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Abstract

We study a principal who allocates a good to agents with private, independently

distributed values through an optimal mechanism. The principal can strategi-

cally shape these value distributions by modifying the good’s features, which af-

fect agents’ valuations. Our analysis reveals that optimal designs are frequently

divisive—creating goods that appeal strongly to specific agents or agent types while

being less valued by others. These divisive designs reduce information rents and

increase total surplus, at the expense of competition. Even when total surplus is

constrained, some divisiveness in designs remains optimal.
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1 Introduction

A bureaucrat is tasked with allocating a plot of land to one of several interested parties.

The interested parties include a company seeking a new production site, an entrepreneur

who wants to build a water skiing facility, and a school superintendent in need of a

plot for a new elementary school. The bureaucrat has the authority to impose rules

and regulations on this plot. For example, they can specify certain setbacks, enforce

environmental restrictions, or approve the construction of a highway to improve access

to the plot. The bureaucrat then allocates the land according to an optimal mechanism

(Myerson (1981), Bulow and Roberts (1989)). The objective is to maximize transfers

from the interested agents, either for the bureaucrat’s benefit or for the community at

large.1 The question is: What are the optimal features that should be imposed on the

plot of land?

We demonstrate that attributes that increase surplus while minimizing information

rents are optimal, even if they reduce competition among bidders. Each feature influences

the bidders’ valuations in di!erent ways. Some attributes may a!ect the valuation of

one bidder without altering the others’, while other features may impact the valuations

of all bidders. We therefore consider a broad set of constraints, moment conditions,

and distributional restrictions on how the features of a good shape valuations, and we

characterize the optimal value distribution subject to these constraints.

Any combination of attributes that shapes a value design has three key implications:

(i) it directly a!ects agents’ valuations, and consequently the overall surplus; (ii) it al-

ters agents’ private information, thereby influencing the incentives required for agents’

values to be truthfully revealed; and (iii) it impacts the allocation probability, which in

turn a!ects the transfers in the optimal mechanism. We find that attributes leading to

more di!erentiated valuations help the principal screen and increase revenue, as they are

associated with an increase in surplus and/or a reduction in information rents.

Value distributions are determined by the characteristics of the good. For example,

building restrictions imposed on a plot of land can have various implications for value

distributions. Environmental restrictions may increase the value of the land to both the

water ski entrepreneur and the company seeking a production site, as both entities value

1While these transfers may constitute bribes, they could also be perfectly legal contributions through
PACs. Moreover, the transfers do not necessarily have to be monetary, but can take some other form. It
only matters that the bureaucrat is able to assign a price to what is given by every bidder. In this sense,
a school superintendent may be able to provide some favors, not necessarily money, that the bureaucrat
values.
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green technologies, and the restrictions allow them to credibly signal this commitment to

their customers. The school, on the other hand, may be una!ected by these restrictions.

Approving highway access may lower the value of the land for the school superintendent

due to increased pollution, while increasing its value for the production site due to im-

proved transportation access. The water skiing facility may not be significantly impacted,

as access has improved, but water quality would need to be more closely monitored.

These examples illustrate that the connection between features and the resulting value

distributions can be complex and rather context-specific. It matters which markets we

consider, the type of buyers, the characteristics that can be added to the good, just to

name a few factors. Abstracting from these specifics, our goal is to find the optimal

value designs, that is, the distributions the principal would like to achieve through the

appropriate choice of attributes. To discipline our analysis, we consider settings where an

increase in value for one (type of) agent is met by a decrease in value for another (type

of) agent, as made precise in Section 3. Consequently, we think of divisive designs as

those that lead to (i) some agents valuing the good highly while others value it little, or

(ii) some types of agents valuing the good substantially while other types do not.2

In general, the principal benefits from adding features to the good that make it uni-

formly more desirable (thereby increasing surplus). However, we assume that the principal

cannot generate valuations exceeding some arbitrarily large number, v.

If this were the only constraint, the principal would select features that ensure at

least one agent values the good exactly at v. Having even a single agent with such a

value distribution maximizes surplus by generating the highest willingness to pay for the

good. This design simultaneously minimizes information rents by making the value fully

predictable. The principal can set a price of v, thereby extracting the entire surplus. Even

if all other agents have a valuation of zero, it would still be optimal for the principal to

choose features that result in such a design.

The emergence of atoms, if possible, is generally a feature of optimal designs, as shown

in Section 4.1. This follows as the principal’s revenue in the optimal mechanism is a convex

function of the agents’ value distributions. Therefore, any solution to the design problems

we consider will be extreme, lying on the boundary of the constraint set. Put di!erently,

value distributions that are convex combinations of other value designs are suboptimal.

2Note that both cases are observationally equivalent. Regardless of whether the change in values
a!ects the types of an agent di!erentially or distinct agents, we would see agents with high and low
values.
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A second insight is that the principal’s revenue in the optimal mechanism is monotoni-

cally increasing in first-order stochastic dominance, as previously established by Devanur,

Huang, and Psomas (2016) and Hart and Reny (2015). This implies that the principal

can never benefit from uniformly reducing values.

While these two features of optimal revenue help narrow the set within which our

optimal value distributions lie, they do not fully determine the optimal value distribution.

Instead, the optimal distribution will depend on the specific constraints faced by the

principal.

No Spillovers Suppose that the principal can select features that influence the value of

the good for one agent, while leaving the value for the other agents unchanged. We begin

in Section 4.2 by considering settings in which the principal cannot raise the expected

value beyond some constant k < v, but can otherwise shape the distribution of values

arbitrarily. Then, the principal will select features resulting in a binary distribution of

values with mass at v and zero, with mean k.

The principal selects attributes such that, on average, the agent values the good at k,

the upper bound. Furthermore, in order to fully extract the gains from trade of the agent

whose value is a!ected, the principal selects features that lead to a binary distribution

with positive mass assigned to one strictly positive value. The designed value distribution

not only makes the agent’s value predictable conditional on trade, but also a!ects the

probability of allocating the good to competing agents. The principal aims to keep the

chances of the competing agents at a maximum, as this increases their willingness to pay

and, thus, revenue. They achieve this by minimizing the odds that the agent with the

binary distribution receives the good. This agent only receives the good if their realized

value is strictly positive, and the chances of this occurring are minimized when the strictly

positive value is as high as possible.

The optimality of such binary distributions extends to the case where all agents re-

spond to the features of the good in the same way, and the principal faces a constraint

on the mean of the designed distributions. Contrary to the widespread belief that higher

variance increases agents’ information rents, this result demonstrates that this is not nec-

essarily the case. For instance, when the increase in variance allows the principal to better

screen agents’ valuations, then the dispersion in values benefits the principal.

In sum, a principal prefers features that allow them to generate extreme distributions.

These attributes are, with some probability, highly valued by agents, but they also carry
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the risk that the agents may no longer value the good. This value design is particu-

larly valuable when agents appear a priori identical, and the introduction of a feature

allows the principal to segment them. To illustrate this, consider again the bureaucrat

facing di!erent companies. The bureaucrat would like to attract a company that values

environmental standards, but cannot observe this, and, therefore, imposes a number of

eco-friendly policies on the plot. For some companies, this aligns with their ethical stan-

dards and can make the brand more attractive to environmentally conscious consumers.3

For others, it is a negative, as their production standards do not meet these regulations.

As a result, imposing such legislation can either increase or decrease the agents’ values,

and, at best, generate the binary distributions that are optimal in the absence of spillovers

in valuations.

Spillovers We characterize optimal designs when the principal can select features of

the good that a!ect the values of all agents simultaneously in Section 4.3. We focus on

the economically relevant case where making the good more appealing to some agents

necessarily reduces its appeal to others.

We first consider a constraint on the sum of agents’ expected values, mirroring the

mean-bound constraint from the setting without spillovers. Under this restriction, the

principal would ideally design a good that perfectly caters to a single agent, making

their value both as high and as predictable as possible. This extreme specialization

simultaneously maximizes surplus generation and eliminates information rents entirely,

since the favored agent’s willingness to pay becomes perfectly known.

However, the feasibility of such extreme value distributions is questionable in prac-

tice. We therefore complement this analysis with a distributional constraint that more

realistically bounds the principal’s design ability.

We consider a scenario where the principal can design any value distributions for the

two agents, provided that their cumulative distributions sum to at least H(v) pointwise.4

In such a setting, the optimal design exhibits maximal asymmetry: one agent’s values

are concentrated below the median of H, while the other agent’s values lie entirely above

the median. Maximal di!erentiation serves a dual purpose: it increases total surplus

while simultaneously reducing information rents as agents’ valuations lie in a narrower

set, thereby making them more predictable. This asymmetry decreases transfers from

3For some evidence that these types of considerations matter to firms, see https://scmguide.com/1
0-essential-considerations-before-building-a-new-production-facility/

4
H is a non-decreasing function with image in [0, 2].
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the disadvantaged agent, while it leads to an increase in transfers from the advantaged

agent, which more than compensates. Therefore, maximally distinct value distributions

are optimal.

This result has practical implications. When a principal faces competing entities

and knows that a particular feature will increase one agent’s valuation while decreasing

another’s, they should add the feature to maximize revenue.

Fixed Surplus With both spillovers and no spillovers, surplus maximization is a key

driver of divisive designs. In Section 5, the principal can only add attributes that lead to

a fixed surplus distribution G. This raises the question of whether divisive designs remain

optimal. Now the revenue-maximizing design depends crucially on the structure of G and

the lower bound of the value support. When the minimal value equals zero, maximally

divisive designs—where only one agent values the good according to G—are revenue-

minimizing among all designs generating the same surplus. Such a design is equivalent to

a one-good, one-bidder setting and therefore, the optimal mechanism reduces to a posted

price. However, other value distributions that assign some positive value to all agents

generate the same surplus by design and allow for competition between agents for the

good. This increases the principal’s revenue, establishing that maximally divisive designs

perform worst.

Instead, threshold designs that segment agents into distinct value ranges can out-

perform both maximally and minimally divisive design alternatives. Threshold designs

assign to one agent both mass at the minimal value and mass above some threshold, while

the other agent receives all the mass below the threshold. These designs limit informa-

tion rents, as they reduce the possibility to deviate. At the same time, they maintain

competition between di!erent agents. Notably, these threshold designs exhibit features

reminiscent of designs that are optimal without spillovers: they spread one agent’s value

distribution while concentrating the other agent’s distribution. Thus, even when surplus

is fixed, some asymmetry in designs can remain optimal.

Applications While our primary example involves a bureaucrat or politician who al-

locates a good to one of several entities, our model can also provide insights in a variety

of other settings. In the Supplementary Appendix Section A, we discuss how our model

relates to celebrity auctions as well as the art market.

More generally, our model can be viewed as a product design model, where the prin-

cipal decides what kind of product to sell and how to sell it. The principal benefits from
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understanding what types of features agents value, motivating why market research that

leads to better information about the customer base, what they value, and how they are

a!ected by di!erent attributes of the good can be extremely valuable.5 As described

in Bloch (1995) p.26f, “Seeking the ’ideal’ form for a product remains a significant goal

for both designers and marketing management. The ideal form is a theoretical concept,

[. . . ], similar to a vanishing point in the distance.” Bloch (1995) continues by stating

that the ideal form must be truly valued by consumers, evoke positive emotions, and be

sympathetic to consumers’ tastes. “This ideal form must accomplish all of this, while

simultaneously satisfying numerous design constraints.”, design constraints that depend

on the specific setting. These are the considerations our model aims to formalize.

2 Related Literature

Our paper contributes to the literature on value and product design in allocation prob-

lems. Key insights in this area were pioneered by Johnson and Myatt (2006), who study

environments where a price-setting monopolist influences market demand either by adding

features to the product or through advertising. Their analysis focuses on reshaping de-

mand through rotations and shifts, demonstrating that value distributions with minimal

dispersion are optimal when the monopolist caters to a mass market, while dispersion is

beneficial when the monopolist caters to di!erent niches. While our approach is similar

in spirit, our model di!ers fundamentally with implications for results. In the absence

of market features in terms of niche versus mass, dispersion in values, both within and

across buyers, generally increases revenue, due to higher surplus and lower information

rents.6

The importance of increasing surplus becomes evident in light of Cantillon (2008).

She shows that when surplus is fixed, revenue decreases with asymmetric value designs in

first- and second-price auctions without exclusion. We complement her result by showing

5This described approach is followed in the segmenting-targeting-positioning framework in marketing.
A firm aims to divide consumers according to their characteristics, the segmentation. It then targets the
market through an advertising campaign and finally positions the product in the market so as to raise
consumers’ values. See for instance Moutinho (2000) for an application of this concept to tourism.

6While not considering product design, Anderson and Renault (2006) analyzes how attributes of a
given product are advertised. These attributes or characteristics are taken as given, and the seller can
choose to highlight some or all of them. In contrast, we allow for the seller to create these attributes
which are immediately visible. Despite these modeling di!erences, Anderson and Renault (2006) finds
that it is beneficial to advertise characteristics that screen out low-value customers, which allows for a
price increase for high-value customers.
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that revenue can increase with asymmetric designs in the optimal mechanism, if there is

exclusion.7

Value design has been previously explored in Condorelli and Szentes (2020, 2022).

The former focuses on buyer-optimal value design with a single buyer, while the latter

characterizes the optimal profit arising from di!erent demand functions in a quantity

competition setting. In contrast, we consider seller-optimal designs with multiple buyers

and focus on optimal design strategies.

Finally, some of our results can be interpreted through the lens of information design.8

In these settings, the principal provides information about the product, as in Bergemann

and Pesendorfer (2007), Eso and Szentes (2007), Li and Shi (2017), Sorokin and Winter

(2018), and Ganuza and Penalva (2019). In contrast, we allow for the principal to design

the product’s features, generating value for agents. Consequently, the influence of the

principal on the distributions of valuations can be substantially greater. This leads us to

consider a broader class of constraints than Bayes Plausibility.

But even in the case of a constraint that technically matches Bayes Plausibility, our

results di!er from Bergemann and Pesendorfer (2007) in terms of (i) the key trade-o!,

(ii) the result when the number of bidders di!ers from two, and (iii) the interpretation.

In Bergemann and Pesendorfer (2007), the key trade-o! is between the seller’s revenue

and the bidders’ information rents. While such a trade-o! is also present in our setting

(as di!erent value designs are associated with di!erent informational content), there is

additionally the role of competition to consider. More importantly, the optimal design

simultaneously minimizes the information rents and maximizes the seller’s revenue, gen-

erating an alignment of Bergemann and Pesendorfer (2007)’s trade-o!. As a result, even

when the number of bidders exceeds two, the information rents remain zero, and every

bidder has the same value design at the optimum (with the possible exception of the n-th

bidder, where we obtain a multiplicity). In contrast, Bergemann and Pesendorfer (2007)

finds that with three or more bidders, binary partitions are no longer optimal and the

principal has to incur incentive costs.

Moreover, in Bergemann and Pesendorfer (2007) it is optimal to reveal no information

when there is only one bidder. The principal sets the price equal to the expected value,

7In contrast to our focus on designing value distributions, Deb and Pai (2017) fix value designs
and establish that symmetric mechanisms can heavily discriminate between agents when their value
distributions di!er.

8For instance, Roesler and Szentes (2017) and Bobkova (2019) study trade environments with a single
buyer and seller, characterizing buyer-optimal information designs and the costs of information acquisi-
tion.
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and extracts the entire surplus. In the context of value design, other designs can be

optimal, such as any binary value distribution with the same expected value.

Finally, the interpretation of our result di!ers, which is most clearly evident from the

case with one buyer. Revealing no information in the information design case corresponds

to a good whose features are perfectly understood in the value design setting as all mass

is placed at the mean. At the same time, with value design, but not information design,

uncertainty about the value is irrelevant—as long as the distribution is binary with mass

at one strictly positive value and zero.

Even though information design and value design are technically related, insights and

results di!er substantially.

3 A Model of Constrained Value Design

We begin by introducing the mechanism design framework, which forms the foundation

for the value design approach in our analysis. We then proceed to discuss the design of

optimal distributions. For clarity, we focus on the case of two agents, but extensions to

N agents are considered throughout.

