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Abstract

Networks are one of the essential building blocks of society. Not only do firms
cooperate in R&D networks, but firms themselves may be seen as networks of
information-exchanging workers. Social movements increasingly make use of
networks to exchange information, just as on the negative side criminal and terrorist
networks use them. However, the literature on networks has mainly focused on the
cooperative side of networks and has so far neglected the competition side of
networks. Networks themselves may face competition from actors with opposing
interests to theirs. Several R&D networks may compete with one another. The firm
as a network of employees obviously faces competition. In particular, given the
importance of connectivity for networks, competing networks may try to disrupt
each other, by trying to convince key players in competing networks to defect, or to
stop sponsoring key links (strategic network disruption). In response, networks that
face competition will adapt their structure, and will avoid vulnerable network
structures. Such network competition is what our paper is concerned with.

Keywords: Strategic Network Disruption, Strategic Network Design, Non-
cooperative Network Games
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1. Introduction

In The Strategy of Conflict, Schelling (1960) criticizes that economics, and game theory in particular,
puts too much emphasis on games with conflict of interests and too little emphasis on games with at least
partially common interests. A large and recent network literature in economics (for an overview, see Goyal
(2009)!) does put emphasis on common interests. For instance, one application of the models of this litera-
ture lies in the formation of cooperative networks of firms, which e.g. exchange R&D information. Given
individual firms’ incentives on obtaining the most possible information, the question is then how they con-
nect to existing networks, with a further question of what network structures arise from this individual
behavior in equilibrium. The starting point of our paper is that this approach perhaps puts too much em-
phasis on common interests. Staying with the example of firm networks, there may be several competing
firm networks, rather than one network, and such competition in turn may have important consequences
for the structure of networks. In particular, given the importance of connectivity for networks, competing
networks may try to disrupt each other, by trying to convince key players in competing networks to defect,
or to stop sponsoring key links (strategic network disruption). In response, networks that face competition
will adapt their structure, and will avoid having vulnerable network structures.

To capture this intuition, our paper models a sequential zero-sum game between a network designer
and a network disruptor. We model network structure as being determined by a network designer, because
in the first instance we want to gain insight into what is an efficient defensive strategy for the network as a
whole. The same applies to the disruptive strategy of the competing network, so that we can simply model
the game as being played between a network designer and a network disruptor. At stage 1 of the game,
the network designer uses costly links to connect nodes. At stage 2 of the game, in two different versions
of our model, the network disruptor either has the opportunity to delete links from the designer’s network
(link deletion), or nodes (node deletion), where deleting is costly to the disruptor. The network designer’s
preferences are modeled such that he is better off, the larger the largest component in the post-disruption
network is; the disruptor is better off, the smaller the largest post-disruption component is.

We start by treating several recent papers from the game-theoretic and economic literature, which are
related to our work. In Ballester et al. (2006), the network is exogenously given, and a game with strategic
substitutes or complements is played on the network. An example of the game played is coordinating
criminal activity. Because the network is exogenously given, the focus is only on optimal network disrup-
tion, and not on network defense as in our paper. In particular, the disruptor tries to find the "key player"
which is shown to be the node with the highest degree of Bonacich centrality (a centrality measure used in
social network analysis). Our focus is on network defense as well as on network disruption. The optimal
network defense strategy in our game constitutes at avoiding that there is any key player or key link. In
Hong (2009) terrorists try to carry an explosive through an exogenously given transport network, modeled
as a directed flow network. Security services try to stop the explosive from reaching its destination by
shutting down a minimal number of links in the flow network. We instead focus on undirected networks,
and in our model network defense consists of adding links, not deleting them.

Enders and Su (2007), Enders and Jindapon (2010), and Baccara and Bar-Isaac (2008) take a game-
theoretic approach similar to ours, where more ties allow more information to be produced in the network.
However, the network adversary’s purpose is to learn as much of this information as possible, whereas the
purpose of the network itself is to keep this information as secret as possible from the network adversary.
In our model, on the contrary, the network adversary tries to block to the maximal extent the sharing of in-
formation in the network. Goyal and Vigier (2009)’s model has a similar focus on network defense against
a disruptor as in our model. However, in their approach, network defense takes the form of the creation of
a "firewall" around key nodes; in our approach on the contrary, a network is defended by adding links that
would otherwise be redundant. A similar approach to the one of Goyal and Vigier is found in Hong (2008).
In Billand et al. (2009) model of corporate espionage, firms do not only compete by price competition, but
by finding out each other’s information. Espionage is modeled as unilateral link formation. In Bier et al.
(2006), a defender needs to decide how to allocate defensive efforts over two targets for attack. Just as is

1For a good introduction on the literature and research on social and economic networks see Jackson (2008).
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the case in our model, it may be optimal to defend the locations in an asymmetric way, leaving weak spots.
Yet, their results are not treated in the context of the design of a network.

In non game-theoretic/non-economic literature related to our paper, the following papers providing

related intuitions are worth mentioning. An influential paper is Albert et al. (2000), which treats a stochas-
tic network generation process that yields networks with properties that are often observed in real-world
networks (namely preferential attachment). It is shown that these networks are robust against random
attacks, but vulnerable to targeted attacks.> By the same intuition, stars do badly in our analysis under
node deletion. In the context of vulnerability of road networks, Taylor et al. (2006) treat the adding of links
as a mechanism of network protection. They are interested, however, in the effect that this has on several
vulnerability measures, whereas our focus is on network structure. The non game-theoretic paper most re-
lated to our work is Dekker and Colbert (2004), who study the node (link) connectivity of networks, which
is the smallest number of nodes (links) which upon deletion results in a disconnected graph. They say that
a graph is optimally connected if its node respectively link connectivity is equal to the minimal degree in
the network. Finally, they show that networks that have certain symmetry properties are optimally con-
nected. While the authors do not consider linking to be costly, and do not model strategic disruption, their
treatment can be seen as corresponding to our treatment of low linking costs. Still, we show that not all
best-response defensive networks are symmetric.
In Section 2, we start by listing some potential applications of the model. Section 3 treats the model, and
some of the basic results. In Section In Sections 4, 5, and 6, we treat the differing results of the model
according to whether the designer’s costs of linking nodes are low, high, or intermediate. We end with a
discussion of the results in Section 7.

2. Applications

As already suggested by the game-theoretic literature above, the most straightforward applications of
our model lie in the military and security field (for a comprehensive overview with references outside the
field of game theory, see Lipsey (2006)). The potentially disrupted network may be a physical network or
a network of people. An army may try to use minimal means to incapacitate to the maximal extent the
transport (e.g. bombing bridges) or communication network of an enemy country (e.g. by jamming ). 3
Terrorist groups or hackers with limited means may similarly try to disrupt transport, communication or
computer networks to the maximal extent. A dictatorial regime may try to disrupt a dissident or resistance
movement to the maximal extent, police forces may try to do the same with terrorist or criminal networks,
and with online peer-to-peer networks sharing illegal material. Each time, the potentially disrupted net-
work may adapt its structure to be better protected against disruption.*

A recent paper (Posner et al., 2009) provides a useful general framework to think about these and other
applications. Players of a collective action game may face an adversary, who tries to block collective ac-
tion to the maximal extent, in a so-called divide and conquer, named after the Roman strategy of creating
discord. Obviously, collective action requires the participation of several players, but it also requires com-
munication between the players, as has been empirically shown. Posner et al. conclude that the adversary
of collective action can disrupt collective action in two manners, namely by stopping players from partici-
pating in collective action, or by blocking communication opportunities. E.g., an employer may block trade
union activity either by stopping the activities of trade union members (e.g. by firing them), or by blocking

2For a more strictly mathematical treatment of such models see Bollobas and Riordan (2003).

3That such a threat actually exists can be seen from the efforts taken by homeland security and other government agencies to find
a disruption tolerant network. Raytheon BBN Technologies reportedly "was awarded a $81 million contract to create a collaborative
technology alliance in network science" (Baburajan, 2010) and in 2010 demonstrated a field experiment of a disruption tolerant military
network (Baburajan, 2010).

4An additional problem in the disruption of covert networks as resistance movements, and criminal and terrorist networks is that
the network structure may not be known to the network disruptor. This is an aspect that our basic model does not deal with. Before
such research is undertaken, it is interesting to know the equilibrium when network structure is observable.



communication between trade union members (e.g. by spreading trade union members over separated de-
partments). 5 Posner et al.’s analysis, is based on a simple monotonously increasing effect, of the number of
participants in collective action and the number of communication possibilities on the success of collective
action. Yet, depending on the communication network that links the participants in collective action, the
effect of taking out different players and communication links may be widely different. Still, Posner et al.’s
framework can be directly interpreted in terms of network analysis, where the disruptor may either take
nodes (what we call node deletion) or links (what we call link deletion) away from the disrupted network.

As Posner et al.’s analysis suggests, the applications of strategic network disruption and defence are
not confined to military and security applications. Historically, firms have not only competed with one an-
other through price and quality competition, but also by disrupting each other’s operations. 16th century
English and Dutch commercial fleets sunk each other’s boats (Francois, 2006). Brevoord and Marvel (2004)
report that in the beginning of the 20th century, NCR had a competition department the aim of which was
to literally sabotage the entry of any competitor in the market for cash registers. Yet even in times where
law enforcement prevents such practices, competition can still take disruptive forms. In industrial organi-
zation, this goes under the common denominator of raising rivals’ costs (Salop and Scheffman, 1983).

In the context of this paper, where the importance of network structure is emphasized, raising rivals’
costs may take the following form. In the standard model of competition, where competition is between
firms, internally, every firm can be considered as a network of employees. In standard production func-
tions, production is a simple function of the number of employees. However, consider two employees i
and j who are identical except for their position inside the network of employees, where employee i has
the function of a bridge between different groups of employees. Then the loss of employee i may have a
hugely different impact than the loss of employee j. For this reason, a competitor of the firm may engage
in predatory hiring practices (Kim, 2007), and offer specifically employee i a high wage to defect (node
deletion). Because of this fact, firms may restructure in such a manner that they are not vulnerable to such
practices.

