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Abstract  
In a two-player stag hunt with asymmetric information, players may lock each other 
into requiring a large number of confirmations and confirmations of confirmations 
from one another before eventually acting. This intuition has been formalized in the 
electronic mail game (EMG). The literature provides extensions on the EMG that 
eliminate inefficient equilibria, suggesting that no formal rules are needed to prevent 
players from playing inefficiently. The present paper investigates whether these 
results extend to the multi-player EMG. We show that standard equilibrium 
refinements cannot eliminate inefficient equilibria. While two players are predicted to 
play efficiently, many players need formal rules telling them when who talks to 
whom. 
 
Keywords: Multi-Player Electronic Mail Game, Collective Action, Communication 
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1. Introduction 

 

E-mail has made it cheaper and faster to communicate within firms. Taking the stance from 

the organization literature that a firm can be seen as being involved in coordination problems 

(for a recent overview, see Calvó-Armengol and de Marti, 2009), it seems at first sight that 

increased communication through e-mail would make it easier for firms to solve their 

coordination problems. Hand in hand with the arrival of these technologies, sociologists have 

argued in favor of a new view on firms, which rather than as hierarchies should be seen as 

non-hierarchical networks of employees (e.g. Powell, 1990). Yet, in contradiction to this 

intuition, some firms have introduced measures that limit internal e-mail exchanges, such as 

e-mail-free Fridays (Washington Post, 2007). While other explanations may contribute to this 

phenomenon, we show in this paper that one rationale for this phenomenon is that allowing 

employees to freely communicate may decrease rather than increase the probability of 

coordination. 

Marschak (1955) and Radner (1962) have induced a large literature that treats the problem 

of organization as a problem of aggregating information that is dispersed over many 

individuals (see Calvó-Armengol and de Marti, 2009). The question arising in this literature 

is: what communication network optimally aggregates this dispersed information? In this 

paper, we take a somewhat different approach, and see firms as being involved in repeated 

collective-action problems, where in each collective-action problem, one employee or player 

is informed about the opportunity to benefit from collective action. Collective action is only 

successful if the informed player is able to rally a sufficient number of other players; for 

simplicity, we assume this to be all the players in the game. Such a game has an “I’ll go if a 

sufficient number of other players go” feature: as long as a sufficient number of other players 

act, the individual player acts.
1
 Thus collective action is a possible equilibrium outcome. Yet, 

at the same time, acting with an insufficient number of players is risky. Before players 

actually act, they will not only want to know whether there is an opportunity for collective 

action, but also – if there is even a small probability that information does not get through – 

they will want to know whether everyone else knows about this opportunity. Furthermore, 

they will want to know whether everyone knows that everyone knows it; and so on. It thus 

seems that players may engage in such an extensive amount of checking and double-checking 

each other’s knowledge that they never actually come to act.
2
 Thus, if when we talk about a 

communication network in this paper, contrary to what is the case in the organization 

literature, we refer to the exchange of messages, confirmations of messages, etc. between 

players. 

The fear of excessive communication is confirmed by Rubinstein (1989) in his electronic 

mail game (henceforth EMG), which in its standard form is a two-player game where an 

                                                 
Acknowledgements. We would like to thank participants of the 2007 EEA-ESEM meeting in Budapest, and the 

2008 Third World Congress of the Game Theory Society, and of seminars at the Utrecht University for helpful 

comments. Any remaining errors are our own. 
1
 In sociology, such models of collective action are known as threshold models (see Granovetter, 1978), where 

an agent’s threshold refers to the number of other agents who need to participate in the collective action for 

benefits to arise for the agent. See Chwe (2000) for a formal model of such threshold models. In these models, 

players’ thresholds may differ. In the current paper, we take the simplifying assumption that all players share the 

same threshold, and that this threshold is equal to the number of players in the game.   
2
 In general, there are two mechanisms by which players attempt to reduce the risk of acting alone, as listed by 

Chwe (1995), namely reconfirmation and redundancy. In Chwe’s work, however, redundancy means that an 

identical message is sent several times, whereas in the current paper, it means that players are on multiple chains 

on which players are ordered in a different way, where these chains form multiple alternative channels along 

which information can travel. 
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informed player knows whether or not a stag hunt
3
 is played; if a stag hunt is played, there are 

benefits in cooperating. If the underlying game is a stag hunt, Rubinstein assumes that an 

automatic communication protocol sends a message to the uninformed player. If this message 

gets through, which happens with large probability, the automatic communication protocol 

sends a proof of receipt from the uninformed to the informed player. It this proof of receipt 

arrives, the protocol sends a proof of receipt of the proof of receipt from the informed to the 

uninformed player – and so on until a message gets lost. Rubinstein shows that the only 

equilibrium for this game is one where no player ever acts. 

More recently, some authors have extended the two-player EMG to come to equilibria 

where cooperation still takes place. Binmore and Samuelson (2001) assume that 

communication is voluntary. Players both decide on how many proofs of receipt to send, and 

on how many proofs of receipt to pay attention to. Furthermore, players incur more costs the 

more proofs of receipt they send and pay attention to. These costs put a cap on how many 

messages to sent back and forth. Moreover, the fact that communication is voluntary ensures 

the existence of efficient equilibria where at most the uninformed player sends a proof of 

receipt to the informed player. Nevertheless, players’ mutual expectations may still lock them 

into equilibria where a large number of proofs of receipt, and proofs of proofs of receipt are 

required. Thus, Binmore and Samuelson’s analysis continues to give credence to 

Geanakoplos’ (1992) lesson, taken from the two-player EMG: it justifies strict rules of 

communication, such as a military rule between fighter pilots to only confirm each message 

once, and not confirm the confirmation.  

De Jaegher (2008a) extends Binmore and Samuelson’s paper by assuming that the 

individual player is able to falsely pretend having received a message. While Nash equilibria 

where players send a large number of messages back and forth continue to exist under such 

modified assumptions, efficient equilibria either are not sequential equilibria or do not meet 

the intuitive criterion. Long exchanges of confirmations are not sequentially rational because 

a player who is planning not to act should not send any costly messages. Suppose that a player 

does not receive a message, but still pretends to have received it (= false acknowledgement). 

At worst, when detected, the other player will punish such a false acknowledgement by not 

replying to it and not acting. But the cheating player who receives a confirmation of his false 

acknowledgement then knows that his cheating was not detected. Moreover, applying the 

intuitive criterion, consider a Nash equilibrium where the informed player sends a message to 

the uninformed player, who then sends a confirmation, after which the informed player sends 

a confirmation of this confirmation. Three messages then need to arrive for collective action 

to take place. The uninformed player does not run any risk from acting, whereas the informed 

player is not completely sure whether his or her last message reached the uninformed player. 

