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Abstract  
In the two-player electronic mail game (EMG), as is well-known, the probability of 
collective action is lower the more confirmations and re-confirmations are made 
available to players. In the multi-player EMG, however, as we show players may 
coordinate on equilibria where they require only few of the available confirmations 
from each other to act. In this case, increasing the number of available may either 
create equilibria with positive probability of collective action when none existed 
before, or may increase the probability of collective action, if equilibria with positive 
probability of collective action already existed for fewer available confirmations. 
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1. Introduction

Consider Rubinstein’s (1989) electronic mail game (henceforth EMG) where an informed 

and an uninformed player may or may not have an opportunity to benefit from collective 

action. The informed player finds out that the opportunity arises, and sends a message to the 

uninformed player. If this message arrives with certainty, the players achieve common 

knowledge about the opportunity. If the message gets lost with small probability, however, 

the informed player does not know whether the uninformed player knows about the 

opportunity. A remedy would now seem that the uninformed player automatically confirms 

receipt of the informed player’s message. Still, if such a confirmation gets lost with small 

probability as well, then the uninformed player who receives the informed player’s message 

and sends a confirmation, does not know whether the informed player knows that the 

uninformed player knows about the opportunity. From this perspective, it would seem useful 

that an automatic communication protocol sends confirmations and confirmations of 

confirmations back and forth indefinitely, in a process that only ends when a message gets 

lost, or when a deadline is reached. 

Yet as shown by Rubinstein (1989), the players now only achieve collective action if all 

available confirmations are received, which in case there is no deadline on communication 

means that players never act, as a message gets lost sooner or later. While being able to 

communicate longer allows players to validate higher-order statements of the type “I know 

that you know that I know that… you know that there is an opportunity”, and would seem to 

bring them closer to common knowledge, paradoxically exchanging messages for a longer 

time makes players less likely to act, and they are best off if at most one confirmation is sent. 

The purpose of this paper is to show that this paradox need not exist for the multi-player 

EMG, in that in this variant of the EMG longer communication may increase the probability 

of collective action. The intuition is the following. In the multi-player EMG, the automatic 

communication protocol does not just allow for one string of confirmations and re-

confirmations, but for multiple such strings, which moreover grow exponentially in number as 

the deadline is extended. If players coordinate on requiring the receipt of messages in only a 

few of such strings, when the deadline is extended by one additional stage, it continues to be 

true that one more round of confirmations is required, which as such decreases the probability 

of collective action. Yet, this may be more than compensated by the fact that the larger 

number of available message strings creates more back-up communication channels for the 
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players, thus countering the effect of noise. This explains why allowing players of the multi-

player EMG to validate additional higher-order statements may make them more likely to act. 

Two authors treat variants of the multi-player EMG, but obtain results that confirm those of 

the two-player EMG.1 Morris (2002a, 2002b) treats a multi-player EMG where a threshold of 

players needs to jointly act to achieve collective action, and where at each communication 

stage a new sample of players smaller than the threshold is randomly picked. Either all 

players in this sample receive a confirmation from the sample of players taken at the previous 

stage, or none of them does. Corroborating Rubinstein (1989)’s result, Morris shows that if 

the communication process continues indefinitely, the players do not achieve collective 

action. Coles (2009) presents a multi-player EMG with a single informed player where 

uninformed players do not send confirmations to one another, and where the informed player 

only sends confirmations to the uninformed players when having received confirmations from 

all uninformed players. His results also confirm Rubinstein’s. The reason for the difference 

between our results and those of Morris and of Coles lies in the restrictions that these authors 

put on their communication protocols, such that not every possible level and type of higher-

order knowledge is produced. These restrictions eliminate the effect of having multiple 

alternative communication channels that plays a key role in our paper.2 

The paper is structured as follows. Section 2 introduces our multi-player EMG, and Section 

3 characterizes the set of pure-strategy Bayesian Nash equilibria of this game where collective 

action takes place with positive probability. Section 4 identifies circumstances in which 

extending the deadline is beneficial to players. We end with a discussion in Section 5. 

2. Multi-player electronic mail game

The multi-player EMG is played by a set of players {1, 2, …, I}. We use symbols i, j, k, l to 

refer to generic players. In the game, the following compound lottery takes place from stages 

0 to z. At stage 0, Nature with probability p chooses state r (= there is an opportunity for 

1 The following papers modify the EMG in other ways than introducing multiple players. Dulleck (2007) shows 

that boundedly rational players with imperfect recall can still coordinate on requiring few messages; Strzalecki 

(2010) argues the same by applying a level-k reasoning model. Dimitri (2004) shows that when messages from 

different players get lost with different probabilities, coordinated action can still occur. Binmore and Samuelson 

(2001) and De Jaegher (2008) investigate the effect of communication being voluntary instead of automatic. 
2 Recently, Coles and Shorrer (2012) treat a variant of Coles (2009), where again uninformed players do not 

communicate with each other, and where the event of a message getting lost does not occur independently from 

other messages getting lost. As shown by the authors, because of this correlation, players are able to coordinate 

on equilibria where only a few messages are required. 
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collective action), and with probability )1( p  chooses state q (= there is no opportunity). In 

state q, no player receives messages. In state r, at stage 1, Nature (n) independently with 

probability )1(   lets each player i receive a message string in  (denoting a message from 

Nature directed to player i), and with probability ε does not let this player receive a message 

string. We typically assume ε to be small. When any player i receives message string in  at 

stage 1, Nature at stage 2 independently with probability )1(   lets each player ij   receive 

message string jin   (denoting that j knows that i knows that state r occurs), and with 

probability ε does not let j receive this message. When any player j receives jin   at 

stage 2, Nature at stage 3 independently with probability )1(   lets each player jk 

(including ik  ) receive message string kjin   (denoting that k knows that j knows 

that i knows that state r occurs), and with probability ε does not let k receive this message 

string. In this manner, each individual received message string, denoted as m, continues to be 

forwarded until it gets lost, or until the ultimate communication stage z has been reached. 

