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We reappraise the Arrow problem by studying the aggregation of choice func-

tions. We do so in the general framework of judgment aggregation, in which choice

functions are naturally representable by specifying, for each menu A and each al-

ternative x in A, whether x is choosable from A, or not. Our framework suggests a

natural strengthening of Arrow’s independence condition positing that the collective

choosability of an alternative from a menu depends on the individual views on that

issue, and that issue alone. Our analysis reveals that Arrovian impossibility results

crucially hinge on what internal consistency requirements we impose on choice func-

tions. While the aggregation of ‘binary’ choice functions, i.e. those satisfying both

contraction (α) and expansion (γ) consistency, is necessarily dictatorial, possibilities

in the form of oligarchic rules emerge for path-independent choice functions, that

is, when the expansion property γ is replaced by the so-called Aizerman condition.

Remarkably, the Arrovian aggregation of choice functions is shown to be almost

dictatorial already under property γ alone. When giving up expansion consistency,

specific quota rules become possible.
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1. Introduction

At the heart of social choice theory lies Arrow’s (1951/63) result about the impossibility

of independent preference aggregation. Indeed, it is fair to say that his formulation of

the problem of collective choice as one of aggregating individual preference orderings into

a collective one has shaped most of the social choice literature and the way researchers

have approached the problem. However, it is also widely recognized that, ultimately,

preferences represent choices. In fact, Arrow acknowledged himself that his assumption

of a complete and transitive collective preference is a strong one, and that it would be

sufficient that a group be able to make collective choices. As Arrow (1959) later showed

himself, positing a complete and transitive ordering is tantamount to imposing the Weak

Axiom of Revealed Preference (WARP) on collective choice behavior.

Following in his steps, various authors have shown that limited possibilities do emerge

under less demanding impositions on collective choices (see, e.g., Gibbard, 1969/2014,

Sen, 1969, Mas-Colell and Sonnenschein, 1972). These contributions have, however,

maintained the assumption that collective choices are binary, that is, rationalizable by

some collective preference. In this case, independence can be formulated as demanding

that the collective preference between any two alternatives x and y be unaffected by

how voters rank alternatives other than x and y. We refer to this condition as binary

Independence. In contrast, Arrow’s original notion relies only on the existence of a social

choice function. It states that what society chooses from any given menu of alternatives

be unaltered whenever two profiles of individual preferences agree in terms of every

individual’s ranking of alternatives in that menu. To be precise, the original condition

reads (Arrow, 1951, Condition 3):1

Arrow Independence: Let R1, . . . , Rn and R′
1, . . . , R

′
n be two sets of individual or-

derings and let c(A) and c′(A) be the corresponding social choice functions. If, for all

individuals i and all x and y in a given environment A, xRiy if and only if xR′
iy, then

c(A) and c′(A) are the same.

If collective choices are binary, binary Independence appears to be the weaker condition

as it restricts Arrow Independence to binary menus. Since all choice behavior is reducible

to choices from binary menus in this case, however, Arrow Independence is also no

stronger than binary Independence. For non-binary collective choices, it is prima facie

unclear what collective ”preference” binary Independence would make reference to. Of

1To be consistent with our notation below, we have changed Arrow’s notation for menus from S to A
and for the collective choice function from uppercase C to lowercase c in the following passage.
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course, it is always possible to define a social preference via the base relation that is

given by xRy : ⇐⇒ x ∈ c({x, y}). However, the base relation will, in general, not be

interpretable as a revealed preference that generates choices. Indeed, this is the case (if

and) only if choices are binary.

Considered in isolation, Arrow’s original notion of independence is weak. Thus, it is

the imposition of binariness, not independence per se, that severely restricts the space

for possibilities. To see this, it is helpful to recapitulate that a choice function is binary

if and only if it satisfies two basic conditions on contraction and expansion consistency

across different menus of alternatives, also known as conditions α and γ (see, for example,

Sen, 1969). Condition α requires that if an alternative x is chosen from some menu A,

then so it be chosen from any sub-menu that contains x. Condition γ demands that

if x is chosen from menu A as well as from B, then so it be chosen from their union

(see further below for precise statements). To illustrate, consider the Borda method (or,

indeed, any other scoring rule) for aggregating individual preferences. Conventionally, it

proceeds by calculating, locally at every menu, the Borda ranking of all the alternatives

in that menu and choosing the alternative(s) that come(s) out on top. In this local

version, Borda is an independent method in Arrow’s sense, as the collective choice from

any given menu does not depend on how individuals rank alternatives outside of it. Yet

collective choices may not be binary. For example, consider a universal set of three

alternatives X = {x, y, z}. If we have x ≻ y ≻ z and z ≻ x ≻ y for two voters each, and

y ≻ z ≻ x for three voters, then c({x, y, z}) = y while c({x, y}) = x. Thus, society’s

choice between the two alternatives x and y changes as a third (irrelevant) alternative

becomes available. This marks a failure of contraction consistency (condition α), a

condition on choice across menus. In contrast, Arrow’s original notion of independence

is a condition on choice from a given menu. Thus, Borda understood in this local fashion

does not violate Arrow independence.2 We emphasize this point, as there seems to have

been some confusion in the literature starting with Arrow himself.3

2Alternatively, if society chooses from menus according to the global Borda ranking over the universal
set X, then collective choices are binary (by construction) but violate Arrow independence, seeing
that whether x or y are chosen from the menu {x, y} now depends on how voters rank them relative
to z. So, for example, we obtain c({x, y}) = y for the preference profile introduced above, while we
conclude c({x, y}) = x if all three voters with y ≻ z ≻ x have y ≻ x ≻ z instead. For an early and
lucid account of this observation, see Sen (1977, p 78f.). Sen refers to the local and global variants as
the narrow and broad Borda rule respectively. For a recent discussion, see also Brandl and Brandt
(2020, p. 816). We thank Felix Brandt for pointing us to this literature.

3See the remarks following the statement of Condition 3 (the independence condition) in Arrow (1963,
p.27): “The reasonableness of this condition can be seen by consideration of the possible results in a
method of choice which does not satisfy Condition 3, the rank-order method of voting frequently used
in clubs. [...] In particular, suppose that there are three voters and four candidates, x, y, z, and w.
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In this paper, we propose to reappraise the Arrow problem in the framework of aggre-

gating choice functions. This allows us to capture the various relaxations of collective

rationality studied in the literature in a unified framework and to go beyond. Crucially,

we allow for less then perfectly rational (and potentially non-binary) choice not only at

the collective but also at the individual level. Assuming the same choice consistency

conditions at the individual and the collective level allows us to tractably study the

problem within the general judgement aggregation model developed, among others, by

List and Pettit (2002), Dietrich (2007), Dietrich and List (2007), Nehring and Puppe

(2002, 2010) and Dokow and Holzman (2010). Within this model, a choice function can

be described by specifying, for each menu A and each alternative x ∈ A, if x is choosable

from A or not. This formulation suggests a natural strengthening of independence in the

Arrovian spirit: that the collective decision whether or not x is choosable from menu A

should depend only on the individual views about this issue.