The Environment and the Optimal Mechanism A principal is tasked with allo-

cating a single unit of a good to one of two competing agents, A and B. The value of the

good to agent i → {A,B} is denoted by vi → [v, v], where v > v ↑ 0 are exogenous upper

and lower bounds on the value of the good. Each agent is privately informed of their own

value, and the values are independently distributed. The cumulative distribution function

of the value vi is denoted by Fi, with support Vi ↓ [v
i
, vi], where v

i
and vi represent the

smallest and largest values in Vi, respectively. The distributions FA and FB are commonly

known to both the agents and the principal. The utility of an agent is given by the private

value of the good, vi, if the agent is awarded the good, minus any transfer ti made to

the principal. The principal derives no value from the good itself and seeks to maximize

revenue by selecting a mechanism to sell the good, with revenue defined as the sum of the

transfers, tA + tB.

By the revelation principle, the principal’s problem can be solved by restricting atten-

tion to direct, incentive-compatible (IC), and individually rational (IR) mechanisms. A
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direct mechanism (x, t) consists of an allocation rule x and a transfer rule t,

(x, t) : VA ↔ VB ↗ ”2
→ ↔ R2,

where agents are only asked to simultaneously report their types. The allocation rule

x(v) = (xA(v), xB(v)) specifies the probability with which agents A and B receive the

good for any profile of reported values v → VA ↔ VB, and it belongs to the subsimplex

”2
→, the set of allocation probabilities. The transfer rule t(v) = (tA(v), tB(v)) specifies

the transfer each agent must make to the principal for any profile of reported values

v → VA ↔ VB. A direct mechanism is said to be IC and IR if, for any agent i and value vi,

we have that

vixi(vi)↘ ti(vi) ↑ max {vixi(zi)↘ ti(zi), 0} for any zi → Vi.

This means that there exists a Bayesian Nash equilibrium in which all agents participate

and report their types truthfully.9 Denote the optimal revenue for any pair of distributions

(FA, FB) as

R (FA, FB) = max(x,t) EF [tA(v) + tB(v)]

s. t. vixi(vi)↘ ti(vi) ↑ max {vixi(zi)↘ ti(zi), 0} for any zi, vi → Vi, i → {A,B},

where EF denotes the expectation over the joint distribution of values F . For values vi

at which Fi admits a density fi, the virtual value of agent i is defined as

ωi(vi) = vi ↘
1↘ Fi(vi)

fi(vi)
,

and we refer to the di!erence between the value and the virtual value as the information

rent. For values vi at which Fi does not admit a density, we define ωi(vi) = vi.10

9With a slight abuse of notation, we use the same operator to denote both the ex-post rules
and the interim rules. The interim allocation probability of agent i with value vi is xi(vi) =

EF→i [xi(v)] =
∫ v→i

v→i
xi(v) dF→i(v→i). Similarly, the interim transfer is defined as ti(vi) = EF→i [ti(v)] =

∫ v→i

v→i
ti(v) dF→i(v→i). When cumulative distributions are discontinuous on the support, we use Riemann-

Stieltjes integrals to calculate the expectations implicitly.
10In the Supplementary Appendix Section B, we show why with such an adjustment to the definition

of virtual values, virtual surplus still coincides with the principal’s revenue.
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The Value Design Problem We now describe the value design problem at the core

of the analysis. Let any pair of distributions (FA, FB) → ”[v, v]2 be referred to as a value

design. The principal’s value design problem is formulated as

max
FA,FB

R (FA, FB) subject to (FA, FB) → K,

where K ≃ ”[v, v]2 represents an arbitrary constraint on the set of value designs. We

summarize the constraints we consider in Table 1 for the baseline case of two agents.

A key feature common to all constraints we consider is the trade-o! between value

increases and value reductions. In the case of no spillovers, value can only be redistributed

across the di!erent types of agents. Increasing the mass allocated to a higher value neces-

sarily involves reallocating mass to lower values. In the presence of spillovers, increasing

the value for one agent leads to a corresponding reduction for the other. In the case of

distributional constraints, this implies that a pointwise increase in value must be matched

by a pointwise reduction, making the distributional constraints a natural extension of the

moment condition.

Restriction Type Moment Constraint Distributional Constraint

No Spillovers EFi [v] ⇐ k
∫

v

0 G(t)dt ⇐
∫

v

0 Fi(t)dt

Spillovers EFA [v] + EFB [v] ⇐ k H(v) ⇐ FA(v) + FB(v)

Surplus Bound – G(v) ⇐ FA(v)FB(v)

Table 1: Design Constraints
Note: The parameter k is an arbitrary constant, H is a measure with mass 2, G is some cumulative

distribution function. FA and FB are distributions chosen by the principal.

4 Optimal Value Design

We begin by characterizing general properties of optimal value distributions, before turn-

ing to the various constraints we consider. Results are proven in the Appendix, Corollaries

are proven in Section F of the Supplementary Appendix, the proofs of remarks are omit-

ted.
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4.1 Optimal Revenue Properties

The first result establishes that the revenue from the optimal mechanism must be convex

in the value design (FA, FB) ⇒ F . This implies that any value design in the interior of

the constraint set under consideration will necessarily be suboptimal. Therefore, revenue-

maximizing designs must always be extremal and lie on the boundary of the constraint

set.11 This has significant implications throughout the analysis, highlighting why designers

may prefer asymmetric designs that do not treat agents equally, and why dispersion in

valuations can be advantageous.

Lemma 1 (Convexity of Revenue). Optimal revenue is convex in the joint distribution

of values. Specifically, for any F, F
↑
, F

↑↑
→ ”[v, v]2 satisfying for some a → (0, 1)

FA(vA)FB(vB) ↑ aF
↑
A
(vA)F

↑
B
(vB) + (1↘ a)F ↑↑

A
(vA)F

↑↑
B
(vB) for all v → [v, v]2,

we have that R(F ) ⇐ aR(F ↑) + (1↘ a)R(F ↑↑).

Intuitively, the result is true because revenue is the value function of the classical mech-

anism design problem. Given that this problem is linear in probabilities, its maximum

must be convex.

Second, it can never be optimal to select features that induce distributions that are

first-order stochastically dominated, a result that dates back to Devanur et al. (2016) and

Hart and Reny (2015). A value design F
↑ first-order stochastically dominates value design

F → ”[v, v]2, denoted by F
↑ ↭1 F , if

Fi(v) ↑ F
↑
i
(v) for all v → [v, v] and i → {A,B}.

Lemma 2 (FOSD (Devanur, Huang, and Psomas, 2016; Hart and Reny, 2015)). For any

F, F
↑
→ ”[v, v]2 such that F

↑ ↭1 F , we have that R(F ) ⇐ R(F ↑).

To gain intuition for this result, which plays a key role in our analysis, consider an

allocation with two value distributions, FA and FB, and an arbitrary mechanism. For

simplicity, assume that FB is supported on a finite set of values (v1, . . . , vn) with respective

probabilities (p1, . . . , pn). Now, consider an alternative distribution supported on values

11Results in Yang and Zentefis (2024) demonstrate how to characterize extreme points within sets of
monotone functions. Since revenue is convex, optimal designs will necessarily correspond to extreme
points of the set being considered.
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(v1, . . . , vi+ε, . . . , vn), where the only change is that the realization of vi is increased by ε,

while the remaining probabilities stay unchanged. This alternative distribution first-order

stochastically dominates the original value distribution.

Next, consider the revenue from maintaining the same mechanism as before, with the

only modification being an ε-increase in the transfer paid by the i-th agent, conditional

on winning. This mechanism remains incentive compatible, as no incentive constraint is

violated, but it raises higher revenue for the principal. All first-order stochastic dominance

shifts can be viewed as a sequence of such changes in a single value. This establishes that

it cannot be optimal to select a distribution which is first-order stochastically dominated

by some other feasible distribution.

Before proceeding to our constrained value design, observe that any design in which

at least one agent values the good at v with certainty is revenue-maximizing when the

principal faces no design constraints—meaning that the constrained set of distributions is

K = ”[v, v]2. These value designs are optimal because surplus cannot exceed the maximal

value for the good, v. If an agent has this value with certainty, the principal can simply

allocate the good to that agent while asking them to transfer v, thereby extracting the

maximal surplus.

Remark 1. In any unconstrained optimal value design, at least one agent has a value

distribution satisfying Fi(v) = (v ↑ v) for all values v → [v, v].

This result highlights the three forces that emerge throughout our analysis. First, the

principal aims to increase total surplus, as higher values lead to higher transfers. Second,

the principal prefers agents’ values to be as predictable as possible, since knowing the exact

value reduces the information rents paid to the agents to ensure incentive compatibility.

Third, it su#ces to increase the value for one agent to v, as the principal, knowing the

value of that agent with certainty, is able to extract the full surplus from them without

ever selling to the other agent. If the principal adjusts the distribution of both agents,

then one agent obtains the good with some probability p → (0, 1), while the other agent

receives it with the remaining probability, 1↘p. This reduces the transfer of the agent who

previously obtained the good with certainty, while simultaneously increasing the transfer

of the agent who never received the good, by the same amount. Thus, the revenue is the

same, regardless of whether the principal increases the value for one or more agents to

v. This demonstrates that inequality in valuations of di!erent agents is irrelevant to the

principal.
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4.2 No Spillovers

We now turn to the analysis of the optimal distribution when the features of the good

a!ect only agent A, while the valuation of agent B remains unchanged.

Moment Condition We begin by imposing a moment condition on the expected value,

specifically that it cannot exceed some constant k. It immediately follows from Lemma

2 that this bound must hold with equality. If it did not, there would exist a value

distribution that first-order stochastically dominates, yielding higher revenue. Therefore,

for any optimal distribution, we must have EF [v] = k. From Lemma 1, it follows that

the optimal distribution must be extremal. Since we only restrict the average value

without imposing a pointwise constraint on the value distribution, this implies that atomic

distributions will be optimal.

It is thus useful to define a class of binary distributions that take values at a point

h → [k, v] and v, with a mean of k. Formally, for any h → [k, v], let the probability

distribution P
h satisfy

P
h(v) =






h→k

h→v
if v = v,

k→v

h→v
if v = h.

(1)

Here, P h(v) denotes the probability that the value equals v. Let F h denote the cumulative

distribution associated with P
h. The distribution F

k places all the mass at the mean k.

The distribution F
v describes a distribution with mass at the maximal value v and at

zero. We refer to this distribution as the maximally spread distribution, and this turns

out to be the optimal distribution for the principal.

Proposition 1. Let v = 0. The value design (F ↓
A
, FB) = (F v

, FB) is optimal among

all value designs (FA, FB) satisfying EFA [v] ⇐ k. This design is uniquely optimal when

FB ⇑= F
v
. For FB = F

v
, any design with F

↓
A
= F

h
, h → [k, v] is also optimal.

Our result depends on the value distribution of agent B. If B possesses some arbitrary

distribution, but not the maximally spread distribution, then for agent A, the maximally

spread distribution with mean k is the unique optimal distribution.

The optimal distribution maximizes surplus and reduces the information rents for

agent A to zero. This holds for any bimodal distribution with an atom at one strictly

positive value and mass at zero. The optimality of the maximal spread arises due to the
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presence of the second agent, B.12 Agent B also competes for the good, and the size

of the transfer depends on the probability of receiving the good. The higher the alloca-

tion probability for the agent, the higher the transfer. The maximal spread for agent A

maximizes the probability of receiving the good for agent B. Agent B receives the good

if their virtual value is positive and exceeds the virtual value of A. The probability of

exceeding A’s value increases with the probability of A having zero value. This proba-

bility is given by h→k

h
, and it is increasing in h, the strictly positive value with an atom.

Therefore, the bimodal distribution that assigns mass to the maximal value and zero,

with constant mean, places the greatest probability on zero. This makes it the uniquely

optimal distribution.

The mechanism associated with this value design is simple: first, o!er the good to

agent A at price v, and if A rejects, o!er the good to agent B.

If B’s distribution is the maximal spread, then multiple distributions are optimal. Any

of these distributions places an atom at exactly one positive value (which must exceed

the mean k) and at zero, such that the mean equals k. Thus, any of the probability

distributions described in (1) for h ↑ k are optimal. Now, the principal awards the good

to agent B if B’s value equals the maximal value v. Otherwise, A receives the good.

The principal can then extract the entire expected value from A for any of the described

distributions, making them optimal.

Our result relies on the assumption that the minimal value v equals zero. When the

minimal value is zero, the principal never allocates the good to the agent. If the minimal

value is strictly positive, it may also be optimal to allocate the good to the agent if

their realized value is minimal. This fundamentally changes the considerations at play, as

incentive compatibility of the mechanism needs to be ensured. The information rents are

now strictly positive, and their extent depends on the di!erence between the maximal and

the minimal value. Whether it is optimal to allocate the good to the agent if the realized

value is minimal also depends on B’s distribution. If, for instance, B’s distribution assigns

all mass to the mean, then the principal will only allocate the good to A if their value is

maximal, and the bimodal distribution remains optimal.

From a mechanism design perspective, the result is perhaps surprising since it demon-

strates that an optimal design can maximize dispersion in values. But by maximizing

overall dispersion, the principal simultaneously minimizes the variation in valuations (and

12Indeed, without the second agent, any distribution that assigns mass to exactly one strictly positive
value with expected value k is optimal.
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consequently the information rents) for non-excluded types, who obtain the good with

positive probability, thereby increasing revenue.

If the principal can add features to the good that independently a!ect the value

distribution of all agents, then bimodal distributions with mass at the maximal value v

and mass at v ↑ 0 remain optimal.

Proposition 2. A value design, (F ↓
A
, F

↓
B
), is optimal among all designs satisfying EFi [v] ⇐

k for all i if and only if for agents i → {A,B} and j ⇑= i, we have that (F ↓
i
, F

↓
j
) = (F v

, F
h),

where h = k if v > 0 and h → [k, v] if v = 0.

In contrast to Proposition 1, this result holds for any minimum value v. As the

principal, by creating the appropriate good, can now a!ect the distributions of all agents

independently, they select a good that induces the maximal spread for one agent, while

the second agent’s distribution places all mass at the mean. This is optimal for any

minimal value v. If the minimal value equals zero, then any bimodal distribution with

mean k, and mass at a single strictly positive value and zero, is also optimal.

If the minimal value is positive, having two bimodal distributions is not optimal.

To see this, suppose, to the contrary, that both agents possess the maximal spread.

With probability
(

v→k

v→v

)2

, both agents have the minimal value, and with the remaining

probability, at least one agent has the maximal value. The expected surplus is then

(
v ↘ k

v ↘ v

)2

v +

(
1↘

(
v ↘ k

v ↘ v

)2
)
v.

Instead, if an agent i possesses the maximal spread, while the other agent j has all the

mass at the mean, then agent i receives the good if their valuation is the maximal value.

Otherwise, agent j attains the good. This results in the same surplus as if both agents

had the maximal spread,

(
v ↘ k

v ↘ v

)
k +

(
1↘

(
v ↘ k

v ↘ v

))
v =

(
v ↘ k

v ↘ v

)2

v +

(
1↘

(
v ↘ k

v ↘ v

)2
)
v.

However, surplus does not equal revenue because incentive compatibility is crucial. If

both agents possess a bimodal distribution, it is not possible for the principal to extract

the entire surplus. To see this, observe that if the principal sells to all high-value types at

a price equal to v, they cannot sell the good when both buyers have a minimal valuation,
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as this would violate incentive compatibility.13 Consequently, the seller cannot achieve a

revenue that equals surplus with these distributions.

If the other agent has all the mass at the mean, the principal can set a di!erent price

for this agent, namely k, and extract the average value from them when they do not trade

with the high-value agent. Therefore, the revenue is higher when one distribution is the

maximal spread and the other places all mass at the mean, as compared to the case where

both distributions are maximal spreads.

If the minimum value equals zero, the optimal strategy is for one agent to have a

maximally spread distribution, while the other agent can have any bimodal distribution

with mass at one strictly positive value and zero, such that the distribution’s expected

value is k. The principal can then sell the good in a manner similar to before. They

award the good to the agent with the maximal spread if they have the maximal value (if

both agents have the maximal value, they can simply choose one of them) at a price of

v. If the realized value is not maximal, the principal gives the good to the other agent at

a price h → [k, v], thereby extracting the entire expected value.

