observation: 190 thousand taxpapayers.

(a) f = 3

(b) f = 10
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5 The smoothing effect of kernel estimates

In this section we will demonstrate the smoothing effect of the kernel estimators. For this purpose

we use again the 10 percent subsample of the taxpayer population. The upper 10 percent quantile

of the annual taxable income of the Berlin population is around 55000 ¿ in 2019. The population

proportion of these high income persons is by definition 10 percent. We are interested in the local

proportions of these high income persons.

Figure 5a displays the local proportions on a 100m×100m grid without kernel smoothing. The

range of the local proportions is quite large. However, extreme values are hidden by the coding of

the legend, for example, all areas with ratios higher than 90 percent are collapsed to the category

≥ 90%. Thus the diversity rule is preserved by the coding of the legend. The region with the

most high income person ratios near the Grunewald in the south-west of Berlin is displayed in

greater detail in Figure 5b. In this scale one recognizes the noisy structure of the local ratios.

One also recognizes that unsettled areas are put as an additional map layer upon the grid layer.

Because of the noisy structure it is hardly possible to identify regional clusters of relevant size of

high income persons. Finally, Figure 6 demonstrates the smoothing effect of the kernel estimate of

the ratio. This results in a substantial reduction of the range of estimated local ratios which are

now not larger than 40 percent. This can be interpreted as the anonymization effect of the kernel

smoothing approach. We can also see clear local clusters of areas of high income persons.

6 Combining frequency restrictions and kernel estimates

in a map

One can use a publication strategy which respects on the one hand the minimum frequency rules

and uses on the other hand the smoothing effect of the kernel estimates and its display of local

clusters. In cooperation with the colleagues of the statistical agency who hosted the data base we

were advised to suppress areas which fail the frequency rules. For the other areas we were allowed

to display the kernel density estimates which were computed on the basis of all observations,

including the observations of the unsafe areas.
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Figure 5: Local proportion of high income taxpayers. 10 percent subsample of population.

(a) Choropleth map on a 100m× 100m grid

(b) Detail of choropleth map in the Grunewald-Area
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Figure 6: Local proportion of high income taxpayers. 10 percent subsample of population. Kernel
estimate of local ratio
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Figure 7: Local proportion of high income taxpayers in Berlin. Kernel estimation with suppressed
areas in white color. Minimum frequency of taxpayers in grid cells f = 30. Grid cell: 160m×250m.

The critical parameter is the size of the area. There should be only small areas which are

suppressed. This votes for small areas. On the other hand small areas are prone to have low case

numbers. This votes for larger areas. We were advised to use a minimum frequency of f = 30

taxpayers. This corresponds to a minimum frequency of 3 in case of a 10 percent subsample. For

a 100m × 100m this minimum frequency limit was too high to result in a reasonable number of

safe areas. Therefore we did choose a larger gridsize. In Figure 7 we used a 160m × 250m grid,

which resulted in a moderate number of unsafe areas. Despite the map being somewhat disturbed

by the suppressed areas on can still recognize clear regional clusters which are generated by the

smoothing effect of the kernel estimate.
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7 Other aspects of anonymization

7.1 The format of map output

The format in which a map is published has important consequences for the disclosure status of

the map.

For example, the German Census-Atlas 20225 does not only provide interactive maps which can

be zoomed-in from 10km down to 100m grids, it also provides the data files with cell frequencies

and cell means at the resolution levels 10km, 1km and 100m. This already fixes the resolution

level to 100m × 100m grids. However, these values are not the population values, but they were

subjected to output anonymization by the cell key method (Enderle and Kleber 2024). Thus

there is no need for cell suppression as all modified cells are conform with the frequency limit.

However, no kernel estimates are supported. One can only calculate density estimates via the grid

totals by application of the Kernel Heaping algorithm which is based on the use of area totals, see

Groß et al. (2017), Erfurth et al. (2022). The resulting output Kernel estimates need no further

anonymization as their basis are already anonymized cell data. Note, that the computation of the

kernel densities is still promising as the resulting maps display regional clusters which may not be

seen from the choropleth maps.

The EUROSTAT Statistical Atlas6 presents a diversity of maps at a 1 km grid level which

can be downloaded as PDF-files. Here the corresponding data files of the cell frequencies are not

offered and also the legend for the display of proportions is fixed to six intervals, thus protecting

areas with extreme proportions. However, also here there are no density maps offered.

Occasionally, density plots can be found in statistical journals, see, for example, Groß et al.