Both players are better off if the informed player simply sends a single message to the 

uninformed player. By the intuitive criterion, if the informed player deviates from the 

inefficient described equilibrium by staying quiet at the first stage and sending a message at 

the third stage, the uninformed player, who then appears to receive a confirmation of a 

message that he or she never sent, should realize that the informed player is trying to move to 

a more efficient equilibrium. Intuitively, two players involved in everyday situations such as 

meeting each other for lunch, will not engage in an endless exchange of confirmations, and do 

not need strict rules or institutions telling them how to communicate.
4
 

                                                 
3
 Skyrms (2004) recently stresses the importance of stag hunt games for the analysis of collective action. On the 

importance of interactive knowledge in collective action problems, see Chant and Ernst (2008). 
4
 A small literature investigates the robustness of Rubinstein’s results to modifications other than introducing 

multiple players. Dulleck (2007) shows that boundedly rational players with imperfect recall can still coordinate 

on requiring only a few messages. Dimitri (2004) shows that when messages from different players get lost with 

different probabilities, coordinate action can still occur, as the player whose messages arrive with high 



 3 

The purpose of the current paper is to investigate whether this intuition about voluntary 

communication without proofs of receipt extends to the multi-player electronic mail game.
5
 

Let it be the case that most of the time, there is no benefit from collective action. When the 

opportunity for beneficial collective action arises, let an informed player find out about this 

and be able to send messages to other uninformed players. Let messages not get through with 

small probability, and let acting with less than the required number of players be risky. De 

Jaegher (2008b) investigates such a multi-player game with involuntary communication (i.e., 

an automatic communication protocol), and shows that equilibria exist where players get 

locked into requiring a large number of proofs of receipt and proofs of proofs of receipt from 

one another. The question we here seek to answer is whether inefficiency is maintained in 

case of voluntary communication, where messages need not take the form of proofs of receipt. 

We show that, as such, a powerful mechanism is at work in the multi-player game that 

eliminates the most inefficient equilibria of the game with involuntary communication as 

Nash equilibria of the game with voluntary communication. As communication is voluntary, 

each message sent by the individual player confirms that this player received every single 

required message so far, and thus sent all of his or her messages so far. Thus, player j does not 

necessarily need to receive multiple messages from player i; the last message received from 

player i suffices, as this shows that player i also sent all previous messages. It follows that 

cases where players reoccur on separate strings of confirmations are often eliminated. Also, 

such cases are further eliminated by application of sequential rationality and of the intuitive 

criterion, in arguments similar to those for the two-player EMG.  

Yet, we also show that inefficient Nash equilibria exist that survive equilibrium 

refinements. To see why, suppose that the informed player informs each uninformed player 

separately, and then requires a confirmation from each uninformed payer; for N players, this 

means that )1(2 −N  messages must arrive for collective action to take place. Note that, in 

such an equilibrium, the informed player in this case does not run any risk from acting, and he 

or she knows with certainty that all other players are going to act. Each uninformed player, 

however, is never completely certain that any other player acts. All players are now better off 

in an efficient equilibrium where they send messages to one another ordered in a chain, where 

the last uninformed player in the chain sends a message to the informed player. This means 

that only N messages must arrive for collective action to take place. The informed player 

continues to know with certainty that all other players act; the uninformed player who is at 

position X in the line knows that )1( −X  other players act.  

The reason that the inefficient equilibrium, where the informed player talks bilaterally to 

each uninformed player, cannot be eliminated is that a switch to the efficient equilibrium 

would require the informed player to stop sending messages to all but one uninformed player. 

But just as in the inefficient equilibrium, this uninformed player then receives a message from 

the informed player, and cannot observe that the informed player is trying to deviate to the 

efficient equilibrium. Concluding, the mechanisms that are at work in the two-player EMG to 

eliminate inefficiencies in a single string of confirmations, do not always work to eliminate 

inefficiencies across several strings of confirmations. We conclude that, while two players 

involved in a stag-hunt like collective action problem do not need hierarchies that tell them 

                                                                                                                                                         
probability can then be quite sure that his or her message arrived, and that it is the confirmation of the other 

player that got lost. Coles (2007) provides a similar result for the two-player EMG. Binmore and Samuelson 

(2001) investigate the effect of communication being voluntary instead of automatic. They show that, while 

efficient equilibria now exist, players may still coordinate on inefficient equilibria where a large number of 

messages are sent back and forth. 
5
 A related multi-player stag hunt game is treated by Van Damme and Carlsson (1993). These authors treat the 

multi-player stag hunt in the context of equilibrium selection of the efficient, collective-action equilibrium rather 

than the inefficient equilibrium without action.   
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when to confirm which message, multiple players do need such hierarchies. Intuitively, two is 

company, but three is a crowd. 

The paper is structured as follows. Section 2 treats the multi-player EMG with voluntary 

communication by means of proofs of receipt (cf. Binmore and Samuelson, 2001). Section 3 

treats the multi-player EMG with voluntary communication by means of messages that can 

take on the meaning of confirmations of receipt in equilibrium (but can otherwise be sent even 

if no preceding message was received, cf. De Jaegher 2008a). We end with an interpretation 

in Section 4. 

 

 

2. Multi-player electronic mail game with voluntary communication consisting 

exclusively of proofs of receipt 

 

2.1 Model 

 

Our N-player electronic mail game takes the following form. There are two states of nature, 

state a and state b. State a occurs with probability 2/1)1( >− p . The N players can choose 

from two actions, namely actions A and B. Taking action A yields payoff zero whatever the 

state of nature, and whatever the action of the other player. If players choose different actions, 

then those who choose action A obtain 0, and those who choose action B incur a loss of L. If 

all N players choose action B in state b, then each player obtains payoff M. If they all choose 

action B in state a, then each player incurs a loss of L. It is assumed that 0>> ML .
6
 In two-

player form, the game looks as follows: 

 

 

 

 

 (0, 0) 

 

 

 (0, –L) 

 

 (0, 0) 

 

 (0, –L) 

 

 (–L, 0) 

 

 

 (–L, –L) 

 

 

 (–L, 0) 

 

 (M, M) 

 

 

Ga (probability (1–p) > ½) Gb (probability p) 

 

Tabel 1. Two-player electronic mail game 

 

 

Only player 1 knows the state of nature. At stage 0, Nature decides whether the state is a or 

b, and player 1 observes Nature’s choice. At stage 1, for each uninformed player, when 

having observed state b, player 1 decides whether or not to send an e-mail to him/her. For 

each e-mail sent, player 1 incurs a cost of d. 

                                                 
6
 This is Morris and Shin’s (1997) version of the electronic mail game in N-player form. It differs from 

Rubinstein’s (1989) original game in two aspects, both concerned with the game played in state a. First, in 

Rubinstein, each player obtains a payoff of M when all players play A in state a. Second, in Rubinstein, when all 

players play B in state a, each player obtains a payoff of zero. This version of the electronic mail game is also 

used in Morris (2002a, 2002b). 

A A B B 

A A 

B B 
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Simultaneously at stage 1, for each e-mail sent by player 1, Nature decides whether or not 

to let the e-mail arrive. Each e-mail arrives with probability )1( ε− , and gets lost with 

probability ε. When having received an e-mail at stage 2, an uninformed player i can forward 

this e-mail to each of the )1( −N  other players (which includes the informed player), where 

each sent e-mail again comes at a cost d. Again, Nature at stage 2 simultaneously decides 

whether or not to let each e-mail arrive, with the same probabilities as given above. At stage 

3, again at cost d, each e-mail that player j received at stage 2 (note that an uninformed player 

can receive up to )2( −N  e-mails at stage 2; an informed player up to )1( −N  e-mails) can be 

forwarded to the )1( −N  other players. Nature again decides for each such e-mail whether or 

not to let it arrive. Etc. Players can forward e-mails up to stage z. The action decisions (A or 

B) are taken at stage )1( +z . The payoffs are obtained at stage )2( +z . 

