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Abstract  
As shown by Rubinstein (1989, AER), in the two-player electronic mail game, 
players are better off if the extent to which they can check each other’s information, 
check each other’s information about each other’s information, etc., is limited. This 
paper investigates to what extent this result extends to the multi-player electronic 
mail game. It is shown that, contrary to the two-player game, the multi-player game 
has a plethora of equilibria. If players play inefficient equilibria where they require a 
specific communication network to be established in order to achieve collective 
action, then Rubinstein’s results extend. However, contrary to the two-player game, 
the multi-player game also has equilibria where players find many alternative 
communication networks sufficient to undertake collective action. If players play 
such equilibria, then contrary to what is the case in the two-player electronic mail 
game they can become better off with more information. 
 
Keywords: Multi-Player Electronic Mail Game, Collective Action, Communication 
Networks. 
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1. Introduction 
 

While the prisoner’s dilemma has been the most popular representation of collective action 
problems, an equally valuable representation of collective-action problems is the so-called 
stag hunt (Skyrms, 2004). In a stag hunt, contrary to what is the case for the prisoner’s 
dilemma, cooperation exists as an equilibrium along with non-cooperation. However, 
undertaking cooperative action when an insufficient number of other players act is assumed to 
be costly. Thus, in order to do their part of the collective action, players may require a large 
degree of reassurance, i.e. knowledge that there is an opportunity for collective action, 
knowledge that everyone knows this, knowledge that everyone knows that everyone knows 
this, etc. Clearly then, as pointed out by Chant and Ernst (2008), players’ interactive 
knowledge plays a crucial role in the stag-hunt type of collective-action problem. 

How can players achieve a sufficient degree of common belief that there is an opportunity 
to benefit from collective action? The mechanisms that can be found in the literature can be 
roughly divided along two lines. A first mechanism is unregulated communication between 
the players. The message here from the stag hunt game1 with asymmetric information known 
as the electronic mail game (henceforth EMG) (Rubinstein, 1989), is that decentralized 
attempts by players to achieve common belief can have a crippling effect on collective action. 
Given that acting with too few people is costly, the last player whose information gets 
checked always has an interest to in turn check for confirmations that his information got 
through. This again induces further checking for confirmations by the other players. As long 
as communication is noisy, every additional confirmation required makes it less likely that 
collective action ever takes place. From this perspective, a strong argument exists for a second 
mechanism, namely what can be broadly described as institutionalized communication. In one 
type of institutionalized communication, common knowledge gets generated by a common-
knowledge generating event such as a public meeting (Chwe, 2001). Another type of 
institutionalized communication is guided by strict rules of who can talk to whom, and of who 
needs to know what (Chwe, 1995). Thus, collective action is successful because a hierarchy 
exists among the agents involved in the collection-action problem. In the simplest form of 
such a hierarchy, a leader makes a public invitation for collective action, without any other 
communication taking place (Koessler, 2000). Seeing firms as collective-action problems, this 
argument would seem to give credit to the so-called classical management’s (e.g. Fayol, 
1949) arguments in favor of hierarchically-organized firms. 

Yet, it is well-documented that instances of collective action such as riots, revolutions and 
strikes often take place spontaneously, without any public announcement and without any 
clear leadership. The same is true for collectively produced information goods on the Internet, 
such as Linux (Flanagin, Stohl & Bimber, 2006). Finally, it has been argued that the network 
form of organization, without strong hierarchical rules of who reports to whom, coexists along 
with the hierarchical form of organization for firms (Powell, 1990). Indeed, some even argue 
that the network form of organization is becoming the dominant form of organization (Powell, 
2001). 

How can these observations be reconciled with the theoretical prediction of crippling 
reassurance seeking that would take place if players were freely allowed to check each other’s 
knowledge, each other’s knowledge about each other’s knowledge, etc.? With a few 
exceptions, the EMG has been treated as a two-player game. We show that, in the multi-player 
EMG (which seems more apt for analyzing collective action problems), a fundamentally 
different mechanism can be at work, working in the opposite direction of the mechanism of 

                                                 
1 A multi-player stag hunt game is treated by Van Damme and Carlsson (1993). 
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crippling reassurance seeking. The ever increasing number of chains of confirmations and re-
confirmations need not be used for mutual reassurance, but instead may serve as multiple 
independent channels through which players can get informed about the opportunity for 
collective action, thus forming an antidote for the unreliability of communication.2 