We consider the generalization of Proposition 2 to n+1 agents. In any optimal design

for these settings, n agents exhibit a maximally dispersed binary distribution, while the

remaining agent’s distribution follows the structure described in Proposition 2. This

means that for the remaining agent all mass is optimally placed at the mean if v > 0,

while all the mass is placed at zero and exactly one strictly positive value when v = 0.

Interestingly, it is possible to extract the expected value from each agent if v = 0 and

v diverges to infinity. In this case, revenue from the optimal design approaches (n+ 1)k.

As v = 0, the probability that an agent has value v amounts to p = k/v. For a large

maximal value v, p is close to 0. As a result, the likelihood that more than one agent has

a high value v is negligible and we only take into account the probability that one agent

possesses the high value v. Then, revenue is bounded below by (n+ 1)pv = (n+ 1)k.14

In general, it is not obvious that the principal can implement features that a!ect

exactly one agent di!erentially relative to the other agents. Rather, the principal may

only select features that a!ect all agents in the same manner. If this is the case, the

principal benefits from having all agents possess the maximally spread value distribution.

As long as one of the agents has a realized value of v, the principal extracts the entire

13Otherwise, every type would have an incentive to pretend to be a low-value type in order to receive
the good at a lower price.

14To be specific, revenue amounts to
∑n+1

s=1

(n+1
s

)
p
s(1↘ p)n+1→s

v and converges to (n+ 1)k as p ↗ 0.

16



surplus by setting a price equal to v. But the principal fails to sell the good when all agents

have value v, which happens with probability P
v(v)n+1. This probability converges to zero

as n ↗ ⇓. Therefore, for a su#ciently large number of potential buyers, the principal is

only marginally hurt by selecting symmetric, but divisive designs.

Intuitively, the principal prefers risky value distributions for most agents. This is

the case because the risk from an agent having a low value can be hedged by selling to

another agent. This preference for risk was, to some extent, expected given the convexity

of the principal’s revenue over value designs. This convexity implies that the principal is

risk-loving over value designs.

Second-Order Stochastic Dominance It is important to note that Proposition 1

also establishes that F v is the optimal design relative to any distribution that is second-

order stochastically dominated by an arbitrary distribution G with mean EG[v] = k. This

follows from two insights. First, any distribution FA that is second-order stochastically

dominated by G satisfies

∫
v

0

G(t)dt ⇐

∫
v

0

FA(t)dt for all v → [v, v], (2)

and, therefore, has a lower mean than G. Therefore, FA satisfies our earlier moment

condition EFA [v] ⇐ k. Second, F v is second-order stochastically dominated by G. Thus,

F
v is also the optimal distribution among all FA satisfying the constraint in (2).

Corollary 1 (to Proposition 1). Let v = 0. The value design (F ↓
A
, FB) = (F v

, FB) is

optimal among all value designs (FA, FB) satisfying (2). It is the unique optimal design

if FB ⇑= F
v
.

The result hinges on the assumption that v = 0. To see why we require this assumption,

let FB = F
v. We know from Proposition 2 that in this case, for v > 0, placing all the

mass at the mean k for agent A would be optimal. This highlights that if the lowest

value v is strictly positive, then it may be optimal to choose a distribution that second-

order stochastically dominates the given distribution G. In general, for a strictly positive

minimal value v > 0, the optimal distribution for A depends on B’s and cannot readily

be pinned down.

However, for v = 0 and FB = F
v, any distribution F

h that is bimodal and assigns mass

to one strictly positive value and additionally, is second-order stochastically dominated
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by G is optimal. If B’s distribution does not correspond to the maximal spread FB ⇑= F
v,

while the minimal value v equals zero, the maximal spread becomes the unique optimum

for agent A.

In sum, in the absence of spillovers, the principal will aim to create divisive, bimodal

value designs in which agents either highly value the good or do not value it at all.

4.3 Spillovers

We turn to settings where an attribute shapes the values of agents jointly. As was the

case with no spillovers, if the principal could design a good that was more appealing to

all agents, they would do so. We therefore focus on scenarios in which various designs

reallocate value across agents—meaning that making the good more appealing for one

agent will necessarily make the good less appealing for other agents.

Moment Condition We begin by considering a constraint that restricts only the sum

of means of the value distributions, mirroring the mean bound in the no spillover case.

We first assume that the principal can achieve any value design (FA, FB) such that

EFA [v] + EFB [v] ⇐ k, (3)

for some constant k → [2v, 2v]. Since the value for each agent is bounded below by v, k

must exceed 2v. If the mean k were greater than 2v, then it would always be possible for

the principal to allocate mass one to v for both agents and extract the full surplus. For

k → [2v, 2v], in any optimal design, the principal leaves one agent with the smallest possible

value while allocating all remaining value to the other agent. The optimal design allows

the principal to extract the entire value from the agents by eliminating their information

rents. To state the result, let F
h

k→v
denote a binary distribution with atoms at h and v

and with mean k ↘ v.15

Proposition 3. The value design (F ↓
A
, F

↓
B
) is optimal among all designs satisfying (3):

1. For k → [2v, v+ v) if and only if F
↓
i
(v) = F

h

k→v
(v) with h → [k↘ v, v] for some agent

i → {A,B}, while F
↓
j
(v) = (v ↑ v) for all values v → [v, v] for agent j ⇑= i;

2. For k → [v + v, 2v] if and only if F
↓
i
(v) = (v ↑ v) for all values v → [v, v] for some

agent i → {A,B}.

15The probability distribution associated with F
h
k→v corresponds to the probability distribution defined

in (1), except for the mean being k ↘ v, instead of k.
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If k ↑ v + v, the principal assigns the maximal value v to agent i with certainty. The

remaining value is assigned to agent j. However, it is completely irrelevant how the value

is assigned to j, as agent j never receives the good. As in our benchmark case, where the

principal could not exceed the valuation v for each agent, the principal only needs one

agent to have a high valuation with certainty. They can then extract the entire surplus,

eliminating the information rents, by simply setting a price equal to v and always assigning

the good to the high-value agent.

If k < v+ v, it is not feasible to assign the maximal value with certainty to one agent.

Therefore, the principal prefers a design where agent i possesses an expected value of

k ↘ v, while agent j’s expected value is reduced to the lower bound v with certainty. For

agent i, multiple distributions are optimal, as long as they are bimodal with mass at some

h → [k ↘ v, v] and v. In these instances, full surplus extraction remains feasible. To see

this, consider the following mechanism. The principal sets the price for agent i equal to

h, and if i is willing to pay this price, awards the good to them. For agent j, the principal

sets a price equal to v and allocates the good to them if i did not pay the higher price.

This extracts the entire surplus, as the expected revenue equals

k ↘ v

h↘ v
h+

(
1↘

k ↘ v

h↘ v

)
v = k.

By the same logic as in Proposition 2, there cannot be any other distribution where

revenue matches surplus, as all other distributions entail either a loss in surplus or a

strictly positive information rent.

The principal induces sharp di!erences in how agents value the good—for instance,

by designing goods that cater to only one of the agents. Similar insights would extend

to an n-agent setting, where all the value is allocated to a single agent. The optimality

of divisive value designs, in which the good caters to only one agent under this rather

lax constraint, raises questions about whether divisive goods would also be optimal when

more stringent constraints are imposed.

Distributional Constraints Therefore, we consider pointwise distributional constraints

and begin with additive constraints.16 To define this class of constraints, consider an ar-

bitrary measure defined on the interval [v, v] with mass two on that interval. Let H(v)

16These constraints reflect a weak form of linearity of design costs in a dual costly design problem, as
discussed in the Supplementary Appendix Section B.
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denote the associated cumulative distribution.17 We ask how the principal would design

the two value distributions (FA, FB) if their sum had to be bounded above pointwise by

some cumulative measure H, i.e., if

FA(v) + FB(v) ↑ H(v) for all v → [v, v]. (4)

We find that the principal maximizes revenue by creating two maximally di!erentiated

value distributions. To state the result, it is useful to define the median v
M for the

measure H, as the smallest value v̂ such that
∫

v̂

v
dH(v) ↑ 1.

Proposition 4. Value design (F ↓
A
, F

↓
B
) is optimal among all designs satisfying (4) if and

only if for some agent i → {A,B} and j ⇑= i,

F
↓
i
(v) = H(v)↘ 1 if v → [vM , v],

F
↓
j
(v) = min{H(v), 1} if v → [v, vM ].

Distributions where one agent’s values lie below the median of H and the other agent’s

values lie above the median of H yield higher revenue than any other design fulfilling

the constraint. Such value designs have two benefits because they can accomplish at

once the dual objectives of the principal—namely, surplus maximization and information

rent minimization. Put di!erently, the two objectives are aligned at the optimal design,

(F ↓
A
, F

↓
B
). These distributions maximize surplus, E[max{vA, vB}]. Due to the convexity of

the surplus operator, it is optimal to generate the highest possible expected value for one

agent (again, one agent with a high value is all that the principal needs). Additionally,

the design (F ↓
A
, F

↓
B
) minimizes agents’ information rents by narrowing the support of both

agents’ distributions.

To establish the optimality of maximally divisive designs, we first establish that the

constraint must bind at every point because revenue is increasing in first-order domi-

nance—it is never optimal to destroy surplus. This is an immediate consequence of Lemma

2. Therefore, we can restrict attention to the setting where FA(v) + FB(v) = H(v).

Note that we are not placing any restrictions on the properties of H(v). It may be

di!erentiable, contain atoms, or display gaps in the support. We begin by considering

the subsets of the support of H where H is di!erentiable, assuming these exist. We

show that on these subsets, FA and FB must have disjoint supports. This follows from

17Formally, let H denote the measure and define H(v) = H([v, v]).
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Lemma 1. Suppose, to the contrary, that there exist values v (with positive measure)

for which the density h(v) = dH(v)
dv

is split between the two agents. Then, we can show

that this split density is a convex combination of two other designs fulfilling (4) in which

densities are more extreme. To see this, partition the set of values for which density is

split into two subsets with equal measure, W ↑ and W
↑↑. For the subset W ↑, remove some

density ε for each value from A and allocate it to B. For the other subset, W ↑↑, remove

the same density for each value from B and allocate it to A, such that both are still

well-defined cumulative distributions. This leads to F
↑
A
and F

↑
B
. Now construct another

two distributions, F ↑↑
A
and F

↑↑
B
, by increasing the density for A in the set W

↑ by ε, and

decreasing it in the set W ↑↑. Consequently, the density of B must decrease for each value

in the set W ↑, while it increases for all the values in W
↑↑. We can then write F

↑
A
and F

↑↑
A

as

F
↑
A
(v) = FA(v)↘ ε(v ↘ v̂),

F
↑↑
A
(v) = FA(v) + ε(v ↘ v̂),

where v → W
↑ and v̂ is the lower bound of set W

↑. Then, FA(v) = 1
2F

↑
A
(v) + 1

2F
↑↑
A
(v).

As the same argument extends to FB, F ↑
B
, and F

↑↑
B
, and every value in W

↑ and W
↑↑, we

have established that FA and FB are a convex combination of some other value designs.

Consequently, by Lemma 1, FA and FB cannot be optimal, meaning that any value design

that splits densities does not maximize revenue. Therefore, at the solution of this problem,

the value distributions of the two agents must have supports that are disjoint.

We then establish that, among all value designs with disjoint supports, revenue is

maximized by the most divisive design (even when the measure H is atomic). Consider

a design with disjoint support where the support for B’s value distribution is [v, w1] ⇔

[w2, w3], while that for A is [w1, w2]⇔ [w3, v]. For such a design, the principal must ensure

the incentive compatibility of the mechanism, which requires, for instance, deterring the

agents from pretending to have a low value. Thus, the principal must prevent agent B

from reporting v as their value, even when their realized value vB is well above the median.

Similarly, the principal must deter agent A from reporting w1 as their value, even when

their realized value vA is close to v. However, deterring such large changes in values will

require considerable compensation to the agents in the form of information rents.

As a result, the principal benefits from shrinking the supports: giving A all values

above the median and giving B all values below the median. In this resulting design,
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fewer deviations need to be deterred, since A’s largest deviation will be to v
M

> w1, and

because B will no longer have values above the median. In such a design, the principal

will pay less to elicit any given value. Nevertheless, A’s revenue contribution will increase,

as they will pay all transfers associated with values above the median (which tend to be

larger), while B’s revenue contribution will decrease.

The optimality of maximal value di!erentiation generalizes to n agents. In this case,

only the distribution of the two most favored agents is pinned down. One agent receives

all the highest values with measure one, while another agent attains the remaining highest

values with measure one. Only these two agents, with the highest values, receive the good

with positive probability. Therefore, the value designs for all other agents are arbitrary,

subject to them fulfilling the constraint.

5 The Role of Surplus

All of the designs we considered so far have the feature that they increase surplus. This

raises the question whether the optimal design is still divisive if it does not lead to a

surplus gain. And can it ever be optimal to create designs that reduce surplus?

5.1 Fixed Surplus

We begin by limiting the distribution of surplus in the design. Namely, we fix a cumu-

lative distribution function G and ask what the optimal design is if the resulting surplus

distribution FAFB is first-order stochastically dominated by G, formally

FA(v)FB(v) ↑ G(v) for all v → [v, v]. (5)

This constraint entirely shuts down the surplus generation motive of optimal designs.

Therefore, the remaining trade-o! for the designer is one between minimizing information

rents and maximizing competition. The technical challenge with this problem lies in the

fact that both the objective and the constraints are quasi-convex, precluding conventional

optimality insights.

One previously established insight carries over, though. By Lemma 2, optimal designs

must always generate full surplus. Formally, a design F generates the full surplus only if
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FA(v)FB(v) = G(v) for all non-excluded values v → [v, v].18

Corollary 2 (to Lemma 2). There always exist optimal value designs (F ↓
A
, F

↓
B
) satisfying

(5) in which F
↓
A
(v)F ↓

B
(v) = G(v) for all v → [v, v]. Furthermore, any other optimal design

satisfies F
↓
A
(v)F ↓

B
(v) = G(v) for all non-excluded values v → [v, v].

The intuition is straightforward: if the constraint were slack for some design F at some

non-excluded value v, then there exists a design F
↑ that satisfies the constraint and first-

order stochastically dominates F . Since revenue is monotonic in first-order dominance

shifts, this would preclude the optimality of F . We can restrict attention to non-excluded

values, as for excluded values, it is irrelevant whether constraint (5) holds with equality.

We therefore focus on the class of designs that generate full surplus. Given condition

(5), the maximally divisive design F
+ satisfies (F+

i
(v), F+

j
(v)) = (G(v), 1) for all v → [0, v]

and j ⇑= i. Whether maximal divisiveness remains optimal depends on the minimal value

v and the given distribution G.

Proposition 5. Let v = 0. Then, any maximally divisive design F
+
is revenue-minimizing

among designs satisfying FAFB = G.

Let v > 0, G(v) = p for v → [v, v), and G(v) = 1. Then, the maximally divisive design

F
+
is revenue-maximizing and uniquely optimal.

If the minimal value v is strictly positive and the primitive surplus distribution G equals

a binary distribution with mass at v and v, the maximally divisive design is optimal. The

principal can extract the full surplus by o!ering the good to the agent with distribution

G at price v. If the agent does not purchase the good, then the principal sells the good

to the other agent at price v. In contrast, any other design requires that both agents can

have value v. But then full surplus extraction is not possible, as the principal now faces

agents with two di!erent, strictly positive values.19

In stark contrast, maximally divisive designs are revenue-minimizing if v = 0. In this

case, the maximally divisive design allocates to one agent zero value. It thus reduces the

problem to one of a single buyer as only one buyer is left with a strictly positive expected

valuation. In any single-item, single-agent setting, the optimal mechanism is a posted

price. With a fixed surplus distribution, any posted price generates identical revenue

18A value v → [v, v] is non-excluded if at the optimal mechanism, xA(v|F ↑) + xB(v|F ↑) > 0.
19Either, the principal has to provide information rents to at least one agent, or they can choose to not

allocate the good to agents with low value. Alternatively, they could pool them and set a price equal to
v. Regardless, they cannot extract the entire surplus.
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regardless of the design chosen, since the principal sells whenever someone is willing to

pay and this probability remains unchanged across all designs. However, when both

agents possess some strictly positive expected value and have private information about

their valuation for the good, posted prices cannot be optimal. In this case, the principal

would want the agents to compete for the good. Therefore, the principal would select

a di!erent mechanism, which increases their revenue—making maximal di!erentiation

revenue-minimizing.