By scrolling down a received e-mail, a player observes a sequence of players through which 

a message was forwarded. Thus, when player n receives a particular e-mail from player j at 

stage t, player n observes that player 1 sent an e-mail to player i, who forwarded this e-mail to 

player… j, who forwarded this e-mail to player k, who forwarded this e-mail to player l, who 

finally forwarded this e-mail to player n. Each e-mail received can thus be seen as an 

observed message string of the form nlkji
xtxtxtxtxx ,,1,2,3,2,1

...1 →→→→→→
−−−

, where the numbers above 

the arrows refer to the stage at which an e-mail was sent, and x labels the message string. Note 

that when n observes nlkji
xtxtxtxtxx ,,1,2,3,2,1

...1 →→→→→→
−−−

, he/she also observes 

lkji
xtxtxtxx ,1,2,3,2,1

...1
−−−

→→→→→ , kji
xtxtxx ,2,3,2,1

...1
−−

→→→→ , ji
xtxx ,3,2,1

...1
−

→→→ , etc. The latter message 

strings are called sub message strings of nlkji
xtxtxtxtxx ,,1,2,3,2,1

...1 →→→→→→
−−−

. The short-hand 

notation for stating that message string mj,τ,x, received by player j at stage is a sub message 

string of message string mi,t,x received by player i at stage t is xtixj mm ,,,, ⊂τ ; x labels these 

message strings because a player may receive several message strings at one and the same 

stage. 

An action strategy ( ).1+z

ie  for player i is a mapping from an event, namely an observed set of 

strings of messages received and not received, to the set (A, B). As an event, consisting of a 

number of messages received and a number of messages not received, is fully characterized 

by the messages received, we only write down the messages received to characterize an event 

(meaning that all message strings not denoted are then not received). E.g., 

{ }( ) Bmme ysixti

z

i =∧∧+ ....,,,,

1  means that observance of a set of message strings 

{ }....,,,, ∧∧ ysixti mm  leads to the playing of B by player i. 

Given a message string kji
xtxtxx ,1,2,2,1

...1
−−

→→→→  received by player k, a signaling strategy for 

player k is a mapping from an event, namely an observed set of strings of messages received 

and not received, to the set (0, 1) denoting whether or not player k forwards message string 

kji
xtxtxx ,1,2,2,1

...1
−−

→→→→  to player l.  E.g., { }( ) 1....,,,,
...1

,,1,2,2,1 =∧∧
→→→→→

−− szktyk
lkji

mms xtxtxtxx  means that 

player k forwards message string kji
xtxtxx ,1,2,2,1

...1
−−

→→→→  to player l whenever having previously 

observed message strings mk,y,t, mk,z,s, … The inverse mapping ( ) {} {},....,.11

...1
,,1,2,2,1 →−

→→→→→
−−

lkji
xtxtxtxxs  

gives a list of all events (received message strings) for which player k forwards message string 

kji
xtxtxx ,1,2,2,1

...1
−−

→→→→  to player l. 
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We consider only candidate equilibria for which it is the case that only a single set of 

message strings { }...,,,, ∧∧ syitxi mm  leads player i to play B, where each message string in this 

set is then crucial for player i playing B. 

 

Definition 1 

Define as an equilibrium with crucial message strings a Nash equilibrium with the following 

features: 

(i) the equilibrium can be described as a set M of sets of message strings Mi, where Mi = 

{ },..., ,,,, syitxi mm , with one such set for each player i. A typical message txim ,,  in the set Mi 

takes the form ilkj
tt

→→→→→
−121

...1 . 

(ii) For each individual player i, as soon as he/she does not receive one of the message strings 

,..., ,,,, syitxi mm , he/she does not act. Put otherwise, each player i only acts when receiving 

every message string in the set { },..., ,,,, syitxi mm .  

 

In De Jaegher (2008b), equilibria are also described where players consider several 

alternative sets of message strings as sufficient for doing B. The existence of such equilibria is 

logical when communication is assumed to be involuntary and costless. If communication is 

voluntary and costly, however, players may not be willing to incur the costs of sending 

multiple messages if a few messages suffices most of the time to induce the other players to 

act. For this reason, we here focus on equilibria with crucial messages. 

An important concept that we will treat throughout is the one of a final node message string. 

 

 

Definition 2 

In an equilibrium where all message strings are crucial, define as a final node message string 

any message string Mm txi ∈,,  such that sxjtxisxj mmMm ,,,,,, : ⊂∈∃/ . Define MF as the set of 

all final node message strings in M. 

 

 

2.2 Nash equilibria 

 

We now come to a first proposition that identifies all candidate equilibrium networks as 

“trees” with three properties. A first property is that each uninformed player must occur at 

least once in the tree; this follows naturally from the assumption that all players are required 

to act, and therefore to be informed, for benefits to arise. A second property is that individual 

final node message strings in a tree need not run all the way to stage z. With involuntary 

communication, if all e-mails are automatically sent, then players always require information 

that a crucial e-mail has arrived, causing all strings of crucial messages to run to stage z. This 

is the case both in the two-player electronic mail game with involuntary communication 

(Rubinstein, 1989), and in the multi-player electronic mail game with involuntary 

communication (De Jaegher, 2008b). Simply, if confirmations are available, players require 

them. Yet, with voluntary communication, if nobody sends a confirmation, then the potential 

recipients do not let their decision whether or not to act depend on the receipt of such a 

confirmation; in turn, the senders do not send the confirmations. Thus, players’ mutual 

expectations can lead them to keep communication shorter. A third property is that a player i 

who requires a message string xtim ,,  in equilibrium, for any message string xjm ,,τ  with 

xtixj mm ,,,, ⊂τ , will not require a message yim ),1(, +τ  such that yixj mm ),1(,,, +⊂ ττ . Graphically, 
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this means that for any final node message string in an equilibrium tree, if a single message 

confirms receipt of a sub message string of this final node, this message can only be sent at 

the same stage as the final node. 

 

 

Proposition 1. 

Assume that an equilibrium exists that is described by a set of crucial messages M. Let MF be 

the subset of M that consists of all final nodes in M. Denote by )( FMM −  the set of all 

messages in M that are not final nodes. Then 

(i) Each uninformed player must occur at least once in M; 

(ii) MmmmMm xjxtixjFxti ∈⊂∀∈∀ ,,,,,,,, :: ττ ; 

(iii) FxjFxti MmMMm ∈∃−∈∀ ,,,, !:)( τ  such that xjxti mm ,,,, τ⊂ ; 

(iv) F

t

xti Mjim ∈→=∀ ...,, : zt ≤ ; 

(v) :: ,,,,,, xtixjFxti mmMm ⊂∀∈∀ τ  yim ),1(, +∀ τ  with yixj mm ),1(,,, +⊂ ττ : Fyi Mm ∉+ ),1(, τ . 

Proof: 

(i) This is the consequence of the assumption that all players must act, and thus must be 

informed, for the collaborative payoff to be achieved. 

(ii) Suppose that a message string Fxti Mm ∈,,  takes the form ilkj
xtxtxtx ,,1,2,1

...1 →→→→
−−

. Then it is 

easy to see that l

xtxtx

Mlkj ∈→→→
−− ,1,2,1

...1 , k

xtx

Mkj ∈→→
− ,2,1

...1 , j

x

Mj∈→...1
,1

. Simply, if a final 

node message string is crucial to player i, then a player, who does not receive a message string 

that is a sub message string of this final node message string, knows that player i does not act, 

and will not act him- or herself. 

(iii) Each message string mi,t,x in )( FMM −  must be a sub message string of at least one 

message in MF. If this would not be the case, then either the message mi,t,x itself would be a 

final node (a contradiction); or would be a sub message string of a crucial final node message 

string not in MF (but this contradicts the definition of MF). 