Intuitively, consider a collective action problem with three players (Alice, Bob, Carl), of 
which one is informed (Alice). Let the threshold be equal to 3 players. Then, if players are 
allowed to communicate for more than one round, collective action can both be achieved if 
Carl finds out Alice’s information through Bob, and if Bob finds outs Alice’s information 
through Carl. If these two communication networks are considered as equally valuable 
alternatives, players are less vulnerable to noise. Extra messages that at first sight could only 
lead to crippling extra rounds of assurance and reassurance instead may be used for 
generating multiple paths along which information can travel, thus reducing the effect of 
noise.  From this perspective, the longer the social planner lets communication continue and 
the more players are involved, the more additional paths are created through which the players 
can find out the same information. Put otherwise, from this perspective, the social planner 
should design a communication protocol that allows the players to “spread the word”. In an 
extreme version of such an equilibrium, it suffices that each player receives a single message 
over the two last stages of the communication process, where it does not matter from whom 
the message is received, as long as the message contains information that each informed 
player received a positive signal. It is then as if players are acting based on “hearsay”. Thus, 
when it comes to the desirability of putting interactive knowledge available to players, one 
can come to radically different conclusions in the multi-player EMG and in the two-player 
EMG. 

Yet, it is important to stress that these efficient equilibria coexist with inefficient equilibria 
where players do engage in in crippling rounds of assurance and reassurance. In fact, in the 
latter type of equilibria, effects occur in the multi-player EMG that do not exist in the two-
player EMG; because of this, if crippling reassurance seeking still occurs in the multi-player 
EMG, it can have severe effects. We show that in the multi-player game, players’ mutual 
expectations can create what we call endogenous thresholds and pseudo-experts. In case of an 
endogenous threshold, even though only T players need to act for benefits of collective action 
to arise, each player only acts when receiving direct information that S players, with TS > , 
find out about the opportunity for collective action. Thus, players’ mutual expectations lock 
them into playing as if the threshold were larger than it is in reality. Put otherwise, if all other 
players require reassurance from S other players, then so will you. Moreover, if everyone 
believes that collective action is only possible when receiving a message from an uninformed 
player i, then players act in the same manner as they would if player i were an informed 
player with a crucial signal determining whether or not the opportunity for collective action 
exists. Thus, players’ mutual expectations can lock them into considering player i as a 
pseudo-expert. If all other players believe that they need assurance from player i, then so do 
you. Given the possibility of endogenous thresholds and pseudo-experts, it may on the 
contrary be a good idea for a social planner who tries to maximize the probability of 
collective action to restrict how long any given number of players talks, and to restrict the 
number of players that can talk to one another. More specifically, the social planner from this 
perspective should design a communication protocol where players are informed on a “need 
to know” basis. In such a communication protocol, communication from the informed to the 

                                                 
2 These two mechanisms reflect the two mechanisms by which players attempt to reduce the risk of acting alone, 
as listed by Chwe (1995), namely reconfirmation and redundancy. In Chwe’s work, however, redundancy means 
that an identical message is sent several times, whereas in the current paper, it means that players are on multiple 
chains on which players are ordered in a different way, where these chains form multiple alternative channels 
along which information can travel. 
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uninformed players only takes place once the informed players have checked that all their 
signals are positive, players who are not crucial for collective action are not involved, and the 
ability of players to check each other’s knowledge is limited. 

The paper is structured as follows. Section 2 looks at some related literature. The multi-
player EMG is described in Section 3. Section 4 characterizes the Nash equilibria. Section 5 
focuses on the Nash equilibria where players require specific information from one another, 
and shows that this can lead players to form endogenous thresholds and to create pseudo-
experts. It is shown that, if such equilibria are likely to be played, it makes sense to reduce the 
information available to the players. Section 6 focuses on Nash equilibria where the players 
consider several pieces of information as equally valuable alternatives. If such equilibria are 
likely to be played, then it on the contrary makes sense to make as much information as 
possible available to the players. In Section 7, we show that the co-existence of efficient and 
inefficient equilibria remains even if players are unsophisticated, in that they are not able to 
tell the difference between several long message strings. We end with a conclusion in Section 
8. 
 
 
2. Literature on the multi-player EMG 
 

We here treat the work of three authors who have  in various ways extended the EMG to a 
multi-player setting. Chwe (1995) treats a three-player EMG with one informed player, and 
two states of nature. Only the uninformed players act, and have the choice between not acting, 
and two different actions. For each state, coordinated play of one specific action yields a 
positive payoff to all players. The informed player is only interested in coordinated action in 
the right state; all other outcomes yield him payoff zero. The uninformed players incur one 
loss when acting alone, and another loss when taking the wrong action. Communication is 
voluntary (cf. Binmore and Samuelson, 2001; De Jaegher, 2008), and can make use of three 
different signals. Signals both can get lost, and can get confused with one another. It is 
possible to send a message to notify that one did not receive a message, or received a garbled 
message. Chwe (1995) both studies an equilibrium where the informed player informs each 
uninformed player separately (star), and one where the informed player first informs one 
uninformed player, who then informs the other uninformed player (line). Depending on the 
parameters, one or the other equilibrium exists, or both exist; when both exist, the equilibrium 
preferred by each player again depends on the parameters. 