Threshold Designs This raises the question what type of designs are now optimal.

One potential candidate are minimally divisive designs, which assign to both agents the

same distribution. Formally, a minimally divisive design F
→ satisfies (F→

A
(v), F→

B
(v)) =

(
√

G(v),
√
G(v)) for all v → [v, v]. Another candidate are threshold designs. A w-

threshold design F
[w] satisfies for some w → [v, v] and some i ⇑= j:

(F [w]
i

(v), F [w]
j

(v)) =





(G(v)/G(w), G(w)) if v < w

(1, G(v)) if v ↑ w

The threshold design assigns agent i all possible low values (below threshold w), and

to agent j value v with probability G(w) and all possible high values (above w), while

ensuring the constraint FAFB = G is satisfied. Intuitively, it captures an intermediate

level of divisiveness. Agent j receives the high values of G and mass at v, which generates

a high level of dispersion in values. At the same time, low values are concentrated. This

concentration for agent i in combination with allocating the high values to agent j (with

the exception of the mass at v) generates di!erentiation in values.

The dispersion and di!erentiation of these threshold designs o!er two key advantages:

First, they restrict possible deviations (agent i can only deviate to values below w while

agent j can only deviate to values above w), reducing information rents. Second, they

maintain competition between high types of agent i and low types of agent j, reducing

the cost of truthful revelation.

Proposition 5 does not only show that for the minimal value v equal to zero, maximal

designs are no longer optimal, but also that the optimal designs depend on the exact

surplus distribution G. We therefore consider two other specific distributions, namely

(i) ternary distributions, that assign mass to exactly three values and (ii) the uniform

distribution.
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For ternary distributions and the minimal value v equal to zero, w-threshold designs

are always optimal.

Proposition 6. Let v = 0. When G(v) = p for v → [v, w), G(v) = q > p for v → [w, v),

and G(v) = 1, a w-threshold design F
[w]

is uniquely optimal.

Threshold designs are particularly attractive for ternary surplus distributions because

by selecting a suitable design the principal can guarantee that agents have exactly one

strictly positive value. This can be done by setting F
[w]
A

(0) = p/q, F [w]
A

(w) = 1, while

F
[w]
B

(0) = F
[w]
B

(w) = q, F [w]
B

(v) = 1. Screening becomes inexpensive since agents can be

asked to pay their full value conditional on trade.

Our result also implies that threshold designs can outperform any other proportional

design, which for some ϑ → [0, 1] satisfies (FA(vA), FB(vB)) = (G(vA)ω, G(vB)1→ω). This

has been the approach taken by Cantillon (2008). She shows that symmetric distributions

generate higher revenue relative to asymmetric ones in the class of proportional designs,

with a specific emphasis on uniform distributions. However, the symmetric distributions

are not necessarily optimal if the mechanism can also be adjusted.

To see this, consider the uniform surplus distributionG(v) = v on [0, 1].20 Amaximally

divisive design F
+ = (v, 1) leads to a posted price of 1/2 and revenue of 1/4. For the

minimally divisive design F
→ = (

↖
v,
↖
v) the optimal mechanism is a second-price auction

with reserve price 4/9 and revenue of 43/162 ↙ 0.265. We contrast this revenue with the

revenue achieved through a threshold design with w = 1/2,

(F [w]
A

(v), F [w]
B

(v)) =





(2v, 1/2) if v < 1/2

(1, v) if v ↑ 1/2.

This design generates revenue exceeding 5/16 ↙ 0.313. The principal achieves this revenue

by o!ering the good to agent B at price 1/2. If agent B is unwilling to pay, the principal

sells to agent A at price 1/4.21 Therefore, the threshold design outperforms minimally

and maximally divisive designs, generating higher revenue.22

20We provide the following calculations and derivations in the Supplementary Appendix Section C.
21This mechanism is not optimal for the threshold design, but guarantees revenue of 5/16. It does

so by selling to B at price 1/2 when the highest value exceeds 1/2, while selling to A at a price of 1/4
when the highest value is between 1/4 and 1/2. This leads to a revenue of 5/16 since the probability
that A wins the object amounts to 1 ↘ G(1/2) = 1/2, while the probability that B wins amounts to
G(1/2)↘G(1/4) = 1/4.

22The optimal threshold design with w ↙ 0.648 achieves a revenue of approximately 0.336, which is
substantially better than both maximally and minimally divisive alternatives.
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The advantages of the threshold design that were evident for the ternary and uniform

distributions apply more broadly. The following result establishes that when the mini-

mally divisive designs lead to significant exclusion, threshold designs always outperform

the minimally di!erentiated one—making some divisiveness optimal.

We require the minimally di!erentiated design to be weakly regular. Weak regularity

holds if G is di!erentiable and the virtual value ω
→(v) of

↖
G is increasing when non-

negative, with

ω
→(v) = v ↘

2(
√

G(v)↘G(v))

g(v)
.

This condition relaxes the usual regularity assumption by requiring virtual values to

increase only on a portion of their graph.23 Namely, the virtual values must be increasing

for non-excluded values.

Weak regularity ensures that allocating the good to the highest non-negative virtual

value is always optimal. For the minimally divisive design, this optimal mechanism reduces

to a second price auction with a reserve price r→. The allocation rule associated to such a

mechanism (x(r→), t(r→)) satisfies xi(vi, vj|r→) = (vi > max{vj, r→}) for any i ⇑= j. The

reserve price in the optimal auction is unique and well-defined by weak regularity. It can

be found by solving ω
→(r→) = 0.

To calculate the revenue in this auction, we require the distribution of the minimum

value. For any design F satisfying FAFB = G, the distribution of the minimum value is

given by:

J(v) = 1↘ (1↘ FA(v))(1↘ FB(v)) = FA(v) + FB(v)↘G(v).

Consequently, J→(v) = 2
√

G(v)↘G(v) denotes the distribution of the minimum value in

the minimally di!erentiated design.

Proposition 7. If for some G, the minimally di!erentiated design is weakly regular, and

for some w,

w(G(r→)↘G(w)) >

∫
v

r→
(v ↘ r

→)dJ→(v), (6)

then the w-threshold design raises more revenue than the minimally divisive one.

23Formally, a distribution F is weakly regular if it is di!erentiable and if for any v → [v, v] such that
ω
→(v) ↑ 0 and any v

↓
> v, we have that ω→(v↓) > ω

→(v).
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If G(r→) is large, then there is substantial exclusion in the optimal mechanism for mini-

mally divisive designs. However, minimally divisive designs generate revenue beyond the

reserve price. If this additional gain in values, captured by the right-hand side of (6), is

small, then the advantage of the minimally divisive design relative to the threshold de-

sign is limited. In contrast, the threshold design leads to reduced exclusion. It segments

excluded agents and sells to them at di!erent prices, thereby generating higher revenue.

Threshold designs are by their very nature asymmetric and so is the mechanism used

to allocate the good. Suppose now that we fix the optimal mechanism for the minimally

divisive design. Can another design then outperform the minimally divisive one? The

answer turns out to be no.

Minimally divisive designs lead to a distribution of the minimum value that first-order

stochastically dominates the distribution of minimal values in any other design. This

immediately implies that when we fix the standard mechanism that is optimal for the

minimally divisive design, then no other design yields higher revenue.

Proposition 8. The distribution of the minimum value in the minimally divisive design,

F
→
, first-order stochastically dominates the distribution of the minimum in any other

design satisfying FAFB = G:

J
→(v) < J(v) for all v → [v, v].

In any standard auction (x(r), t(r)) with reserve price r, revenue from the minimally

divisive design exceeds revenue from any other design satisfying FAFB = G.

Therefore, any gains from divisiveness must come from tailoring the mechanism to the

specific design chosen by the principal. The appeal of threshold designs lies precisely in

their ability to facilitate mechanisms that extract significant surplus from both agents

while minimizing allocative ine#ciencies. But these mechanisms will have to treat agents

di!erently.

In sum, threshold designs, which introduce some asymmetries both between di!erent

agents and types, increase revenue if exclusion occurs. If there is no exclusion under

minimal divisiveness, then other designs, including the minimally divisive one, can be

optimal. Our result thus highlights that while some divisiveness increases revenue when

surplus is constant, as evidenced by the threshold designs, the surplus generation motive

is generally an important feature of designs.

27



5.2 The Surplus-Information Trade-O!

Even though increasing surplus is generally valuable to the principal, this does not mean

that a design that reduces surplus cannot be optimal. A decrease in surplus can increase

revenue— as long as the reduction in information rents is even higher. This is summarized

in Corollary 3.

Corollary 3 (to Proposition 1). Let v = 0. Consider any value design (FA, FB) in which

EFA [v] = EFB [v] = k, FB ⇑= F
v
, and EFA [max{ωA(v), 0}] < m < k. If so, value design

(FA, FB) raises less revenue than the value design (F v

m
, FB).

This result builds on Proposition 1 and establishes that the principal always benefits

from reducing the mean of one agent’s distribution if they can make their value su#ciently

predictable by selecting the binary distribution F
v

m
, with mean m and mass at zero and

v.24

With the binary distribution F
v

m
, the principal can extract the expected value m

from agent A.25 For any other distribution, FA, the principal is only able to extract the

expected virtual value. By construction, the expected value of the binary distribution is

higher than the expected virtual value associated with FA and therefore, the reduction

in surplus is profitable for the principal. This result relies on the minimum value v being

zero, and on FB being some distribution other than the maximal spread, F v. If FB is

the maximal spread, multiple distributions FA are optimal, as described in Proposition 1.

Whether it is then optimal to reduce surplus depends on the given FA. If, for instance,

FA is such that it only allocates mass at the mean, then no improvement can be achieved.

Therefore, reductions in surplus can benefit the principal if they are accompanied by

considerable decreases in information rents.

6 Conclusion

Our results establish that the divisiveness of a good is generally a valuable feature. Divi-

siveness raises the value of a good for some agents, while diminishing it for others. This

leads to an increase in surplus and simultaneously, a reduction in information rents, which

both increase revenue and thus benefit the principal.

24For the associated probability distribution, see expression (1), now with mean m instead of k.
25This can be achieved through the same mechanism as outlined in the discussion after Proposition 1.
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When surplus is fixed, then our results are more nuanced in terms of divisiveness.

Divisiveness can still be optimal, but so can other designs, potentially even the minimally

divisive one. This hints at the importance of surplus generation. However, it is not

necessarily the case that a reduction in surplus is always suboptimal—it can be beneficial

if it is exceeded by a reduction in information rents.

Our analysis has abstracted from design costs and correlations in values. In the Sup-

plementary Appendix Sections D and E, we show how to extend our insights to these

settings, and explain why correlation in values would simplify our analysis, while confirm-

ing our results.

Finally, when it comes to product design, our optimal distributions can serve as guid-

ance that can be applied in any context. A product designer should aim for attributes

that make goods divisive.
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A Proofs

Proof of Lemmas 1 and 2: Convexity and FOSD We begin by deriving a key

revenue optimality property of ex-post optimal mechanisms. We then exploit this opti-

mality property to show that revenue is monotone in FOSD order and convex in the joint

distribution of values.

Optimality Fix a value design F → ”(VA) ↔ ”(VB). Consider any direct, IC, IR

mechanism (x, t) : VA ↔ VB ↗ ”2
→ ↔ R2, with xi(v) and ti(v) denoting respectively i’s

likelihood of winning the good and i’s payment conditional on reports v → VA ↔ VB.

Denote the ex-ante revenue of such a mechanism when the value design is F by

R̄(x, t|F ) =

∫

V

[tA(v) + tB(v)]dF (v).

Recall that the revenue in the optimal direct, IC, IR mechanism is given by

R(F ) = max
x,t

R̄(x, t|F ) subject to

∫
V→i

xi(v)vi ↘ ti(v)dF→i(v→i) ↑ max
∫

V→i
xi(v

↑
i
, v→i)vi ↘ ti(v

↑
i
, v→i)dF→i(v→i), 0


,

for all v↑
i
, vi → Vi and all i → {A,B}. Denote by (x(F ), t(F )) an optimal mechanism for

the selected design F , and note that

R(F ) = R̄(x(F ), t(F )|F ).

Among optimal mechanisms, select one (x(F ), t(F )) in which players’ payments are de-

termined by Vickrey’s rule

ti(v|F ) = xi(v|F )vi ↘

∫
vi

vi

xi(s, v→i|F )ds.

This mechanism is ex-post incentive compatible and individually rational, since for any

v
↑
i
→ Vi, v → V , and all i → {A,B}

xi(v|F )vi ↘ ti(v|F ) =

∫
vi

vi

xi(s, v→i|F )ds ↑

xi(v
↑
i
, v→i|F )vi ↘ ti(v

↑
i
, v→i|F ) = xi(v

↑
i
, v→i|F )(vi ↘ v

↑
i
) +

∫
v
↑
i

vi

xi(s, v→i|F )ds.
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The inequality follows because xi(vi, v→i) is increasing in vi by incentive compatibility,

meaning that

xi(v
↑
i
, v→i|F )(v↑

i
↘ vi) =

∫
v
↑
i

vi

xi(v
↑
i
, v→i|F )ds ↑

∫
v
↑
i

vi

xi(s, v→i|F )ds.

The mechanism (x(F ), t(F )) is ex-post incentive compatible and individually rational.

Therefore, it remains incentive compatible and individually rational even when a di!erent

design, say F
↑
→ ”(VA) ↔ ”(VB), is selected.26 This is because in ex-post incentive

compatible and individually rational mechanisms, agents’ incentives are una!ected by

the distribution of values. Optimality must therefore imply the following key property

R(F ↑) ↑ R̄(x(F ), t(F )|F ↑), (7)

with the inequality being strict whenever the distributions di!er for non-excluded types.

FOSD Next, consider any design F
↑
→ ”(VA) ↔ ”(VB) that first-order stochastically

dominates F , meaning that

F
↑
i
(vi) ⇐ Fi(vi) for all vi → Vi and all i → {A,B}. (8)

Observe that by the assumption in expression (8), the joint cumulative distribution

F
↑
A
(vA)F ↑

B
(vB) first-order stochastically dominates the joint distribution FA(vA)FB(vB).

The monotonicity of revenue in the FOSD order then follows by collecting these insights

as

R(F ↑) ↑ R̄(x(F ), t(F )|F ↑) =

∫

V

[tA(v|F ) + tB(v|F )]dF ↑(v)

↑

∫

V

[tA(v|F ) + tB(v|F )]dF (v) = R(F ).

The first inequality holds by (7). By the nature of the Vickrey rule, the aggregate transfer

increases in the aggregate allocation probability, xA(v) + xB(v). In turn, the aggregate

allocation probability increases in values v by incentive compatibility. Therefore, the

second inequality follows because the aggregate transfer tA(v)+ tB(v) increases in values.

26When the support of F di!ers from that of F ↓, we can extend the allocation rule, x(F ), to cover the
entire support of F ↓ while retaining ex-post incentive compatibility and individual rationality by adding
constant portions to it.
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Convexity Finally, consider any two designs F ↑
, F

↑↑
→ ”(VA)↔”(VB) and any number

a → (0, 1) such that

aF
↑
A
(vA)F

↑
B
(vB) + (1↘ a)F ↑↑

A
(vA)F

↑↑
B
(vB) ⇐ FA(vA)FB(vB) for all v → VA ↔ VB. (9)

As before, because the Vickrey mechanism (x(F ), t(F )) remains ex-post incentive com-

patible and individually rational even when F
↑ and F

↑↑ are selected as value designs, we

have that

R(F ↑) ↑ R̄(x(F ), t(F )|F ↑) and R(F ↑↑) ↑ R̄(x(F ), t(F )|F ↑↑). (10)

Convexity then follows by collecting these insights because

aR(F ↑) + (1↘ a)R(F ↑↑) ↑ aR̄(x(F ), t(F )|F ↑) + (1↘ a)R̄(x(F ), t(F )|F ↑↑)

=

∫

V

[tA(v|F ) + tB(v|F )](adF ↑(v) + (1↘ a)dF ↑↑(v))

↑

∫

V

[tA(v|F ) + tB(v|F )]dF (v) = R(F ),

where the first inequality holds by averaging the inequalities in (10), while the second

inequality follows by (9) as the aggregate transfer tA(v) + tB(v) increases in values.↫

Proof of Proposition 1: One-Agent Mean Bound We compare revenue under

F
↓
A
= F

v to revenue when setting some other distribution FA such that EFA [v] = k. The

change from FA to F
↓
A
has two e!ects: (i) it a!ects the virtual valuation of agent A; and

(ii) it a!ects the optimal allocation rule for the good. We first establish that revenue

under F ↓
A
is higher than revenue under FA, even when the allocation rule is suitably fixed.