Furthermore, staying within the model of competition between firms, some markets are characterized
by network externalities (Katz and Shapiro, 1985), where the utility of a particular good to consumers is an
increasing function of the number of consumers who use the good. E.g., a particular software program is
more useful to the individual consumer the more other consumers use it. In standard models, the utility of
a good is then a simple increasing function of the number of its consumers. Yet, these consumers may be
connected in a particular network. In this case, consumers with a central position in a consumer network
may be of special importance to the firm, as they can lead other consumers to adopt a certain good. A
firm who depends on such a central consumer may be very vulnerable to disruption by a competitor, and
firms may therefore aim to provide for consumers who are not linked in a vulnerable network. In another
application, the good produced by a firm may literally consist of a network, such as a network of airports
served by an airline, or a network of motels spread over a country (Hendricks et al., 1999). Such physical
networks are characterized by the fact that there may locally be only a limited space available to construct
a node in the network (such as a motel along a particular highway), or to construct a link in the network
(such as a flight connection between two cities). Again, the individual seller of such a networked good
wants to avoid that its network has vulnerable nodes or links. Otherwise, by pre-emptively occupying a
certain physical spot, a competitor may deprive the firm of nodes or links that are crucial to the operation
of its network.®

Recent models of competition also model competition taking place between competing networks of
firms. We can distinguish here between vertical alliances, such as buyer-seller networks (Kranton and
Minehart, 2001) of firms at different stages of the commodity chain, and horizontal networks, such as R&D
or standard-forming alliances (for an overview, see Bloch (2002)). Again, the contribution of a single firm

5That such techniques, although largely illegal, are still being used by employers, can be seen by the frequent complaints of
trade union members. In 2009 a report about practices used by the German company Deutsche Telekom to prevent workers in
their US subsidiary from organizing in a Union was published. According to the report, such practices included hiring known
"union avoidance companies" (Logan, 2009) to write manuals for managers to explicitly prevent workers from organizing in a union,
distributing anti-union adds and union member intimidation (Logan, 2009).

®For a different approach to competition between transport networks, see van der Leij (2003).
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to an alliance may depend on its position in the network. A vertical network of buyers and sellers is vul-
nerable if there are a few firms, or relations between firms, that are crucial to the operation of the entire
network. Through exclusive dealings (Aghion and Bolton, 1987), equivalent to link deletion, or through
vertical integration (Salinger, 1988), equivalent to node deletion, a competing network may then disrupt
the functioning of the vertical network. A horizontal network of firms in e.g. an R&D alliance again faces
the risk that a crucial firm is lured away by a competing network.

3. Model

The two-player full information game is played by a network designer and a network disruptor. At
stage 1, the network designer has a set of N = {1, ..., n} nodes available. The network designer uses the
nodes in N to build a pre-disruption network g'. If two nodes i and j are directly linked, we say that g}j =1

If they are not linked to one another gl-lj = 0. Given this notation, the pre-disruption network g! is the set

of gl-lj such that gl-l]. = 1 holds.” Links are undirected so that g}]- = g}i = 1 always holds. Nodes are indirectly
linked to each other if a path exists between them. We assume that there exists a path between two nodes i
and j if there exists a sequence of nodes [iy, ..., i| such that gl-li1 = g}l B = = gilki1 B = g}k j =1 We denote

¢!, asnetwork ¢! with node i removed, and g~ jr as network g with link 7j removed.

At stage 2, the network disruptor observes the network and can then choose to disrupt it. We consider
two models of network disruption, reflecting simply the constituting parts of any network. In the link
deletion model, the disruptor can decide to delete a number of links D; from the pre-disruption network.
This leads to a post-disruption network g? consisting of all the links for which gizj = 1. In the node dele-
tion model, the disruptor can decide to delete a subset v of nodes from the pre-disruption network, where
D, denotes the cardinality of this set. The post-disruption network g2 then consists of all links such that
glzj =1,1,j & v. At stage 3, both players obtain their payoffs.

If we use symbol g without superscript, this may refer to both the pre-disruption and the post-disruption
network. Define as N;(g) the set of nodes with whom node i maintains a (direct or indirect) link. Given
a network g, a set C C N is called a component of g if for every distinct pair of nodes i and j in C we
have j € Nj(g), and there is no strict superset C’ of C for which this is true. The degree of connection of
each node 7;(g) is defined as the number of direct links the node has, so in effect the number of nodes it is
directly linked with.

At stage 3 the players obtain their payoffs. Each of the identical nodes ex ante has one unit of informa-
tion, but obtains information | N;(g?)|, i.e. obtains the total information of all nodes it is connected to in the
post-disruption network. The value of a node i equals u;[|N;(g?)|], where u’(.) > 0, i.e. the value of node
i is an increasing function of the amount of information obtained. As is clear from the above, contrary to
what is the case in e.g. Jackson and Wolinsky (1996) and Bala and Goyal (2000), the nodes in our networks
are not individual decision makers, and the linking decisions result from the design decisions of the de-
signer at stage 1, and the disruption decisions of the disruptor at stage 2. The network designer’s payoff is
a function of the sum of the value of each node in the post-disruption network, i.e. the designer’s payoff
equals the sum of the values of all nodes, " u;[|N;(g?)|]. The costs of the network designer are a function

1

cpes(.), with ¢fyps(.) > 0, of the number of links used in the pre-disruption network g'. This number of
links used is the sum of the degrees of each node divided by 2, or [ ¥ #;(g!)/2] and the costs therefore
ieN
equal [cpEs ( Y ni(gh)/ 2)] The network designer plays a zero-sum game against a network disruptor,
ieN
therefore the disruptor’s benefit equals — Y u;[|N;( ¢%)|]. The disruptor’s cost function is an increasing

1
function cpys(.), with cpysr(.) > 0, of the number of links D; or nodes D, taken out from the pre-disruption

7We thereby exclude empty networks, however, empty networks are irrelevant for our analysis.
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network ¢'. We consciously assume information decay (see Jackson and Wolinsky (1996)) and heteroge-
neous values of the nodes (see Galeotti et al. (2006)) away. In this way, in the absence of network disruption
(D; = 0 or D, = 0), any minimally connected pre-disruption architecture &, which uses (n — 1) links, is
a best response to the designer. This means that, if there is a network disruptor, any restrictions that we
obtain on the set of best-response architectures, or any non-minimal links in best-response architectures,
are strictly better due to attempts to prevent disruption. Our model thus allows us to isolate the pure effect
of defense against network disruption.

As will become clear from the analysis, even with continuous functions v, cpgs and cprg, the designer’s
and disruptor’s maximands are discontinuous. It may be the case that a number of links added to g' does
not increase the designer’s payoff at all, in that the designer cannot protect the network in a better way
by means of these links; but it may also be the case that one single link added has a huge effect on the
designer’s payoff, in making a huge difference for network protection. Similarly, it may be the case that a
number of extra links or nodes deleted has little effect on the disruptor’s payoff, in that they do not cause
any reduction in the designer’s payoff; but it may also be that one extra link or node added has a huge
effect, in enabling substantial disruption of the designer’s network. In view of this, we cannot find the
equilibria by means of maximization of continuous maximands.

Instead, first, we simplify the benefit functions of designer and disruptor, in assuming that the payoft
of the designer (disruptor) is a positive (negative) function only of the order’ of the largest component in
¢%. This reflects the increasing marginal benefits of the information generated within a single component
due to the non-excludable nature of information in our model. Let every node have one unit of informa-
tion. Consider now a component of order x. The information generated by this component equals (x)2.
Everyone benefits from the information of an added node, and so the added benefit of increasing the order
of a component are larger the more nodes this component already has. Second, we assume that the disrup-
tor has a fixed link deletion budget D; or node deletion budget D, , so has already decided on how many
links or nodes to delete in g!. This is without loss of generality. In any equilibrium, the disruptor decides
on a certain number of links or nodes to be deleted. Given such a number of nodes or links, it must be the
case that the disruptor chooses a best response in the form of an optimal network disruption strategy.

Third, we model the designer’s decision in either of two simplified manners, depending pragmatically
on which manner allows us best to obtain results. In one approach, we assume that the designer has a
linking budget B; given such a budget, the designer then maximizes the value of the network, in maximiz-
ing the order of the largest component in the post-disruption network. In the other approach, we assume
that the designer decides on achieving a fixed order for the largest component in g2, and so a fixed benefit;
given such an order, the designer aims to achieve this with a minimal number of links in g!. Note that
this reflects what takes place at an optimal solution: given the order of the largest component achieved
there, this is achieved with a minimal number of links; given the number of links used, a maximal order
for the largest component is aimed at. This is illustrated in Figure 1. On the X- and Y-axis the two elements
of the designer’s payoff are represented; namely the number of links used in the pre-disruption network,
and the order of the largest remaining component in the post-disruption network. To each combination
of these two measures corresponds a maximal payoff that can be achieved on the Z-axis, depending on
an appropriate pre-disruption network structure. The payoff of the designer is represented in Figure 1 by
means of a hill (even though the real payoff function is likely to be discontinuous). The curves represent
the two approaches treated. In the first approach, in planes parallel to the Y-axis, we look for the largest
achievable remaining component for a given number of links B. In the second approach, in planes par-
allel to the X-axis, we look how a fixed order of the largest remaining component can be achieved with a
minimal number of links.

The second approach deserves further attention. We start by defining the concept of proofness of a
pre-disruption network, which defines the levels along the Y-axis in Figure 1.

8For definitions and proofs concerning the graph theoretic terms used in this paper see the Appendix.
9The order or the network, is the size of the network in terms of the number of nodes it includes. This term is used rather than
size, so as to avoid confusion, as it is commonly used in graph theory.
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Designer’s payoff

Figure 1: Designer’s Payoffs

Definition 1. A pre-disruption network g is said to be (n — x) proof against a link (node) deletion budget D;(Dy) if
the largest remaining post-disruption component upon strategic link (node) deletion contains exactly (n — x) nodes.

This definition leads to two observations, in the form of the following Lemmata.
Lemma 1. For x > 0, a pre-disruption network is (n — x) proof against a link deletion budget D) if
(i) every set of y nodes, with y > x, has at least (D; + 1) links to nodes outside the set y, and

(ii) for any non-empty set of x nodes, there is at least one such set that has Dy or less links to nodes outside the set
of x nodes.

We then denote the set of all networks that are (1 — x)-proof against a link deletion budget of D; as Fl(’gx). It

is these networks that are represented in the planes parallel to the Y-axis in Figure 1. They differ according
to the number of links that they use, as represented by the curves in the planes parallel to the Y-axis.

Lemma 2. For x > Dy, a pre-disruption network is (n — x) proof against a node deletion budget D, if

(i) every set of y nodes, for y > x, has at least (D, + 1) links to neighbors connecting it to nodes outside the set y,
and

(ii) for any non-empty set of (x — Dy) nodes, there is at least on such set that has D, or less neighbors connecting
it to nodes outside of the set of (x — D) nodes.