Evidently and unsurprisingly, the stronger independence condition cannot help escape

the Arrow impossibility. Indeed, our first main result shows that even on the domain

of all binary choice functions aggregation is (monotone) independent if and only if it is

dictatorial. Strikingly, this result is disproportionately driven by expansion consistency

(condition γ). If there at least four alternatives, imposing γ alone implies dictatorial

social choices for all menus except the universal set. In contrast, when giving up on

condition γ, possibilities emerge. On the space of path-independent choice functions

(satisfying α as well as the Aizerman condition, an alternative notion of expansion

consistency), non-dictatorial aggregation is possible, although necessarily in the form

of oligarchies. Path-independent choice functions can be rationalized in terms of the

maximal elements of a finite collection of linear orderings (Aizerman and Malishevski,

1981). Interpreting these orderings as representing the ‘multiple selves’ of the decision-

maker, our result implies that all independent aggregation rules can be simply described

as taking the collection of the oligarchs’ individual multiple selves as the multiple ‘selves’

of the group. When dropping consistency conditions altogether, quota-rules emerge

Let the weights for the first, second, third, and fourth choices be 4, 3, 2, and 1, respectively. Suppose
that individuals 1 and 2 rank the candidates in the order x, y, z, and w, while individual 3 ranks
them in the order z, w, x, and y. Under the given electoral system, x is chosen. Then, certainly, if y
is deleted from the ranks of the candidates, the system applied to the remaining candidates should
yield the same result, especially since, in this case, y is inferior to x according to the tastes of every
individual; but, if y is in fact deleted, the indicated electoral system would yield a tie between x and
z.” Yet, from the perspective of independence, there is nothing suspect about this, seeing that if y
is removed, then the menu of alternatives to be chosen from is not the same as before. What Arrow
describes here is a violation of WARP (specifically, the strong expansion property β). Presumably,
the confusion surrounding this has been helped further by the unfortunate convention by which parts
of the literature refer to WARP, or variants thereof, as ‘Independence of Irrelevant Alternatives’.
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as the (monotone) independent and anonymous aggregation methods that satisfy an

additional weak neutrality condition. (Imposing α is still possible but restricts the set

of consistent quotas.) We note that both our stronger notion of independence and our

imposition of the same consistency conditions at the individual and collective levels

strengthens our possibility results while making our impossibility results weaker. At

the end of the paper, we briefly discuss a weaker notion of independence (which is still

stronger than Arrow’s original notion) and note that further possibilities arise in the

form of approval voting.

To the best of our knowledge, there are only few contributions in the literature that

explicitly addresses the aggregation of choice functions. The ones we are aware of are

Aizerman and Aleskerov (1986), Sandroni and Sandroni (2021), Shelah (2005) and Sen

(1993). Shelah (2005) provides a very general impossibility result on the aggregation

of singleton-valued choice functions under a symmetry condition but without any fur-

ther rationality assumptions. However, this intriguing result makes crucial use of the

assumption that choices are singleton-valued, which we do not assume here. (For recent

work in this same direction, see Roy and Sadhukhan (2025).) Sen (1993) derives an im-

possibility result without imposing any rationality requirements at the collective level.

He formalizes independence in terms of decisiveness over pairs of alternatives that allow

groups of individuals to block an alternative when the other one is present no matter

what the menu. In our view, this is both, a long way conceptually from Arrow’s original

notion, and it re-introduces an element of context independence that the non-insistence

on consistency requirements was meant to do away with. The two contributions most

closely related to our approach are Aizerman and Aleskerov (1986) and Sandroni and

Sandroni (2021). The former authors use a similar independence condition than we do,

which they refer to as ‘locality,’ but they allow for empty choice sets and axiomati-

cally characterize specific aggregation methods. The latter authors significantly weaken

the independence condition and show that non-dictatorial aggregation becomes possible

once full rationality in the sense of WARP is relaxed; however, these possibilities are not

particularly attractive since they are still ‘almost’ dictatorial.

The rest of this paper is structured as follows. Section 2 introduces our model, reca-

pitulates important results about the rationalizablity of choice functions, and presents

our notion of independence. Section 3 presents our main results. Section 4 discusses

the results in light of our independence condition and proposes a weakening that is

intermediate in strength between the former and Arrow’s original notion.
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2. The Model

Let X be a (possibly infinite) set of alternatives x, y, z ∈ X such that |X| ≥ 3 . Denote

by A = 2X\{∅} the collection of all non-empty decision problems (menus) A ∈ A. A

choice function (CF) is a mapping c : A ⇒ X such that for all A ∈ A, c(A) ⊆ A. Note

that, in general, this allows for choice sets c(A) to contain multiple alternatives.4

Let C = {c : c is a CF} be the collection of all choice functions (on X) and n ∈ N,
n ≥ 2, be the number of individuals in a group/society. An aggregation function f :

Cn → C maps every profile of choice functions (c1, . . . , cn) into a social choice function

c = f(c1, . . . , cn). We say that f is consistent on a domain ∅ ≠ D ⊆ C if f(Dn) ⊆ D.5

Below, we consider aggregation on (sub-)domains D obtained by imposing (consistency)

conditions on the choice functions under consideration.

As a minimal restriction, we demand that choice sets be non-empty when choosing

from finite menus.

Finite Non-Emptiness:

|A| < ∞ =⇒ c(A) ̸= ∅. (FNE)

We denote by Cfne = {c ∈ C : c satisfies (FNE)} the collection of all choice functions

satisfying finite non-emptiness.

2.1. Rationalizable Choice Functions

Of particular interest in economics are choice functions that are rationalizable as maximal

elements of some relation(s) R ⊆ X × X. For any such R, call P its asymmetric

component (that is xPy ⇐⇒ (xRy&¬yRx)) and I its symmetric component (xIy ⇐⇒
(xRy&yRx)). We say that R is:

1. acyclic if P does not contain a cycle;

2. quasi-transitive if P is transitive;

3. a weak order if R is complete and transitive;

4. a linear order if R is an asymmetric weak order.

4Some authors refer to the general concept as a ‘choice correspondence’ and reserve the name ‘choice
function’ for choice correspondences that contain (at most) a single alternative.

5In other words, when studying consistent aggregation functions on D, it is without loss of generality
to restrict the co-domain to D as well. Therefore, for the rest of this paper, we simply refer to D as
the domain.
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Note that these properties are ordered from weak to strong. That is, every linear order is

a weak order, every weak order is quasi-transitive and every quasi-transitive R is acyclic.6

The latter is a minimal condition if R is to rationalize a choice function c ∈ Cfne in terms

of maximal elements seeing that max
A

R := {x ∈ A : yPx for no y ∈ A} is non-empty for

all finite A if and only if R is acyclic.