(iv) Let no player require a proof of message string ji
xtxt ,,1

... →→
−

. Given that sending an e-mail 

is costly, j does not send a proof of this message string then. Given that such a proof is never 

received, it is a best response for other players not to let their decision on whether or not to 

play B depend on whether they receive such a proof from player j. This in turn justifies player 

j’s strategy of not sending a proof. 

(v) If player i receives message string xtim ,, , then player i knows that player j received 

message string xjm ,,τ , and does not need a confirmation yim ),1(, +τ  of this to play B. It follows 

that message string yim ),1(, +τ  cannot be crucial if message string xtim ,,  is crucial. 

QED 

 

An example of a tree that is eliminated by Proposition 1 is given in the left part of Figure 1. 

If Bob requires a message from Carl that Carl heard from Alice, then Bob does not need to 

hear from Alice directly. Similarly, Alice need not hear directly from Carl that he found out 

her information, if Alice already finds this out through Bob. The messages crossed through 

are thus eliminated (where it should be noted that one can make an opposite exercise where 

the crossed through messages are maintained, at the cost of all other messages except the 

message at stage 1 from Alice to Carl). The right part of Figure 1 presents a tree that is not 
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eliminated by Proposition 1 as an equilibrium. This is because further confirmations are now 

asked of the messages that are crossed through in the left part of Figure 1.   

 

 
 

 

Figure 1. Tree eliminated by Proposition 1 (left), and tree not eliminated by Proposition 1 

(right). 

 

Nevertheless, as we will now go on to show, the right part of Figure 1 is still eliminated as 

an equilibrium, and Proposition 1 does not describe all aspects of Nash equilibria. A first step 

to realizing this is to see that in the multi-player EMG with voluntary communication, in any 

equilibrium with crucial messages, when sending an e-mail a player does not only confirm 

receipt of a string of messages, but confirms receipt of every message he or she has received 

so far. In the right part of Figure 1, if a Nash equilibrium would correspond to this tree (which 

we will show is not the case), then Bob only sends a message at stage 3 when having received 

a message at stage 1, and Alice only sends messages at stage 4 when having received all 

messages at stage 2. If earlier messages are crucial to a player, then the player plays A as soon 

as not receiving any of those messages; given that A always yields payoff zero, the player then 

does not have any reason to send any further costly messages. Proposition 2 generalizes this 

principle. 

 

Proposition 2 

In equilibrium, let player i send an e-mail at stage t. Then player i only sends this e-mail when 

having received each message tMm ixi <∈ ττ :,, . 

Proof: 

By definition, each message in Mi is a crucial message, in the sense that when player i does 

not receive it, he/she plays A. But playing A yields a zero payoff with certainty. It follows 

that, as soon as a player does not receive a crucial message, she does not send any further 

messages, as sending messages is costly. 

QED 

 

We now define the concept of a path that will be important for eliminating communication 

networks as equilibria.
7
  

 

Definition 3. 

In a set of crucial message strings M, consider all parts of these messages strings from stage s 

to stage t. Then we say that a path exists from player a to player i between stage s and stage t  

                                                 
7
 For readers familiar with the network literature, it should be stressed that our concept of a path differs from the 

one treated in that literature, as our paths can jump from one string of links to the other.  

Alice 

Bob 

Carl 

Alice 

Carl 

Bob 

Alice 

Alice 

Bob 
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Bob 

Alice 

Bob 

Carl 

Bob 

Alice 
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Bob 
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if an order of (sub) message strings ihhgdccbba
yxwvu ,...,...,...,...,...

,,...,,,
ωςτσρ

→→→→→→→→→→  exists in 

M, where ia,...,  refer to players, where yu,...,  refers to message strings, and where 

ωςτσρ ,,,,  denote stages. The message strings yu,...,  may or may not be different. It is the 

case that ωςτσρ <<<< . 

 

 
Figure 2. Paths, and tree eliminated by Proposition 3. 

 

 

In Figure 2, which is the right-part of Figure 1, the following paths exist. Note first that all 

message strings are also paths. The most interesting paths are those that jump across message 

strings, where such jumps are indicated by ovals. In Figure 2, these are Alice � Bob, Bob � 

Alice, Alice � Bob; Alice � Bob, Bob � Alice, Alice � Carl; Alice � Carl � Alice, Alice 

� Bob; and Alice � Carl � Alice, Alice � Carl. We now provide a result about the 

information that a player receives when getting a message in a path. 

 

Lemma 1. Across message strings in an equilibrium with crucial messages, let a path 

ihhgdccbba
yxwvu ,...,...,...,...,

,,...,,,
ωςτσρ

→→→→→→→→→  exist from player a to player i. Then, when 

receiving an e-mail from player h at stage ω in message string y, player i knows that player b 

observed message string ba
u,ρ

→ , player c observed message string cb
v,... σ

→→ , player d observed 

message string dc
w,... τ

→→ , etc. 

 

In the example of Figure 2, e.g. when Bob receives an e-mail from Alice at stage 4, he 

knows that Alice received an e-mail from Carl at stage 2. We now define as a message set all 

the message strings that a player knows to have been realized when receiving an e-mail in an 

equilibrium with crucial messages. 

 

Definition 4. Consider message string ih
ytyt ,),1(

... →→
−

, and consider all paths from stage 1 to 

stage )1( −t  between players 1 and h. Then by Lemma 1, in any equilibrium with crucial 

messages, when player i receives message string  ih
ytyt ,),1(

... →→
−

, player i knows the information 

contained in all the message strings which are part of a path from stage 1 to stage )1( −t  

between players 1 and h. We refer to this information, which takes the form of a set of 

messages, as player i’s message set when receiving message ih
ytyt ,),1(

... →→
−

 in an equilibrium 

with crucial messages. This message set is denoted yti ,,µ .  

 

Alice 

Bob 

Carl 

Alice 

Carl 

Bob 

Alice 

Alice 

Bob 

Carl 

Bob 
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In Figure 2, when Bob or Carl receive an e-mail from Alice at stage 4, their individual 

message sets contain all messages in the tree except the message sent by Bob to Carl at stage 

2, and the message sent by Alice to Bob at stage 3. While message sets can span different 

message strings, they in fact have similar properties to message strings. Just like message 

strings, message sets can be seen as a chain of messages starting at stage 1 (this is because 

paths can always be made to start at stage 1 – see above). Also, just as message strings, 

message sets aggregate information. Let message string 
... ,u

k l
σ

→ →  be an element in player i’s 

message set yti ,,µ when receiving message ih
ytyt ,),1(

... →→
−

. Denote by l , ,uσµ  player l’s message 

set when receiving message 
... ,u

k l
σ

→ → . Then all messages in l , ,uσµ  are elements of yti ,,µ . l , ,uσµ  

can thus be seen as a sub message set of message set yti ,,µ . 

Finally, just as a message string can only materialize if all of its sub message strings are 

realized, so is the realization of a message set only possible when all of its sub message sets 

have been realized. To see why, consider one path 

ihhgdccbba
yxwvu ,...,...,...,...,

,,...,,,
ωςτσρ

→→→→→→→→→ . If b does not receive a message from a at stage 

ρ, player b does not send a message at stage σ, player c does not send a message at stage τ,…, 

player g does not send a message to player h (and h will not send a message to i). The same 

applies wherever you start in a path. Moreover, the same applies for any path arriving at i at 

stage t. Summarising: 

 

Lemma 2. Consider a message ih
y,... ω

→→ . If any message contained in i’s message set yi ,,ωµ  

accumulated in message ih
y,... ω

→→  is not received, then i will not send any confirmations of 

message string  ih
y,... ω

→→  in an equilibrium with crucial message strings. 