(2017) and Erfurth et al. (2022). Generally these maps can be downloaded. However, as a rule

the authors do not publish the resolution of the density map. Also, in most instances the labelling

of the density values is done by intervals. Thus it is not possible to get access to the exact density

value at the grid points. As a consequence it is not possible to switch from the density value

f̂h(xj) at the center of a ”cell” j to an estimated number of observations n̂j in the cell by using

5See https://www.zensus2022.de/DE/Aktuelles/Hinweis_Zensusatlas.html.
6See https://ec.europa.eu/statistical-atlas/viewer/.
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the relationship n̂j = NP f̂h(xj)∆. Here ∆ is the area of the grid cell and NP is the total of the

population of interest. Thus any reference to the minimum frequency rule is not possible for users

of the map.

Besides, the inference to the true case numbers in the population is subject to statistical

variance. The asymptotic variance of a kernel density estimate with a bivariate normal kernel

function7 is:

V ar(f̂h(x)) =
1

4πh2n
f(x) (7)

where n is the sample size of the kernel estimate. Thus, the asymptotic variance of n̂j can be

estimated by:

V̂ ar(n̂j) =
N2

P∆2

4πh2n
f̂h(xj) (8)

=
NP∆

4πh2n
n̂(xj) (9)

Hence the standard deviation of n̂(xj) is proportional to its root value. If all population values

are used for the kernel estimate, i.e. NP = n, and if the area between the grid point ∆ is equal to

h2 the proportionality factor simplifies to 1/(4π). Thus for n̂j = 3 we obtain a standard deviation

of 0.488. In this case the estimated case number would range between 2 and 4 if we take two times

the standard error as a confidence region of the true cell frequency. Thus we are not sure whether

a minimum frequency rule with f = 3 applies for the cell or not. In case of a lower sample size n

the confidence interval may even become wider.

From this point of view, one could argue that a plain kernel smoothing map as a PDF file

without reference to the resolution and without the exact kernel density values is a safe map.

However, the good advice from inside the statistical agency to suppress cells with low frequency

creates some extra safety which does not destroy the benefits from detecting regional clusters by

the kernel smoothing approach.

7See https://en.wikipedia.org/wiki/Multivariate_kernel_density_estimation.
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Figure 8: A group of three isolated points with overlapping kernel functions

7.2 Specific anonymization issues of kernel smoothing

As shown above, the concept of anonymization based on rules for observed frequencies does not

really fit to kernel smoothing. However, there are some anonymisation issues which are specific for

kernel smoothing estimates.

7.2.1 Isolated observations

The kernel approach has some difficulty to anonymize isolated points or even a small group of

isolated points. Figure 8 shows a situation where 3 kernel functions partially overlap. If the

sample size of our data base is large, which implies small values of h and there are areas with low

population size, the above situation may occur. Because of the symmetric nature of the kernel

function it is very easy to reconstruct in Figure 8 the true location of the three observations. This

would violate the anonymity. In real situations the degree of overlap depends on the smoothing

parameter h. Note, that in our empirical examples such a case did not occur.

For this reason one has to build-in some protection against the uncovering of geographically

isolated observations. Here one might look for kernel procedures with adaptive smoothing param-

eters, see Sadiq et al. (2022). The adaptive component would increase the smoothing factor in

regions with few observations. However, this approach has to be still developed in more detail.
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7.2.2 De-anonymization of individual values

In cases of populations of moderate size, like firms, the exact location of the units may be known

from open sources. However, the output variable gi of unit i is unknown and of interest. The

Nadaraya Watson estimator computes a locally weighted average of the original g-values by

ĝi =
∑
j

k(
xi−xj

h
)∑

l k(xi−xl

h
)
gj (10)

This is a linear equation system where the vectors g = (g1, . . . , gN)′ and ĝ = (ĝ1, . . . , ĝN)′ are

connected by multiplication of a matrix K = (kij)
N
N with

kij =
k(

xi−xj

h
)∑

l k(xi−xl

h
)

Hut (2020) has proven that the matrix K is invertible for a normal distribution kernel function.

Thus, with knowledge of the xi (i = 1, . . . , N) and the kernel function k and the used smoothing

value h one may simply compute the inverse of K, multiply it with ĝ and obtain the unknown

values of g.

From a practical point of view there are frequent situations where the above strategy will not

work. In the taxpayer example one would have to invert a matrix of dimension N = 1.9 million,

which is simply an enormous calculation task. As many taxpayers have the same address all rows

of taxpayers with the same address are identical in the matrix K. This leads to a rank defect

and prevents the inversion of K. If we have a register of all Berlin addresses at disposal then not

every address belongs to a taxpayer. This may result in more rows than columns in the K matrix

leading to an over-identified linear equation system.