We then denote the set of all networks that are (17 — x)-proof against a node deletion budget of D as F( %),
Again, these networks are represented in the planes parallel to the Y-axis in Figure 1. If we then look at
the two cases of link- and node deletion, we can see that it is straightforward to deduce how large the
post-disruption network can maximally be in either case.

Lemma 3. Under link deletion with a deletion budget of D;, a pre-disruption network can be at most n-proof. Under
node deletion with a deletion budget of Dy, a pre-disruption network can be at most (n — Dy,)-proof.

Proof The result for link deletion follows from the fact that it is not possible for a post-disruption network

to contain more nodes than the pre-disruption network contained. The result for node deletion follows

simply from the fact that at least D, nodes will be removed from the network, due to the definition of node

deletion. 0
8



In order to make it easier to compare link deletion and node deletion, we define as a max-proof network
a network that achieves the highest achievable proofness under either link deletion or node deletion. As
follows from Lemma 3, max-proofness then means n-proofness for the case of link deletion and (n — D5 )-
proofness for the case of node deletion. In the same manner, we define as a (max — x)-proof network, a
network where the largest remaining component after strategic disruption has x less nodes than the max-
proof network.

A first result that we can then immediately state is that node deletion restricts network structure to a
higher extent than link deletion. Thus when facing an attack on its nodes, the network designer is more
restricted in the way he builds up his network than when the attack is directed at the links of his network.

Proposition 1. Compare node and link deletion when Dy, = D;. Then any network that is (max — x)-proof under
node deletion is also (max — x)-proof under link deletion. But not all networks that are (max — x)-proof under link

(max—x)
,Dy

v is a strict subset

deletion are also (max — x)-proof under node deletion. Put otherwise, for D, = D;, the set T
(max—x)
of the set ') b,

Proof Any set of nodes x that has I neighbors connecting it to nodes outside of the set x necessarily has
I links to nodes outside of the set x. Thus by taking out / links, no more than / nodes can be separated
from the network. However, any set of x nodes that has [ links connecting it to nodes outside of the set
of x nodes does not necessarily have I neighbors connecting it to nodes outside of the set of x nodes. For
instance, two of these links may be to the same neighbor, in which case the network is (max — x)-proof
under link deletion, but not (max — x)-proof under node deletion. a

As linking is costly, a network designer that aims at achieving (max — x)-proofness will do this with a
minimal number of links. This leads us to the definition of minimal (max — x)-proofness.

Definition 2. A network g is said to be minimal (max — x)-proof against a node (link) deletion budget D,(Dy), if
no network exists that achieves (max — x)-proofness using less links.

We denote the set of all networks that are minimal (max — x)-proof against a node (link) deletion budget of

Dy(D)) as Fé’g{:_x)’mi" (l"l("];”lx_x)’mm). It should be noted that the fact that for D, = D;, the set F;"g’j_x) isa

(ma
1,D

(max—x),min

strict subset of the set T\~ (see proposition 1) does not imply that the set I'; ,’ is a strict subset
(max—x),min

of the set Fl, D,

We now treat the cases of low, intermediate and high linking costs. Some of the basic graph-theoretic
definitions and results that are used in these sections are treated in the Appendix.

4. Low Linking Costs

In this section, we assume that linking costs are low enough to assure that the designer always wants
to construct a max-proof network, so that only a minimum number of nodes can be removed from the
network. Yet, because links continue to be costly, the designer will aim at max-proofness with a minimal
number of links. We thus apply the approach where we look for the minimal max-proof networks. To
find such minimal max-proof networks, is a straightforward task. We know from Lemmata 1 and 2 that a
necessary condition for max-proofness under a disruption budget of D, = (r — 1) or D; = (r — 1) is that
each node receives at least r links. Good candidates for minimal max-proof networks are therefore networks
in which each node has exactly degree r, because then each link is crucial in assuring max-proofness. Such
networks are known as r-regular networks.

Definition 3. An r-regular network is a network in which each node is connected exactly of degree r.



For any given n and r, any r-regular network has the same number of links '°. Thus, if there is an
r-regular network that is max-proof, it is necessarily also minimal.

Lemma 4. If an r-reqular network with r = (Dy + 1) (respectively r = (D; + 1)) exists that is max-proof given

Dy(Dy), then this network is also minimal max-proof. It is then the case that the sets Fz(;"gvx)’mi" and respectively
rl(,rb—]x),min only contain r-reqular networks.

Proof By Lemmata 1 and 2, any max-proof network must have nodes that each have at least r links. Any
network where each node has exactly r links has exactly the same number of links 1. It follows that any
r-regular network that is max-proof is also minimal max-proof. O

Lemma 4 is lacking in two aspects: first, it does not prove that such minimal max-proof networks actually
exist. Second, even if these do exist, it does not characterize what form they take. The rest of the section
deals with these two problems. They are easiest to solve for the simple case where D, = D; = 1, as in this
case the circle is the unique minimal max-proof architecture:

Corollary 1. For D, = D; = 1, the unique minimal max-proof architecture is the circle containing all n nodes.

Proof Graph-theoretically, the only connected 2-regular network is the circle. In the circle, every set of
connected nodes has two links and two neighbors connecting the set to the other nodes.!> Every set of
nodes including nodes unconnected to one another has more than two links and two neighbors connecting
it to the rest of the nodes. Given Lemma 4, the circle is minimal max-proof. a

The circle has several graph-theoretic properties (see e.g. Chartrand (1977) or Diestel (2005)) that we
will generalize, and use to show the general existence of r-regular networks that are minimal max-proof
under a link or node deletion budget of (r — 1). We now define these properties.'3.

Definition 4. A hamiltonian network is a network that contains a circle spanning all nodes in the network.

Definition 5. Denote by dy,qx the maximal distance between any two nodes in a network. A network is symmetric
if every node in the network has exactly Ny nodes at distance x, with x = 1,2, ..., dyax.

As any network where each node has exactly Nj nodes at distance 1 is Ny-regular, it follows that every
symmetric network is also a regular network. However, oppositely, not every regular network is also
symmetric. The circle network is clearly a regular, symmetric network. A further property of the circle
is that there are no multiple links between the same nodes, i.e. it is what graph theorists call a simple
network.

Definition 6. A simple network is an undirected network containing no multiple links between two nodes and no
links beginning and ending at the same node (commonly referred to as loops).

As the circle is a Hamiltonian, symmetric, simple network that is minimal max-proof for the smallest
deletion budget, this suggests that a network with these properties is minimal max-proof for general dis-
ruption budgets. We now prove that this to be indeed the case, thus showing the non-emptiness of the set
of minimal max-proof networks.

Lemma 5. For n and/or r even, with v > 2, a simple, Hamiltonian, symmetric r-reqular network exists that is
minimal max-proof under link and node deletion budget (r — 1).

19For an existence proof for r-regular networks see the Appendix.

HFor a the necessary conditions for the existence of r-regular networks see Appendix Lemma A.7.

12For a proof see Lemma A.1 in the Appendix.

13There are more graph-theoretic concepts that we took into consideration, such as Menger’s proposition (Menger, 1927) or the
concept of k-connectivity (Frank, 1995), however, while they are close to what we are doing, we did not find them useful in further
characterizing networks more stringently.
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Proof Step 1 shows that an r-regular network can be constructed whenever n and/or r is even. Step 2
shows that the constructed networks are max-proof under a disruption budget (7 - 1).

Step 1. Label each node i with a label I; € {1,2,..,n}. For each § < r/2, define a network g; =
{i]' L= lj +0,ixjx # iyjy(modn)}. For n odd, and for n even and § # r/2, all such networks take
the form of a circle, or if (n/6) is an integer, take the form of a set of ¢ circle components of order
(n/6). Forn even and § = r/2, g,/, consists of (n/2) components consisting of a single link. An r-
regular symmetric network when # is odd, or when 7 is even and r is even, can be constructed as follows:
81Ug U...Ug(;/2)_1. An r-regular symmetric network when r is even and r is odd can be constructed as
follows: g, /281U g2 U... U g(;_1)/2—1. Note that each of these networks is a Hamiltonian network, as g1 is
an n circle. By construction, each of these networks is also simple.

Step 2. In the constructed simple r-regular networks, every node has r links and r neighbors. Further, it
can be checked that in networks constructed in Step 1, every set of nodes also has at least r links and r
neighbors connecting the set to the rest of the nodes. -

Lemma 5 does not imply, however, that every minimal max-proof network is a Hamiltonian, symmetric
simple graph. We can find graphs that do not have all of these graph-theoretic properties but are still
minimal max-proof. A well-known example of such a graph is the so-called Petersen graph, which is the
graph on the left in Figure 2. This can be checked to be minimal max-proof for D, = 2 or D; = 2, but it is
non-Hamiltonian. The middle graph in Figure 2 is also minimal max-proof but is not not a simple network.
The right graph, while being minimal max-proof, is non-symmetric.

(a) Non-Hamiltonian (b) Non-Simple (c¢) Non-Symmetric

Figure 2: Minimal Max-proof Networks

We conclude from these examples that the characterization of minimal max-proof networks must be
formulated in wider way than suggested by Lemma 5. We simply note that minimal max-proof networks
do not contain any bridge link sets, or bridge node sets.!*

In effect, this means that in networks that do not contain any bridge link sets or bridge node sets, not
only all single nodes need to be linked of a certain degree to the rest of the network, but also all sets of nodes
are linked to the rest of the network with a certain number of links. Thus, we can come to the following
proposition.

Proposition 2. Let n and/or (D; + 1) be even. Then F;'T”DJ;'W” (and respectively F%’;’mm) is the set of all networks

g with the following characteristics:
(i) g is a connected (Dy + 1) (respectively (D; + 1)) regular network;

(ii) g does not contain any bridge link sets (bridge node sets) of order x < r.

Proof We prove each part of the proposition independently.

14Gee the Appendix for a definition of these concepts.
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(i) Under link deletion, any minimal max-proof pre-disruption network must be connected, since oth-
erwise the post-disruption network is not connected no matter which links are deleted. Under node
deletion, any minimal max-proof pre-disruption network must be connected, since otherwise the dis-
ruptor can remove at least D, nodes in the largest pre-disruption component. The rest of the proof of
this part follows by noting that all r-regular networks use exactly the same number of links and from
Lemma 4.