At stage )1( z , the players simultaneously choose an action from the same action set {Q, 

R}, where R means acting (“revolting”) and Q means not acting (“quitting”). The players’ 

payoffs are summarized in Table 1. Each player obtains payoff 0 when doing Q, whatever the 

state, and whatever other players do. Each player incurs loss L when doing R in state q 

whatever other players do, and when doing R in state r when not all other players do R as 

well. Each player obtains benefit H when doing R in state r when all other players do R as 

well. We assume that 0 HL , and typically consider L to be large.3 

State q: Prob. )1( p State r: Prob. p

One or more others play Q  All others play R 

Action Q 0 0 0 

Action R –L –L H 

Table 1 Payoffs of individual player as function of states and actions; 0 HL , 2/1p . 

In order to describe the information structure and to define strategies and equilibria of the 

multi-player EMG, it is useful to see this game as a standard simultaneous moves game with 

incomplete information. In such a game, typically a simple lottery (Ω, π) consisting of a set of 

states of the word Ω and a probability distribution π, determines which state of the world 

3 The version of the EMG treated here is a multi-player version of the two-player EMG of Morris and Shin 

(1997), which without loss of generality, differs slightly from Rubinstein’s (1989) original game.  
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occurs (where typical state of the world ω occurs with probability π(ω)). To reduce the 

compound lottery in the multi-player EMG to a simple lottery, consider the directed graph 

referred to as the maximal communication tree, an example of which is found in Figure 1 for 

the case I = 3, z = 2. The root node with label n has a link, represented as in , to each of I 

nodes with labels 1 to I, at distance 1 from the root node. Each such node with label i has a 

link ji   to each of (I – 1) nodes with labels  j ≠ i at distance 2 from the root node. From 

each such node with label  j again departs a link kj   to each of the (I – 1) nodes with labels 

k ≠ j, at distance 3 form the root node. And so on, where the maximal communication tree 

expands until terminal nodes at distance z from the root node are reached, so that for a 

distance t, with zt 1 , it has 1)1(  tII  nodes at distance t from the root node. Note that to 

each path jin  ... contained in the maximal communication tree starting at the root 

node, corresponds a possible message string. 

Figure 1. Maximal communication tree when I = 3, z = 2. 

Define as a tree g any connected subgraph of the maximal communication tree, that has as 

its root the node with label n. Denote by G the set of all trees contained in the maximal 

communication tree, where we assume this to include the empty tree. E.g., in the simple case 

in Figure 1, the number of trees contained in the maximal communication tree equals 
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where state r occurs and all message strings contained in g arrive, where in short we refer to 

4 This includes the empty tree; for each of the 3 cases with a single node at distance 1 from the root node, 4 

different trees with either 0, 1 or 2 nodes at distance 2; for each of the 3 cases with 2 nodes at distance 1, 16 

different trees with either 0, 1, 2, 3 or 4 nodes at distance 2; for the single case with exactly 3 nodes at distance 1, 
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this as state of the world g. In the same manner, we use symbol G not only for the set of all 

trees, but also for the set of all states of the world where state r occurs. Furthermore, as 

already noted, whenever state q occurs, the set of received message strings is automatically 

empty, where in short we refer to this as state of the world q. We thereby obtain that in the 

reduced-form simple lottery, Ω is the set ),( Gq , π(q) equals )1( p ,  and for any g in G, π(g) 

equals zzz
xxIxxxIxxIx

p


 121211
)1()1(

)1...()1()1(  , where xt denotes the number 

of message strings arriving at stage t, with Ix  10  and with 1)1(  tt xIx  for zt 2 . 

Furthermore, it is standard in a game with incomplete information that a signal map assigns 

to each state of the world a signal for each player. In the multi-player EMG, we denote by μi 

player i’s signal map, and by Mi the set of signals he can observe. Concretely, the signal map 

μi: (q, G)  Mi assigns to state of the world q the empty message string set ϕ received by i, 

and to each state of the world g in G message string set μi(g), consisting of each message 

string that i receives in g. The set of signals Mi, with typical element Mi, is therefore a 

collection5 of message string sets containing a μi(g) for each g in G. One and the same signal 

may be received for several states of the world. E.g. in Figure 1, denote m1 = 12n , m1´ 

= 13n , m2 = 23n  and m3 = 32n . Consider g = {m1, m1´, m2}. Then μ1(g) 

= {m1, m1´}. Yet, 1 also receives signal {m1, m1´} in states of the world {m1, m1´}, {m1, m1´, 

m3}, and {m1, m1´, m2, m3}. 

 If player i receives signal Mi, he learns that the true state of the world lies in the set of pre-

images μi
–1(Mi) of Mi. The posterior probability that a state of the world ω in μi

–1(Mi) occurs 

then equals π(ω)/π(μi
–1(Mi)), where π(μi

–1(Mi)) is the sum of the probabilities of all the states 

of the world in the set μi
–1(Mi). The collection of sets of states of the world obtained by 

assigning a set of pre-images to each Mi in Mi, is player i’s information partition. A strategy 

for player i is a map αi: Mi {Q, R}.  A strategy profile (α1, α2, … , αI) is a pure-strategy 

Bayesian Nash equilibrium if for each player i, for each signal Mi, αi(Mi) is such that for the 

action Ai ≠ αi(Mi), 

 


  


)),((),())](()([
))(

1
1 iiiiiM ii MuM

ii

 


)),((,))](()([
))(

1
1 iiiiM ii AuM

ii



 

5 “Collection”, and later on “family” are used as synonyms of sets, to avoid the expression “set of sets”. 
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where i  is the profile of strategies of all other players, where i  refers to each other 

player’s signaling map, and where ui is player i’s payoff as a function of his own action, the 

actions of others, and the state of the world. We call a collective-action equilibrium6, any 

pure-strategy Bayesian Nash equilibrium where it occurs with positive probability that all 

players act in state r. 