A by now extensive literature on choice theory has characterized notions of rational-

izability in terms of consistency requirements on choice functions. As a widely known

example of such a result, recall that a choice function is rationalized by some weak order

if and only if it satisfies the Weak Axioms of Revealed Preference (WARP). We list some

of the most important and well-known conditions on choice functions here.

Weak Axiom of Revealed Preference (WARP):

if {x, y} ⊆ A ∩B, then x ∈ c(A) =⇒ (y ∈ c(B) =⇒ x ∈ c(B)). (WARP)

Contraction (α/Chernoff):

c(A ∪B) ∩A ⊆ c(A). (α)

Strong Expansion (β):

c(A ∪B) ∩A ̸= ∅ =⇒ c(A) ⊆ c(A ∪B). (β)

Expansion (γ):

c(A) ∩ c(B) ⊆ c(A ∪B). (γ)

Aizerman(-Expansion):

c(A ∪B) ⊆ A =⇒ c(A) ⊆ c(A ∪B). (Aiz)

Path-Independence:

c(A ∪B) = c(c(A) ∪B). (PI)

In general, WARP is equivalent to Contraction (α) and Strong Expansion (β).

An interesting sub-case arises when c is singleton-valued (i.e., |c(A)| = 1 for all non-

empty c(A) ̸= ∅). In this case, WARP reduces to Contraction (α). Moreover,

Strong Expansion (β) is stronger than both Expansion (γ) and Aizerman. We

6As an example of an acyclic relation that is not quasi-transitive, consider R ⊂ {x, y, z} such that
xPyPzIx. On the other hand, zIyIxPy is both acyclic and quasi-transitive (but not a weak/linear
order).
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summarize this in the following lemma. A proof can be found, for example, in Moulin

(1985).

Lemma 1. Let c ∈ Cfne.

1. c satisfies (WARP) if and only if it satisfies (α) and (β).

2. c satisfies (β) only if it satisfies (γ) and (Aiz).

3. If |c(A)| ≤ 1 for all A ∈ A, then c satisfies (α) only if it satisfies (β).

4. c satisfies (PI) if and only if it satisfies (α) and (Aiz).

Based on Moulin (1985), the following lemma summarizes important results about the

rationalizability of choice functions in the literature.

Lemma 2. Let c ∈ Cfne.

1. If and only if c satisfies (α) it is sub-rationalizable by some linear order R ⊆ X×X:

max
A

R ⊆ c(A) for all A ∈ A.

2. If and only if c satisfies (α) and (Aiz) it is pseudo-rationalizable: there exist linear

orders R1, . . . , Rk ⊆ X ×X such that c(A) =
⋃

j=1,...,k

max
A

Rj for all A ∈ A.

3. If and only if c satisfies (α) and (γ) it is binary, that is, rationalizable by some

complete and acyclic binary relation R ⊆ X ×X: c(A) = max
A

R for all A ∈ A.

4. If and only if c satisfies (α), (γ) and (Aiz) it is rationalizable by some complete

and quasi-transitive R ⊆ X ×X: c(A) = max
A

R for all A ∈ A.

5. If and only if c satisfies (WARP) it is rationalizable by some weak order R ⊆
X ×X: c(A) = max

A
R for all A ∈ A. If c is singleton-valued, weak order can be

replaced by linear order in this statement.

The above results inform the following definitions:

• Csub := {c ∈ Cfne : c is sub-rationalizable},

• Cpsd := {c ∈ Cfne : c is pseudo-rationalizable},

• Cbin := {c ∈ Cfne : c is rationalizable by some ayclic R ⊆ X ×X},

• Cqua := {c ∈ Cfne : c is rationalizable by some quasi-transitive R ⊆ X ×X},
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• Cwo := {c ∈ Cfne : c is rationalizable by some weak order R ⊆ X ×X},

• Clo := {c ∈ Cfne : c is rationalizable by some linear order R ⊆ X ×X}.

Note that Clo ⊆ Cwo ⊆ Cqua ⊆ Cpsd, Cbin ⊆ Csub ⊆ Cfne.

2.2. Collective Choice and Aggregation of Elementary Choice Judgments

When aggregating a profile of choice functions into a collective choice function, society

is faced, for every menu A ∈ A, |A| ≥ 2 and every alternative x ∈ A, with the issue of

whether it should (collectively) choose x from A.7 More generally, both at the individual

and at the collective level, a choice function may be thought of as a complete set of such

elementary choice judgments x ∈ c(A).

Imposing consistency conditions on choice functions then translates into restrictions

on what sets of judgments are considered feasible. For example, imposing condition (α)

is inconsistent with simultaneously judging x ∈ c(A) to be true and x ∈ c(B) to be

false when x ∈ B ⊂ A. Thus, consistency conditions on choice functions translate into

logical dependencies (entailments) between issues. This approach allows us to employ the

machinery developed in Nehring and Puppe (2002, 2010) to study what domains D entail

dictatorial aggregation rules and when and what kind of non-dictatorial aggregation is

possible.

Modeling choice functions as complete sets of (elementary choice) judgments suggests

a natural notion of independence. We say that an aggregation rule is independent if

the collective decision on whether some x ∈ A is chosen from A may only depend on

individual judgments on this issue alone. In other words, if two profiles of individual

choice functions agree in terms of individual judgments on x ∈ ci(A), for all i = 1, . . . , n,

then the collective decision on whether x ∈ c(A) must be the same for both profiles.

Independence: Consider any A ∈ A and x ∈ A. Let c = f(c1, . . . , cn) and c′ =

f(c′1, . . . , c
′
n). If, for all i = 1, . . . , n, x ∈ ci(A) ⇐⇒ x ∈ c′i(A), then x ∈ c(A) ⇐⇒ x ∈

c′(A).

As such, independence may be seen as a condition of informational parsimony stipu-

lating that collective choices can only rely on information that is pertinent to the choice

to be made. Our notion of independence is inspired by viewing social choice as the

aggregation of elementary choice judgments x ∈ c(A) and demands that the collective

7If A is a singleton, say A = {x}, the issue is trivial seeing that x must be chosen given (FNE).
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choosability of some alternative x in menu A be decided solely based on the configura-

tion of individuals’ choice judgments on this issue. In contrast, Arrow’s original version

requires that what is chosen from a menu may depend on how individuals rank the al-

ternatives in it. In choice functional terms, this corresponds to allowing the collective

decision to depend on individual choice behavior for all submenus of A.8 Thus, our

notion of independence is stronger than Arrow’s. At the end of the paper, we discuss

an intermediate notion – which we call independence across menus – that demands that

what is chosen collectively from some menu must not depend on individual choices from

other menus. While this allows for dependence within menus, it excludes reliance on

further positional information.