 

In the example of Figure 2, consider the message set that contains all the messages in the 

tree except the message sent by Bob to Carl at stage 2, and the message sent by Alice to Bob 

at stage 3. Then, if any message in this message set gets lost, Bob and Carl do not receive a 

message from Alice at stage 4. We now come to a simple generalization of part (v) of 

Proposition 1: 

 

 

Proposition 3.  

Let an equilibrium tree contain a crucial message ih
y,... ω

→→ . Consider the message set yi ,,ωµ  

about which player i is informed when receiving this message in an equilibrium. Then for any 

message ba
u,... σ

→→  in yi ,,ωµ , we have 
1... ,u ,u

Fa b i M
σ σ +

→ → → ∉ . 

Proof: 

By Lemma 1, message string ih
y,... ω

→→  already contains the information that message ba
u,... σ

→→  

was received. It follows that if message string ih
y,... ω

→→  is crucial, message string 

iba
uu ,1,... +

→→→
σσ

 cannot be crucial. QED 

 

In the example of Figure 2, if the equilibrium tree involves the e-mails sent by Alice to Bob 

and Carl at stage 4, then it cannot contain the e-mails that are crossed out. Note that after 
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these messages are deleted, further messages need to be deleted in order to keep the e-mails 

sent by Alice to Bob and Carl at stage 4 as crucial messages. This generalizes the principle in 

the left part of Figure 1. There, if players consider a message string as crucial, they cannot 

consider final node confirmations of sub message strings of this message string as crucial. In 

Figure 2, if players consider a message set as crucial, they cannot consider final node 

confirmations of sub message sets of this message set as crucial. 

In order to have an idea of both the strength and the limits of the principle expanded in 

Proposition 3 for eliminating inefficient equilibria, we provide an additional result. 

 

Corollary 1. In the multi-player EMG with voluntary communication by means of proofs of 

receipt, equilibria with crucial messages cannot contain more than )1( −NN  final node 

message strings. 

Proof: It can be checked that any tree with more than )1( −NN  final node messages violates 

Proposition 3. QED 

 

In comparison to the result in Corollary 1, in the largest possible communication network, 
zN )1( −  messages are sent at stage z. An example of an equilibrium tree with a maximal 

number of final node message strings for the three-player EMG with proofs of receipt is given 

in Figure 3. The final node message strings end in all possible e-mails that the three players 

can send to one another. Note that, when Carl receives an e-mail from Bob at stage 3, Carl 

also knows that Bob sent an e-mail to him at stage 2. Yet, the e-mail at stage 2 continues to be 

crucial because Alice and Bob require a confirmation of it. It follows that Carl still considers 

the e-mail from Bob at stage 2 crucial, since otherwise Carl cannot send a proof of receipt to 

Alice and Bob. For this reason, equilibrium trees where a lot of messages are required 

continue to exist in this version of the game. 

 

 

 
 

Figure 3. Equilibrium tree with maximal amount of final node message strings in multi-player 

EMG with proofs of receipt. 

 

 

We have so far shown what form Nash equilibrium trees with crucial message strings (in 

the multi-player EMG with proofs of receipt) take if they do exist. It remains to be shown that 

the trees with the properties derived in Propositions 1 and 3 are indeed Nash equilibria. We 

separately check whether the players’ action strategies are best responses, given that they 

have followed the equilibrium signaling strategies (Proposition 4). Next, we check whether 

the players’ signaling strategies are best responses. 
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Proposition 4. 

Consider any set of crucial message strings M with the properties derived in Proposition 1 and 

Proposition 3. Consider an individual player i. For a tree as characterized in Propositions 1 

and 3, let all other players than i only play B when receiving all their e-mails in this tree, and 

only send a proof of receipt when having received all e-mails in the tree so far. Then: 

(i) if player i does not receive a message string of which player i’s proof of receipt is 

crucial to at least one other player, then player i plays A; 

(ii) if player i does not receive a crucial final node message string, then player i plays A; 

(iii) small levels of ε with [ [Cεε ,0∈  exist such that player i prefers to play B when player i 

receives all crucial messages. Cε , the critical value of ε such that some player receiving 

a message string in M is indifferent between playing A and B, is a function of z. 

Proof: 

(i) By definition, if player i does not receive a message string, she cannot send a proof of 

receipt of this message string. If such a proof of receipt is crucial to another player, then 

this other player will play A. Given that player i incurs a loss as soon as one other player 

plays A, he/she plays A. 

(ii) By Corollary 1, if player i does not receive a final node crucial message string from 

player h, he/she does not receive any other message containing the same information. At 

best, player i knows that a message was sent to player h. Player i’s expected utility from 

playing B is then LM
εεε

ε

εεε

εε

)1()1(

)1(

−+
−

−+

−
. Since L > M, this is smaller than the 

payoff zero when playing A. As player i plays A even under these best circumstances, 

she always plays A when she does not receive a final crucial message. 

(iii) In any candidate equilibrium, given that all other players follow the candidate 

equilibrium strategy, a player who has received all crucial messages faces uncertainty 

whether X other crucial messages arrive. Each such player therefore faces a decision of 

weighing [ ]LM XX )1(1)1( εε −−−−  against zero. For any X, a small ε can be found 

such that the player prefers to play B. 

QED 

 

Intuitively, the potential receiver of a non-final node message string plays A when not 

receiving this message string, as this automatically blocks at least one other player from 

receiving a crucial proof of receipt. The potential receiver of a final node message string, 

when not receiving this message string, plays A because of the large loss of playing B when 

not all other players are playing B. 

 

Proposition 5. 

By Proposition 4 a level of ε denoted as Cε  exists such that for each ε with [ [Cεε ,0∈ , each 

player in any tree characterized by a set of crucial message strings M that has the properties 

derived in Propositions 1 and 3, strictly prefers to play B when having received all crucial 

message strings in M. Given such an Cε , levels of d with [ [)(,0 Cdd ε∈  exist such that each 

receiver of a non-final node message string in M strictly prefers to send the proof of receipt 

implied by M when having received all messages so far in M. 

Proof: 

The general form of the expected payoff to a player of sending any candidate equilibrium 

message, given that all other players follow the candidate equilibrium, can be derived in the 

following way. Assume that, when a player sends a current message, this implies that the 
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player will also send all further messages, if the opportunity presents itself. By Proposition 4, 

the player will only consider doing B when having been able to send all further messages in 

M. Let X1, X2, X3,…, XF messages need to arrive for the player to send his or her first, second, 

third,… final message after having sent the current message. The player’s expected payoff 

when sending the current message then takes a nested form: 

 

 ( )[ ]{ }ddd
XXX −−−−−− )(...)1()1()1( 321 εεε  (1) 

 

where the player’s decision to send the final message takes the form  

 

 [ ] dLM FF XX −−−−− )1(1)1( εε , (2) 

 

and is contained into the latter expression. It is easy to see that if the player is willing to send 

the earliest message (along with all future ones (see (1)), he also will want to send all future 

messages. For 0=d  , given that [ [Cεε ,0∈ , (2) is larger than zero. Moreover (1) is larger 

than zero as well. It follows that levels [ [)(,0 Cdd ε∈  exist such that all expressions such as 

(1) and (2) are strictly larger than zero. QED 

 

 

 

2.3 Efficient equilibria 

 

Having characterized the equilibria with crucial message strings of the multi-player EMG 

with proofs of receipt, we now investigate what are the efficient equilibria. In order to 

disentangle the effect of the fact that the e-mails are costly, and of the fact that they are noisy, 

we first treat efficiency separately for a model with costly, noiseless e-mails, and with 

costless, noisy e-mails. In the model with costly, noiseless messages, all trees that have 

)1( −N  messages are efficient. In the model with costless, noisy messages, lines with )1( −N  

messages are efficient and best to the last uninformed player receiving a message; lines with 

N messages, where the informed player receives a final message, are also efficient and are 

best to the informed player. 