We focus on collective-action equilibria where equilibrium strategies meet the following 

restriction:  

(R1) The strategy i  of every player i is such that: if for a iM Mi we have RMii )( , 

then for any 'iM Mi with ii MM ' , we also have RMii )'( ; if for a iM Mi we 

have QM ii )( , then for any ''iM  Mi with ii MM '' , we also have QMii )''( . 

(R1) means excluding inefficient equilibria where players  coordinate on doing Q conditional 

on the receipt of particular message strings. For small noise, such equilibria are obviously 

inefficient, as collective action is then unlikely to take place. Focusing on equilibria meeting 

(R1), a candidate equilibrium strategy of any player i can now be described in a more concise 

manner. First, to describe a strategy αi it suffices to characterize the collection of all message 

string sets leading i to play R, where we call an individual message string set in this collection 

a sufficient set; all non-included message string sets then necessarily lead the player to play Q. 

Formally, for a given strategy αi, define the set Mi
R = { iM Mi: RMii )( }. Then any

element of Mi
R, with typical element denoted as Si, is a sufficient set for i. Second, by (R1), if

i acts when receiving sufficient set Si, he also acts when receiving any Si '  Mi
R such that

Si ' Si. For a given set Si ' leading i to act, we may therefore succinctly describe part of i’s 

strategy by focusing only on the minimal sufficient subset of message strings, denoted min
iS , 

leading i to act (with min
iS   Si ' ).  Any superset of min

iS  then necessarily leads i to act as 

well. Formally, a minimal sufficient set is any min
iS Mi

R such that there does not exist ''iS

Mi
R  with ''iS min

iS . Player i’s strategy is now fully described by a collection of minimal 

sufficient sets S min
i  = { min

iS , …, min
'iS , min

'' iS ,…}, and any collective-action equilibrium 

6 The multi-player EMG always has a pure-strategy Bayesian Nash equilibrium where players never act, and has 

mixed equilibria, where upon the receipt of messages players randomize over acting or not. In all of the 

mentioned equilibria, each player’s expected payoff is zero. Our focus on collective-action equilibria is based on 

the premise that players can coordinate on Pareto superior equilibria.  
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can be described as a profile of collections of minimal sufficient sets. The next section 

characterizes all collective-action equilibria. 

3. Characterization of collective-action equilibria of the multi-player EMG

Intuitively, in any collective-action equilibrium, if player i receives at least all message 

strings in at least one individual minimal sufficient set min
iS , and finds this sufficient to act, it 

must be that player i expects that with high probability an event occurs such that all other 

players observe specific minimal sufficient sets of their own – where these players then also 

expect that with high probability the mentioned event occurs. This suggests that, just as each 

pure strategy can be described by a number of alternative minimal sufficient sets, each 

collective-action equilibrium can be characterized by a number of alternative events such that, 

if players expect any of these events to occur with high probability, they act. We call these 

action-inducing events. Theorem 1 shows that this intuition is indeed valid, and that action-

inducing events correspond to specific trees in G which we call broom sets. 

Figure 2. Maximal communication tree G, containing brooms b1 (solid arrows), b2 (dashed 

arrows), and b3 (dotted arrows). 

Formally, because of its form, we call a broom b any tree in G that contains a single path 

from the root node to a node with label i at distance )1( z  from the root node, as well as 

each of the (I – 1) links of this node with label i to nodes with labels ij   at distance z from 

the root note.7 Denote by B the set of all brooms in G. Over any given set, denote by P*[.] the

7 When z = 1 we consider the maximal communication tree as containing a single broom, namely the maximal 

communication tree itself. 

n 
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power set excluding the empty set. Then a broom set B is any element of P*[B]. In knowledge 

terms, broom set B corresponds to the event of any state of the world g occurring such that B 

is a subgraph of the tree g. E.g., in Figure 2, B = {b1, b2, b3}, and P*[B] consists of 7 broom 

sets, with B1 = {b1}, B2 = {b2}, B3 = {b3}, B4 = {b1, b2}, B5 = {b2, b3}, B6 ={b1, b3}, B7 ={b1, 

b2, b3}. E.g. to B4 corresponds the event where either of five states of the world occurs, where 

each time all message strings in b1 and b2 arrive, and additionally either no other message 

strings arrive; 3n  arrives; 3n  and 13n  arrive; 3n  and 23n  arrive; or 

3n , 13n  and 23n  arrive. 

The set P*{P*[B]} lists all the families of broom sets in G. Define as a Sperner family of 

broom sets any element F of P*{P*[B]} such that no broom set in F is a subset of another 

broom set in F. Formally, a Sperner family of broom sets is any FP*{P*[B]} such that   B, 

B´ F , if B ≠ B´, we have B   B´, B   B´. The set P*F{P*[B]} lists all Sperner families of

broom sets in G. E.g. in Figure 2, P*F{P*[B]} consists of 18 Sperner families of broom sets,

with F1 = {B1}, F2 = {B2},  F3 = {B3}, F4 = {B4}, F5 = {B5},  F6 = {B6}, F7 = {B7}, F8 = {B1, 

B2}, F9 = {B2, B3},  F10 = {B1, B3}, F11 = {B1, B2, B3}, F12 = {B1, B5}, F13 = {B2, B6}, F14 = 

{B3, B4}, F15 = {B4, B5}, F16 = {B4, B6}, F17 = {B5, B6}, F18 = {B4, B5, B6}. In knowledge 

terms, to each family of broom sets corresponds a set of alternative events. 