(ii) This follows directly from Lemmata 1 and 2. a

An illustration of Proposition 2 is given in Figure 3, for the case where n = 16 and r = 3. Whereas
the only connected 2-regular architecture is the circle, a myriad of architectures is connected 3-regular. It
can be checked that all represented graphs in the figure use exactly 24 links. We investigate what happens
when they are facing a network disruptor with a disruption budget of D, = D; = 2. The largest remaining

55

@N X
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Figure 3: Max- and Non-Max-proof 3-regular Networks

connected component in the non-connected network (a) in the graph, consists of only 4 nodes. Network
(b), which has been taken from Dekker and Colbert (2004), contains a bridge node as well as a bridge link.
Under node deletion the largest remaining post-disruption component contains only 5 nodes and 6 nodes
under link deletion. Network (c) also contains a bridge node and a bridge link. However, under node
deletion the largest remaining component includes 8 nodes, and under link deletion 10 nodes. Network
(d) contains a 2 bridge link set and a 2 node bridge set. Therefore the largest remaining component under
node deletion contains only 7 nodes and under link deletion 8 nodes. Network (e) is max-proof.

We can thus conclude, that minimal max-proof networks are connected regular graphs that do not
contain small bridge node sets or small bridge link sets. Intuitively, this means that networks that are max-
proof should not contain clusters of highly connected local cliques, with few links between the cliques.
Clearly, such networks are easy to disconnect.

We have already shown in Proposition 1 that network structure is more restrictive for node deletion
than for link deletion, when building max-proof networks. We now extend this to show that this also holds
12



for minimal max-proof networks (note that this does not imply that this is a general result for minimal (max
- x)-proof networks).

rmax min Fmax,min

Proposition 3. Let D, = D, and let n and/or Dy, be even.The set is a subset of the set
Proof Step 1. In this step, we show that any network that is minimal max-proof under node deletion is also
minimal max-proof under link deletion. In any network that is minimal max-proof under node deletion, by
Proposition 2, every node and set of nodes has at least D, neighbors connecting it to the rest of the network,
and therefore at least D; links connecting it to the rest of the network, making it max-proof. By Lemmata 4
and 5, since any such network is (D; + 1) regular, it is also minimal max-proof.

Step 2. The set F(" M ontains only simple graphs. When there are multiple links between two nodes,
removing one of these links does not make any difference for the proofness of the network under node
deletion.

Step 3. To show that graphs may exist that are minimal max-proof under link deletion, but not under
node deletion, consider a non-simple graph of the following form. For r > 4 and being an even number,
construct a circle, and double (r = 4), triple (r = 6), etc. each link. Such a graph is r-regular and minimal
max-proof under link deletion, however, by step 1, not under node deletion. O

An illustration of Proposition 3 is in Figure 4, representing the case for n = 16 and r = 4, which is
minimal max-proof under link deletion but not max-proof under node deletion.

Figure 4: Max-proof under Link Deletion but not under Node Deletion

It is easy to see that keeping a network max-proof comes at a high cost to the network designer, as for
every additional link (node) in the network disruptor’s budget, he needs to increase his defense budget
by n/2 links. Therefore, if linking costs are relatively high, it is unlikely that the network designer will
construct a max-proof network. In the rest of the paper, we look at the case of higher costs.

5. High Linking Costs

Now looking at the second approach introduced in Figure 1, we investigate what happens if the net-
work designer has a fixed linking budget. In this case here, we are looking at prohibitively high linking
costs, which leads to a defense budget of 0 links. Thus adding additional links next to the original linking
budget of B = (n — 1), is prohibitively expensive; leaving the network designer to structure his network as
robustly as possible with this limited amount of links.

As in the previous case, the structure of the network now becomes decisive again. However, while in
the case of low linking costs, the same type of architectures are best responses (with the case of link dele-
tion more restrictive), here it quickly becomes apparent that fundamentally different architectures are best
responses under link deletion compared to node deletion. This is obvious by simply looking at minimally
connected networks. While the network disruptor can completely disconnect the star network, by taking
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out the central node, the maximum damage he can cause to the chain network is to separate two additional
nodes from the network, thus leaving a largest remaining component of n/2. For link deletion, however,
the star network seems like a good option, since the maximal damage the network disruptor can cause by
taking out a single link, is to disconnect one node from the network, whereas the chain network can be cut
in half. Thus, here again, we will start by analyzing the link deletion case, and then turning to the node
deletion case.

5.1. Link Deletion - High Linking Costs

For high linking costs, we assume that the network designer has a linking budget of B = (n — 1) but
no defense budget at all. The network designer cannot afford to use any more links than are necessary
to build a minimally connected network. He puts up with the fact that some nodes will be disconnected
from the network, and prefers this to adding additional links, because such links are simply too expen-
sive. In the modeling section, we have discussed that if there is no threat of an attack on the links of the
network, all minimally connected networks are best responses. However, now taking into account that
there is a network disruptor with a disruption budget D; > 0, not all minimally connected networks are
best responses. We will show in the following that the star network is the network structure that weakly
dominates all other structures in case the network designer faces a network disruptor with a disruption
budget of D; > 0.

In the star network, the maximal damage a network disruptor with any positive disruption budget can
cause can be straightforwardly calculated as follows.

Lemma 6. The maximal damage a network disruptor with a disruption budget of Dy can cause in a star network is
to disconnect exactly D; nodes.

Proof The star consists of exactly (n — 1) links, which connect one node with degree (n — 1) with (n — 1)
nodes with degree 1. With each link that the network disruptor can delete, he can therefore only separate
one of these nodes with degree 1 from the central node. Therefore, with a disruption budget of D;, he can
separate exactly D; nodes. |

To show that the star is the most robust network topology for a linking budget of B = (1 — 1) and a
disruption budget of D;, we need to consider then what happens to other minimally connected networks.

Lemma 7. In every non-star minimally connected network, at least (D; + 1) nodes can be removed.

Proof Every non-star minimally connected network has a diameter of 3 or larger. To see why, take any
minimally connected network and let node k be an end-node (thus connected of degree #; = 1). As is
shown in the Appendix (Lemma A.5), there need to be at least 2 end-nodes in the network, since by defini-
tion any minimally connected network does not contain a circle. By definition node k must have a link to
a node i in the network (otherwise the network would not be connected). Since the network is not a star,
node i cannot receive another (n — 2) links, next to link g;. Thus there needs to be at least one more node
h, which is only linked to i indirectly through node j. The distance between node k and #, is then 3 and no
matter how else the network looks like it has at least diameter 3. It thus follows that if we delete link Sijs
at least 2 nodes are separated from the largest remaining component. This is because either nodes i and k
are separated from the largest remaining component, or nodes j and k (possibly along with further nodes
to which they are connected). It follows that removal of link g;; results in the separation of two nodes from
the largest component. The (D; — 1) remaining links that are deleted each time result in the separation of
at least one node, as every link in a minimally connected network is a bridge link (see Appendix Lemma
A4). O

Thus the minimal damage that can be done in any minimally connected network that is not the star, is
always larger than the damage that can be done to the star for the same disruption budget, as can be seen
from Lemmata 6 and 7. Therefore the star network needs to at least weakly dominate all other minimally
connected networks in this case.
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What we have not considered so far is, however, the case when the network designer might build
a smaller but stronger network by not including all nodes in the component, but using links instead to
make the network more robust against attack. We now turn to such cases. We know from the graph-
theoretic Appendix that in any minimally connected network there is no circle and in any network that
is not minimally connected there is at least one circle. To build a circle we know we need exactly 7 links.
Since we have a linking budget of B = (n — 1), the network with a circle can therefore only include (n — 1)
nodes. We also know that any end node can be disconnected by disrupting one link only. Therefore, if
we do build a network including less nodes, we should not leave any end nodes in the network because
they are natural weak spots. Therefore the network designer, should include all (7 — 1) nodes in the circle.
For any additional link the network designer adds to the circle, he has to leave one additional node out of
the connected component. Therefore, we can calculate exactly how large the network in question will be,
depending on the number of links added to the basic circle.

Lemma 8. Consider a network designer who builds a pre-disruption network consisting of a connected component,
and a set of isolated nodes. The network designer with a linking budget of B = (n — 1), needs to leave one additional
node out of the connected component, as compared to a minimally connected network, for each additional non-minimal
link he wants to add to the connected component.

Proof For a circle this is trivially true, as we know from the graph-theoretic Appendix that any circle needs
exactly n links. Step 1. If the designer constructs a connected component consisting of (n — 1 — x) connected
nodes and x isolated nodes, it will need exactly (n — 1 — x) links to assure that the connected component
is connected. Given that the linking budget is (7 — 1), x non-minimal links can now be added.

Step 2. If the designer puts x non-minimal links in the connected component, it uses (y — 1 + x) links,
where 1 is the number of nodes in the connected component. If the designer uses up all links, (y — 1+ x) =
(n—1). It follows that y = (n — 1 — x). O

Knowing this, the question then is, how many nodes remain in the post-disruption network g2, be-
cause the component does not only get smaller but also stronger. Thee answer to this question is easy for
the case D; = 1. In this case, the designer can leave out at most one node to construct a smaller connected
component. The optimal architecture of this component of (n — 1) nodes is the circle, as any end node in
the component means that one node can be removed from the connected component. It follows that in the
(n — 1) circle, the largest remaining component has order (n — 1). This is the same result as for the star
with (n — 1) nodes. We next look at the general case.

For r-regular networks we know that we need exactly (1 % r) /2 links. Thus if we rearrange this equa-
tion, we get that for a linking budget of (n — 1), we can build a (D; 4 1)-regular network with exactly
(n—1)%2/(D; + 1) nodes. Then, if the connected component is (D; + 1)-regular and meets the conditions
of Proposition 2, no nodes can be separated from it. Therefore, whenever (n — 1) «2/(D; + 1) < (n — Dy),
the star network is a better choice than the (D; + 1) regular component. For D; = 1 and D; = (n — 2), the
two sides in the latter inequality are equal; for levels of D; in between, the inequality is valid. The case
D; = 1 simply was already treated above. For D; = (1 — 2), the structure of the pre-disruption network
is irrelevant, as in any case a single connected pair remains in the post-disruption network. It follows that
only the intermediate levels are relevant, and for these the inequality is valid."> However, there still is the
possibility of making a larger connected component, from which nodes can then still be separated. The
following Proposition 4 shows that the designer cannot do better in this way.'®

Proposition 4. When facing a network disruptor with a disruption budget of D;, with 1 < D; < (n — 2), the weak
best response of a designer with linking budget B = (n - 1) is to build a star network.