This establishes that F
↓
A
is an optimal design as optimizing the mechanism could only

increase revenue further. We conclude by establishing uniqueness for FB ⇑= F
v.

As discussed in the Supplementary Appendix, the virtual value for distribution F
↓
A

amounts to

ω
↓
A
(v) =





v if v = v

0 if v = v = 0
.
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Further by revenue equivalence, revenue under distribution F
↓
A
is given by

R(F ↓
A
, FB) =

∫

V
↓
A

ω
↓
A
(v)x↓

A
(v)dF ↓

A
(v) +

∫

VB

ωB(v)x
↓
B
(v)dFB(v),

while revenue under any alternative design FA amounts to

R(FA, FB) =

∫

VA

ωA(v)xA(v)dFA(v) +

∫

VB

ωB(v)xB(v)dFB(v).

Next we want to express the allocation rule, x, that is optimal for value distributions

(FA, FB) in the quantile space. To do so, recall that for an arbitrary cumulative distribu-

tion, F , the inverse is defined as vi(q) = inf{v | Fi(v) ↑ q} for all q → [0, 1]. The quantile

representation of allocation rule, x, is then

y(qA, qB) = x(vA(qA), vB(qB)) for all (qA, qB) → [0, 1]2.

Now consider an allocation rule x+ that under design (F ↓
A
, FB), leads to the same allocation

rule y in the quantile space. Formally, define such an allocation rule as follows

x
+(vA, vB) = y(F ↓

A
(vA), FB(vB)) for all (vA, vB) → V

↓
A
↔ VB.

By construction, allocation rule x
+ under value design (F ↓

A
, FB) is feasible, since it co-

incides in the quantile space with allocation rule x under design (FA, FB)—given that

x
+(v↓

A
(qA), vB(qB)) = y(qA, qB). Further, by construction interim allocation rules for x+

under design (F ↓
A
, FB) and for x under design (FA, FB) must coincide in the quantile space,

and amount to yi(qi) =
∫ 1

0 yi(qi, qj)dqj for i ⇑= j.

Consider the Vickrey transfer, t+, associated with such an allocation rule. Next, we

establish that

R̄(x+
, t

+
|F

↓
A
, FB) ↑ R(FA, FB).

Showing this immediately delivers the result, because revenue would further increase

when the mechanism is optimally tailored to the value design (F ↓
A
, FB). Because interim

allocations are fixed in the quantile space and virtual values are unchanged for B in either

the value or the quantile space, we have that

∫

VB

ωB(v)x
+
B
(v)dFA(v) =

∫

VB

ωB(v)xB(v)dFA(v).
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To prove the result, it therefore su#ces to show that

∫

V
↓
A

ω
↓
A
(v)x+

A
(v)dF ↓

A
(v) ↑

∫

VA

ωA(v)xA(v)dFA(v).

To show this, first observe that the expected virtual value of agent A satisfies

∫

V
↓
A

ω
↓
A
(v)dF ↓

A
(v) =

∫

V
↓
A

vdF
↓
A
(v) = k =

∫

VA

vdFA(v) ↑

∫

VA

max{ωA(v), 0}dFA(v),

where the inequality follows because v ↑ max {ωA(v), 0} for all v. In the quantile space,

the latter is equivalent to

∫

[0,1]

ω
↓
A
(v↓

A
(q))dq = k ↑

∫

[0,1]

max{ωA(vA(q)), 0}dq. (11)

Since the good is only ever allocated to an agent with a non-negative ironed virtual value,

we have that ωA(vA(q)) → [0, v] whenever yA(q) > 0. Further ω↓
A
(v↓

A
(q)) is increasing and

satisfies ω↓
A
(v↓

A
(q)) → {0, v}. Because the interim allocation rule yA is non-decreasing by

incentive compatibility, we have that

∫

[0,1]

ω
↓
A
(v↓

A
(q))dq ↑

∫

[0,1]

max{ωA(vA(q)), 0}dq

∝

∫

[0,1]

ω
↓
A
(v↓

A
(q))yA(q)dq ↑

∫

[0,1]

ωA(vA(q))yA(q)dq,

where the implication follows because the allocation rule yA(q) places more weight on

quantiles at which ω
↓
A
(v↓

A
(q)) = v > ωA(vA(q)) and less weight on quantiles at which

ω
↓
A
(v↓

A
(q)) = 0 < ωA(vA(q)) relative to a scenario in which all quantiles receive the same

weight. Because the interim allocation rule was fixed in the quantile space, we can rewrite

the final condition in the value space to obtain the desired conclusion, namely that

∫

V
↓
A

ω
↓
A
(v)x+

A
(v)dF ↓

A
(v) ↑

∫

VA

ωA(v)xA(v)dFA(v).

The latter establishes that it is never optimal to select a distribution for A with an

expected virtual value which is strictly smaller than the expected value. There are other

distributions that allow for the expected value to be equal to the expected virtual value.

But, all these distributions can attach positive probability to at most one strictly positive

value. Suppose to the contrary, the principal selected a value distribution in which the
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agent had more than one strictly positive value. In such instances, the only way for the

principal to extract the full surplus would require awarding the good with certainty to A

whenever agent A has positive value. But then the principal would not be able to extract

the full surplus from agent A, since they could only sell to A at the smallest of their

positive values, yielding the contradiction.

To show that F
↓
A
is the unique optimum when FB ⇑= F

v, consider any other binary

distribution FA with mean k and a single atom on positive values at vA, meaning that

FA(v) =





1 if v = vA

1↘ k

vA
if v < vA

.

Letting pA = k/vA denote the probability of having value vA, revenue can be written as

R(FA, FB) = (1↘ pA)

∫

VB

max{ωB(vB), 0}dFB(vB) + pA

∫

VB

max{ωB(vB), vA}dFB(vB)

= (1↘ pA)

∫

VB

max{ωB(vB), 0}dFB(vB) +

∫

VB

max{pAωB(vB), k}dFB(vB), (12)

where the equality follows because the optimal mechanism allocates the good to B when

vA = 0 and B’s virtual valuation is positive, or vA = vA and B’s virtual valuation exceeds

vA.27

Expression (12) is di!erentiable in pA. Next, we di!erentiate (12) with respect to

pA and establish that revenue decreases in pA, meaning that the optimal distribution

will set pA to be as small as possible, or equivalently vA as large as possible. Letting

V+(w) = {vB → [0, v]|ωB(vB) ↑ w} for w ↑ 0 denote the set of values for which B’s

virtual valuation weakly exceeds w, we find that

ϖR(FA, FB)

ϖpA
= ↘

∫

V+(0)

ωB(vB)dFB(vB) +

∫

V+(vA)

ωB(vB)dFB(vB) ⇐ 0,

where the inequality holds, since V+(vA) ↓ V+(0). Moreover, the inequality is strict

whenever ωB(vB) → (0, vA) for some vB → VB. Thus, it is optimal to minimize pA which

is accomplished by setting vA = v ↑ vB. This establishes the uniqueness result when

FB ⇑= F
v. To prove the optimality of designs F h for h → [k, v] when FB = F

v, it su#ces

to show that any design F
h yields the same revenue as F ↓

A
, which is immediate and thus

27If FB was not regular, the previous expression for revenue would still apply. In such scenarios, FB

would denote the ironed distribution of values yielding the same revenue, rather than FB itself—see
Hartline (2013), Theorem 3.14, p.78.
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omitted.↫

Proof of Proposition 2: Two-Agent Mean Bound The proof proceeds in three

steps. First, we demonstrate that the surplus is convex in the agents’ realized values,

and we leverage this convexity to derive value designs that maximize surplus. Second, we

argue that the value designs specified in the proposition simultaneously maximize both

surplus and revenue. Third, we establish that no alternative value design can achieve

optimality.

Convexity in Values Consider any design (FA, FB) fulfilling the mean bound. Total

surplus amounts to

S(FA, FB) =

∫
vA

vA

∫
vB

vB

max{vA, vB}dFB(vB)dFA(vA),

where Riemann-Stieltjes integrals are used to calculate the expectations implicitly. Con-

ditional on any realized value of vA → [v
B
, vB], surplus amounts to

Ŝ(vA) =

∫
vB

vB

max{vA, vB}dFB(vB) =

∫
vA

vB

vAdFB(vB) +

∫
vB

vA

vBdFB(vB)

= vAFB(vA) + [vBFB(vB)]
vB
vA

↘

∫
vB

vA

FB(vB)dvB

= vB ↘

∫
vB

vA

FB(vB)dvB,

where the second equality is algebraic, the third follows from calculations and integration

by parts, and the fourth equality simply factors redundant terms.

For vA ↑ vB, surplus amounts to Ŝ(vA) = vA since max{vA, vB} = vA. For vA ⇐ v
B
,

surplus amounts to Ŝ(vA) = v
B
since max{vA, vB} = v

B
. Moreover, Ŝ(vA) is di!erentiable

in vA → [v
A
, vA] and it is increasing since for vA → [v

B
, vB],

Ŝ
↑(vA) = ↘

d

dvA

∫
vB

vA

FB(vB)dvB = FB(vA)

by the Leibniz rule. The derivative equals one, Ŝ ↑(vA) = 1, for vA > vB, while it is equal

to zero, Ŝ ↑(vA) = 0, for vA < v
B
.

Finally, Ŝ(vA) is convex since Ŝ(vA)↘ Ŝ(v↑
A
) ↑ (vA↘v

↑
A
)Ŝ ↑(v↑

A
) for any values vA, v↑A →
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[v
A
, vA]. To show this, assume without loss that vA ↑ v

↑
A
. Observe that when v

↑
A
> vB,

Ŝ(vA)↘ Ŝ(v↑
A
) = vA ↘ v

↑
A
= (vA ↘ v

↑
A
)Ŝ ↑(v↑

A
),

given that A’s values always exceed B’s value. When vB ↑ vA ↑ v
↑
A
↑ v

B
,

Ŝ(vA)↘ Ŝ(v↑
A
) =

∫
vA

v
↑
A

FB(vB)dvB ↑

∫
vA

v
↑
A

FB(v
↑
A
)dvB

= (vA ↘ v
↑
A
)FB(v

↑
A
) = (vA ↘ v

↑
A
)Ŝ ↑(v↑

A
),

(13)

where the inequality follows because FB is increasing. When vA > vB ↑ v
↑
A
↑ v

B
,

Ŝ(vA)↘ Ŝ(v↑
A
) = vA ↘ vB + Ŝ(vB)↘ Ŝ(v↑

A
) ↑ vA ↘ vB + (vB ↘ v

↑
A
)Ŝ ↑(v↑

A
)

↑ (vA ↘ v
↑
A
)Ŝ ↑(v↑

A
),

where the equality follows because Ŝ(vA) = vA for vA > vB and Ŝ(vB) = vB, the first

inequality follows from (13), and the second inequality follows from Ŝ
↑(v↑

A
) ⇐ 1 and

vA > vB. When vA > vB and v
B
> v

↑
A
,

Ŝ(vA)↘ Ŝ(v↑
A
) = vA ↘ v

B
↑ 0 = (vA ↘ v

↑
A
)Ŝ ↑(v↑

A
),

where the inequality follows as vA > vB and the final equality follows as Ŝ
↑(v↑

A
) = 0.

When vB ↑ vA ↑ v
B
> v

↑
A
,

Ŝ(vA)↘ Ŝ(v↑
A
) ↑ 0 = (vA ↘ v

↑
A
)Ŝ ↑(v↑

A
),

where the inequality follows because surplus is increasing and the equality as Ŝ ↑(v↑
A
) = 0.

Finally, for v
B
> vA, we have that

Ŝ(vA)↘ Ŝ(v↑
A
) = (vA ↘ v

↑
A
)Ŝ ↑(v↑

A
) = 0,

given that B’s values always exceed A’s. Thus, surplus conditional on vA, Ŝ(vA), is

globally convex in vA given that Ŝ is di!erentiable and Ŝ(vA)↘ Ŝ(v↑
A
) ↑ (vA ↘ v

↑
A
)Ŝ ↑(v↑

A
).
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Surplus Maximizing Designs The surplus maximizing design FA given FB must solve

max
FA

∫
v

v

Ŝ(vA)dFA(vA) subject to

∫
v

v

vAdFA(vA) ⇐ k.

Because the surplus is convex and increasing in vA while the constraint is linear, surplus

maximization requires maximally spreading the distribution of vA while keeping the mean

at k—meaning that setting FA = F
v maximizes surplus for any FB. Thus, the convex-

ity of surplus in realized values implies that for any distribution of values Fj, surplus

will be maximized by any design (FA, FB) satisfying Fi = F
v for some i → {A,B} and

∫
v

v
vjdFj(vj) = k for j ⇑= i. In any such design, surplus amounts to

S
↓ = S(FA, FB) = P

v(v)

∫
vj

vj

max{v, vj}dFj(vj) + P
v(v)

∫
vj

vj

max{v, vj}dFj(vj)

= P
v(v)

∫
vj

vj

vdFj(vj) + P
v(v)

∫
vj

vj

vjdFj(vj) =
k ↘ v

v ↘ v
v +

v ↘ k

v ↘ v
k,

where the first equality follows from the definition of surplus, the second follows because

vj → [v, v], and the third as
∫

vj

vj
vjdFj(vj) = k.

Revenue Optimality For any value design, surplus must bound revenue from above.

This follows because ine#cient optimal allocations may result in less surplus being pro-

duced for particular value realizations, and because the utility of any player i is non-

negative by individual rationality, Ui(FA, FB) =
∫
V
[vixi(v|F )↘ti(v|F )]dF (v) ↑ 0. There-

fore,

S(FA, FB) ↑ R(FA, FB) + UA(FA, FB) + UB(FA, FB) ↑ R(FA, FB),

and revenue is no larger than surplus in any value design. But for any proposed optimal

design in the statement of the result, we have that R(FA, FB) = S
↓, and thus these designs

must indeed be optimal.

To see this, consider any surplus maximizing design satisfying Fi = F
↓ = F

v for some
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i → {A,B} and
∫

v

v
vjdFj(vj) = k for j ⇑= i. Revenue for any such design amounts to

R(FA, FB) = P
v(v)ωi(v) + P

v(v)

∫
vj

vj

max{ωj(vj),ωi(v), 0}dFj(vj)

=
k ↘ v

v ↘ v
ωi(v) +

v ↘ k

v ↘ v

∫
vj

vj

max{ωj(vj),ωi(v), 0}dFj(vj).

But then we must have that R(FA, FB) = S
↓ for the following reasons. First, for any

of these designs, we have that ωi(v) = v. Moreover, when v > 0, in the unique optimal

design F
k, we have that

∫
vj

vj

max{ωj(vj),ωi(v), 0}dFj(vj) =

∫
vj

vj

max{k,ωi(v), 0}dFj(vj) = k,

where the first equality follows as ωj(vj) = vj = k, and the second equality follows since

k ↑ v ↑ max{ωi(v), 0}. Finally, when v = 0, in any optimal design F
h, we have that

∫
vj

vj

max{ωj(vj),ωi(v), 0}dFj(vj) =

∫
vj

vj

max{ωj(vj), 0}dFj(vj)

= P
h(h)h+ P

h(0)0 = k.

where the first equality follows as ωi(v) ⇐ v = 0, the second one holds as ωj(vj) = vj = h

and ωj(0) ⇐ 0, while the third one holds by definition.

No other surplus-maximizing design can be optimal though, because the only way to

secure a revenue equal to S
↓ entails guaranteeing that ωi(v) = v and

∫
vj

vj

max{ωj(vj),ωi(v), 0}dFj(vj) =

∫
vj

vj

vjdFj(vj) = k.

But for the latter to hold, Fj can have either a single atom at the mean k, or only two

atoms with one atom at 0 and the other above the mean k—which is only possible if v = 0.