Finally, for any Sperner family of broom sets F = {B,…, B´, B´´,…}  P*F{P*[B]}, define

Mi(F) = {μi(B),…, μi(B´), μi(B´´),…}, where we recall that μi(g) is the set of all message 

strings that i receives in a tree g. Mi(F) is thus a collection of message string sets that i 

receives, one for each broom set in the Sperner family of broom sets F. E.g. in Figure 2, for 

the family of broom sets F15 = {B4, B5}, M1(F15) = {{ 1n , 12n }, { 12n , 

13n }}, M2(F15) = {{ 21n , 2n }, { 2n , 23n }}, and M3(F15) = 

{{ 31n , 32n }, { 32n , 3n }}. Theorem 1 now shows that any profile of 

collections of minimal sufficient sets (S min
1 , S min

2 ,…, S min
I ) describing a collective-action 

equilibrium, corresponds to some Sperner family of broom sets F = {B,…, B´, B´´,…}, in that 

in this equilibrium for each player i,  S min
i  = Mi(F) = {μi(B),…, μi(B´), μi(B´´),…}. Thus, in

the case of Figure 2, there are 18 collective-action equilibria. E.g. to F15 = {B4, B5} 

corresponds a collective-action equilibrium where S
min

1 = M1(F15), S
min

2 =M2(F15), and 

S
min

3 =M3(F15). Put otherwise, a collective-action equilibrium exists where players act if and 

only if they either believe that with high probability action-inducing event B4 occurs (= any 
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state of the world g occurs such that both b1 and b2 are subgraphs of the tree g), or that action-

inducing event B5 occurs (= any state of the world g occurs such that both b2 and b3 are 

subgraphs of the tree g).8 

Theorem 1. In the multi-player EMG, there exists a 1*   such that for any ε in *,0(  ], the 

following applies: 

(i) Consider any Sperner family of broom sets F = {B,…, B´, B´´,…}P*F{P*[B]}. Then if

each ij   considers Mj(F) = {μj(B),…, μj(B´), μj(B´´),…} as a collection of alternative 

minimal sufficient sets, then it is a best response for i to consider Mi(F) = {μi(B),…, 

μi(B´), μi(B´´),…} as a collection of alternative minimal sufficient sets. 

(ii) Conversely, consider any collective-action equilibrium. Then a Sperner family of broom 

sets FP*F{P*[B]} can be found such that the profile (M1(F), M2(F), …, MI(F))

describes this equilibrium, in that it constitutes the profile of collections of minimal 

sufficient sets corresponding to this equilibrium. 

Theorem 1 can be understood by means of the following intuitions. First, just as in 

Rubinstein’s (1989) two-player EMG, if the message string set Mi received by player i does 

not contain message strings received later than at stage )2( z , this can never be sufficient to 

i for acting. If Mi would be sufficient to i anyway, given that the loss of acting in the wrong 

circumstances is large, only confirmations of the message strings in Mi would be sufficient to 

j ≠ i. But, given that i is now able to receive confirmations of these confirmations received by 

j, Mi cannot be sufficient itself to i. It follows that players can only consider penultimate or 

ultimate message strings received as sufficient for acting. This explains why action-inducing 

events consist of (pen)ultimate message strings. 

Second, as by assumption every message string received by a player is forwarded to each 

other player, a single (pen)ultimate message string received may be sufficient to act. If player 

i receives a penultimate message string m, and believes that receipt of the ultimate 

confirmation of this message string is sufficient to all other players, then for sufficiently small 

noise, m is sufficient to i, as by assumption i is not able to receive confirmations of the 

ultimate confirmations. At the same time, if player j receives an ultimate message string m´ 

which is a confirmation of m, and believes that m is sufficient to i and that a confirmation of 

8 Note that if a player receives all available message strings, he believes that with high probability both the 

events corresponding to B4 and to B5 occur. 
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m is sufficient to each k ≠ i, j, then for sufficiently small noise, m´ is sufficient to j. This 

explains why any action-inducing event may correspond to a single broom, containing a 

single penultimate message string, and all confirmations of this message string. 

Third, while in equilibrium, a single (pen)ultimate message string received may suffice to a 

player for acting, players may lock each other into requiring multiple such message strings. 

Simply, if only a non-singleton set Mi of (pen)ultimate message strings is sufficient to i, then 

for each penultimate message string m in Mi, only a confirmation of m will be sufficient to 

other players. Similarly, for each ultimate message string m´ in Mi, only the message string 

m´´ of which m´ is a confirmation, will be sufficient to a player j; furthermore, only the 

confirmations of m´´ will be sufficient to a player k, with k ≠ i, j. This again justifies why only 

all message strings in Mi are sufficient to i in the first place, and explains why any action-

inducing event may correspond to a broom set rather than to a broom. 

Fourth, as soon as message strings are sent at more than one stage, given that there are now 

multiple penultimate message strings, players can also coordinate on finding multiple 

alternative message string sets sufficient. There may therefore be several alternative action-

inducing events. 