15Thus in all interesting cases because since D; = r — 1, otherwise we end up with only one link in the post disruption network in
any case.

16Making several smaller components also will never be better than the star network, as the same logic applies that they can be
taken apart again by the network disruptor. Additionally already at least one link is used in making a second connected non minimal
component. Therefore, the star strictly dominates this case.
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Proof We prove this proposition in three steps. Step 1 shows that non-star minimally connected networks
never do better than the star. Steps 2 and 3 show that the designer is never better off when constructing a
smaller connected component.

Step 1. By Lemma A4, in every minimally connected graph, at least D; nodes can be removed. Further,
we know from the Appendix that every non-star minimally connected graph contains at least two nodes
with degree larger than 1. From this fact, it follows that at least one extra node can be separated from the
network, on top of the D; nodes removed.

Step 2. Denote by x the number of nodes with zero degree in the pre-disruption network. Consider the case
where D; < x. This means that at least D; nodes are already separated from the pre-disruption network.
Clearly then, this cannot do better than the star.

Step 3. Consider the case where x < D;. By Lemma 8, the connected component than has x non-minimal
links. Suppose that the disruptor first deletes these non-minimal links. Then at best, a minimally connected
component remains. From this component, the disruptor can now still remove (D; — x) nodes. Since the
connected component in ¢! has (7 — x) nodes, and at least (D; — x) nodes are removed from it, the largest
component in g2 has at most (17 — D;) nodes, which is the same as in the star network. O

So while all minimally connected networks are equally good responses if there is no threat of an attack,
the star is the only best-response minimally connected network in case of an impending attack for a linking
budget of B = (n — 1). The star network is also always at least as good as any other possible network made
up of (n — 1) links. It appears that it is only in special cases, such as when there is a very small or very
large disruption budget, that there is an alternative best response to the star.

5.2. Node Deletion - High Linking Costs

For node deletion we can immediately show that for the case of D, = 1, the best the network designer
with a linking budget of B = (n — 1) can do is to build a circle containing (n — 1) nodes. This suggests
that in general, the network designer should build a smaller, stronger component, an intuition that we will
indeed confirm in this section.

Proposition 5. For D, = 1, and a linking budget of B = (n — 1) nodes the designer’s best-response network
architecture is the circle containing (n — 1) nodes.

Proof Step 1. In any minimally connected network, every node is a bridge node (see Appendix). We
already know that the in the star network, the largest remaining post-disruption component has order 1.
Any non-star connected network contains at least one path of links ij, jk, k. Given that every node is a
bridge node, by removing j or k, the disruptor can disconnect at least three nodes from the network. Step
2. Every component that links (n — 1) nodes using (n — 1) links, and is not a circle of (n — 1) nodes, has at
least one end node. It follows that, in this component, the disruptor can delete one extra node on top of the
deleted node. Together with the node that was not connected in the pre-disruption network, this means
that a largest post-disruption component of at most (# — 3) nodes remains. Step 3. Every network that
links less than (7 — 1) nodes has a largest post-disruption component that is smaller than (n — 2). Step 4. In
the circle that links (7 — 1) nodes using (n — 1) links, if one node is deleted, a post-disruption component
connecting (n — 2) nodes remains. O

For larger disruption networks, we cannot give a full characterization of the designer’s best response
pre-disruption network. Still, we can show that an essential feature of any best-response pre-disruption
network is that this network does not connect all nodes to one another. In order to show that it is not a best
response for the designer to construct a minimally connected pre-disruption network, we must first know
the order of the largest remaining post-disruption component given a minimally connected pre-disruption
network. We start by deriving this for the simple case of a deletion budget D, = 1. We denote the smallest
integer larger than a number x as [x].

Lemma 9. In any minimally connected network, the largest remaining component after an attack by a network
disruptor with a disruption budget of D, = 1, will be maximally of order [(n —1)/2].
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Proof Step 1. By Lemma A.1, in any minimally connected network, every node is a bridge node, so that
any minimal connected network can always be separated into two parts by removing one node.

Step 2. A disruptor can always do better than to take out a node such that the largest remaining component
is of an order larger than [(n — 1)/2]. Let the disruptor take out node x with degree 7;(g) = d, which
has links to nodes v1, 2, . ..,y4. Given that by Lemma A.1, each node in a minimally connected graph is a
bridge node, taking out node x leads to d separated components, which we can denote as g1, g2, . . ., g4 Let
the node labeled y,; and the corresponding component g; have contain snodes, with s > [(n —1)/2]. Then
it follows that ¢ — g;, meaning the network obtained when component g; is removed from the network,
is of an order smaller than [(n —1)/2]. By instead removing y, in g4, the disruptor can assure that the
component g,, which includes nodes connected to a neighbor z; of y4 is of an order of at most (s — 1), so
that the order of this component is smaller than the order of g;. At the same time, we have already seen
that the order of component g — g, is smaller than [(n — 1) /2]. It follows that the disruptor is better off by
disrupting y,. Therefore, a disruption strategy where a largest component larger than [(n —1)/2] is left
can never be optimal for the disruptor.

Step 3. Given that by Step 1 a network disruptor never leaves a largest component of an order larger than
[(n—1)/2], the best that the designer can possibly do is to leave a largest component of an order of exactly
[(n—1)/2]. ]

The chain architecture shows that the network designer can actually achieve the maximal order of the post-
disruption network suggested by Lemma 9. The following Lemma now generalizes the result of Lemma 9
to generic disruption budgets.

Lemma 10. In any minimally connected network, the largest remaining component after an attack by a network
disruptor on the nodes of the network with a disruption budget Dy, will be maximally of an order [(n — Dy)/[Dy +

1]].

Proof We prove this by induction. Step 1 is the base step, step 2 the inductive step.

Step 1. The largest remaining component for D, = 1 has order [(n — 1)/2], as is shown by Lemma 9.

Step 2. We show in this step that, if it is true that the largest remaining post-disruption component in
a pre-disruption minimal connected network of order v, given D], = (D, — 1), is [(y — D,)/(D, +1)],
then it follows that the largest remaining component for a minimal connect network, given Dy, is [(n —
Dy)/(Dy+1)].

Consider a link ij in a minimal connected g!, where node j has the following properties. Among the
components in g jnot connected to 7, the largest component has an order of at most [(n—Dy)/[Dy+1]];in

g! ., the component connected to j has an order larger than [(n — Dy)/[D, + 1]]. Every minimal connected
network contains at least one link ij where node j has these properties. This is because in a minimal
connected network, every node lies on a path between two end nodes. Every deleted node cuts the network
in at least two components. As one deletes consecutive nodes along this path, the maximal order of one
component becomes smaller, while the maximal order of the other component gets larger. By continuity,
one must meet a node j with the properties above.

Suppose that the disruptor deletes node j. Then i is part of a connected component C of an order of at most
[n—[(n—Dy)/(Dy+1)] — 1] remains, in which the disruptor can delete a further D], = (D, — 1) nodes.
By the assumption at the start of this step, the largest remaining component in C after the disruptor has
taken out a further D), nodes from C has an order of at most [(n — Dy)/[D, + 1]]. It follows that this is
also the largest component that the designer can keep when the disruptor deletes D, nodes from the entire
network. O

As we now show, the network designer can do better than with a minimally connected network by
constructing a circle of (n — 1) nodes. By Proposition 5, we already know that this result holds for D, =1,
where in fact the circle of order (n — 1) is the unique best-response architecture. We now show that the fact
that the circle of (1 — 1) nodes is a better response holds for any relevant disruption budget. We start by
deriving the order of the largest component that can remain after disruption.
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Lemma 11. In a circle network, the network disruptor with a disruption budget of D, will cause maximal damage
by cutting the network into D, separate components, each maximally of order [(n —1 — Dy)/Dy].

Proof As the circle is completely symmetric, any disruption strategy by the disruptor can be seen as the
deletion of one random node in the circle, and (D, — 1) further nodes. After the deletion of this random
node, the remaining network takes the form of a chain, i.e. a minimal connected component of order
(n — 1), in which the disruptor can delete (D, — 1) nodes. It follows directly from Lemma 9 that the largest
remaining post-disruption component has an order of [([(n —2) — (D, — 1)]/[(Dy — 1) +1]]. O

We are now ready to show that the minimal connected network is never better than the circle that
excludes one node. Moreover, for the range of disruption budgets for which a post-disruption largest
component of order larger than 1 remains, and for a range of relatively large 7, the circle is strictly better.

Proposition 6. When facing a network disruptor with a node disruption budget larger than or equal to (n —1)/2,
the line architecture with order n and the circle architecture with (n — 1) are equally good responses. When facing a
network disruptor with a disruption budget smaller than (n — 1) /2, the line architecture with order n is never better
than the circle architecture with (n — 1) nodes; for relatively large n, the circle of order (n — 1) is strictly better.

Proof By Lemma 9 we know that the largest remaining post-disruption component with a pre-disruption
line of n nodes has order [(n — Dy)/(Dy +1)|. By Lemma 11 we know that the largest remaining post-
disruption component in a circle of order (n — 1) has order [(n — D, — 1)/D,]. It is easy to calculate that
(n—Dy)/(Dy+1) < (n—Dy —1)/Dy <= D, < (n—1)/2. It is also easy to calculate that [(n — D, —
1)/Dy] — [(n — Dy)/(Dy + 1)] is an increasing function of n and is larger than 1 for a range of n above a
certain threshold.

For D, > (n —1)/2, in both the mentioned circle and line, the disruptor can reduce the post-disruption
network to a set of isolated components, so that both architectures are equivalent in this extreme case. O

This of course does not imply that the circle network is the best possible network for the network
designer to build. What it does show, however, is that it is never good to build a network including all
nodes, if you have a limited linking budget. This suggests that there is a tradeoff between, on the one hand,
constructing a large pre-disruption component, which still leaves the possibility of a large post-disruption
component, but is vulnerable to disruption; and, on the other hand, constructing a small pre-disruption
component, which immediately decreases the possible number of nodes in the post-disruption network,
but which is more vulnerable to disruption. In the analysis so far, we study this tradeoff only for the
decision to leave a single node unconnected. But better architectures may exist where more nodes are left
out, enabling the designer to construct a stronger component. Since these cases are hard to characterize,
we will only hint at what such networks can possibly look like by means of an example.