For cases where K is invertible Hut (2020) proposes to put some stochastic noise on the kernel

estimates ĝ(xi) such that

maxi=1,...,N

{
Prob

(∣∣∣∣ ĝ(xi)− g(xi)

g(xi)

∣∣∣∣ < p

100

)}
≤ α (11)

For a normal noise function and invertible matrix K Hut (2020) presents an explicit relationship

of the parameters p and α and the obtained anonymization probability in Equation 11.
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7.2.3 The selection of the smoothing parameter h

If we concentrate on a fixed kernel function the smoothing parameter h is the only parameter of

the kernel estimates. Here, the use of the bivariate normal density is frequent.

It is instructive to see that the selection of h is also sensitive with respect to the anonymization

effect. For h → ∞ the true locations are smeared over the entire region of interest. In the case

of density estimation this results in a uniform density over the entire region. In the case of the

estimation of means the Nadaraya Watson estimator is simply the average over the entire area. If

proportions are of interest the limit is given by the overall ratio over the area.

In the other extreme, i.e. h → 0, the estimated density is given by the set of Dirac functions

at the exact locations of the observations. In case of a normal kernel function Hut (2020) has

proven that the Nadaraya Watson estimator ĝ(x) at location x converges to the value of g(xi) of

the observation which is nearest to x. As a conserquence the ratio estimate r̂(x) converges to 0

or 1, depending on the population status of the nearest observation xi. If observation i belongs

to population Q then r̂(x) = 1 results and r̂(x) = 0 else. Thus, for h → 0 the kernel smoothing

reveals the exact positions, the population status and the individual values of the observed units.

Consequently, the data protection is zero. For the opposite case h→∞ the statistical use of the

geo-coordinates is zero, as we do not not use this geo-information.

The standard reasoning of anonymization uses a bipolar scale ranging from low anonymization

with high data utility to a high anonymization with low data utility, see, for example, de Jonge

and de Wolf (2016). Usually it is argued, that a maximum risk limit should be strictly respected.

Below the limit the utility of the data should then be maximized. Cox et al. (2011) have argued

against this model as to simplistic for applications. As a rule, the risk and the utility are hard to

specify in concrete statistical terms. In the case of kernel smoothing there is a direct relationship

of the anonymization parameter h and the use of f̂h as an estimate of the true population density

f . A standard selection criterion for h is the minimization of the MISE criterion, see Wand and

Jones (1994). Thus we are in a situation were the selection of h optimizes as well the utility of the

obtained map at a price of a moderate anonymization effect.
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8 Concluding remarks

Due to the smearing effect of the kernel density approach the impact of single values on the resulting

map is largely reduced. Thus the output map may be regarded as an anonymized output.

In general it is difficult to apply anonymization criteria which were formulated for tabular

analyses to the output of kernel smoothing routines. If the population is large as in the taxpayer

example a simple subsample, say 10 percent, of the original population may be enough to safe-

guard against de-anonymization. Alternatively one may suppress the display of regions where the

case numbers at the selected grid resolution fail to meet the chosen minimum frequency crite-

rion. However, the computation of the kernel estimate has still to include the information of the

observations in the suppressed areas. In our empirical example with partly suppressed areas the

resulting map remains still informative with respect to the displayed local clusters of high income

taxpayers. However, the higher the resolution of the map is, the larger becomes the fraction of

suppressed areas. So the resolution of the displayed map is essential here.

More attention should be paid to the output format of the map. If the map is supported by

machine readable files with the computed density values then, at least theoretically, it is possible to

de-anonymize the original values of the observations. However, in our empirical example with high

income taxpayers, such a de-anonymization was not possible. Also the labeling of the displayed

means by intervals is an efficient method to hide dominance effects of single observations. Thus

the output format of the map may turn out to be a more efficient anonymization tool than the

standard application of frequency and dominance rules for tabulations.

We did not consider here output anonymization, for example, the cell key method, as it is

designed for the display of tables like choropleth maps. As we did show in our examples, choropleth

maps perform poorly to display regional clusters. This feature becomes even worse with smaller

grid sizes. Unless the cell frequencies refer to administrative areas of interest, the kernel smoothing

maps should be preferred to choropleth maps.

There are even further advantages from the computation of the density map. The computed

densities offers the possibility to display high density areas which are independent from any area

system. Such high density areas may be used to fix regional clusters which characterize the
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concentrations of certain sub-populations, for example, students (Groß et al. 2020) or voters of a

political party (Erfurth et al. 2022).
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