As is easy to see, the Pareto-worst collective-action equilibrium is one where each player 

only acts when receiving each potentially available message string. In this case, the Sperner 

family of broom sets describing the equilibrium consists of one single broom set, namely the 

broom set containing all brooms in the maximal communication tree. E.g., in the case of 

Figure 2, the Pareto-worst collective-action equilibrium is the one corresponding to the 

Sperner family of broom sets F7 described above. At the same time, in the Pareto-best 

collective-action equilibrium, each player acts as soon as receiving at least a single 

(pen)ultimate message string, in which case in the Sperner family of broom sets describing the 

equilibrium, each broom in B is in a singleton broom set. In the case of Figure 2, the Pareto-

best collective-action equilibrium is the one corresponding to the Sperner family of broom 

sets F11 described above. 

4. Beneficial long communication

We now show that longer communication may make players better off in the multi-player 

EMG. There are two ways in which this is true. First, as shown in Proposition 1, it may be 

that a collective-action equilibrium only exists if 2z , so that talking for a longer time is a 
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necessary condition for benefits of collective action to be possible. Second, as shown in 

Proposition 2, even if a collective-action equilibrium exists for 1z , it may be that players 

increase the probability of collective action when z is increased. We start with Proposition 1, 

which shows that parameters exist such that for any finite 2z , there is a collective-action 

equilibrium, whereas for 1z , such an equilibrium does not exist. Intuitively, to a player 

who receives just enough message strings to make collective action possible, the fact that z is 

high means that there are more ways in which other players could have received a sufficient 

number of message strings.9 

Proposition 1. For the multi-player EMG, consider 1z , and *zz   with 2*z . Then for 

given I, a large (L/H) exists such that for any ε in )/(*,0( HL ], where )/(* HL  is a 

function of (L/H), a collective-action equilibrium exists for *zz  , but not for 1z . 

The result in Proposition 1 may be understood using Monderer and Samet’s (1989) concept 

of common π-belief. An event is common π-belief if everyone believes it with probability at 

least π; everyone believes with probability at least π that everyone believes it with probability 

at least π; and so on. It is clear now that a collective-action equilibrium only exists if it is 

common )/( LHL  -belief among the players that there is an opportunity. If 

)/()1( 1 LHLI   , this cannot be achieved in the unique candidate collective-action 

equilibrium for 1z . Yet, in the Pareto-best collective-action equilibrium for a 2z , even a 

player who receives only a single penultimate message string m holds stronger beliefs that all 

other players received at least one ultimate message string, because this can now be achieved 

even if not all confirmations of m arrive. It follows that with 2z , players can achieve a 

higher degree of common π-belief than with 1z . This contrasts with Rubinstein’s (1989) 

two-player EMG, where the informed player notifies the uninformed player about the 

opportunity, who confirms receipt to the informed player, and so forth. In this case, if the 

communication process has a deadline, a unique collective-action equilibrium exists for each 

possible deadline, where each player acts only when receiving the (pen)ultimate message 

string. In each such equilibrium, players achieve the same degree of common π-belief about 

9 It should be noted that all results in this section also apply for I = 2. This is because, contrary to what is the case 

in Rubinstein’s (1989) two-player EMG, in a two-player version of our game, both players may receive a 

message from Nature. Because of this, starting from 2z , the communication process generates exactly two 

brooms, and never more. It follows that the probability of collective action necessarily decreases for 3z , so 

that Proposition 2 is not valid in this case. This differs from the case with I ≥ 3, where the number of brooms is 

increasing in z . 
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the opportunity for collective action, namely common )1(  -belief. Summarizing, while in 

the two-player EMG availability of additional higher-order statements does not lead to a 

higher degree of approximate common knowledge, it may in the multi-player EMG. 

We next turn to our result that, even if collective-action equilibria exist for each z, being 

able to talk longer may still increase the probability of collective action. For simplicity, we 

focus on symmetric collective-action equilibria (in short: symmetric equilibria). Such 

equilibria can be described by a minimal number of (pen)ultimate message strings X which 

each player requires to act, where we call X the parameter of a symmetric equilibrium. 

Examples include the Pareto-best collective-action equilibrium, which has parameter 1X , 

and the Pareto-worst equilibrium, which for 2z  has parameter 2)1(  zIIX . 

Proposition 2 shows the following. Consider a multi-player EMG with given I, H and L, and 

vary the deadline z. Assume that the parameters are such that the unique collective-action 

equilibrium exists for 1z , and such that for deadlines 2z , a symmetric equilibrium with 

parameter X exists where )2(1  IX , on which players coordinate (meaning that players 

require relatively few message strings). Then for sufficiently small ε, the probability of 

collective action is strictly larger for any finite 2z  than for 1z , and does not vanish as 

the finite z approaches infinity. 

It should be stressed that Proposition 2 does not claim that there is a systematic increasing 

relation between the length of the deadline and the probability of collective action (for players 

who coordinate on a symmetric equilibrium with specific parameter X). E.g., for 3I , 

3.0 , it can be checked that the probability of collective action for players who always play 

the Pareto-best collective-action equilibrium is higher for 2z  than it is for 1z  or 3z . 

Calculating a general expression for the probability of collective action given a symmetric 

equilibrium with parameter X, proves to be non-tractable. Instead, in the proof of Proposition 

2, we calculate a lower bound on this probability, and show that, for a range of low ε,  this 

lower bound is increasing in z and is larger than the true probability of collective action for 

1z . This shows that any longer communication can be better than the shortest possible 

communication. 

Proposition 2. For the multi-player EMG, consider *zz   with 2*z , and consider 1z . 

Let the unique collective-action equilibrium exist for 1z . Let a symmetric equilibrium with 

parameter X, )2(1  IX , exist for *zz  , and let this equilibrium be played. Then a 
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range of ε in *,0(  ] exists such that the probability of collective action is strictly larger for 

*zz   than for 1z . 