 

Proposition 6. In the absence of noise, any tree starting at the informed player with exactly 

one message sent to each of the )1( −N  uninformed players is Pareto-efficient. 

Proof:   

Players are certain that all messages arrive, and therefore, compared to trees with )1( −N  

messages, cannot become better off if confirmations are added to these trees. Given that 

messages are costly, some players would become worse off without anyone getting better off.   

 

Thus, many Pareto-efficient trees exist for the game without noise, and players differ on 

their preferences over these trees depending on the message sending costs they incur. In the 

absence of noise, there only is a conflict over who bears the cost of sending messages. In a 

star, the informed player bears all the message sending costs. In a line, each player except the 

last player in line sends one message. There are many other Pareto-efficient trees between 

these two extreme cases. We next treat noisy communication without costs. 
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Proposition 7. Consider equilibria where each message is crucial. Let sending messages be 

costless, but let there be noise. Then the Pareto-efficient trees are any line of size )1( −N , and 

any line of size N where the informed player receives at most one confirmation of earlier 

messages (anywhere between stage 2 and the final stage). 

Proof: 

The proof consists of three parts. In (i), we first show that no more than one final message can 

be situated at a stage before the final stage at which any message is sent. In (ii) we show that 

only one message can be sent at the final stage. In (iii), we show that uninformed players can 

only occur once in each message tree, whereas the informed player can occur twice. 

(i) Consider a tree g in which stage t is the last stage with any final node message string, 

and let more than one message string be crucial at stage s, with s < t. Thus, we have a 

final node message string mx ending at t, jihgfrqm
tts

→→→→→→
−+ 11

.........1
ττ

. 

Additionally, we have a message lk
s

→ , with gl ≠ , part of message string my. Denote 

by nm
τ

→→
...

, with s≤τ  the earliest message string contained in my but not in mx. 

Denote by nmg →  the tree consisting of all messages that can only be sent if nm
τ

→→
...

 

arrives. Consider a final node message po
σ

→→
...

 of nmg → , with τσ ≥ . Construct now a 

new tree jihgfrponqm
tts )1()1(1)1(211

............1
−−+−−+−−−++++

→→→→→→→→
τστστσσσττ

. This is done 

by taking the tree nmg →  out of the old tree, and reconnecting it, where player q at stage 

(τ + 1) sends a message to player n (and continues to send all other messages he/she sent 

in the old network); where all confirmations are further sent as in nmg →  (and thus now 

also confirm that q received a message from m at τ); and where p, when receiving a 

message from o, sends a confirmation at )2( +σ  to r. Then all players up to stage τ have 

the same information as before. All players after τ have at least as much information. It 

follows that all players are better off in the newly constructed network. An example is in 

Figure 4. By repeating this procedure any number of times, one eventually obtains a tree 

in which not more than one message is sent at a non-final stage. 

(ii) Consider two players i and j receiving a final node message string at the same stage t. 

By (i), this needs to be from one and the same player. Construct a new tree where j no 

longer receives such a message, but where i at stage )1( +t  sends a confirmation of all 

messages received before to j. Then i is equally well off, but j is better off. 

(iii) Consider all candidate efficient trees, which by (i) and (ii) must be lines. Let a player i 

occur more than one time in such a line. The first time, let him receive a message from 

player h, and let him send a message to j. Construct a new tree where h confirms directly 

to j, without passing by i, and where everything otherwise stays the same. Then 

everyone is better off because less messages are sent over all, but players are still 

ordered in the same way according to their uncertainty. 

QED 
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Figure 4. Example of part (i) of the proof of Prop. 7, where 1 = k = f = m, s = τ, 3 = g = q, 2 = 

n, 4 = r. 

 

Finally, we provide a result for the combination of noise and costly signals, based on the 

assumption that signaling costs are relatively small. 

 

Proposition 8. Consider equilibria with crucial messages in the multi-player EMG with 

proofs of receipt. Let there be noise, and let sending messages be costly. Then relatively small 

ranges of d exist such that the efficient equilibrium trees are any tree of size )1( −N , and any 

tree of size N where the informed player receives at most one confirmation of earlier 

messages (anywhere between stage 2 and the final stage), with a common characteristic. The 

common characteristic in these trees is that multiple messages can only be sent at the unique 

final node stage. 

Proof: 

We follow the same structure as in the proof of Proposition 7, and check the extent to which 

the arguments set out there continue to apply with costly signals. 

(i) Consider the procedure in part (i) of the proof of Proposition 7 for constructing a new 

tree from an inefficient tree. With costly signals, it continues to be the case that all 

players up to stage τ have the same information as before; also, they have the same 

signaling costs as before. All players after τ have at least as much information, and with 

the exception of player p, carry the same signaling costs. As player p has more 

information, for small signaling costs, she will be better off by sending a message in the 

newly constructed tree. It follows that all players are better off in the newly constructed 

tree. 

(ii) Consider two players i and j receiving a final node message string at the same stage 

(from one and the same player). Construct a new tree where j no longer receives such a 

message, but where i at stage )1( +t  sends a confirmation of all messages received 

before to j. Then i is worse off, but j is better off. Therefore, there is no Pareto-superior 

move from networks with several final node messages sent at the same stage. 

(iii) The argument set out in (iii) of Proposition 7 is reinforced because j additionally saves 

signaling costs from the Pareto superior move. 

 QED 

 

 

By Proposition 8, the structure of all efficient equilibrium trees takes the form of a line, a star, 

or a combination of a line and a star. The last player in the line sends a message to each 

remaining player. Examples of such networks for the four-player case are given in Figure 5, 

where it should be noted that the positions of the uninformed players are interchangeable. 
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Figure 5. Efficient trees in the four-player EMG. 

 

 

2.4 Equilibrium selection 

 

We end this section by noting that equilibrium refinements have no cutting ground in the 

EMG with proofs of receipt. Eliminating some Nash equilibria is driven by players’ responses 

in equilibrium to out-of-equilibrium events. Nash equilibria may not be sequential equilibria 

because players’ best response to an out-of-equilibrium event cannot possibly be a best 

response as soon as this out-of-equilibrium event occurs with positive probability. Yet, 

because of noise, the event of not receiving a message already occurs in equilibrium with 

positive probability, limiting the available out-of-equilibrium events. Furthermore, because 

players can only send proofs of receipt, the only out-of-equilibrium messages that can be sent 

are extra proofs of receipt, thus extending rather than limiting the number of messages. For 

this reason, out-of-equilibrium messages cannot have the function of indicating a player’s 

willingness to move to a Pareto-superior equilibrium. Equilibrium selection arguments can be 

at work, however, if players’ messages are not literally proofs of receipt. This case is 

investigated in the next section. 