We have already shown in the case of the low cost links, that to make his network maximally robust
against any attack, the network designer would have to build an r-regular network with r = D, + 1(r =
D + 1+ 1) that meets the conditions of Proposition 2. However, due to the limited linking budget in the
present case, constructing an r-regular network is only possible when leaving out a considerable number
of nodes. For a disruption budget of D, = 2, this would then lead to building a connected, symmetric
3-regular network. Knowing that the linking budget of B = (n — 1), and that the network designer needs
exactly 3/2 * n links to make a network 3-regular, leads to the conclusion that the network designer is
forced to leave 1/3 * (n — 1) nodes out of the connected network to build a 3-regular network. Now taking
as an example a network with n = 25 nodes and a linking budget of B = 24 links that is build in 2 different
ways in Figure 5.

The 3-regular network in Figure 5(a), only uses 2/3 * B nodes, as has been calculated above. In the
network in Figure 5(b), there is exactly one node between any two highly connected nodes. Thus we know
that the post-disruption network will consist of 3 nodes less than the pre-disruption network. However,
the second factor that we need to take into account is the order of the pre-disruption network. The network
in Figure 5(b) uses 20 nodes and the network in Figure 5(a) uses only 16 nodes. Therefore, although less
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Figure 5: Different 25 node networks

damage in terms of disconnected nodes can be done to the network in Figure 5(a), as compared to the
network in Figure 5(b), the post-disruption network might still turn out to be smaller than in the larger net-
work. In this particular example, we can see, that the network in Figure 5(b) has the larger post-disruption
network, since it contains a connected component of 17 nodes, as compared to 14 in the network in Figure
5(a). Even in this small example with a limited number of nodes only, we can see that there is a definite
trade-off between including more nodes in the pre-disruption network and making a stronger network.
It can be seen that the 3-regular network has a smaller post-disruption network than the larger and less
strong network in Figure 5(b). However, when comparing this to the circle network, we have shown in
Lemma 11 above that the largest remaining component will only consist of 11 nodes, which is even smaller
than the post-disruption network in the 3-regular network. Thus, a circle network seems to be a too weak
pre-disruption network.

Knowing from the example above that the circle can be too weak a pre-disruption network in certain
cases, we can also look at the other end of the scale and see if it would make sense for the network de-
signer to build a max-proof network instead, thereby basically leaving a maximal amount of nodes out of
the component to build a network that then again is fully proof against disruption. From the previous dis-
cussion, we know that in a max-proof network, we need exactly (D, + 1) % /2 links. Now if we look at a
linking budget of B = (n — 1), we know that for a given D, we can build a max-proof network consisting of
y=2%(n—1)/(Dy+1) nodes. After the network disruption, the largest remaining connected component
then includes [2 % (n —1)/(Dy + 1) — D, | nodes. Now if we compare this to the circle network, we can see
that the max-proof network is actually better than the circle network for large 1 or small a small disruption
budget D,.

Lemma 12. For any linking budget B = (n — 1) links, and any disruption budget Dy, a max-proof network weakly
dominates the circle network for all (n — 1) > Dy(Dy + 1).

Proof The largest remaining component in a circle network after an attack by a network disruptor with a
disruption budget of Dy is [[(# — 1) — Dy|/ Dy |. The largest remaining component in a max-proof network
after disruption with a disruption budget of Dy, is [2% (n —1)/(Dy + 1) — Dy .

2 (n—1)/(Do+1)] = Dy > [(n—1) — Dy} / Dy

&2 (n1=1)/(Dy+ 1))~ [(1-1))/Dy = Dy~ 1

& [(n1=1)(Dy— 1))/ [Dy(Dy +1)] > D, — 1

& (n—1) > Dy(Dy + 1) O

It follows that there are cases where, if the only options are the circle or the max-proof network, the
max-proof networks are the better choice. However, the result also suggests that for different cases, the
max-proof network might be too small as a pre-disruption network. This again implies that there is some
tradeoff involved for the network designer between building smaller but stronger and weaker but larger
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pre-disruption networks. But the circle and the max-proof networks are two extreme cases, and it may be
better to construct a network that leaves more than one node unconnected, and at the same time does not
contain a max-proof component. That this indeed is the case in some cases is shown in Appendix 2. We
treat this separately in an appendix, because we use some concepts there that are introduced only in Section
6. We have seen in this section that while there is a tradeoff between larger and stronger networks for
the case of node deletion, no such tradeoff takes place in the case of link deletion. Therefore, the most
robust network topology is quite different for the two cases. In the link deletion case, it is always optimal
to include all nodes in the pre-disruption component, whereas in the node deletion case, the network
designer is better off leaving out a number of nodes to build a smaller but stronger pre-disruption network.
In general it seems that nodes are harder to protect in a network than links, not only because in the node
deletion case nodes will be disrupted by definition, but also because all links attached to a node may be
removed from the network once the node has been deleted. Therefore it is much harder to keep nodes safe
from disruption than to keep links safe.

6. Intermediate Linking Costs

We have so far treated the extreme cases where linking is cheap enough for the network designer to
build a max-proof network, and where linking is so expensive that the network designer does not want
to add any links above the minimum needed to connect all nodes. In this section, we explore the cases in
between, where linking costs are intermediate, so that the designer is willing to add defensive links, but
not to the extent that the network is protected to the highest level achievable. We limit ourselves to the case
where the network designer builds a (max — 1)-proof network, meaning that the designer tolerates that the
largest component in the post-disruption network has one node less than is possible with maximal network
defense. This case is analytically tractable for the following reason. We know from Section 4 which linking
budget B is minimally needed to achieve max-proofness. Suppose that we take a linking budget smaller
than B. Then we know that max-proofness is not achievable for this linking budget, so that the best that can
be achieved is (max — 1)-proofness. Thus, if we find networks for such linking budgets smaller than B that
achieve (max — 1)-proofness, then these networks do the best possible with this linking budget.

From the previous section, we already know that for a linking budget B = (n — 1), if D; = 1, the
network designer achieves (max — 1)-proofness in the star architecture; if D, = 1, the network designer
achieves (max — 1)-proofness in the circle of order (n — 1). These results suggest that in general, under link
deletion, the network designer should construct a star or star-like architecture in which the network has a
set of one or more strong (i.e. high-degree) nodes which the disruptor cannot remove, and a set of weak
(i.e. low-degree) nodes, where the disruptor is able to remove only one of the weak nodes. Under node
deletion, the basic results suggest that, in general, the network designer should avoid having nodes with
higher degree, as these then become targets to the disruptor; instead, the disruptor should assure that all
nodes have the same degree. Our analysis below indeed confirms this intuition.

We focus on linking budgets that are exactly large enough to allow the network designer to build what
we now define as a pair r-regular network, where either r = (D, +1) orr = (D; + 1).

Definition 7. In any pair r-reqular network, each pair of neighboring nodes has exactly r links to the rest of the
nodes.

We show below that, for fixed linking budgets that are exactly large enough to build specific pair r-regular
networks, such networks are the best that the network designer can do, since they achieve (max — 1)-
proofness. Unfortunately, we cannot show that these pair r-regular networks are minimal (max — 1)-proof,
so that it remains possible that there are other networks which achieve (max — 1)-proofness with less links.
Still, each (max — 1)-proof pair r-regular is a at least a local optimum to the network designer in the follow-
ing sense. In any (max — 1)-proof network, each connected pair of nodes should have at least (D, +1) =r
neighbors (respectively (D; + 1) = r links), connecting it to the rest of the nodes under node deletion (link
deletion); otherwise, the disruptor is able to remove the connected pair from the network, so that the net-
work is not (max — 1)-proof. In a pair r-regular (max — 1)-proof network, this goal is just achieved for
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every connected pair, so that the network designer is worse off both when adding links to such a pair -
regular network, and when deleting links form a pair r-regular network. It should be noted in this respect
that the star is pair (n — 2)-regular, and that the circle is pair 2-regular.

A further attractive feature of pair r-regular networks is that they allow us to analyze in a tractable
manner the following tradeoff faced by the network designer, which is relevant for the case of link dele-
tion. Either the designer can use few links and leave many weak spots in the network, which means many
nodes can be deleted from it. An extreme case where this takes place is the star network, which is pair
(n — 2)-regular. Instead, the designer can use many links and leave no weak spots in the network, in the
sense that each node is an equally likely target. As we will show below, in any pair r-regular network, each
node has one out of a set of at most two degrees, where high-degree nodes can be interpreted as strong
spots, and low-degree nodes as weak spots. Moreover, for any 7, several pair r-regular networks may ex-
ist, varying according to the extent to which these two degrees are different from each other, according to
the relative number of strong and weak spots in the network, and according to the number of links used
overall. In this manner, we are still able to identify in the set of pair r-regular networks those that achieve
(max — 1)-proofness with a minimal number of links, and are able to interpret this result.

We start by showing that any pair r-regular network is a bipartite network, in which each node has one
degree out of a set of at most two degrees.

Lemma 13. In any connected pair r-reqular network, each node has either degree r1, or degree ry, where (r1 + rp —
2)=r,r1 >1,rp >1,r > 2, and nodes with degree r1 are only linked to nodes with degree r,.

Proof Note first that any pair O-regular network consists of separated components of 2 connected nodes,
and any pair 1-regular network consists of separated minimal connected components of 3 connected nodes.
It follows that » > 2. Note further that nodes in a connected pair cannot have degree zero. Consider now a
pair r-regular network where in a single connected pair x;x3, node x1 has degree r; and node x; has degree
rp, such that (r; +r, —2) = r. Note that the 2 in the latter expression accounts for the direct link of the
two nodes, so that r is indeed their number of links to the rest of the nodes. The (r; — 1) links of node x;
to nodes other than x; each form a pair. Take one such node y; connected to xj. In the pair x7y;, x1 has
degree 1, so that yy; must necessarily have degree r,. In the same manner, every node connected to y; must
again have degree 1. And so on. Similarly, each neighbor of x, must have degree r1, the neighbors of this
neighbor must again have degree r;, and so on. O

Knowing that any connected pair r-regular network is bipartite, we can label the two groups of nodes.
By n1 we denote the number of nodes with degree r1, and by 1, the number of nodes with degree rp, where
we label the type-1 and type-2 nodes such that r; > rp, where r, > 1 (note that for r, = 1, the only pair
r-regular network is the star, which is pair (n - 2) regular. We then call the type-1 nodes high-degree nodes,
and the type-2 nodes low-degree nodes. As shown in the following Lemma, we can now exactly calculate
how many high-degree and low-degree nodes there are in a pair r-regular network, and how many links it
uses.