The intuition for the result in Proposition 2 is the following. Suppose that players e.g. play 

for each z the Pareto-best collective-action equilibrium. Then receipt of every (pen)ultimate 

message string in any single broom is sufficient for collective action to be achieved. 

Extending the deadline has two effects. A first effect is that the probability of all 

(pen)ultimate message strings arriving in an individual broom becomes smaller, as one more 

message string needs to arrive to achieve this. A second effect is that arrival of the 

(pen)ultimate message strings in many more brooms becomes sufficient to ensure collective 

action. Proposition 2 shows that the second effect may compensate the first effect. This 

contrasts with the two-player EMG, where the communication process cannot generate more 

than a single broom, so that only the first effect applies. 

A fundamental requirement for the result in Proposition 2 to apply is that players coordinate 

on equilibria where receipt of few message strings is sufficient for acting, and that they 

continue to do so as the number of communication stages is increased. At the other extreme, if 

players instead for each z play the Pareto-worst collective-action equilibrium, the probability 

of collective action decreases as z gets larger, and moreover vanishes as z approaches infinity.  

5. Conclusion

As pointed out by Geanakoplos (1992), Rubinstein’s (1989) results on the two-player EMG 

may be interpreted as showing that two players trying to coordinate their actions need strict 

communication rules to avoid inefficiency. Geanokoplos’ example is communication between 

military personnel, where a command is followed by a single acknowledgement, and nothing 

more.10 Our analysis of the multi-player EMG suggests that this interpretation does not extend 

to more than two players. Here, the absence of strict communication rules, such that the 

number of confirmations, and confirmations of confirmations that is sent back and forth is 

only limited by a communication deadline, may increase efficiency, because it creates back-

up channels which counter noise. Thus, activists on Twitter who among each other take a long 

10 Chwe (1995) similarly investigates optimal communication processes in some simple games. His focus is on 

whether it is optimal to use confirmations to counter noise, or to use redundancy (= repeating the same message 

several times). De Jaegher (2006) investigates in which circumstances positive and negative acknowledgements 

are efficient in some simple games, and whether they are also used in equilibrium. 
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time tweeting and re-tweeting calls for collective action, may be more effective at achieving 

collective action, as this allows for a myriad of manners in which all activists can be reached. 
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Appendix: Proofs 

Proof of Theorem 1. Step 1 constructs a message string set for i, given a minimal sufficient 

set of any ij  . Parameters exist such that this constructed set is a sufficient set to i (Step 2), 

and moreover a minimal sufficient set (Step 3). Step 4 shows that, given these parameters, 

every equilibrium minimal sufficient set consists only of (pen)ultimate message strings. Step 

5 shows that any collective-action equilibrium is described by a Sperner family of broom sets. 

Step 6 finally shows that the collection of all possible Sperner families of broom sets 

characterizes the set of all collective-action equilibria. 

Step 1. Consider minimal sufficient set 
min

jS  of j. Then, denoting by a superscript above an 

arrow the stage at which a message is sent, for ji  , we can construct the message string set 

)(
min

ji SS  containing: 

(i) for any min
11

... j

tt

Sjkn 


 with zt  , the message string ijkn
ttt 111

...


 ; 

(ii) for any min
121

... j

zzz

Sjkln 


, in case ik   message string ikln
zzz


 121

... ; 

in case ik   message string kln
zz 121

...


 = iln
zz 121

...


  itself. 

Define as Si )(
min

ijS   the set containing for each 
min

jS  of each j ≠ i a message string set 

)(
min

ji SS . 

Step 2. In any candidate collective-action equilibrium where 
min

jS  is a minimal sufficient set 

to j, it must be that j attaches some probability φ to obtaining L when acting after receiving 

every message string in 
min

jS , where 0)1(  LH  . Furthermore, in any such 

equilibrium, i should then act as well when believing that it is sufficiently likely that j 

received every message string in 
min

jS . Let i receive all message strings in )(
min

ji SS , and 



17 

let min
jS  contain V message strings of the type under (ii) in Step 1. As z and I are finite, V is 

finite too. Player i now certainly acts if 

  0])1(1[)1()1(  LLH VV  . (A1) 

Given (R1), φ is increasing in ε. It follows that for any L, H and V, small ε exist such that (A1) 

is valid, meaning that )(
min

ji SS  is a sufficient set. 

Step 3. Consider the collection of message string sets Si )(
min

ijS   as constructed in Step 1. 

We show that this is a collection of minimal sufficient sets by, first, constructing a message 

string set Mi Mi such that 1) there is no )(
min

ji SS Si )(
min

ijS   such that )(
min

ji SS iM ; 

2) Mi is as conducive as possible for i to act; and by, second, showing that even when

receiving all message strings in Mi, i prefers not to act. We construct such a Mi as follows. For 

any player j ≠ i, let each minimal sufficient set )(
min

ji SS  contain one message string m, such 

that iji MmSS }\)({
min

, but iMm . At the same time, let 
min

jS  contain, for a message 

string 'm  received by k, a message string jm '  (denoting a confirmation received by j of 

'm ) such that for m  as defined, it is the case that m ijm  ' , with either ik  , or ik 

but im' iM . Player i then believes that j did not receive message string jm '  with 

probability   )2/(1)1(
1

 


; put otherwise, i believes that j received every 

message string in 
min

jS  with probability )]2/(1[1  . If the sum of the cardinalities of the 

minimal sufficient sets held by other players is now W, i believes with probability at most 

})]2/(1[1{ W  that he will obtain H with positive probability when acting, and with 

probability at least W)]2/(1[   that he obtains L with probability 1. As 0 , the former 

probability approaches }5.01{ W , in which case H is obtained with probability approaching 

1. It follows that as 0 , i receiving message string set Mi prefers not to act if

05.0)5.01(  LH WW  (A2) 

For any finite W (where W must be finite because I and z are finite), a large (L/H) exists such 
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that (A2) is valid. Note now that W)]2/(1[   is increasing in ε. It follows that if an (L/H) is 

imposed such that (A2) is valid, it is true for any ε that i prefers not to act when receiving 

message string set Mi. For such an (L/H), as long as ε is sufficiently low, (A1) is valid as well. 