In the presence of independence, it is natural to demand that aggregation happens in

a monotone fashion. That is to say that increased support among all individuals in favor

of some choice x ∈ c(A) should lead to it being chosen collectively if it was before. Vice

versa, if more individuals reject x ∈ c(A), x must not be chosen collectively if it wasn’t

before. Thus, we strengthen independence to the following condition.

Monotone Independence: Consider any A ∈ A and x ∈ A. Let c = f(c1, . . . , cn)

and c′ = f(c′1, . . . , c
′
n). (i) If, for all i = 1, . . . , n, x ∈ ci(A) =⇒ x ∈ c′i(A), then

x ∈ c(A) =⇒ x ∈ c′(A); (ii) if for all i = 1, . . . , n, x /∈ ci(A) =⇒ x /∈ c′i(A), then

x /∈ c(A) =⇒ x /∈ c′(A).

As an example of a monotone and independent aggregation rule consider the social

choice function resulting from majority voting on all issues. That is, we define fmaj :

Cn → C such that, for all A ∈ A, x ∈ fmaj(c1, . . . , cn)(A) := cmaj(A) ⇐⇒ 1
n |{i : x ∈

ci(A)}| ≥ n/2.9 However, as we note below, majority voting is inconsistent in general,

even when only imposing (FNE).

In analogy to Arrow’s weak Pareto condition, we impose a weak unanimity assumption.

Unanimity: For all c ∈ Cn, f(c, . . . , c) = c.

Unanimity only requires that if all individual choice functions are the same, this be the

collective choice function. Note, however, that in the presence of monotone independence

it is equivalent to the stronger notion of issue-wise unanimity. That is, for all A ∈ A
and all x ∈ A, if x ∈ ci(A) for all i = 1, . . . , n, then x ∈ c(A) = f(c1, . . . , cn)(A).

8Note that if individual choice functions are binary, the underlying preference orderings are revealed
by the entirety of choices from all these submenus. (In fact, looking at all binary submenus would
be sufficient.)

9Note that, given this definition, we break ties in favor of inclusion of alternatives in the collective
choice set.
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We call an aggregation function satisfying unanimity and monotone independence an

Arrovian aggregator.

3. (Im)Possibility of Arrovian Aggregation

Here we address the question of whether consistent monotone independent aggregation

is possible on the different domains D ⊆ Cfne defined above. Note that as the domain

D is restricted further, aggregation needs to be consistent for a smaller set of individual

choice functions (as more requirements are imposed) but, at the same time, needs to

satisfy more stringent consistency conditions at the collective level.

From a majoritarian perspective, the space of possibilities is limited from the outset by

the observation that (x ∈ c(A)-wise) majority voting is inconsistent on D = Cfne (i.e. even
without imposing further restrictions on choice functions) except for the special cases of

three alternatives and two or four individuals.

Proposition 1. Let |X| ≥ 3. fmaj is consistent on D = Cfne if and only if |X| = 3 and

n ∈ {2, 4}.

For example, consider the case of n = 3 individuals and let A = {x, y, z} ⊆ X.

Consider a profile of choice functions c1, c2, c3 ∈ Cfne such that c1(A) = {a}, c2(A) = {b}
and c3(A) = {c}. Note that fmaj(A) = ∅. Thus, cmaj = fmaj(c1, c2, c3) does not satisfy

(FNE), i.e., fmaj(c1, c2, c3) /∈ Cfne.
When choice functions are rationalizable by some acyclic relation (satisfy contraction

property (α) and extension property (γ)) all consistent Arrovian aggregators are nec-

essarily dictatorial. The same holds when more (stringent) consistency conditions are

imposed (quasi-transitive, weak or linear order rationalizable choice functions).

Theorem 1. An Arrovian aggregation rule f is consistent on D = Cbin if and only if it

is a dictatorship; that is, there is some j ∈ {1, . . . , n} such that for all (c1, . . . , cn) ∈ Cn
bin:

f(c1, . . . , cn) = cj .

The same holds for D = Cqua, Cwo, Clo.

Strikingly, this result is disproportionately driven by the expansion property (γ). In-

deed, imposing (γ) alone (alongside (FNE)) implies dictatorial social choice from all

menus that are not the universal set X, granted that X contains at least four alterna-

tives. On the universal set, the ‘dictator’ can force the choice of any alternative but

cannot necessarily veto against it.
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Theorem 2. For |X| ≥ 4, an Arrovian aggregation rule f is consistent on D =

{c ∈ Cfne : c satisfies (γ)} if and only if there is some j ∈ {1, . . . , n} such that for

all (c1, . . . , cn) ∈ Dn:

(i) for all A ∈ A\{X}: f(c1, . . . , cn)(A) = cj(A),

(ii) f(c1, . . . , cn)(X) ⊇ cj(X).

On the other hand, when considering extension property (Aiz) instead of (γ) alongside

(α), i.e. for path-independent choice functions pseudo-rationalizable by multiple linear

orders (’selves’), possibilities emerge in the form of oligarchic rules.

Theorem 3. An Arrovian aggregation rule f is consistent on D = Cpsd if and only if it

is an oligarchic choice rule; that is, there exists some ∅ ≠ M ⊆ {1, . . . , n} such that, for

all (c1, . . . , cn) ∈ Cn
psd and all A ∈ A:

f(c1, . . . , cn)(A) =
⋃
i∈M

ci(A).

The only anonymous oligarchic rule (obtained by letting M = N) is the issue-wise

unanimity rule which, for all A ∈ A and all x ∈ A, declares x as choosable from A

unless x is unanimously rejected by all individuals. Interestingly, the collective choices

under this unanimity rule coincide with the collective choice function that is pseudo-

rationalized by the collection of all ‘selves’ in society.10

Two important remarks are in order. First, the unanimity rule is a (anonymous)

Arrovian procedure for all domains D we consider here. Yet as Theorem 1 shows, it is not

consistent on D = Cbin, Cqua, Cwo, Clo. This is due to the fact that collective choices under

the unanimity rule violate property (γ). For example, consider X = {a, b, c} and two

individuals with a ≻1 b ≻1 c and c ≻2 b ≻2 a. Unanimity rule yields c({a, b}) = {a, b}
and c({b, c}) = {b, c} as in both cases there is one voter choosing each of the alternatives.

Consequently, b ∈ c({a, b}) ∩ c({b, c}). At the same time, b /∈ {a, c} = c({a, b, c}) as no
voter chooses b from {a, b, c}, in violation of property (γ).11

Second, the strong Pareto rule, according to which all alternatives are choosable from

a given menu that are not strongly Pareto-dominated by some other alternative (i.e.,

strictly preferred by all voters) in it, is known to yield a binary collective choice function

10If all ci are pseudo-rationalizable by Ri
1, . . . , R

i
ki
, the collection of all ‘selves’ in society⋃

i=1,...,n{R
i
1, . . . , R

i
ki
} allows one to define a pseudo-rationalizable collective choice function.