Lemma 14. In any connected pair r-reqular network, we have ny = n  [rp/(r1 +r2)] = nx[r2/(r +2)] and
ny = nx[r1/(r1+r2)] = nx[r/(r+2)], and the network has exactly n x [riro/(r1 +12)] = n*[r(r +2 —
r1)/ (r+2)] links.

Proof By Lemma 13, any pair r-regular network is a bipartite graph, with nodes with only two kinds of
degrees. It follows that for L, the number of links used in the network, it is the case that L = nyry = nprs.
Combining this with the fact that (17 + np) = n, and using the fact that (r; +r, —2) = r, the given
expressions for 11 and ny are obtained. These expressions, and the fact that L = nyr; = npry again allow
us to calculate that L = n« [rirp/(rl +12)] = nx [ra(r + 2 —12) /(r +2)]. ]

Note that it follows from Lemma 14 that the number of high-degree nodes is smaller the less links are
given to the low-degree nodes. Intuitively, by making the distribution of degrees over any pair of nodes
more unequal, so that 7, becomes smaller and 71 bigger, we will have fewer high-degree nodes and more
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low-degree nodes. This can be seen in the extreme case of the star network, where we have only one core
node and (n — 1) peripheral nodes withr, = 1land r; = (n —1).

Given that we have obtained from Lemma 14 numbers for the high- and low-degree nodes we should
have in any pair r-regular network, we know that these should be integer numbers. We focus only on
n such that these are indeed integer numbers. We are then ready to show the existence of pair r-regular
networks.

Lemma 15. Consider a number v > (n — 2), and consider two numbers r1 > 1, v, > 1, 11 > rp such that
(r1+r2—2)=r. Letny = nx[ra/(r1 +r2)] and ny = nx [r1/(r1 + r2)] be integer numbers. Then the set of pair
r-regular networks is not empty.

Proof Construct a circle of 2 * 11 nodes, namely 77 type 1 nodes and n, type 2 nodes. In the circle every
type 1 node is connected to type 2 nodes, and vice versa. Next, add the appropriate number of links to
each pair on the circle, namely (rq — 2) links for each of the type 1s, and (r, — 2) for each of the type 2
nodes. These nodes added to the circle make a total of 11 (r1; 4+ r, — 4) links connected on one side of the
link to nodes on the circle, and the other side of which still needs to be connected to other nodes, on or
off the circle. Also, (n1 + ny —2ny) = (np — n1) nodes still need to be connected to the network. These
remaining nodes are all type 2 nodes. All the n;(r, — 2) links of the type 2 nodes on the circle need to
be to a type 1 node on the circle, as type 1 nodes by assumption only lie on the circle. We can let each
of the 17 nodes on the circle receive ny * [(r, — 2)/n1] = (rp — 2) such links from type 2 nodes on the
circle. For r; > rp, all of the remaining [ny * (r; — 2) — ny % (r, —2)] = ny(rq — rp) links of the type 1
nodes on the circle need to be to type 2 nodes not on the circle; each such type 2 node not on the circle
needs to receive links from exactly r, of the type 1 nodes, each type 1 node needs to have (r; — r2) such
links. This means that there must be exactly ni(ry — r2)/r2 type 2 nodes that do not lie on the circle.

We therefore have n, = ny + ny x [(ry — r2)/r2] = nyir1/r2 type 2 nodes, and n; type 1 nodes. Also,
np =mry/ro & n=mn1(r1+r)/rn < ny =nxrp/(r1 +r2)], in accordance with Lemma 14. O
(a) 1 core node (b) 2 core nodes (c) 3 core nodes (d) 4 regular

Figure 6: Pair 6-regular Networks

Figure 6 represents four pair 6-regular networks for the case where n = 8, r = 6. We next show that the
budgets described above that are just sufficient to build pair r-regular, do not allow max-proofness to be
achieved for the case where D; = (r — 1), respectively D, = (r — 1). It follows that, if we can show that a
pair r-regular network is (max — 1)-proof, then for the number of links that is used in the given network, the
network is the best that the network designer can do. The simple case where r = 2 and D; = 1, respectively
D, = 1is an exception, as the pair 2-regular network (namely the circle) is also max-proof in this case - this
is why we exclude it. Further, we show that for sufficiently large n, the network designer cannot build
an r-regular component connecting (n — 1) nodes. It follows then that any best response pre-disruption
network for these linking budgets must be connected. Note that for the case in Figure 6, the connected
max-proof network uses 24 links, and the max-proof component connecting 7 nodes uses 21 links. It can be
checked that this is more than any of the number of links used in the four represented networks.
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Lemma 16. Let it not be the case that both v = 2 and ro = 2. Then with any number of links L = n * [r1ry/ (11 +
12)] that exactly allows one to build a pair r-regular network, one cannot build a connected r-regular network. More-
ovet, a critical nc exists such that, for all n > nc, the linking budget L is also too small to construct an r-regular
component connecting (n — 1) nodes.

Proof The r-regular connected network uses more links than the pair r-regular network iff n xr/2 > n *
[rir2/(r1+12)] & (r1 +12—2)(r1 +12) > 2% 1112 < 12 4+ 13 > 2(r1 +17). The latter is true for the specified
r. The r-regular component connecting (n — 1) nodes uses more links than the pair r-regular network iff
(n—1)%r/2>nx[riry/(r; +r2)]. For large n, this is true by the same calculations. O

Given Lemma 16, we know that for each pair r-regular network, if the linking budget needed to con-
struct it is available to the designer, there is a potential case where it is optimal to construct a (max — 1)-
proof network. Moreover, given Lemma 14, we know that for each 7, there may be several pair r-regular
networks, differing according to how the r links that connect any connected pair are distributed over the
two nodes in that pair. As they each potentially achieve the same maximally attainable goal of (max —1)-
proofness, we are interested in which networks achieve this with the smallest number of links. We now
show that the more asymmetric the distribution of links in any given connected pair is, the less links the
network uses overall.

Lemma 17. Consider the set of connected pair r-regular networks, where n is assumed such that for all ry > ro (with
r1+ro —2 =), it is the case that n x [ry/ (r1 + r2)] and n * [r1 / (r1 + r2)] are integer numbers. Then in this set,
pair r-reqular networks have less links the smaller their ry, and the pair r-reqular networks with ro = 2 have the
smallest number of links in this set.

Proof A pair r-regular network with r, = 1,71 = (r + 1) is only possible with the star architecture, and
is pair (n - 2)- regular. This case is here excluded given that r < (n — 2). The smallest possible r; is then
rp = 2. In the expression L = n x [rp(r +2 — 1)/ (r + 2)] derived in the proof of Lemma 14, the number of
links used is smaller the smaller 7,. The result follows. O

Lemma 17 suggests that the network designer who decides to construct a pair r-regular network with
the purpose of achieving (max — 1)-proofness, in order to save as much as possible on links, should dis-
tribute links across pairs as unequally as possible. In Figure 6 (case where n = 8, r = 6), network (a) uses
7 links, network (b) 12 links , network (c) 15 links, and network (d) 16 links. However, as we now show,
a distribution that is too unequal makes it possible for the disruptor to remove multiple low-degree nodes
from the network. This puts a cap on how unequal the distribution may be.

Lemma 18. A necessary condition for a pair r-reqular network to be (max — 1) proof under link deletion with
D; = (r — 1), respectively node deletion with Dy, = (r — 1), is that vy > (r —1)/2 < ry > (11 — 3).

Proof If r, < (r —1)/2, the disruptor is able to delete several nodes with degree r;, by either deleting all
their links in the case of link deletion, or all their neighbors in case of node deletion. 0

Ilustrating Lemma 18, in network (b) in Figure 6, if either D; = 5 or D, = 5, the disruptor is able to
take out at least two low-degree nodes. Moreover, for node deletion, an additional danger of an unequal
link distribution is that the disruptor can do a lot of damage by targeting the high-degree nodes. By the
same intuition, when the linking budget is equal to (n — 1), the star does very bad under node deletion.
For the case of link deletion see the section on high linking costs.

Lemma 19. A necessary condition for a pair r-regular network to be (n — D, — 1)-proof under node deletion with
D, = (r—1) is that rp > (r] — 2).

Proof Consider two neighbors of a type-1 node x;. By definition, these two neighbors are type-2 nodes.

Each of them have (r, — 1) type-1 neighbors other than x;. If 2% (r, —1) +1] < D, = (r — 1), then by

taking all the [2(r, — 1) 4 1] type-1 neighbors of the two mentioned type-2 nodes out, the disruptor can

take out two extra nodes. O
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Ilustrating Lemma 19, in network (c) in Figure 6, under node deletion, by deleting the three high-
degree nodes, the disruptor can make sure that all nodes are isolated.

We are now ready to summarize our results about pair r-regular networks that achieve (max — 1)-
proofness, and do so with a minimal number of links. Our main intuition is that under link deletion,
links can to a limited extent be unequally distributed over the two sides of any connected pair, saving
links. Under node deletion, links should not be unequally distributed. For this reason, we focus on the
case where r is even; for r is odd, there is a divisibility problem in that links simply can not be equally
distributed over the two sides of a connected pair.

Proposition 7. Let r be even, wherer > 4. Foranyry > 1,rp > 1suchthatr = (r1 +rp —2),let nx[ry/(r1 +12)]
and n * [r1/(r1 + r2)] be integer numbers. Then under link deletion, (max — 1)-proofness can be achieved with a
minimal number of links when r1 = r/2 42,19 = r/2, so that the type-1 nodes have two extra links compared
to type-1 nodes. Under node deletion, (max — 1)-proofness can be achieved with a minimal number of links when
r1 =1y = (r +2)/2, so that all nodes have the same degree, meaning that we have a (r + 2) /2-regular network.

Proof This follows directly from Lemmata 17, Lemma 18 and Lemma 19. O

Proposition 7 is illustrated by Figure 6. Networks (a) and (b) are not (max — 1)-proof under link dele-
tion. Both networks (c) and (d) are (max — 1)-proof, but network (d) uses more links. Note that in network
(), the disruptor will always target a low-degree node, as the disruptor then even does not need to use up
his entire disruption budget. In this sense, low-degree nodes can be considered as weak spots. The way in
which network (c) is represented in Figure 6 emphasizes that this is a star-like architecture. In the simple
case where D; = 1, the star is minimal (max — 1) proof. This is achieved by making every non-central
node a possible target for removal from the network. This saves links, and at the same time the disruptor
is only able to remove a single node. The same intuition applies to network (c). There are multiple weak
spots, so that the designer saves links, and at the same time the disruptor is only able to remove a single
weak spot. Under node deletion, only network (d) is (max — 1)-proof. It can be checked that the largest
post-disruption component in network (d) has order (n — D, —1) = (8 =5—1) = 2. This in turn is a
circle-like structure, in that it is completely symmetric. Under node deletion, the designer should not make
central, high-degree nodes as these will then be targeted.