In any other surplus-maximizing design, the designer would need to pay information rents

to bidder j to get them to reveal their type truthfully. ↫

Proof of Proposition 3: Reallocating Value, Fixed Mean The proof establishes

the result for k → [2v, v+v], since the other cases are immediate. To begin, we characterize

the optimal designs when EFi [v] = ki for some i → {A,B} and EFj [v] = k ↘ ki for j ⇑= i.

We will then let the designer choose ki → [v, k ↘ v] to maximize revenue.
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As in the first part of the proof of Proposition 2, the surplus maximizing design Fi

given Fj must solve

S
+(ki) = max

Fi

∫
v

v

Ŝ(vi)dFi(vi) subject to

∫
v

v

vidFi(vi) = ki.

As before, because Ŝ is convex and increasing in vi while the constraint is linear, there

exists a surplus-maximizing value design Fi which is maximally spread and has mean ki. In

particular, surplus will be maximized by designs (FA, FB) satisfying Fi(v) = (v↘ki)/(v↘v)

for all v < v and some i → {A,B} and
∫

v

v
vjdFj(vj) = k ↘ ki for j ⇑= i. In these designs,

surplus amounts to

S
+(ki) =

ki ↘ v

v ↘ v
v +

v ↘ ki

v ↘ v
(k ↘ ki).

Surplus S+ is convex in ki, decreasing for ki < k/2, and increasing thereafter. Thus when

selecting ki to maximize surplus, optimality requires ki to either be equal to v or to k↘ v.

For both of these values of ki, surplus is maximized and S
+(v) = S

+(k ↘ v) = k ↘ v.

This completes the proof as for any of the designs in the statement of the result

R(F ↓
A
, F

↓
B
) = k↘ v, given that the principal either trades with j at price h or sells to i at

price v. ↫

Proof of Proposition 4: Reallocating Value, Fixed Distribution We want to

show that the maximally divisive design

F
↓
B
(v) = min{H(v), 1} if v → [v, vM)

F
↓
A
(v) = H(v)↘ 1 if v → [vM , v],

is optimal. To do so, we first argue that the constraint in (4) must bind almost surely. We

then show that in an optimal design F , the supports of the two value distributions must

have disjoint interiors. We conclude by establishing that the maximally divisive design

(H ↘ 1,min{H, 1}) leads to higher revenue than any other value design with disjoint

interiors.

Binding Constraint To see why the constraint must bind almost surely in some op-

timal design, posit that some optimal design F satisfies FA(v) + FB(v) > H(v) on some
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set W with positive measure. If so, there exists a value design F
↑ ↭1 F that satisfies

constraint (4) and first-order stochastically dominates the original design F—implying

that R(F ↑) ↑ R(F ).

Disjoint Interiors Next, we show that because revenue is convex in the joint distribu-

tion of values, and the set of value designs meeting the constraint FA+FB = H is convex,

optimal value distributions for the two agents must have essentially disjoint supports. For

an arbitrary set V , denote its interior by V̊ . Formally, this part of the proof establishes

that in any optimal design the intersection between the interior of the two supports must

be empty,

V̊A ′ V̊B = ∞.

To prove this, proceed by contradiction and assume that there exists an optimal design

F = (FA, FB) that satisfies FA + FB = H and W = V̊A ′ V̊B ⇑= ∞. If so, for any v → W ,

we have that FA(v), FB(v) → (0, 1), since v belongs to the interior of both supports.

Furthermore, for any v, v
↑
→ W such that v↑ > v, we have that Fi(v↑)↘Fi(v) > 0, because

cumulative distributions strictly increase in the interior of the support.

This step of the proof hinges on redistributing measure between FA and FB on the

set W . To ensure that the resulting new measures are proper distributions, the measure

redistributed must be capped. To do so, construct a function ϱ : W ↗ R+ that satisfies

for any v, v
↑
→ W such that v↑ > v

ϱ(v↑)↘ ϱ(v) → (↘mini{Fi(v↑)↘ Fi(v)},mini{Fi(v↑)↘ Fi(v)}). (14)

Condition (14) requires that any changes in the function ϱ are smaller in absolute value

than changes in either of the cumulative distributions. It is always possible to find a

function ϱ fulfilling (14) because Fi(v↑) > Fi(v) in the interior of the support.

Now construct two alternative designs F ↑ and F
↑↑ as follows. Let

F
↑
A
(v) =





FA(v) + ϱ(v) if v → W

FA(v) if v → V \W

and F
↑↑
A
(v) =





FA(v)↘ ϱ(v) if v → W

FA(v) if v → V \W

,

and set F
↑
B

= H ↘ F
↑
A
and F

↑↑
B

= H ↘ F
↑↑
A
. Condition (14) ensures that all cumulative

distributions remain increasing in both value designs F ↑ and F
↑↑, because the changes in
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ϱ are small in absolute value relative to the changes in Fi. Further we have that

FA(vA)FB(vB) ↑ FA(vA)FB(vB)↘ ϱ(vA)ϱ(vB) =
F

↑
A
(vA)F ↑

B
(vB)

2
+

F
↑↑
A
(vA)F ↑↑

B
(vB)

2
.

The convexity of revenue then delivers a contradiction, because F cannot be optimal since

R(F ) < R(F ↑)/2 +R(F ↑↑)/2 < max{R(F ↑), R(F ↑↑)},

where the inequalities are strict by selecting ϱ(v) to be strictly positive on W .

Convex Support By the previous part of the proof, we know that in any optimal

design F , supports must have disjoint interiors. Next, we restrict attention to value

designs F in which the designed distributions have supports V̂B = [v, w1] ⇔ [w2, w3] and

V̂A → [w1, w2] ⇔ [w3, v], for v < w1 < w2 < w3 ⇐ v. We establish that neither of these

designs yields higher revenue than the maximally divisive design. We then conclude by

arguing that if such split supports are suboptimal, splitting the supports further cannot

be optimal either. Note that by the definition of the median value, we must have that

w1 < v
M

< w3.

Recall that by using Riemann-Stieltjes integrals and by positing that at any point of

discontinuity of a cumulative Fi, virtual values are equal to values, we can write revenue

as

R(F ) =

∫

VA

ωA(vA)xA(v)dFA(v) +

∫

VB

ωB(vB)xB(v)dFB(v)

=

∫

VA

xA(v)d [v(1↘ FA(v))] +

∫

VB

xB(v)d [v(1↘ FB(v))] .

Integrating each component by parts, treating vi(1↘ Fi(vi)) and xi(vi) as the two parts,

and lettingDi denote the set of values at which the allocation rule of i is non-di!erentiable,

yields

R(F ) =


i↔{A,B}


v
i
xi(vi) +

∫

Vi\D
v(1↘ Fi(v))dxi(v)



=


i↔{A,B}


v
i
xi(vi) +

∫

Vi\Di

v(1↘ Fi(v))x
↑
i
(v)dv +



v↔Di

v(1↘ Fi(v))

x
+
i
(v)↘ x

→
i
(v)



.
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As the supports of the two distributions are disjoint by the previous argument, we can

redefine variables so that

(F̂A(v), dx̂A(v)) =






(FA(v), dxA(v)) if v ↑ vM and v → VA

(FB(v), dxB(v)) if v ↑ vM and v → VB

(0, 0) if v < vM

,

(F̂B(v), dx̂B(v)) =






(FA(v), dxA(v)) if v < vM and v → VA

(FB(v), dxB(v)) if v < vM and v → VB

(0, 0) if v ↑ vM

.

With this labeling, revenue can be rewritten as

R(F ) = vxB(v) + w1xA(w1) +

∫
v
M

v

v(1↘ F̂B(v))dx̂B(v) +

∫
v

vM

v(1↘ F̂A(v))dx̂A(v).

For some non-negative number M , consider the alternative interim allocation rule

x̂B(v) = xB(v) +

∫
v

v

dx̂B(v) for v → [v, vM ],

x̂A(v) = M +

∫
v

vM

dx̂A(v) for v → [vM , v].

This allocation rule is incentive compatible because all di!erentials are positive by in-

centive compatibility of the original allocation rule. Further it is interim feasible for the

maximally divisive design F
↓ = (F ↓

A
, F

↓
B
) as we establish in a separate part of the proof

below. Thus to prove that the maximally divisive design raises more revenue than R(F ),

it su#ces to show that

vx̂B(v) + v
M
x̂A(v

M) +

∫
v
M

v

v(1↘ F
↓
B
(v))dx̂B(v) +

∫
v

vM

v(1↘ F
↓
A
(v))dx̂A(v)

> vxB(v) + w1xA(w1) +

∫
v
M

v

v(1↘ F̂B(v))dx̂B(v) +

∫
v

vM

v(1↘ F̂A(v))dx̂A(v).

(15)

Showing that (15) holds would establish the result by the usual logic because R(F ↓), the

revenue accruing to the principal when the design is F
↓ and the optimal mechanism is

selected, must exceed the left-hand side of (15) which amounts to revenue under some

other incentive compatible mechanism.

We consider three distinct cases: (i) w2 ⇐ v
M , w1 > v, w3 < v; (ii) w2 > v

M , w1 > v,
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w3 < v; (iii) w3 = v.

Case (i): In this scenario, inequality (15) can be amended to

v
M
M +

∫
v
M

w1

v(1↘ F
↓
B
(v))dx̂B(v) +

∫
w3

vM

v(1↘ F
↓
A
(v))dx̂A(v)

> w1xA(w1) +

∫
v
M

w1

v(1↘ F̂B(v))dx̂B(v) +

∫
w3

vM

v(1↘ F̂A(v))dx̂A(v).

(16)

This follows because the distributions are identical below w1 and above w3 and v
M

→ VB.

Further, we have that F̂A(v) = FB(v) = H(v) ↘ H(w2) + H(w1) and F
↓
A
(v) = H(v) ↘ 1

for all v → [vM , w3], and thus

∫
w3

vM

v(1↘ F
↓
A
(v))dx̂A(v)↘

∫
w3

vM

v(1↘ F̂A(v))dx̂A(v) =

∫
w3

vM

v(F̂A(v)↘ F
↓
A
(v))dx̂A(v)

= (1↘H(w2) +H(w1))

∫
w3

vM

vdx̂A(v).

We also have that F̂B(v) = FB(v) = H(v) ↘ H(w2) + H(w1) for v → [w2, v
M ], F̂B(v) =

FA(v) = H(v)↘H(w1) for v → [w1, w2], while F
↓
B
(v) = H(v) for v → [w1, v

M ], and thus

∫
v
M

w1

v(1↘ F
↓
B
(v))dx̂B(v)↘

∫
v
M

w1

v(1↘ F̂B(v))dx̂B(v) =

∫
v
M

w1

v(F̂B(v)↘ F
↓
B
(v))dx̂B(v)

=

∫
v
M

w2

v(FB(v)↘H(v))dx̂B(v) +

∫
w2

w1

v(FA(v)↘H(v))dx̂B(v)

= ↘(H(w2)↘H(w1))

∫
v
M

w2

vdx̂B(v)↘H(w1)

∫
w2

w1

vdx̂B(v).

In light of the last two identities, condition (16) can be rewritten as

v
M
M ↘ w1xA(w1) + (1↘H(w2) +H(w1))

∫
w3

vM

vdx̂A(v)

↘(H(w2)↘H(w1))

∫
v
M

w2

vdx̂B(v)↘H(w1)

∫
w2

w1

vdx̂B(v) > 0.

As H(w1), H(w2)↘H(w1) < 1, it su#ces to show that

v
M
M ↘ w1xA(w1)↘

∫
v
M

w1

vdx̂B(v) > 0.
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Integrating by parts, this is equivalent to

v
M
M ↘ w1xA(w1) +

∫
v
M

w1

x̂B(v)dv > [x̂B(v)v]
v
M

w1

= v
M [xB(v

M)↘ xB(w2) + xA(w2)↘ xA(w1) + xB(w1)]↘ w1xB(w1).

(17)

Further because allocation rules are increasing, we have that
∫

v
M

w1
x̂B(v)dv > (vM ↘

w1)xB(w1). Consequently equation (17) holds as long as

v
M(M ↘ xB(v

M)↘ xB(w2) + xA(w2)) + (vM ↘ w1)xA(w1) > 0,

which holds for M = xB(vM)↘ xB(w2) + xA(w2)—thus establishing the result.

Case (ii): As in case (i), we need to establish inequality (15). As in case (i), we can

establish that

∫
w3

w2

v(1↘ F
↓
A
(v))dx̂A(v)↘

∫
w3

w2

v(1↘ F̂A(v))dx̂A(v) = (1↘H(w2) +H(w1))

∫
w3

w2

vdx̂A(v),

because F̂A(v) = FB(v) = H(v)↘H(w2) +H(w1) and F
↓
A
(v) = H(v)↘ 1 for v → [w2, w3].

Moreover, we have that

∫
w2

vM

v(1↘ F
↓
A
(v))dx̂A(v)↘

∫
w2

vM

v(1↘ F̂A(v))dx̂A(v) = (1↘H(w1))

∫
w2

vM

vdx̂A(v),

because F̂A(v) = FA(v) = H(v)↘H(w1) and F
↓
A
(v) = H(v)↘ 1 for v → [vM , w2]. Finally,

we have that

∫
v
M

w1

v(1↘ F
↓
B
(v))dx̂B(v)↘

∫
v
M

w1

v(1↘ F̂B(v))dx̂B(v) = ↘H(w1)

∫
w2

w1

vdx̂B(v),

because F̂B(v) = FA(v) = H(v) ↘H(w1) and F
↓
B
(v) = H(v) for v → [w1, v

M ]. In light of

the last identities, condition (15) can be rewritten as

v
M
M ↘ w1xA(w1) + (1↘H(w2) +H(w1))

∫
w3

w2

vdx̂A(v)

+(1↘H(w1))

∫
w2

vM

vdx̂A(v)↘H(w1)

∫
v
M

w1

vdx̂B(v) > 0.
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As H(w1), H(w2)↘H(w1) < 1, this again reduces to

v
M
M ↘ w1xA(w1)↘

∫
v
M

w1

vdx̂B(v) > 0,

which from integration by parts, again reduces to

v
M
M ↘ w1xA(w1) +

∫
v
M

w1

x̂B(v)dv > v
M(xA(v

M)↘ xA(w1) + xB(w1))↘ w1xB(w1). (18)

Because
∫

v
M

w1
x̂B(v)dv > (vM ↘ w1)xB(w1), equation (18) holds as long as

v
M(M ↘ xA(v

M)) + (vM ↘ w1)xA(w1) > 0,

which holds for M = xA(vM)—thus establishing the result.

Case (iii): In this scenario, inequality (15) can be amended to

v
M
M +

∫
v
M

w1

v(1↘ F
↓
B
(v))dx̂B(v) +

∫
w2

vM

v(1↘ F
↓
A
(v))dx̂A(v)

> w1xA(w1) +

∫
v
M

w1

v(1↘ F̂B(v))dx̂B(v) +

∫
w2

vM

v(1↘ F̂A(v))dx̂A(v).

(19)

As before, we have that

∫
w2

vM

v(1↘ F
↓
A
(v))dx̂A(v)↘

∫
w2

vM

v(1↘ F̂A(v))dx̂A(v) = (1↘H(w1))

∫
w2

vM

vdx̂A(v),

because F̂A(v) = FA(v) = H(v)↘H(w1) and F
↓
A
(v) = H(v)↘ 1 for v → [vM , w2]. Finally,

we have that

∫
v
M

w1

v(1↘ F
↓
B
(v))dx̂B(v)↘

∫
v
M

w1

v(1↘ F̂B(v))dx̂B(v) = ↘H(w1)

∫
w2

w1

vdx̂B(v),

because F̂B(v) = FA(v) = H(v) ↘H(w1) and F
↓
B
(v) = H(v) for v → [w1, v

M ]. But then,

condition (19) can be rewritten as

v
M
M ↘ w1xA(w1) + (1↘H(w1))

∫
w2

vM

vdx̂A(v)↘H(w1)

∫
v
M

w1

vdx̂B(v) > 0. (20)

which can be shown to hold following the same steps as in case (ii).

Interim Feasibility: Concluding this step of the proof still requires establishing that

46



the proposed allocations are interim feasible. Define V ↓
i
as the support of distribution F

↓
i
.