11Similar arguments show that collective choices under any oligarchic rule violate (γ).
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on D = Cbin (that is, choices are rationalized by an acyclic collective preference rela-

tion).12 However, it is not an Arrovian procedure in our model as it violates indepen-

dence. To see this, reconsider our example for which a ≻1 b ≻1 c and c ≻2 b ≻2 a. As no

alternative is strongly Pareto-dominated in {a, b, c}, we have b ∈ {a, b, c} = c({a, b, c}),
although b /∈ c1({a, b, c}) and b /∈ c2({a, b, c}).13 Now suppose the preference of the

second individual changes so that c ≻′
2 a ≻′

2 b. As a strongly Pareto-dominates b we

have b /∈ c({a, b, c}). However, the second individual has not actually changed her choice

behavior for b in the menu {a, b, c} seeing that still b /∈ c′2({a, b, c}).14 Thus, the strong

Pareto rule, just as well as other ‘oligarchic’ rules in the sense of Gibbard (1969/2014),

are not independent in our choice-functional setting. These findings cast some doubt on

their status in the literature as representing ‘possibilities’ for independent aggregation.

We now restrict attention to finite X and consider the possibility of non-oligarchic

rules (in which no single individual possesses veto power) when dropping the extension

properties (γ)/(Aiz). We focus on rules that treat all individuals equally. Thus, the

following condition is natural.

Anonymity: Let π : {1, . . . , n} → {1, . . . , n} be a permutation (of individuals). Then

f(c1, . . . , cn) = f(cπ(1), . . . , cπ(n)).

Anonymity requires that ’voter’s names do not matter’ in the sense that the collective

choice rule be invariant to permuting (re-labeling) all individuals. Moreover, we impose

a parallel condition on alternatives within the same menu.

Menu-level Neutrality: Consider any A ∈ A such that A = {x1, . . . , xm} and any

permutation π : {1, . . . ,m} → {1, . . . ,m}. Let c = f(c1, . . . , cn) and c′ = f(c′1, . . . , c
′
n).

If, for all i = 1, . . . , n and all j = 1, . . . ,m, xj ∈ ci(A) ⇐⇒ xπ(j) ∈ c′i(A), then for all

j = 1, . . . ,m, xj ∈ c(A) ⇐⇒ xπ(j) ∈ c′(A).

Menu-level neutrality requires that all alternatives in any given menu are treated equal

(‘neutral’) by the aggregation rule in the sense that permuting them results in choosing

12Note that, if individual preferences are quasi-transitive, the strong Pareto rule yields quasi-transitive
social choices (that is, it is consistent on Cqua). If individual preferences are weak orders, the weak
Pareto rule according to which all alternatives are choosable that are not weakly Pareto dominated
by some other alternative (i.e., weakly preferred by all voters and strictly preferred by some voter),
yields quasi-transitive collective choices as well.

13In particular, the strong Pareto rule violates issue-wise unanimity and is not a unanimity rule in our
more general choice function framework. The same is true for the weak Pareto rule.

14Indeed, the second individual has not changed her overall choice behavior from {a, b, c} as {c} =
c′2({a, b, c}) = c2({a, b, c}). Thus, the strong Pareto rule even violates the weaker notion of inde-
pendence across menus that we introduce further below. Again, the same observations apply to the
weak Pareto rule.
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exactly the permuted originally chosen alternatives at the collective level. In other words,

collective choice from any menu is invariant under a re-labeling of the alternatives. Taken

together with monotone independence, this assumption implies that, at a given menu

A ∈ A, the rule determining whether any x ∈ A be chosen collectively is the same for

all alternatives in A.

Taken together, unanimity, monotone independence and anonymity require that ag-

gregation, at any issue x ∈ c(A), happens by setting an acceptance quota 0 < qx∈c(A) < 1

such that x ∈ c(A) ⇐⇒ 1
n |{i ∈ {1, . . . , n} : x ∈ ci(A)}| ≥ qx∈c(A). Whenever some

coalition W ⊆ {1, . . . , n} of individuals exceeds the quota qx∈c(A), we say that W is

a winning coalition (for x ∈ c(A)). Given menu-level neutrality these quotas must be

‘effectively equal’ for all alternatives in some given menu in the sense that they imply

the same winning coalitions for all x ∈ A.15

Theorem 4. An Arrovian, menu-level neutral and anonymous aggregation rule f is

consistent on Cfne if and only if it is a quota-rule such that, for all A ∈ A with |A| ≥ 2,

the quotas for collectively choosing any x from A imply the same structure of winning

coalitions and are such that (i) if n ≤ |A|, then 0 < qx∈c(A) ≤ 1/n; (ii) if n > |A|, then
0 < qx∈c(A) ≤ 1

|A|(1−
r
n) +

1
n1(r ̸= 0) where r = n mod |A|.

Theorem 4 implies that (maximal) consistent acceptance quotas at menu A approach

1/|A| for large societies (as n/|A| grows large) and need to decrease in the size of A.

For menus |A| ≥ n, consistent quota rules reduce to unanimity rule on A for which each

individual can veto not choosing any x ∈ A collectively (i.e. rejecting x ∈ c(A) requires

unanimous consent).

When also imposing contraction consistency (α), every winning coalition at some menu

A needs to be winning at all sub-menus B ⊆ A to ensure (α) holds at the collective level.

This implies that consistent quotas need to ‘effectively’16 decrease when moving to sub-

menus. As all menus are sub-menus of the universal set, maximal consistent quotas are

thus determined by |X|. Indeed, Theorem 4 implies that if qx∈c(A) = q̄ for all A ∈ A
and x ∈ A, then 0 < q̄ ≤ 1/|X| for large societies (as n → ∞).

4. Discussion and Outlook

The analysis of the previous section provides two main messages. First, non-dictatorial

(monotone) independent aggregation, even in the stronger form we consider here, is

15Note that - due to integer effects - a whole interval of quotas can induce the same set of winning
coalitions.

16That is, bar of any integer effects.
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possible if one is willing to give up binariness of the social choice function. This is

true even if individual choices are not themselves binary, just as long as they are path-

independent. Second, if one insists on binary choice functions, (monotone) independent

aggregation is necessarily dictatorial. Interestingly, the driving force behind this turns

out to be the expansion consistency condition (γ). To see this, remember that binariness

is equivalent to α and γ, while path-independence is equivalent to α and the Aizerman

condition.

Yet, the independence assumption we impose is undoubtedly strong. It requires not

only that aggregation is independent across different menus but also that it is indepen-

dent across alternatives within any given menu. While we consider the former a natural

condition of informational parsimony, the latter may be unnecessarily strong. Consider

the following weakening of independence.