 

 

3. Multi-player electronic mail game with voluntary communication: false 

acknowledgements can be sent 

 

We now assume that messages are not literally proofs of receipt, and can only take on the 

meaning of confirmations of receipt in equilibrium. We assume each player to have a set of 

messages at his or her disposition. In equilibrium, a particular message sent at a particular 

time takes on the meaning of a particular message string. Note that the sender of such a 

message can then pretend to have observed a message string even when this is not true. While 

this extends the strategy space, Nash equilibria replicating the equilibria with proofs of receipt 

may continue to exist. In such replicating equilibria, while it is possible to tell other players 

that one has received a message string even if this is not true (referred to as a false 

acknowledgement), players find it a best response to be honest. This section investigates the 
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extent to which such replicating equilibria continue to be Nash equilibria (Section 3.1), and 

whether any replicating equilibria survive standard refinements of the Nash equilibrium 

(sequential equilibrium, Section 3.2; intuitive criterion, Section 3.3). 

 

 

3.1 Nash equilibria 

 

 

 
 

Figure 6. Non-Nash tree in the three-player EMG without proofs of receipt. 

 

 

Figure 6 repeats Figure 3, and indicates two paths. In the EMG with proofs of receipt, the 

presence of these paths is irrelevant. Even though e.g. Carl, when receiving an e-mail from 

Bob at stage 3, knows that Bob sent an e-mail to him at stage 2, Carl still requires the e-mail 

at stage 2 as well, as Alice and Bob require a proof of receipt of it. Yet, in the EMG without 

proofs of receipt (i.e. with the possibility of false acknowledgements), when Carl does not 

receive an e-mail from Bob at stage 2, Carl can pretend to Alice and Bob that he received an 

e-mail from Bob. Carl does not know whether there is an opportunity for collective action at 

this point, but reasons that he may yet receive an e-mail from Bob at stage 3, indicating that 

Bob’s message at stage 2 got lost. Carl thereby still gets an opportunity to benefit from 

collective action even though a message got lost. As long as the cost of sending a message is 

not too high (it is still probable that there is no opportunity for collective action), Carl may 

still turn out to play B even when not receiving an e-mail from Bob at stage 2. But if this is so, 

then the tree in Figure 6 is not a Nash equilibrium with crucial messages. In general, if players 

consider a message set as crucial in the multi-player EMG without proofs of receipt, they 

cannot consider any confirmations of sub message sets of this message set as crucial. Note 

that this is more general than the final node confirmations of Proposition 3. 

 

 

Proposition 9. Consider a candidate equilibrium of the multi-player EMG without proofs of 

receipt replicating any of the equilibria derived for the case with proofs of receipt. Consider 

player i’s decision to send one ore more false acknowledgements at stage )1( +t , after not 

having received message string 
,... t x

h i→ →  from h at t, but having received all equilibrium 

messages at or before t. Consider all messages contained in xti ,,µ in this case. Suppose (i) that 

there is a path from each of these messages to player i at stage t or later. Then, for sufficiently 

small d, the candidate equilibrium is not a Nash equilibrium. 

Proof: 
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In a candidate equilibrium replicating an equilibrium of the multi-player EMG with proofs 

of receipt, let player i not receive message string ih
xt ,...

→→  (but receive all other messages). Let 

player i send one or more false acknowledgements, pretending to have received message 

string xti ,,µ . By (i), it is still possible that player i receives information later on that all 

message strings contained in xti ,,µ  except ih
xt ,...

→→  were received. If player i does not receive 

this information, by Proposition 4, player i plays A. If player i does receive this information, 

then player i plays B for the same reason that he/she plays B when ih
xt ,...

→→  is received and the 

candidate equilibrium is followed. It follows that player i’s expected payoff net of signaling 

costs of sending one or more false acknowledgements is positive. Therefore, for sufficiently 

small d, player i sends these, and the candidate equilibrium is not a Nash equilibrium. 

QED 

 

An application of Proposition 9 is that, as soon as a player i requires a message string from 

player j at stage t on string mi,t,x, player i cannot require in equilibrium any messages of other 

message strings that have mj,(t-1),x as a sub message string. This is summarized in Corollary 2. 

 

Corollary 2. In an equilibrium tree of the multi-player EMG without proofs of receipt, let 

player i require mi,t,x. Then xixtixtj mmm ,,,,),1(, : τ∀⊂∀ −  with Mmmm xixixtj ∉⊂− ,,,,),1(, : ττ . 

 

As an example of the relevance of Corollary 2 consider the three-player game. If Alice 

sends a message to Bob and Carl at stage 1, then Bob’s message cannot (directly or indirectly) 

be forwarded to Carl, and vice versa. Thus, we have one message string on which only Alice 

and Bob can be positioned, and one message string on which only Alice and Carl can be 

positioned. An example of such a tree is given in Figure 7. 

 

 

 

 
 

Figure 7. Equilibrium tree in the three-player EMG without proofs of receipt. 

 

 

 

 

 

 

 

 

 

Alice 

Bob 

Carl 

Alice 

Alice 
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3.2 Sequential equilibria 

 

 

 
 

Figure 8 Nash tree that is not sequentially rational. 

 

 

Contrary to what is the case in the game with proofs of receipt, in the game without proofs 

of receipt, out-of-equilibrium events can be generated by the fact that false acknowledgements 

can be sent. As we now show, this causes some paths that exist across Nash equilibrium trees 

to be eliminated for not being sequentially rational. Consider Figure 8. Let Carl not receive 

the e-mail from Bob at stage 3, but let Carl still send a false acknowledgement to Bob at stage 

4. If Bob did not receive the e-mail at stage 2, then Bob finds out that Carl’s 

acknowledgement is false. Bob could then punish Carl by playing A and not sending an e-

mail. Yet, such a punishment does not keep Carl from sending a false acknowledgement: if 

Carl receives an e-mail from Bob at stage 5, Carl then knows that Bob did not detect the false 

acknowledgement, and can safely play B; if Carl does not receive an e-mail, Carl knows that 

it is likely that his false acknowledgement was detected, and does not run any risk by playing 

A. Therefore, this kind of punishment does not stop Carl from sending a false 

acknowledgement as long as the cost of sending a message is relatively low. A punishment 

that does stop Carl from sending a false acknowledgement is when Bob sends an e-mail at 

stage 5 even after having detected a false acknowledgement, and even though he is planning 

to do A. But such a punishment is not sequentially rational, as it is never a best response to 

send a costly message when one at the same time takes an action that always yields payoff 0. 

Note that the same principle is at work if Carl does not send a message directly to Bob, and 

next Bob does not send a message directly to Carl, but if there is instead a corresponding path 

between these players. The general result is stated in Proposition 10. 

  

Proposition 10. 

Consider a Nash equilibrium tree of the multi-player EMG without proofs of receipt. Then 

this tree is not a sequential equilibrium (Fudenberg and Tirole, 1991) if, for any message 

string Mih
xt

∈→→
,...

, 

(i) there is a path in the tree from player i to player h between stage t and some stage (t + x), 

with x > 1; and 

(ii) there is a path in the tree from player h to player i starting at stage (t + x). 

Proof:  

Let all other players follow the Nash equilibrium, and let player i not receive message string 

ih
xt ,...

→→ . If the last e-mail in this message got lost, and if player i sent a false 

acknowledgement, then for small noise player i is likely to get a message from player h. 