Step 4. We show by contradiction that every minimal sufficient set of any player must 

exclusively consists of message strings received at )1( z or z. Suppose that minimal 

sufficient set min
jS contains at least one message string m received at stage t, where 

)1(  zt . Consider now )(
min

ji SS , and further )]([
min

jij SSS , as constructed in Step 1. 

Given that 
min

jS  contains a m received at t with )1(  zt , )(
min

ji SS  contains im , and 

)]([
min

jij SSS  (which by Steps 2 and 3 is minimal sufficient) contains jim  . But this 

leads to a contradiction, as 
min

jS  cannot be minimal sufficient then. 

Step 5. By Step 1, given a minimal sufficient set 
min

jS of j, one can construct a set 

)(
min

ji SS , and by Steps 2 and 3 this is a minimal sufficient set. Combining Step 4 and the 

construction in Step 1, it follows that 
minmin

)]([ jjij SSSS  , and that the mutually consistent 

minimal sufficient sets 
min

jS , )(
min

ji SS  for each ji  , list for each player all the 

(pen)ultimate message strings that he can receive in a broom set. Repeating this exercise for 

each minimal sufficient set of j, one obtains a family of broom sets, where to each broom set 

corresponds a profile of mutually consistent minimal sufficient sets, with the family of broom 

sets describing the equilibrium. As by definition minimal sufficient sets cannot be subsets of 

one another, any such family of broom sets is a Sperner family of broom sets.  

Step 6. As Steps 1 to 5 are valid for any profile of mutually consistent collections of minimal 

sufficient sets of (pen)ultimate message strings, and as the collection of all possible Sperner 

families of broom sets characterizes all such profiles, it follows that the collection of all 

possible Sperner families of broom sets characterizes all collective-action equilibria. 

Proof of Proposition 1. Step 1 imposes a condition such that, for any z, if all ij   play 

according to the Pareto-best collective-action equilibrium, i who does not receive 

(pen)ultimate message strings prefers not to act. Step 2 calculates a condition such that for 

1z , if all ij    act when receiving a single message string, it is a weak best response for i 
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not to act. Step 3 shows that by the conditions derived in Steps 1 and 2, parameters exist such 

that the proposition is valid. 

Step 1. We look at the case where 3z , and where i receives every message string up to 

stage )2( z , but no (pen)ultimate message strings. Player i is then as inclined as possible to 

act when not receiving (pen)ultimate message strings, and if i does not act even in this case, 

he does not act whenever he does not receive (pen)ultimate message strings. 

When i receives all message strings up to stage )2( z and no (pen)ultimate message 

strings, for each m = jkl
zz 12

...


  that ij   can receive at stage )1( z , i can calculate the 

probability that m was received. When ik  , the probability that m got lost equals 

])1(/[   1 . When ik  , then either il  , or il   and by assumption i receives 

message string il
z 2

...


  at stage )2( z . In case ik  , the probability that m was not received 

therefore equals 2

2 ]})1([)1(/{])1([   , where for any ε, 12   . 

Given this fact, to derive a condition such that i who receives all message strings up to stage 

)2( z  and no (pen)ultimate message string does not act, it suffices to look at the fictitious 

case where for each of the 1)1(  zI  message strings of the type m (i.e. 2)1(  zI  message 

strings received by each of the )1( I  players other than i) it is true that jim
z 1

...


 . 

As 0 , 1 approaches 0.5. Furthermore, when j receives a message string m at stage

)1( z , this makes it possible that up to )2( I  players receive km , with jik , . As 

0 , the probability that )2( I  players receive a confirmation of m and act approaches 1. 

It follows that as 0 , i who receives all message strings up to )2( z  but no (pen)ultimate 

message strings, certainly prefers not to act if: 

)5.01/(5.0)/(05.0)5.01( WWWW LHLH  . (A3) 

where 1)1(  zIW . We now show that when (A3) is valid, i who does not receive 

(pen)ultimate message strings but receives all other available message strings, prefers not to 

act for any positive ε. The expected payoff of acting in these circumstances consists of 

probabilities YWY

Y

W 









11)1(  , with 1)1(  zIW , attached to the event of each number 
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Y of penultimate message strings arriving, and for each such an event an expected payoff E[Y] 

depending on Y, where E[Y] is weakly larger the larger Y.11 Note that  


/])1[( 11
YWY

= ])1()[/()1( 11
1

1
1

1 YWYWY
   , meaning that this derivative is larger than zero

for )1( 1WY , and is smaller than zero for )1( 1WY . It follows that increasing ε 

gives more weight to the lower E[Y], corresponding to lower Y. Second, it is clear that each 

individual E[Y] is weakly decreasing in ε, as it is less likely that other players receive ultimate 

message strings. It follows that the expected payoff of acting for i is weakly decreasing in ε, 

meaning that condition (A3) on (L/H) suffices as a condition to ensure that for any ε, a player 

who does not receive (pen)ultimate message strings does not act. 