Independence Across Menus: Consider any A ∈ A. Let c = f(c1, . . . , cn) and

c′ = f(c′1, . . . , c
′
n). If, for all i = 1, . . . , n, ci(A) = c′i(A), then c(A) = c′(A).

Thus, if collective choices are independent across menus, determining the collective

choice set for some menu A only involves eliciting individual choice sets for A. In some

sense, this condition might be considered the most natural analogue to Arrow’s notion

in the more general setting of aggregating choice functions. While Arrow’s original

condition allows for the collective choice from some menu to depend on individual choice

behavior from all submenus, it is not immediately clear why this would be relevant

information if individual choices are (potentially) not binary.

As an example of an aggregation rule that satisfies independence across menus but

not our fully-fledged notion of independence consider ‘approval voting’ which, for every

menu A, collectively chooses all alternatives with maximal approval by individuals. That

is, fAV(c1, . . . , cn)(A) = cAV(A) := argmaxx∈A |{i ∈ {1, . . . , n} : x ∈ ci(A)}|. On the

other hand, Borda rule (more generally, all scoring rules) does not satisfy independence

across menus (but satisfies Arrow independence) seeing that calculating (Borda) scores

at some menu A ∈ A relies on positional information to be revealed by individual choices

from any pair of alternatives x, y ∈ A.17

Observation 1. fAV satisfies Independence Across Menus. It is consistent on D = Cfne
but inconsistent on D = Csub, Cbin, Cpsd, Cqua, Cwo, Clo.

17Note that on D = Clo, eliciting choices from all pairs of alternatives in some given A ∈ A reveals the
individual’s underlying linear order when restricted to A.
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Observation 1 states that approval voting is not (sub-/pseudo-)rationalizable in any of

the ways considered here. To see this, note that it fails to satisfy the contraction property

(α) even if all individual choice functions do. Indeed, let {x, y, z} = A ⊆ X and suppose

that c1, c2, c3 are rationalized by the linear orders x ≻1 y ≻1 z, y ≻2 x ≻2 z and

z ≻3 y ≻3 x respectively. Thus, c1(A) = x, c2(A) = y, c3(A) = z and c1({x, y}) = x but

c2({x, y}) = c3({x, y}) = y. Consequently, x ∈ A = cAV(A) but x /∈ {y} = cAV({x, y})
failing (α). Thus, Approval Voting does not guarantee any of the consistency properties

considered in this paper at the collective level. Whether Approval Voting satisfies any

consistency property known in the literature remains an open question. At the same

time, Independence Across Menus defines the informational basis for Approval Voting.

Thus, it might be possible to characterize the latter in terms of it and a suitably defined

notion of positive responsiveness. We believe that this is an interesting avenue for future

research.
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Appendix

We define A≥2 := {A ∈ A : |A| ≥ 2}.

A. Proofs for Section 3

Proof of Proposition 1

We start with the special case that |X| = 3 and n ∈ {2, 4}. Consider menus of two

alternatives first. As all individuals choose at least one alternative from them, there

must be a weak majority for at least one alternative. Now consider the universal menu

X. If n = 2, every single individual forms a weak majority by herself. If n = 4, at least

one alternative must be chosen be chosen by two (or more) individuals forming a weak

majority. Thus, all collective choice sets are non-empty.

Now let |X| ≥ 3 and consider some menu {x, y, z} := A ∈ A≥2. The case of n = 3

individuals is covered in the main text. Let n ≥ 5 and k = n mod 3. If k = 0, let

(c1, . . . , cn) ∈ Cn
fne be such that ci(A) = x, ci(A) = y and ci(A) = z for n/3 individuals

each. If k = 1, let (c1, . . . , cn) ∈ Cn
fne be such that ci(A) = x, ci(A) = y for n/3 individuals

each and ci(A) = z for (n − 1)/3 + 1 individuals. If k = 2, let (c1, . . . , cn) ∈ Cn
fne be

such that ci(A) = x for n/3 individuals and ci(A) = y and ci(A) = z for (n − 2)/3 + 1

individuals each. Note that the share of voters in support of each alternative in A is

thus bounded by
n−1
3

+1

n = 1
3 + 2

3n ≤︸︷︷︸
n≥5

1
3 + 2

15 = 7
15 < 1

2 . Consequently, cmaj(A) = ∅.

Proof of Theorems 1–4

We analyze the aggregation of choice correspondences as a judgment aggregation problem

on a property space. This methodology was developed in Nehring and Puppe (2002);

Nehring (2006); Nehring and Puppe (2010). Our results are applications of the general

characterization results obtained therein.

Let ∅ ̸= D ⊆ C be a domain of choice correspondences such that for all A ∈ A≥2 :=

{A ∈ A, |A| ≥ 2} and x ∈ A there exist c, c′ ∈ D such that x ∈ c(A) and x /∈ c(A).18

For example, D = Cfne, D = Cpsd or D = Cwo. For all A ∈ A≥2 and all x ∈ A, define

Hx|A := {c ∈ D : x ∈ c(A)} and Hc
x|A := D\Hx|A (note that every issue Hx|A, H

c
x|A

partitions D). Thus, Hx|A corresponds to the property that x is chosen from A. Let

18This is a minimal richness condition requiring that no issue x ∈ c(A) is pre-determined. However,
this assumption is not crucial. Alternatively, we can simply ignore issues x ∈ c(A) which all choice
correspondences agree on.
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H = {Hx|A, H
c
x|A : x ∈ A ∈ A≥2} be the collection of all properties. As every choice

correspondence is identified with a unique combination of properties, (D,H) defines a

property space.

We say that a family (of properties) G ⊆ H is inconsistent if
⋂
G = ∅ (consistent

if
⋂

G ̸= ∅). G is critical if it is minimally inconsistent; that is,
⋂
G = ∅ and for

all G ∈ G,
⋂
(G\{G}) ̸= ∅. The critical families capture the dependency structure

between properties. If H,Gc ∈ G and G is critical, then property H conditionally entails

property G (seeing that – conditional on the other properties in the family – if x ∈ H,

then x ∈ G); we write H ≥0 G and let ≥ denote the transitive closure of ≥0 and let ≡ be

the symmetric part of ≥. We note that ≥0 (thus, ≥) is complementation-adapted; that

is, if H ≥0 G, then Gc ≥0 Hc. Moreover, as all families {H,Hc} are trivially critical,

≥0 (thus, ≥) is reflexive. Note that:

• (FNE) implies that for all A ∈ A≥2 with A = {x1, . . . , xm}: {Hc
x1|A, . . . ,H

c
xm|A} is

critical.

• (α) implies that for all A,B ∈ A≥2 with B ⊊ A and all x ∈ B: {Hx|A, H
c
x|B} is

critical.