(…) 

(…) 

(…) 

Bob Carl 

Carl Bob 

Carl Bob 
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Moreover, if player h does not send any messages when detecting a false acknowledgement, 

then a player i, who still receives a message from player h, knows that player h did not detect 

the false acknowledgement. At the same time, it is never a best response for player h to send a 

message and play A. Thus, when player i still receives a message from player h, player i 

knows that the false acknowledgement went undetected; when player i does not receive 

anymore messages from player h, player i avoids any risk by playing A. Net of signaling 

costs, the expected payoff of sending a false acknowledgement is therefore positive. It follows 

that for sufficiently small d, player i sends a false acknowledgement. The Nash equilibrium is 

supported by a response of player h to an out-of-equilibrium event that is never a best 

response when the out-of-equilibrium event actually takes place. It follows that such a Nash 

equilibrium is not a sequential equilibrium. QED 

 

It should be noted that Proposition 10 generalizes a principle that is at work in the two-

player EMG without proofs of receipt (De Jaegher, 2008a) to the multi-player setting. In the 

two-player game, this principle eliminates any sequence of the form 1 � 2 � 1 � 2. There, it 

is strictly a result about message strings. As pointed out above, in the multi-player game, 

message sets have the same function as message strings, and Proposition 10 eliminates orders 

of the type h � i , i � h , h � i  in a message set (and thus in a path). 

 

 

3.3 Forward induction 

 

When checking whether the Nash equilibria described in Section 3. 1 are sequential 

equilibria, the test is whether punishments of out-of-equilibrium messages such as false 

acknowledgements are indeed a best response when this false acknowledgement is actually 

sent. We now check whether an out-of-equilibrium move such as a false acknowledgement 

can be interpreted as an attempt of a player to move to a Pareto superior equilibrium. After all, 

if player h detects an out-of-equilibrium message sent by player i, player h should wonder 

why such a costly message was sent, given that player i could have safely obtained payoff 

zero by not sending any further message and playing A. It is clear that player i only has the 

intention to send a costly message if he/she believes that collective action is still possible. 

Thus, rather than interpreting an out-of-equilibrium message as an attempt to cheat, one could 

argue that it should be interpreted as an attempt to increase the probability of collective 

action. Yet, the question then is: how does the sender of an out-of-equilibrium message intend 

to coordinate on taking collective action (cf. Cho and Kreps, 1987)? 

For example, consider the inefficient Nash equilibrium tree for the four player EMG in the 

top left part of Figure 9. The probability of collective action is larger in the efficient Nash 

equilibria on the top right and bottom left parts of Figure 9. Yet, if Alice deviates by sending 

an e-mail straight to Bob, it is unclear whether the other players will be able to coordinate on 

either the top right or bottom left tree. For instance, Bob may tell Carl what he heard from 

Alice, expecting Carl to forward this message to David. But Carl may think that Bob already 

informed David directly, in which case collective action fails. 
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Figure 9 Inefficient and efficient Nash equilibria of the four-player EMG without proofs of 

receipt. 

 

Because of the problem illustrated by Figure 9, we propose to eliminate trees by means of 

forward induction only if an out-of-equilibrium message allows a move to a Pareto-superior 

tree, where everyone continues to send messages to the same players at the same stages as 

before, but where part of the messages from the old tree are no longer sent. This leads us to 

the following conjecture. 

 

Conjecture 1. Consider a Nash equilibrium of the multi-player EMG without proofs of 

receipt, with crucial message string set M. Consider the message string Mih
xt

∈→→
,...

, with 

corresponding message set txi ,,µ  for player i. Let the following conditions be valid: 

(i) Consider player h’s message set )1(,, −txhµ . Before a stage τ with t≥τ , there is a path from 

each message in )1(,, −txhµ  to player i. 

(ii) At a stage τσ ≥ , there is a path from player i to player h. 

Then, if player i receives all e-mails contained in M except the e-mail from h at stage t, player 

i sends all other e-mails in M, and player h sends all messages in M and plays B when 

receiving all messages in M except the message at stage (t – 1). 

 

An application of this conjecture is represented in Figure 10. If Carl receives an e-mail from 

Eric but not from Bob, Carl sends a false acknowledgement to David, who confirms receipt of 

it to Bob. Even if Bob did not receive a message from Alice, Bob should still act. It is as if 

Carl were saying: “I don’t need to hear from you that you know about the opportunity for 

collective action, because I already know this information through Eric. I know that you 

require information about this opportunity, but since I am communicating it to you, I am 

confident that you will receive it.” 

Alice Carl Bob 

David 

Alice Carl Bob David Alice Bob Carl Carl 

David 
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Figure 10 Forward induction 

 

 

 

3.4 Remaining inefficient equilibria 

 

Figure 9 already illustrates one way in which players may not be able to move away from 

inefficient equilibria. A player may be included more than once in a message string. As the 

player, the last time he receives a message, finds out the same information plus additional 

information contained in the message string, he/she does not need this information the first 

time. Nevertheless, if other players require a confirmation that he/she has also received this 

early information, then in equilibrium the player will still require this early information before 

he/she acts. 

Another way in which players may get locked in inefficient equilibria is illustrated in Figure 

7. As already shown in Section 2.3, all players are better off if they communicate in a line 

Alice � Bob � Carl � Alice. Yet, if Alice stops sending a message to Carl and only sends a 

message to Bob, then neither Bob nor Carl observe out-of-equilibrium events. Players may get 

locked into such an inefficient equilibrium whenever a player informs separate “cliques” of 

other players who do not talk to each other. 

 

 

4. Interpretation 

 

This paper shows that, contrary to what is the case in the two-player electronic mail game 

with voluntary communication, players of the multi-player game with voluntary 

communication may get locked into playing inefficient equilibria where they require too large 

an amount of messages from each other, thus reducing the probability of collective action. 

The most efficient communication protocol for multiple players would be one in which each 

player receives only one message. While sequential rationality helps to rule out sequences for 

messages send back and forth between any pair of two players also in the multiple-player 

situation, it does not help to rule out inefficient communication where redundant messages 

and confirmations are sent to separate subgroups, or “cliques”, of players. At the same time, 

the intuitive criterion has little cutting ground, because of the many players involved. When 

an individual player sends an out-of-equilibrium message in an attempt to move to a Pareto-

superior equilibria, it is not clear which Pareto-superior equilibrium he wants to move to. 

From this perspective, an argument can be made for what can broadly be described as 

institutionalized communication (for an overview, see Koessler, 2000). In a first type of 

institutionalized communication, players can take leadership in order to guide all players 

towards a Pareto-efficient outcome (for a broad perspective on leadership in resolving 

coordination problems, see Foss, 1999). For instance, in the four-player game, let players be 

Bob 
Alice 

Carl 

Eric 

false David Bob 

Carl 



 23 

stuck in the inefficient equilibrium on the top left of Figure 9. Alice could now take the lead 

and instruct Bob to instruct Carl to tell David that there is an opportunity for collective action, 

after which Bob indeed instructs Carl to tell David. Similarly, in Figure 7 Bob could take the 

lead and instruct Carl to confirm to Alice that both Bob and Carl know about the opportunity. 

It should be noted that such leadership requires a richer language than the one we have 

assumed in the body of the paper, where players could only tell the string of players through 

which a message was forwarded. In a second type of institutionalized communication, 

common knowledge gets generated by an  event such as a public meeting (Chwe, 2001). In 

the example of Figure 9, when Alice finds out about the opportunity for collective action, she 

calls a meeting of the four players. The fact that all players observe each other in this meeting 

creates common knowledge of players’ intentions to act. A third type of institutionalized 

communication is guided by strict protocols of who can talk to whom, and of who needs to 

know what (Chwe, 1995). Thus, collective action is successful because a hierarchy exists 

among the agents involved in the collection-action problem. Interpreting firms as collectives 

that (next to other things) need to solve coordination (collective-action) problems, this 

argument would seem to give credit to the so-called classical management’s (e.g. Fayol, 

1949) arguments in favor of hierarchically-organized firms. 
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