7. Conclusion

Summarizing our results, when linking costs are low, the network designer protects his network by
constructing a regular network, where all nodes are equally well protected. Multiple architectures meet
this requirement, but the designer should take care to avoid that the network has local cliques connected
by few links, as such networks are easy to disrupt. This requirement is more restrictive for node deletion
than for link deletion. The set of best-response networks under node deletion is a subset of the set of best-
response networks under link deletion. A class of easily-described best-response networks is the class of
symmetric networks, consisting of a circle encompassing all nodes, plus added links. Intuitively, circles
plus added links assure that there are alternative paths between nodes, so that if one path is disrupted,
players are still connected by an alternative path.

When linking costs are high, contrary to what is the case for low linking costs, the best-response ar-
chitectures under link and node deletion look fundamentally different. Under link deletion, it is a best
response to connect all nodes in a star network. In such a network, the disruptor can only take out one
node for each disrupted link. Intuitively, the star network keeps all nodes as close as possible to one
another, in such a manner that the disruption of one link cannot disconnect several nodes. Under node
deletion, the star network is on the contrary a very bad network, since deletion of the central node discon-
nects all nodes. In general, any minimal connected network is a bad response, as it can easily be cut up
into components. Instead, it is a best response to leave some nodes out of the network, and build a smaller
and stronger component. Such components again should not involve local cliques connected by few links,
and examples of good components are again symmetric, consisting of a circle with added links. It follows
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that, under node deletion, network disruption causes a further inefficiency, where the designer connects
less links than is optimal in the absence of network disruption.

For intermediate linking costs, the network designer finds it too expensive to fully protect all nodes.
Our analysis suggests that, both under link and node deletion, the network designer constructs connected
networks, i.e. does not leave nodes unconnected to construct smaller and stronger networks. But other-
wise, the intuitions for high-linking costs are confirmed. Our analysis suggests that under link deletion,
star-like networks should be constructed, consisting of low-degree, weak, nodes, and high-degree, strong,
nodes. Just as in the star, there are multiple weak nodes, but only one can be disrupted. Also, the diam-
eter of the network is kept small so that deletion of links cannot cause large parts of the network do be
disconnected. Under node deletion, whenever possible, all nodes get the same degree. This is because
high-degree nodes are not strong as is the case under link deletion, but would on the contrary be likely
targets for disruption. This means again that the network designer does well by constructing a symmetric
network.

We end by exploring possibilities for future research, where the key question is to extend our present
approach of a network designer to a multi-player game, where the nodes in the network are actual players.
Let us start by looking at agent’s incentives to form links, independently form the presence of a disruptor.
In a more realistic model, there may be information decay, where information is worth less the larger the
distance it traveled in the network (Jackson and Wolinsky (1996) and Bala and Goyal (2000)). From the
perspective of information sharing, it is efficient for nodes to be as close to one another as possible, as is
the case in the star; in equilibrium, players also have the tendency to connect to a central node, such that
the star is likely to arise. As our analysis shows, at least for high linking costs, the star is also efficient
under link deletion. However, it is a bad network under node deletion. Further, players’ incentives to
link to certain nodes may not only depend on the information obtained from those nodes, but may also
depend on players preferences. A well-known phenomenon in sociology is homophily, where in networks,
birds of a feather flock together (McPherson et al., 2001). As shown in our analysis, such preferences are
in direct conflict with efficient defense against network disruption, as a deletion of a few links or nodes
may then cause great damage to the network. Further, players may also directly take into account network
defense and network disruption when deciding on which links to form. In one type of network formation
extension of our model, we could assume that players dislike being removed from a network. An example
would be a member of in an illegal network who does not want to be arrested. In some of our results, it is
efficient to leave weak spots in the network, which are then more likely to be removed from the network.
But individual players may not want to be at such weak spots then. In another type of network extension
of our model, players may on the contrary like to be at vulnerable positions in a network. If a firm defects
to a competing alliance, then this need not make the firm worse off. In its present network, each firm may
try to manoeuvre itself in a crucial position, in order to have larger bargaining power in its network. This
follows Burt (1992) argument that individual may gain advantage by bridging structural holes in networks,
thus assuring that information exchange takes place between different groups (for recent game-theoretic
translations of this argument, see Goyal and Vega-Redondo (2007) and Kleinberg et al. (2008)). In our argu-
ment, this strong position as such does not relate to the bridging function, but to the fact that a disruptor is
willing to give the such a bridge player a large payment for defecting, creating a very good outside option
for the player, and increasing his bargaining power in his present network. This does not mean, however,
that in equilibrium such bridging positions may ever arise, as every players seeks to obtain them.
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Graph-Theoretic Appendix

Graph Theoretic Lemmata and Definitions:

Definition I. A star network has a central node i, such that g;; = 1 for all j € N \ i and no other links.

Definition II. A chain graph is an alternating sequence of nodes and links, which begins and ends with a node and
each link is incident with exactly two nodes.

Definition III. A graph where each node is connected exactly of degree 2, is called a circle graph.
Definition IV. An end node is a node that is connected exactly of degree n;(g) = 1.
Lemma A.1. The only connected 2-regular architecture is the circle.

Proof A 2-regular network cannot contain any end nodes, as these have degree 1. Alternatively, construct
a 2-regular network step by step. Start with one node. This node should have two neighbors. These
two neighbors should each have an extra neighbor. Continue this procedure until one node remains to be
added, this leads to the construction of a line of (# — 1) nodes. The network can only be made 2-regular by
connecting the 2 extreme nodes of this line, resulting in a circle. O

Definition V. A graph G is called bipartite, if it is possible to divide the node set into two sets, Ny and Np, where
each link connects a node of subset N1 with a node of subset N, and no two nodes of the same set are directly linked.

Lemma A.2. Every connected graph contains at least (n — 1) links.

Proof Build up a network step by step. Start with one node. Connect another node to it, and so on (note
that any network can be constructed in such a manner). For each node you connect, you need at least one
link. O

Definition VI. Each graph that uses exactly (n — 1) links to connect n nodes, is called minimally connected.
Lemma A.3. Every graph that contains a circle uses at least n links.

Proof Suppose that a network contains a circle of x nodes. Consider this circle in isolation. It uses at least
x links. Now add the further (n — x) nodes, one by one. We need at least (n — x) links to do this. So to
build a graph that contains all # nodes and a circle, at least 7 links are needed. O

Corollary A.1. Minimally connected graphs do not contain any circles.
Proof This follows from Definition VI and Lemma A.3. i

Definition VII. A link (ij) in a connected graph G, is called a bridge link, if G_;; is disconnected. Similarly, every
set of links L is called a bridge link set, if G_| is disconnected.

Definition VIII. A node i in a connected graph G, is called a bridge node, if G_; is disconnected. Similarly, every
set of nodes V is called a bridge node set, if G_y is disconnected.

Lemma A.4. In every minimally connected graph, every link is a bridge link, and every node is a bridge node.

Proof By Lemma A.2, we know that every minimally connected graph does not contain a circle. Thus the
removal of any link or node will disconnect the graph. 0

Lemma A.5. In every minimally connected graph, there are at least two end-nodes.
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Proof We know by Lemma A.2 that any minimally connected network does not contain a circle. Knowing
that no circle is contained in any minimally connected network, there have to be at least 2 end-nodes in
the network, since without a circle at least two nodes need to be connected of degree #;(g) = 1, which are
end-nodes by definition. 0

Lemma A.6. Every minimally connected graph that is not a star has at least two nodes with degree larger than 1.

Proof Any star has (n — 1) nodes with degree 1. In every minimally connected graph, each node has
degree at least 1. It follows that in every non-star minimally connected network, at most two nodes have
degree 1. It follows that at least two nodes have degree larger than 1. O

Necessary conditions on the existence of an r-regular network are:

Lemma A.7. A necessary condition for existence of an r-regular network is that n and/or r is an even number, where
the r-regular network then has exactly (n x r) /2 links.

Proof As each node receives exactly r links, and since each link is shared by exactly two nodes, the total
number of links in any r-regular network is (1 * r)/2. It follows that an r-regular network only exists if n
and/or r is even. O

Appendix 2

Addition to Section on Node Deletion with High Linking Costs

The difference between the circle network and the max-proof network, is quite extreme. In Section 6, it
is shown how a (max - 1)-proof network can be constructed in the form of a pair r-regular network. Such
an architecture can also be used to make a smaller but stronger component in the case of node deletion
and high linking costs. As shown in Lemma 16, for a number of nodes «, a pair r-regular network L =
7 * [r1r2/ (r1 + r2)] links, where by Proposition 7, r; = rp = (r +2)/2. It follows that L = (y * (r +2)) /4.
Given that the linking budget is (n — 1), it follows that the pair r-regular network has a number of nodes
y=M4x*x(n—-1)]/(r+2)=[4*(n—1)]/(Dv+ 3). We can now show that building a max-proof network is
never the best option, and is either dominated by the circle network or by the (max - 1)-proof network.

Lemma A.8. For a linking budget of B = (n — 1) links, where (n — 1) > Dy(Dy, + 1) and a disruption budget of
Dy, the (max — 1)-proof network strictly dominates the max-proof network.

Proof The largest remaining component in a max-proof network, after an attack by a network disruptor
with a disruption budget of D, will be [2 % (n —1)/(Dy + 1) — Dy ]. The largest remaining component
in a max-1-proof network, after an attack by a network disruptor with a disruption budget of D, will be
[4% (n—1)/(Dy+3) — (Dp +1)] V7.

4% (n—1)/(Dy+3)—(Dy+1) >2%(n—1)/(Dy+1) — D,

S 4x(n—1)/(Dy+3)—2x(n—1)/(Dpy+1) > 1

< (” - 1) > (Dv +3)(Dv + 1)/2(Dv - 1)

Thus what remains to be shown is that this is indeed larger than D, (D, + 1).

(Do +3)(Dy +1)/2(Dy — 1) > Dy(Dy + 1)

& (Dy+3)/2(Dy — 1) > Dy

& (Dy+3)/2> D2 - D,

& (Dy +1)/D?2 > 2/3 This holds for all D, > 0, since D, by definition is a natural number. O

17We show this here explicitly for an even r, however, the same holds for odd r
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