Theorem 1 in Border (1991) implies that our earlier interim allocation rules (x̂A, x̂B) are

feasible for the maximally divisive design F
↓ if and only if for any (vA, vB) → V

↓
A
↔ V

↓
B

∫
vB

v

x̂B(v)dH(v) +

∫
vA

vM

x̂A(v)dH(v) ⇐ 1↘ (1↘ F
↓
B
(vB))(1↘ F

↓
A
(vA))

= 1↘ (1↘H(vB))(2↘H(vA)).

(21)

To show that this condition holds, denote the di!erence between the left- and right-hand

sides of (21) by

$(vA, vB) =

∫
vB

v

x̂B(v)dH(v) +

∫
vA

vM

x̂A(v)dH(v)↘ 1 + (1↘H(vB))(2↘H(vA)).

We want to show that $(vA, vB) ⇐ 0 for all (vA, vB) → V
↓
A
↔V

↓
B
. Observe that $(v, vM) ⇐ 0

must hold, since

$(v, vM) =

∫
v
M

v

x̂B(v)dH(v) +

∫
v

vM

x̂A(v)dH(v)↘ 1 =

∫
v

v

xA(v) + xB(v)dH(v)↘ 1 ⇐ 0,

where the second equality holds by definition of the new allocation rule and the disjoint

support assumption, and where the inequality holds because the aggregate probability of

trade in the original mechanism had to be smaller than 1.

Because $(v, vM) ⇐ 0, we also have that $(v, vB) ⇐ $(v, vM) ⇐ 0 for all vB ⇐ v
M .

Further, we have that for vA = v
M and all vB ⇐ v

M ,

$(vM , vB) =

∫
vB

v

x̂B(v)dH(v)↘H(vB) ⇐ 0,

where the inequality holds as B can receive the good with probability no higher than 1.

To conclude, observe that $ is single-dip in vA. To see this, note that

d$(vA, vB)

dvA
= dH(vA)(x̂A(vA)↘ 1 +H(vB)).

But d$(vA, vB)/dvA can be negative only when x̂A(vA) < 1↘H(vB) and must remain pos-

itive once it becomes larger than 0, given that x̂A is increasing by incentive compatibility.
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Because of this, (21) must hold, since for all (vA, vB) → V
↓
A
↔ V

↓
B
,

$(vA, vB) ⇐ max{$(vM , vB),$(v, vB)} ⇐ 0,

where the first inequality holds since $(vA, vB) is single-dip in vA by the previous argu-

ment, and the second one holds since $(vM , vB) ⇐ 0 and $(v, vB) ⇐ 0.

This establishes the optimality of the maximally divisive design for the three scenarios

considered. Analogous arguments also apply for any other value designs with disjoint

interiors, thereby establishing the optimality of the maximally divisive design.↫

Proof of Proposition 5: Maximal Divisiveness and Surplus Bounds To prove

the result, let v = 0 and consider the maximally divisive value design F
+ = (G, 1). By

the optimality of posted prices in single-buyer settings, the optimal mechanism for value

design F
+ has a simple structure. It requires selling to bidder A at some fixed price

r
+, whenever A is willing to purchase at r

+, while not selling the good otherwise—for

instance, when G is regular, r+ = ω
→1
G
(0). The same revenue though can also be obtained

with any other value design (F̂A, F̂B) satisfying F̂A(v)F̂B(v) = G(v) for all v. This can be

accomplished by selecting a mechanism (x, t) in which the principal sets again r
+ as the

price of the good and sells to one of the agents willing to pay said amount. Revenue from

such a mechanism, (x, t), coincides with the optimal revenue for the maximally divisive

design F
+, since

R(F+) = r
+(1↘G(r+)) = r

+ Pr(max{vA, vB} ↑ r
+) = R̄(x, t|F̂ ) ⇐ R(F̂ ),

where the inequality follows as posted price mechanisms need not be optimal, when both

agents can have positive value for the good.

When the surplus distribution is binary (G(v) = p for v → [v, v) and G(v) = 1), the

allocation rule and the transfers in the optimal mechanism for the maximally divisive,

(F+
i
, F

+
j
) = (G, 1), amount to

xi(vi, vj|F
+) = (vi = v) and xj(vj, vi|F

+) = (vi = v),

ti(vi, vj|F
+) = xi(vi, vj|F

+)v and tj(vj, vi|F
+) = xj(vj, vi|F

+)v.

These rules award the good to i in case of high value at price v, and sell the good to j at
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price v otherwise. This mechanism is incentive compatible since interim allocation rules

are increasing. It is individually rational, as ex-post payo!s are non-negative. Further,

it is optimal because revenue coincides with surplus R(F+) = S(F+). When v > 0,

this design is uniquely optimal. To see this, consider any other value design F̂ in which

F̂AF̂B = G. If so, V̂i = V̂j = {v, v}. By construction, the designs F̂ and F
+ generate the

same surplus, S(F̂ ) = S(F+). To show that R(F̂ ) < R(F+), we argue that some agents

must obtain a positive information rent in the optimal mechanism associated with value

design F̂ . By incentive compatibility, if an agent reports the high value truthfully, it must

be that

Ui(v|F̂ ) = xi(v|F̂ )v ↘ ti(v|F̂ ) ↑ xi(v|F̂ )v ↘ ti(v|F̂ ).

If xA(v) = xB(v) = 0, the result follows because the mechanism does not generate full

surplus, and thus R(F̂ ) < S(F̂ ). If instead xi(v) > 0 for at least some player i, by

individual rationality, we further have that

Ui(v|F̂ ) ↑ xi(v)v ↘ ti(v) > xi(v)v ↘ ti(v) = Ui(v|F̂ ) ↑ 0.

If so, agent i’s ex-ante utility is strictly positive, Ui(F̂ ) = F̂i(v)Ui(v|F̂ )+F̂i(v)Ui(v|F̂ ) > 0.

Thus, we have that

R(F̂ ) ⇐ S(F̂ )↘ UA(F̂ )↘ UB(F̂ ) < S(F+) = R(F+),

and divisive designs maximize revenue. ↫

Proof of Proposition 6: Optimal Threshold Designs Consider any ternary dis-

tribution, G(v) = p for v → [0, w), G(v) = q > p for v → [w, v), and G(v) = 1, and

value design F
[w]. In such a value design, F [w]

i
(0) = F

[w]
i

(w) = q, while F
[w]
j

(0) = p/q,

F
[w]
j

(w) = 1. The optimal mechanism associated with this design amounts to

xi(vi, vj|F
[w]) = (vi = v) and xj(vj, vi|F

[w]) = (vj = w ′ vi = 0),

ti(vi, vj|F
[w]) = xi(vi, vj|F

[w])v and tj(vj, vi|F
[w]) = xj(vj, vi|F

[w])w.

These rules award the good to i in case of high value at price v, and otherwise o!er

to sell the good to j at price w. This mechanism is incentive compatible since interim
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allocation rules are increasing. It is individually rational, as ex-post payo!s are non-

negative. Further, it is optimal because revenue coincides with surplus R(F [w]) = S(F [w]).

It is uniquely optimal because as before, any other design for which the constraint binds

would lead to an agent having two positive values and accruing some information rent.↫

Proof of Proposition 7: The Optimality of Divisive Designs If the minimally

di!erentiated design is weakly regular, its revenue amounts to

R(F→) = 2r→
(√

G(r→)↘G(r→)
)
+

∫
v

r→
vdJ

→(v) = (1↘G(r→))r→ +

∫
v

r→
(v ↘ r

→)dJ→(v).

Now consider some number w < r
→, a threshold design F

[r→] in which B has low values,

and a mechanism (x, t) such that

xA(vA, vB) = (vA ↑ r
→) and xB(vA, vB) = (vB ↑ w ′ vA = v),

tA(vA, vB) = (vA ↑ r
→)r→ and tB(vB, vA) = (vB ↑ w ′ vA = v)w.

In this mechanism, the good is sold to A at price r
→ when their value exceeds r→, and is

o!ered to B at price w otherwise. The revenue from this mechanism for threshold design

F
[r→] amounts to

R̄(x, t|F [r→]) = (1↘G(r→))r→ + (G(r→)↘G(w))w.

The result then follows since

R(F [r→]) ↑ R̄(x, t|F [r→]) > r
→(1↘G(r→)) +

∫
v

r→
(v ↘ r

→)dJ→(v) = R(F→),

given the assumptions invoked on G.↫

Proof of Proposition 8: Auctions and Surplus Bound To prove the result on

second-order statistics, fix an arbitrary value v → [v, v], and consider the following relaxed

problem (which does not account for the restriction requiring cumulative distributions to

increase),

min
FA(v),FB(v)

FA(v) + FB(v)↘G(v) s.t. FA(v)FB(v) ↑ G(v).
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The objective function of this problem is linear, and the constraint set is quasi-convex.

Taking first-order conditions implies that at the minimum

FA(v) = FB(v) =
√
G(v).

Because
√

G(v) → [0, 1] and
√

G(v) is increasing, for all v → [v, v], this procedure delivers

a proper value design (F→
A
, F

→
B
) = (

↖
G,

↖
G). Further by construction, we have that for

this value design

J
→(v) = 2

√
G(v)↘G(v) < FA(v) + FB(v)↘G(v) = J(v).

Thus, the distribution of the second-order statistic J
→ associated with the minimally di-

visive design (F→
A
, F

→
B
) first-order stochastically dominates the distribution of the second-

order statistic J associated with any other design (FA, FB) satisfying FAFB = G.

To prove the result on standard auctions, consider any standard auction with reserve

price r—meaning that

xi(v|r) = (vi > max{vj, r}).

Select any incentive compatible payment rule for such an auction, for instance ti(v|r) =

max{vj, r} (vi > max{vj, r}). By revenue equivalence, the revenue in this auction is

maximized by the minimally divisive design, since

R̄(x(r), t(r)|FA, FB) = r(J(r)↘G(r)) +

∫
v

r

vdJ(v) =

∫
v

r

max{v, r}dJ(v)↘ rG(r)

⇐

∫
v

r

max{v, r}dJ→(v)↘ rG(r) = R̄(x(r), t(r)|F→
A
, F

→
B
),

where the inequality follows since J
→ ↭1 J and max{r, v} is increasing in v.↫
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A Applications

Consider a celebrity auction. In these auctions, celebrities o!er fans the opportunity to

spend time with them for a specific activity.1 The activity, which serves as a feature of

the good, can either increase, decrease, or have no e!ect on the value of certain agents.

To make this example more concrete, imagine a famous tennis player participating in such

an auction. The tennis player could o!er a casual tennis match, an ambitious training

session, or, alternatively, a dinner with the auction winner. The type of good—whether

a celebrity plus casual tennis, a celebrity plus intense training session, or a celebrity plus

dinner—can significantly influence valuations and has the potential to help screen bidders’

preferences. Some bidders may prefer an intense training session, others may simply want

to meet their favorite tennis player and play a casual round, while some might favor the

dinner to have the opportunity for more personal interaction. Our results suggest that

the activity chosen should cater to the preferences of specific bidders, thereby increasing

surplus and facilitating better screening.

Similarly, our model applies to the art market. An artist creating an object with the

goal of selling it should aim to incorporate features that increase surplus while minimizing

information rents. The artist can select the art form (e.g., sculpture or painting), the

materials used, and the size of the object. Each of these decisions has the potential to

influence bidders’ preferences and, in turn, their bids (Bocart, Gertsberg, and Pownall,

2022). For example, choosing the color blue in painting has been associated with higher

revenues (Ma, Noussair, and Renneboog, 2022). Similarly, larger paintings generate more

income, even after accounting for the increased material costs.2 The artist’s goal is then

to create a piece that increases the value for buyers and, additionally, better screens their

valuations. This helps explain why art often polarizes, with some customers valuing it

substantially while others may feel alienated.

1
For example, this can be booked through https://www.charitybuzz.com/.

2
See, for instance, https://www.gallerytoday.com/blog/122_what-determines-the-price-of-a

-painting-does-size-matter.html, which argues that this is due to larger paintings being seen as

more prestigious.

2
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B Designing Mechanisms with General Distributions

Our analysis in the main paper relies on optimal value designs that frequently feature

atomic distributions with mass points at specific values. Since standard mechanism design

results typically assume smooth, continuous distributions, we demonstrate how to apply

classical revenue equivalence insights when agents’ value distributions, FA and FB, may

contain atoms or other discontinuities. This extension ensures that our theoretical results

remain valid for the discrete and mixed distributions that emerge as optimal in our setting.

Since the revelation principle holds irrespective of distributional assumptions, we begin

by considering a direct mechanism (x, t) : [v, v]2 → ”(A,B, 0) ↑ R2. Define the interim

allocation probability and the expected transfer of agent i reporting value zi, when others

are sincere, as follows

xi(zi) =

∫

V→i

xi(zi, v→i) dF→i(v→i),

ti(zi) =

∫

V→i

ti(zi, v→i) dF→i(v→i).

When the distributions are not everywhere di!erentiable or continuous on the support,

we use Riemann-Stieltjes integrals to keep the notation compact. This means that the

di!erential accounts for jumps at points of discontinuity of F→i and neglects points where

the cumulative distribution is continuous but not di!erentiable. Formally, for a cumulative

distribution F with support V and a function u : V → R, we have

∫

V

u(v) dF (v) =

∫

S

u(v)
ωF (v)

ωv
dv +

∑

v↑D

u(v)[F+(v)↓ F→(v)],

where D ↔ V denotes the set of discontinuity points of F , S ↔ V denotes the set of points

where F is di!erentiable, and F+(v) and F→(v) denote the right and left limits of F at

v, respectively.

With this notation, the expected payo! of type vi claiming to be zi is given by

vixi(zi)↓ ti(zi).

As usual, a mechanism (x, t) is incentive compatible on [v, v] when truth-telling is optimal

for all agents

vixi(vi)↓ ti(vi) = max
zi↑[v,v]

[vixi(zi)↓ ti(zi)] ↗ Ui(vi).
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Even when value distributions are not well-behaved, incentive compatibility can be re-

stated as requiring that the interim probability of winning the object increases in the

agent’s type, as the following lemma shows.

Lemma: A direct mechanism is incentive compatible on [v, v] for agent i if and only if

xi(vi) is non-decreasing and U
↓
i
(vi) = xi(vi) for all vi ↘ [v, v].

Proof (if part): If incentive compatibility holds for agent i, for any two values vi, zi ↘

[v, v], we have that

Ui(zi) ≃ zixi(vi)↓ ti(vi) = Ui(vi) + (zi ↓ vi)xi(vi).

The same inequality holds when switching vi and zi, so we obtain

(zi ↓ vi)xi(zi) ≃ Ui(zi)↓ Ui(vi) ≃ (zi ↓ vi)xi(vi). (1)

Condition (1) also implies that

(zi ↓ vi) (xi(zi)↓ xi(vi)) ≃ 0,

which is equivalent to xi(vi) being non-decreasing. Dividing both sides of (1) by (zi ↓ vi)

and taking the limit as zi → vi yields

lim
zi↔vi

Ui(zi)↓ Ui(vi)

zi ↓ vi
= U

↓
i
(vi) = xi(vi).

Proof (only if part): If U
↓
i
(vi) = xi(vi), the expected payo! depends only on the

allocation rule, since:

Ui(vi) = Ui(v) +

∫
vi

v

xi(s) ds.

Thus, for any vi and any zi, we have

Ui(zi)↓ Ui(vi) =

∫
zi

v

xi(s) ds↓
∫

vi

v

xi(s) ds ≃ (zi ↓ vi)xi(vi),

where the inequality holds because xi(vi) is non-decreasing. This inequality is equivalent

to incentive compatibility. ↭
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We can use this restatement of incentive compatibility to derive the classical revenue

equivalence result for this setting.

Revenue Equivalence Theorem: In any incentive compatible, direct mechanism (x, t),

the interim transfer of agent i with value vi is given by:

ti(vi) = ti(v)↓ vxi(v) + vixi(vi)↓
∫

vi

v

xi(s) ds.

Proof: Since Ui(vi) = vixi(vi)↓ ti(vi) and Ui(v) = vxi(v)↓ ti(v), incentive compatibility

implies that

vixi(vi)↓ ti(vi) = vxi(v)↓ ti(v) +

∫
vi

v

xi(s) ds.