• (Aiz) implies that for all A,B ∈ A≥2 with ∅ ≠ B\A = {y1, . . . , ym} and all x ∈ A:

{Hx|A, H
c
x|A∪B, H

c
y1|A∪B, . . . ,H

c
ym|A∪B} is critical.

• (γ) implies that for all A,B ∈ A≥2 for which neither A ⊆ B nor B ⊆ A and for all

x ∈ A ∪B: {Hx|A, Hx|B, H
c
x|A∪B} is critical.

Lemma 3. Let ∅ ≠ D ⊆ C.

1. Suppose all c ∈ D satisfy (FNE) and (α). Then for all A,B ∈ A≥2, x ∈ A, y ∈ B,

x ̸= y: Hc
x|A ≥ Hy|B.

2. Suppose all c ∈ D satisfy (γ) and (α). Then for all A,B ∈ A≥2, x ∈ A, Hx|A ≥
Hc

x|A.

3. Suppose all c ∈ D satisfy (Aiz) and (α). Then for all A,B ∈ A≥2, x ∈ A and

y ∈ B: Hx|A ≥ Hy|B. Thus, Hx|A ≡ Hy|B and Hc
x|A ≡ Hc

y|B.

Proof. 1. By (α), Hc
x|A ≥0 (H

c
x|A∪B). By (FNE), Hc

x|A∪B ≥0 Hy|A∪B. Again, by (α),

Hy|A∪B ≥0 Hy|B.

2. Suppose first that A ̸= X. By (γ), Hx|A ≥0 Hc
x|X\A∪x (conditional on Hc

x|X).

By (α), Hc
x|(X\A)∪{x} ≥0 Hc

x|X . Again, by (γ), Hc
x|X ≥0 Hc

x|A (conditional on
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Hx|(X\A)∪{x}). Now, if A = X, let B ⊊ X. By (α) and what we just showed,

Hx|X ≥0 Hx|B ≥ Hc
x|B ≥0 H

c
x|X .

3. Suppose first that y ∈ B\A. By (Aiz), Hx|A ≥0 Hy|A∪B (conditional on {Hc
y1|A∪B,

. . . , Hc
yk|A∪B, H

c
x|A∪B} for (B\A)\{y} = {y1, . . . , yk}). By (α), Hy|A∪B ≥0 Hc

y|B.

Else y ∈ A∩B. Then, by (α), Hx|A ≥0 Hx|A\{y} and, by (Aiz), Hx|A\{y} ≥0 Hy|A∪B

(conditional on {Hc
y1|A∪B, . . . ,H

c
yk|A∪B, H

c
x|A∪B} for B\A = {y1, . . . , yk}). Now,

again by (α), Hy|A∪B ≥0 Hy|B.

Consequently, Hx|A ≥ Hy|B and Hy|B ≥ Hx|A; thus, Hx|A ≡ Hy|B. By complemen-

tation-adaptedness, Hc
x|A ≡ Hc

y|B.

Lemma 4. Let ∅ ̸= D ⊆ C and |X| ≥ 4. Suppose all c ∈ D satisfy (FNE) and (γ).

Then, for all A,B ∈ A≥2 with A,B ̸= X and all x ∈ A, y ∈ B: Hx|A ≥ Hc
y|B.

Proof. We distinguish the following four cases:

Case 1: y /∈ A, x /∈ B

Note that x ̸= y. By condition (γ), we have Hx|A ≥0 Hc
x|{x,y}. By condition

(FNE), Hc
x|{x,y} ≥0 Hy|{x,y}. Lastly, again by condition (γ), Hy|{x,y} ≥0 H

c
y|B.

Case 2: y ∈ A, x /∈ B

Note that x ̸= y. As A ̸= X, there exists some z ∈ X\A, z ̸= x, z ̸= y. As

|X| ≥ 4, there exists some z′ ∈ X that is distinct from x, y, z. Applying con-

ditions (γ) and (FNE), we have Hx|A ≥0 Hc
x|{x,z} ≥0 Hz|{x,z} ≥0 Hc

z|{z,z′} ≥0

Hz′|{z,z′} ≥0 H
c
z′|{x,z′} ≥0 Hx|{x,z′}≥0Hc

x|{x,y}
≥0 Hy|{x,y} ≥0 H

c
y|B.

Case 3: y /∈ A, x ∈ B

Note that x ̸= y. As B ̸= X, there exists some z ∈ X\B, z ̸= x, z ̸= y. As

|X| ≥ 4, there exists some z′ ∈ X that is distinct from x, y, z. Applying con-

ditions (γ) and (FNE), we have Hx|A ≥0 Hc
x|{x,y} ≥0 Hy|{x,y} ≥0 Hc

y|{y,z′} ≥0

Hz′|{y,z′} ≥0 H
c
z′|{z,z′} ≥ Hz|{z,z′} ≥0 H

c
z|{z,y} ≥0 Hy|{y,z} ≥0 H

c
y|B.

Case 4: y ∈ A, x ∈ B

As A,B ̸= X, there exist z ∈ X\A, z ̸= x, z′ ̸= y and z′ ∈ X\B, z′ ̸= x,

z′ ̸= y. If z ̸= z′, we have by applying conditions (γ) and (FNE), Hx|A ≥0

Hc
x|{x,z} ≥0 Hz|{x,z} ≥0 Hc

z|{z,z′} ≥0 Hz′|{z,z′} ≥0 Hc
z′|{y,z′} ≥0 Hy|{y,z′} ≥0

Hc
y|B. If z = z′, then there exists some z′′ that is distinct from x, y, z. If x ̸= y,

then by applying conditions (γ) and (FNE) we have, Hx|A ≥0 Hc
x|{x,z} ≥0
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Hz|{x,z} ≥0 Hc
z|{y,z} ≥0 Hy|{y,z} ≥0 Hc

y|B. Else if x = y, there exists some z′′′

distinct from y, z, z′′. Then, by applying conditions (γ) and (FNE), we have

Hy|A ≥0 Hc
y|{y,z} ≥0 H{z|{y, z}} ≥0 Hc

z|{z,z′′} ≥0 Hz′′|{z,z′′} ≥0 Hc
z′′|{z′′,z′′′} ≥0

Hz′′′|{z′′,z′′′} ≥0 H
c
z′′′|{z,z′′′} ≥0 Hz|{z,z′′′} ≥0 H

c
z|{y,z} ≥0 Hy|{y,z} ≥0 H

c
y|B.

Consequently, in all cases, Hx|A ≥ Hc
y|B.

Proof of Theorem 1

Consider D = Cbin. Note that all c ∈ D satisfy (FNE), (α) and (γ). Let x ∈ A ∈ A≥2,

y ∈ B ∈ A≥2. (i) Assume x ̸= y first. By Lemma 3, parts 1 and 2, Hc
x|A ≥ Hy|B ≥ Hc

y|B.