Step 2. For 1z , if all players play according to the unique collective-action equilibrium, a 

player who receives a single message string weakly prefers not to act iff 

0])1(1[)1( 11   LH II  . (A4) 

Step 3. For any z, the most inclined i who is supposed not to act in a collective-action 

equilibrium can be to act, is when he is in the situation described in Step 1. Note that under 

the condition derived there, for 1z  or 2z , a player who does not receive (pen)ultimate 

message strings will also not act, as the player then does not even know whether the 

opportunity arises. 

For 2z , if each ij   plays according to the Pareto-best collective-action equilibrium, the 

least inclined a player i who is supposed to act, can be to act is when observing a single 

penultimate message string, and no other message strings. The worst event which may have 

occurred in this case is that none of the message strings arrived which can be received at stage 

)1( z  by ij  . In this case, i’s expected payoff from acting is the LHS of (A4). In all other 

events, where at least one penultimate message string is received by ij  , i’s expected payoff 

is strictly larger than the LHS of (A4). Take now any (L/H) such that (A3) is valid. For the 

chosen (L/H), take ε such that the LHS of (A4) is zero. Then by the above, when 2z , if 

11 E[Y] involves a distribution reflecting, conditional on Y message strings having arrived at )1( z , how many 

different players receive message strings at )1( z , and an expected payoff depending on each such event. Yet, 

this distribution does not depend on ε. Moreover, taking a given number of different players who receive 

message strings at )1( z , as you increase Y, collective action is more likely to be achieved. At the same time, 

increasing Y means increasing the weight put on different players receiving message strings at )1( z , where 

for large Y it becomes unnecessary for players still to receive message strings at z to make them act. 



21 

each ij   plays according to the Pareto-best collective-action equilibrium, it is a strict best 

response for i to act when receiving at least one (pen)ultimate message string. By continuity, ε 

exists such that the LHS of (A4) is strictly smaller than zero, meaning that no collective-

action equilibrium exists for 1z , but such that the Pareto-best collective-action equilibrium 

does exist for 2z . 

Proof of Proposition 2. 

Step 1. For *zz  , consider first the probability that, when a single message string arrives at 

at stage )1*( z , all confirmations of this message string arrive at stage *z : 

  I)1( (A5) 

where 0  when 1*z  (in which case the fact that state r occurs is considered as a single 

message string arriving at stage 0)1*( z ), and 1  when 2*z . 

For )1*(  zz , we consider the probability of the event that all players receive all their 

message strings in at least V brooms, conditional on a single message string arriving at stage 

)1*( z . In a symmetric equilibrium with parameter X = V, this event is sufficient for all 

players to act (yet, it should be noted that there are additional events where collective action 

takes place, not considered here12). The proposed probability equals: 
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where again 0  when 1*z , and 1  when 2*z . 

In (A6), WIW

W

I 



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

  


)1(  reflects the probability that W equal to V or more message 

strings arrive at stage *z .     YWIYI

Y

W  






 11 )1(1)1(  reflects the probability that, 

after W message strings have arrived at stage *z , all message strings arrive at )1*( z  in Y 

brooms, with Y equal to V or higher (with W as a maximum). In some consecutive steps, we 

12 It may be that each player receives all his message strings in one broom set, but for each player this may be a 

different broom set. It is these events that are not considered here.   
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now show that the expression in (A5) is smaller than the expression in (A6) for small ε. We 

show this for (A5) equal to 1)1(  I , which suffices as II )1()1( 1    . 
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As ε approaches zero, for )2(  IV , both for 1,0  the left-hand side of (A7) approaches 

zero, while the right-hand side approaches one. 

Step 2. Consider ytz  , with 2t , and let players be able to achieve collective action if 

the message strings in at least one broom are all received. Consider 1 ytz  and let 

players be able to achieve collective action if the message strings in at least X brooms are 

received, with )2(  IX . Suppose that we have been able to show for a specific given t that 
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the probability of collective action is larger for 1 ytz  than for ytz  , when 0y . 

Then we show that this is also true for 1y . 

Note that in case 2 tz  or 1 tz , once exactly one message string has arrived at stage 

1, it is as if we have 1 tz , respectively tz  . Given our assumption that the probability of 

collective is larger with 1 tz  if )2(  IX  brooms suffice, than it is with tz   if one 

broom suffices, this also applies for 2 tz  versus 1 tz , in the event that exactly one 

message string has arrived at stage 1. If this applies in the event that a single message string 

arrives at stage 1, it applies for any number of message strings that arrive at stage 1. 

Step 3. Step 1 (base case) implies that the probability of collective action is larger in any case 

where 2z  and arrival of all (pen)ultimate message strings in )2(  IX  brooms suffices, 

than in the symmetric equilibrium with 1z  and parameter 1X . Also, Step 1 implies that, 

conditional on a single message string having arrived at stage )2( z , the probability of 

collective action is larger in any case where 3z  and arrival of all (pen)ultimate message 

strings in )2(  IX  brooms suffices, than in case 2z  and arrival of all (pen)ultimate 

message strings in one broom suffices. If this applies in the event that a single message string 

arrives at stage 1, it applies for any number of message strings that arrive at stage 1, so that 

the probability of collective action is larger in case 3z  and )2(  IX  brooms suffice, 

than in case 2z  and one broom suffices. Step 2 (inductive step) showed that if, for a 

specific t with 2t , it is true for 0y  that the probability of collective action is larger in 

any case where 1 ytz  and )2(  IX  brooms suffice, than in case ytz   and one 

broom suffices, then this is also true for 1y . Given that for any given z, the probability of 

collective action is weakly larger in case )2(  IX  brooms suffice, than in case one broom 

suffices, the proposition follows. 
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