Thus, interim transfers in any two incentive compatible mechanisms with the same allo-

cation rule must coincide up to a constant. ↭

Revenue equivalence also implies that even when value distributions are discontinuous

or non-di!erentiable, the designer’s problem coincides with the maximization of virtual

surplus. To see this, recall that a mechanism is individually rational if

Ui(vi) ≃ 0 for all vi.

When incentive compatibility holds, individual rationality (IR) simplifies to

Ui(v) ≃ 0 or ti(v) ⇐ vxi(v).

By revenue equivalence, we also know that in an incentive-compatible and direct mecha-

nism, the expected payment of agent i is given by

E[ti(vi)] = ↓Ui(v) +

∫
v

v

vixi(vi) dFi(vi)↓
∫

v

v

∫
vi

v

xi(s) ds dFi(vi).

Exploiting Riemann-Stieltjes integrals, we can, as usual, change the order of integration

to obtain

∫
v

v

∫
vi

v

xi(s) ds dFi(vi) =

∫
v

v

∫
v

s

dFi(vi)xi(s) ds =

∫
v

v

(1↓ Fi(vi))xi(vi) dvi.
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Define the virtual valuation as

εi(vi) =






vi ↓ 1→Fi(vi)
fi(vi)

if vi ↘ Si

vi if vi /↘ Si

where Si denotes the set of points in Vi where Fi is di!erentiable.3 With this notation,

the principal’s expected revenue is again equal to the expected virtual surplus generated

by the mechanism (x, t), up to a constant:

R(x, t|FA, FB) =
∑

i↑N

[
↓Ui(v) +

∫
v

v

εi(vi)xi(vi) dFi(vi)

]
.

As with non-atomic distributions, the optimal mechanism can therefore be found by

solving

max
(x,t)

∑

i↑N

(ti(v)↓ vxi(v)) +

∫

V

[
∑

i↑N

εi(vi)xi(v)

]
dF (v),

subject to incentive compatibility

(zi ↓ vi)(xi(zi)↓ xi(vi)) ≃ 0 for all zi, vi ↘ Vi,

and individual rationality

ti(v) ⇐ vxi(v) for all i ↘ {A,B}.

Alternatively, a feasible interim allocation rule is optimal for suitable transfers if and only

if it solves

max
x

∑

i↑N

∫

Vi

[εi(vi)xi(vi)] dFi(vi),

subject to (zi ↓ vi)(xi(zi)↓ xi(vi)) ≃ 0 for all zi, vi ↘ Vi,

since individual rationality binds at the optimum. The latter corresponds to the maxi-

mization problem used in two of our results.

3
Virtual values need not be defined outside the support Vi.
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C Threshold Design Example: G(v) = v

To illustrate the profitability of threshold designs, we work through a concrete example

where values are uniformly distributed, so G(v) = v. This setting o!ers clean analytical

solutions while capturing the essential economic forces at play.

The Minimally Di!erentiated Benchmark Consider first the symmetric case where

both agents have identical value distributions: F→
A
(v) = F

→
B
(v) =

⇒
v. The virtual values

in this design are:

ε
→
i
(v) = 3v ↓ 2

⇒
v.

These virtual values turn positive when v > 4/9, establishing the optimal reserve price.

Since virtual values are strictly increasing for v ≃ 4/9 (with derivative 3↓ 1/
⇒
v ≃ 3/2 >

0), the optimal mechanism allocates the object to the highest-value bidder above this

threshold. This yields revenue of:

R(F→) =

∫ 1

4/9

(3v ↓ 2
⇒
v) dv = 43/162 ⇑ 0.265.

The Maximally Di!erentiated Alternative At the other extreme, consider a maxi-

mally di!erentiated design where only agent A values the good: F+
A
(v) = v and F

+
B
(v) = 1.

This reduces the problem to a simple monopoly pricing problem with a single buyer.

The optimal mechanism becomes a posted price of 1/2, generating revenue of exactly

R(F+) = 1/4 = 0.25.

Notably, maximal divisiveness performs worse than the symmetric design. This may

appear to be a striking reversal of the typical advantage of asymmetric designs we see in

other settings. But the optimal design is not a symmetric one; instead it is a threshold

design aimed at extracting surplus from types that would otherwise be excluded.

The Threshold Design Solution Now consider a w-threshold design for w ↘ [0, 1].

This design assigns to agent:

• A a uniform distribution on [0, w]: F [w]
A

(v) = min{v/w, 1};

• B value 0 with probability G(w) and uniform distribution on [w, 1]: F
[w]
B

(v) =

max{w, v}.

7



This creates a distinct segmentation: agent A is assigned to low values while agent B

ends up with the high values and an atom at 0. The virtual values become

ε
w

A
(v) = 2v ↓ w for v ⇐ w and ε

w

B
(v) = 2v ↓ 1 for v ≃ w.

Since these are increasing, the optimal mechanism allocates to the agent with the highest

non-negative virtual value. This generates revenue:

R(F [w]) = w

∫
w

0

max{2vA ↓ w, 0} dvA
w

+

∫
w

0

∫ 1

w

max{2vA ↓ w, 2vB ↓ 1, 0} dvB d
vA

w
,

where the two terms amount respectively to case in which B has value 0 and the case in

which they value above w.

Computing the Optimal Threshold The analysis splits into two cases based on

whether w exceeds 1/2, as depicted in Figure 1.

Case 1: w > 1/2 In this scenario, there never is exclusion. After working through the

integration regions where di!erent agents have higher virtual values, revenue becomes

R(F [w]) =
w

2

4
+

(1↓ w)(25w2 ↓ 2w + 1)

24w
.

Case 2: w ⇐ 1/2 In these scenario, it is possible that the good is not allocated to either

agent. Revenue calculations are further complicated by exclusion, but yield

R(F [w]) =
w

2

4
+

6 + 3w ↓ 5w2

24
.

Revenue Performance Figure 2 shows that revenue peaks at w
↗ ⇑ 0.648, achieving

approximately 0.336—a substantial improvement over both benchmarks. The threshold

design outperforms the symmetric design by 27% and the maximally di!erentiated design

by 34%.

The threshold design maintains competitive pressure between agents (unlike the posted

price solution) while creating specialized market segments that reduce information rents.

Agent A faces competition only from low-value realizations of agent B, while agent B
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12/31/2
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(a) w = 2/3

vA

vB

11/3 1/2

1/3

1/6
A

B
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Figure 1: Integration regions for w-threshold designs when G(v) = v.
Panels (a)–(b) depict integration regions for di!erent values of w: in green north-east lines, value profiles

for which A wins the good; in red north-west lines, value profiles for which B wins the good; and in gray

crosshatch, value profiles for which the good is not allocated.

competes primarily in the high-value range where the surplus gains justify the information

rents.

This example demonstrates that when surplus is constrained, optimal designs remain

divisive but require nuanced market segmentation rather than extreme di!erentiation or

symmetry.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.27

0.29

0.31

0.33

w

R(w)
Optimal Revenue in w-Threshold Designs

w ⇐ 1/2
w > 1/2
Min Di!

Max Di!

Figure 2: The plot depicts optimal revenue as a function of w, as well as optimal revenue
in both the maximally and minimally divisive designs.

9



D Correlated Private Values

Maintaining the independence of value distributions across design problems is a natural

assumption if one believes that agents should not be able to infer anything about their

competitors’ realized values based on their own. This assumption is not only plausible but

also makes the problem more challenging, as it requires accounting for agents’ information

rents, rather than focusing solely on surplus design. However, many of our results extend

to settings where signals are not independent, and bidders have some information about

the realized values of their competitors.

Consider a correlated information setting, as discussed by Crémer and McLean (1985),

where revenue generically coincides with surplus, E[max{vA, vB}]. To provide some insight

while staying close to the core of our analysis, we allow the principal to design marginal

value distributions for both bidders, but not the correlation structure between their values,

which is fixed. Additionally, we assume that bidders know their own value and have some

information about their competitors’ values. This approach mirrors our baseline analysis,

where the principal designs the marginal value distributions for both agents but cannot

influence the independence of their signals.

To fix the correlation structure, consider any copula W : [0, 1]2 → [0, 1], where

W (FA(vA), FB(vB)) = Pr(VA ⇐ vA, VB ⇐ vB) identifies the joint probability of an event

given the marginal distributions FA and FB. By Sklar’s Theorem, copulas can be used

to capture arbitrary correlation structures—such as independence, perfect positive cor-

relation (concordance), and perfect negative correlation (discordance). Assume that W

determines the underlying correlation of tastes across agents and cannot be influenced

by the principal, as was the case in the original setup where W (FA(vA), FB(vB)) =

FA(vA)FB(vB). Instead, let the principal design the two marginal value distributions,

FA(vA) and FB(vB). This approach is suitable for settings in which the features of the

goods can be determined, but the correlation in tastes across agents must be taken as

given due to factors beyond the principal’s control.

No Spillovers When designing marginal distributions subject to the mean-bound con-

straint EFi [vi] ⇐ k for all i, extreme bimodal designs remain optimal. This follows from

the fact that variance increases the expected surplus, E[max{vA, vB}], due to the convexity

of the maximum operator. As an example, consider the case where values are discordant,
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such that W (FA, FB) = min{FA, FB} for any pair of probabilities (FA, FB). Additionally,

assume v = 2 and k = 1. In this case, surplus, or equivalently revenue, is maximized by

a value design (FA, FB) in which both agents value the good at vi = 2 or vi = 0 with

equal probability. This design corresponds to the maximally divisive design described in

Proposition 2. Under such a maximally spread two-atom distribution, surplus is exactly

equal to 2, since at least one agent must value the good at 2 due to the discordance. Thus,

revenue also equals 2, and the principal secures this surplus by awarding the good with

certainty to the agent with the realized value equal to 2. No other value design can lead

to higher surplus, as values never exceed 2. Therefore, designs in which both distributions

are maximally spread are optimal when values are negatively correlated.

With concordance W (FA, FB) = max{0, FA + FB ↓ 1}, the design in which one agent

always values the good at the mean, k = 1, while the other agent’s value is maximally

spread, as described in Proposition 2, yields a surplus of 1.5. This exceeds the surplus

from the design where both agents are maximally spread, which results in a surplus of 1.

Similarly, if both agents have all mass at the mean, the surplus equals 1. Consequently,

with positively correlated values, the principal is better o! when one agent has all mass

at the mean, while the other agent’s value is maximally spread, in line with our finding

when values are independent.

Spillovers When designing marginal distributions subject to the linear constraint, FA+

FB = H, maximally divisive designs remain optimal. This follows because such designs

increase surplus, E[max{vA, vB}], by minimizing the chance of having two agents with

high values.

As an example, consider the concordant copula discussed above, and assume that

H(v) = v for all v ↘ [0, 2]. In this case, surplus in the maximally divisive design,

(FA, FB) = (H ↓ 1, H), coincides with the expected value, EH→1[v] = 1.5, of the high

value agent A. Thus, revenue also amounts to 1.5. This revenue can be achieved by

never allocating the good to agent B, but always awarding it to agent A. To extract

full surplus, the transfer of the high value agent A is set to the value associated to the

quantile reported by agent B, i.e., tA(v) = inf{v | H(v) ↓ 1 ≃ H(vB)}, while B never

pays anything. In such a setting, revenue under the minimally divisive design, where

both agents draw values from H/2, simply amounts to the expected value of one of the

two agents, EH/2[v] = 1. This highlights that the optimality of maximally divisive value
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designs, as discussed in Proposition 4, does not depend on the independence of value

distributions, but holds in more general settings. However, other designs may also be

optimal for specific correlation structures.

In the same example, when the copula is discordant, the minimally divisive design

yields the same surplus as the maximally divisive one. Further, discordance generally

increases surplus since di!erentiation in values increases gains from trade.

E Cost of Value Designs

It is natural in many contexts to assume that attributes can be added for free, as it is far

from obvious whether and how much the addition of features costs. For completeness, we

explore how our results change if we allow for costs, with C(F ) representing the cost of a

particular value design F .

A natural starting point is to consider costs that increase with the “quality” of the

design, measured by first-order stochastic dominance. Under such cost structures, the

principal would first select a distribution according to costs, which subsequently serves as

the boundary distribution that cannot be exceeded. This transforms our constrained op-

timization problems into cost-benefit trade-o!s, where the principal balances the revenue

gains from better designs against their implementation costs.

We characterize the types of cost functions that yield the same designs as those derived

for our various constraints, demonstrating the robustness of our main insights.

No Spillovers If an attribute a!ects each agent individually, but there are no spillovers,

then this corresponds to a setting with separable cost functions, i.e., C(F ) = c(FA) +

c(FB). Designs that are optimal for EFi [v] ⇐ k would naturally arise if the separable

cost functions depend solely on the mean of the value distribution chosen for each agent.

Formally, this would be represented as C(F ) = c(EFA [v]) + c(EFB [v]) for some increasing

function c : [v, v] → R+. In such environments, the designer would first select the mean

based on cost considerations, and then choose the shape of the optimal design by maxi-

mizing revenue subject to the constraint EFi [v] ⇐ k. Thus, even in costly design settings,

the principal would still choose features that result in bimodal value designs.

12



Spillovers With spillovers, a cost that depends on the sum of average values for the

good will still yield the result that it is optimal to assign all value to one agent, in the

manner described in Proposition 3.

For the additive constraint, H(v) = FA(v)+FB(v), cost functions must satisfy a weak

linearity property to ensure the optimality of the maximal split distribution. This requires

that any two value designs with the same sum incur the same cost. Formally, this would

be represented as C(F ) = C(F ↓) if FA + FB = F
↓
A
+ F

↓
B
. This assumption is satisfied

by common design cost functions, such as entropy, and would hold for integrable cost

functions of the form:

∫
v

0

c(v) d[FA(v) + FB(v)]

for some function c : [v, v] → R+.

Finally, designs that are optimal for the multiplicative constraint, G(v) = FA(v)FB(v),

would also be optimal in costly design settings where design costs depend solely on the

distribution of surplus and increase according to first-order stochastic dominance.

F Proofs of Corollaries

Proof of Corollary 1: Second-Order Stochastic Dominance We show that F ↗ is

second-order stochastically dominated by G. The proof then follows because any distri-

bution that is second-order stochastically dominated by G must have a mean no higher

than k, and because F ↗ was optimal among all distributions with mean no higher than k.

If G = F
↗, then F

↗ is second-order stochastically dominated by G trivially. So,

suppose that G ⇓= F
↗. If so, for some v̂ < v in the support of G and all v ↘ [0, v̂),

”(v) = G(v)↓ F
↗(v) < 0,

because F ↗ maximizes the probability that the value is equal to 0 among all distributions

with mean equal to k. Moreover ”(v) is non-decreasing for any v < v, because G is

non-decreasing and F
↗ is constant for v < v. Finally observe that at v, Riemann-Stieltjes
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integration by parts yields

∫
v

0

”(s)ds = [s (G(s)↓ F
↗(s))]v0 ↓

∫
v

0

sd (G(s)↓ F
↗(s)) = EF ↑ [v]↓ EG[v] = 0,

where the final equality holds because both distributions have mean k. But if so, F ↗ is

second-order stochastically dominated by G, since
∫

v

0 ”(s)ds =
∫

v

0 G(s) ↓ F
↗(s)ds < 0

for all v < v. ↭

Proof of Corollary 2: No Value Destruction with Surplus Bound We establish

the result by contradiction. Suppose by contradiction that there exists an optimal design

(F ↗
A
, F

↗
B
), in which F

↗
A
(w)F ↗

B
(w) > G(w) for some non-excluded value w. If so, an alter-

native value design (F̂A, F̂B) exists that first-order stochastically dominates the original

design, F̂ ↫1 F
↗, and that still satisfies the constraint

F
↗
A
(w)F ↗

B
(w) > F̂A(w)F̂B(w) ≃ G(w).

Because revenue is increasing in first-order stochastic dominance, the optimal revenue

under design F
↗ is no larger than the optimal revenue under design F̂ . Further, rev-

enue strictly increases when value w is not excluded and the mechanism is fixed to

(x(F ↗), t(F ↗)), because higher transfers will be paid more often in the F̂ design.↭

Proof of Corollary 3: Profitable Surplus Reduction The observation follows di-

rectly from the proof of Proposition 1, but noting that equation (11) must now hold by

the assumptions invoked on FA and m.↭
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