By complementation-adaptedness, Hy|b ≥ Hx|A. (ii) Now let x = y. Then pick any z ̸= x

and some C ∈ A≥2 such that z ∈ C. By what was just shown, Hc
x|A ≥ Hc

z|C ≥ Hc
y|B.

Again, by complementation-adaptedness, Hy|B ≥ Hx|A. In total, we conclude that

Hx|A ≡ Hy|B and Hc
x|A ≡ Hy|B. Moreover, again by Lemma 3, parts 1 (and what we

just showed for the case x = y) and 2, Hc
x|A ≥ Hx|A ≥ Hc

x|A; thus, Hc
x|A ≡ Hc

x|A.

Consequently, D = Cbin is totally blocked. Note that putting additional restrictions on

choice correspondences introduces additional conditional entailments without removing

existing one. Thus, all D = Cqua, Cwo, Clo are totally blocked. The results follows from

(Nehring and Puppe, 2010, Theorem 1).

Proof of Theorem 2

Let |X| ≥ 4 and suppose that all c ∈ D satisfy (FNE) and (γ). Let A,B ∈ A≥2 such that

A,B ̸= X. Consider any x ∈ A and any y ∈ B. By Lemma 4, we have Hx|A ≥ Hc
y|B.

Let z ∈ B, z ̸= y. Then, again by Lemma 4, Hx|A ≥ Hc
z|B. By condition (FNE),

Hc
z|B ≥0 Hy|B. Thus, Hx|A ≥ Hy|B. Moreover, letting z′ ∈ A, z′ ̸= x and using Lemma

4, condition (FNE) and what was just shown, we also have Hc
x|A ≥0 Hz′|A ≥ Hc

y|A
and Hc

x|A ≥0 Hz′|A ≥ Hy|A. Thus, D is totally blocked on all issues {Hx|A, H
c
x|A} with

x ∈ A ̸= X. As there exists a critical family of length three on the collection of these

issues (for example, for three distinct x, y, z ∈ X, consider {Hx|{x,y}, Hx|{x,z}, H
c
x|{x,y,z}}),

some voter j ∈ N has veto power (cf. ‘Veto Lemma’ in Nehring and Puppe, 2002/2010).

As the subagenda of these issues is totally blocked, voter j is actually a dictator on it

(cf. ‘Contagion Lemma’ in Nehring and Puppe, 2002/2010). Moreover, we have for all

A ̸= X and all x, Hx|A ≥0 Hx|X (and thus, by complementation-adaptedness, Hc
x|X ≥0

Hc
x|A). Thus, j can veto against society not choosing alternative x ∈ X. This means

that we must have f(c1, . . . , cn)(X) ⊇ cj(X).
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Proof of Theorem 3

Consider D = Cpsd. Note that all c ∈ D satisfy (FNE), (α) and (Aiz). Let x ∈ A ∈ A≥2,

y ∈ B ∈ A≥2. By Lemma 3, part 3, Hx|A ≡ Hy|B and Hc
x|A ≡ Hc

y|B. Moreover, letting

z ̸= x and z ∈ C ∈ A≥2 and using the result just obtained together with part 1 of Lemma

3, we have Hc
x|A ≥ Hz|C ≥ Hy|B. At the same time, seeing that all critical families

contain at most one un-negated property, Hx|A ≱ Hc
y|B. Thus, D = Cpsd is semi-blocked.

By Nehring (2006), an Arrovian aggregation rule is consistent on Cpsd if and only if it

an oligarchy. That is there exists some M ⊆ {1, . . . , n} such that for (c1, . . . , cn) ∈ Cn
psd

and all A ∈ A≥2, all x ∈ A: x ∈ f(c1, . . . , cn)(A) ⇐⇒ ∃i ∈ M : x ∈ ci(A). Thus,

f(c1, . . . , cn)(A) =
⋃

i∈M ci(A).

Proof of Theorem 4

The equivalence of anonymous Arrovian aggregation to the existence of quotas qx∈c(A)

is established in (Nehring and Puppe, 2010, Proposition 2.2).19 Menu-level neutrality

requires that, for some given menu A ∈ A≥2, all ‘local’ aggregation rules applied to the

issues x ∈ c(A) are identical. That is, the structure of winning coalitions must be the

same for all such issues.

Now consider any A ∈ A≥2.

(i) Suppose n ≤ |A|. If, for all x ∈ A, 0 < qx∈c(A) ≤ 1/n, then each single individual

forms a winning coalition for all x ∈ c(A). As all individual choice sets ci(A) are non-

empty, so is the collective choice set c(A). On the other hand, if qx∈c(A) > 1/n for some

x ∈ A, then qx∈c(A) > 1/n for all x ∈ A (as all winning coalitions need to be the same).

Consider some (c1, . . . , cn) ∈ Cn
fne such that each individual chooses one (and only one)

distinct alternative from A. Then c(A) = ∅.
(ii) Suppose n > |A| and let r = n mod |A|. Suppose that 0 < qx∈c(A) ≤ 1

|A|(1 −
r
n) +

1
n1(r ̸= 0) for all x ∈ A. All individual choice sets ci(A) are non-empty. Thus,

if r = 0, there exists some alternative x ∈ A such that at least fraction 1/|A| of all
individuals choose x from A. If r > 0, there exists some alternative x ∈ A such that

at least fraction 1
|A|(1 − r

n) +
1
n of all individuals choose x from A. Hence x ∈ c(A)

in both cases and c(A) ̸= ∅. Conversely, suppose there exists some x ∈ A such that

19Nehring and Puppe (2010) consider quotas qH , qHc such that H resp. Hc are accepted iff the fraction
of voters supporting H resp. Hc is strictly greater than qH and qHc respectively to treat both H and
Hc equally. We only demand that support in favor of accepting x as collectively choosable from A
weakly exceeds the quota qx∈c(A). On the other hand, the fraction of voters not choosing x from A
needs to strictly exceed qx/∈c(A) := 1− qx∈c(A) to ban x from c(A). However, except for very special
cases (e.g., when qx∈c(A) = 1/2 and n is even), these formulations are equivalent.
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qx∈c(A) >
1
|A|(1 − r

n) +
1
n1(r ̸= 0). Let x1, . . . , xk ∈ X be such that A = {x1, . . . , xk}.

Consider a profile (c1, . . . , cn) ∈ Cn
fne such that ci(A) = xj , j = 1, . . . , n−r for (n−r)/|A|

individuals each and ci(A) = xj , j = n − r + 1, . . . , n for (n − r)/|A| + 1 individuals

each (note that the total sum of individuals is thus n). Thus, the fraction of individuals

voting for x ∈ c(A) is less than 1
|A|(1−

r
n) +

1
n1(r ̸= 0) for each x ∈ A. As all structures

of winning coalition are the same, this implies that c(A) = ∅.

B. Proof for Section 4

The proof of Proposition 1 is given in the main text.
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