We next review work of two authors who study a multi-player EMG with involuntary 
communication. Morris (2002a, 2002b) investigates a threshold game where benefits from 
coordinated action arise if a certain threshold number T among the total number of players N 
act together. At each stage, a different random sample of M players, with TM < , receives 
messages (this is a generalization of the two-player EMG in the sense that T = 2 in this game, 
and that a subset of the players, namely one player, receives a message at each stage). Either 
all players in the random sample receive messages, or none of them does, where the latter 
occurs with small probability. At the first stage, the players receive information about the 
state of the world; at further stages, they receive information on whether previous messages 
were received (positive acknowledgements). The interpretation is that there is a sequence of 
public meetings of parts of the population. As in Rubinstein’s (1989) main model, the 
communication process is only stopped when a message gets lost. Morris shows that for a 
large enough loss of acting with less than T players, only a single equilibrium exists, where no 
player acts, and where the results of Rubinstein therefore generalize. 

Coles (2007) recently treats three versions of a multi-player EMG where there is a single 
informed player, and where there are a number of uninformed players. Each time, the 
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informed player talks individually with each uninformed player, but uninformed players do 
not talk to each other. In a first variant, each individual message gets lost with small 
probability, but the informed player can only send a positive acknowledgement to an 
uninformed player when having received the maximum possible messages from all 
uninformed players at the immediately preceding stage. Put otherwise, the informed player’s 
confirmations are confirmations of all immediately preceding messages. The message 
exchange only stops when a message gets lost. Benefits arise only if all players act when there 
is an opportunity to benefit from collective action. Coles shows that if communication 
continues indefinitely, collective action never takes place. 

In a second variant, everything is the same as in the first variant, with the exception of the 
payoffs. The informed player still observes a single state of nature, and in the state where 
benefits from collective action are possible, after the communication process, still decides 
whether or not to act. Yet, the informed player obtains a positive payoff for each individual 
uninformed player he can coordinate with, and a negative payoff for each individual 
uninformed player with whom he or she cannot coordinate, where these payoffs are then 
added up. The informed player thus plays a two-player EMG with each uninformed player, 
but must still decide whether to act with respect to all uninformed players, or whether not to 
act.  Coles shows that in this case, contrary to what is the case in Rubinstein (1989), players 
are satisfied with a finite number of messages. Intuitively, as long as receiving information 
that a sufficient number of uninformed player act, the informed player will be satisfied. 

The third variant treated by Coles is again similar to the first variant, but it now additionally 
is the case that either all the informed player’s messages arrive, or none arrive. In this case, 
when only receiving a few confirmations from uninformed players, the informed player still 
knows that all his messages arrived. Again, Coles shows for this case that players are satisfied 
with a finite number of messages.3 

The relation of the current research to these papers is the following. First, though we 
assume communication to be involuntary, we assume it stops at some given finite stage. This 
is because our focus is not on approximate common knowledge (which requires the potential 
of infinite communication), but in a practical EMG with a realistic finite number of 
communication rounds. There is a deadline at which players need to decide whether or not to 
act, and at this deadline communication stops. Involuntary communication can simply be 
interpreted as the ability of players to check each other’s information, each other’s 
information about each other’s information, etc. Second, unlike Coles (2007), we only treat 
cases where a certain number of players need to act before benefits from joint action arise. 
This is because we are interested in the multi-player EMG as a collective-action problem. 
Similar to Morris (2002a, 2002b), we allow this threshold to be smaller than the total number 
of players. Third, unlike any of the papers reviewed, we allow for the case where there are 
several informed players, who each receive a signal that is essential to determining that there 
is an opportunity for collective action. This allows us to illustrate the possibility of 
uninformed players taking up the role of pseudo-experts in equilibrium. Fourth, within the 

                                                 
3 A small literature investigates the robustness of Rubinstein’s results to modifications other than introducing 
multiple players. Dulleck (2007) shows that boundedly rational players with imperfect recall can still coordinate 
on requiring only a few messages. Dimitri (2004) shows that when the probabilities that a message from Alice 
and Bob gets lost are not the same, coordinate action can still occur, as the player whose messages arrive with 
high probability can then be quite sure that his or her message arrived, and that it is the confirmation of the other 
player that got lost; Coles (2007) provides a similar result for the two-player EMG. Binmore and Samuelson 
(2001) investigate the effect of communication being voluntary instead of automatic. They show that, while 
efficient equilibria now exist, players may still coordinate on inefficient equilibria where a large number of 
messages are sent back and forth. De Jaegher (2008) not only assumes that communication is voluntary, but also 
that it is possible to send a message even though no previous message was received. In this case, only efficient 
equilibria survive the intuitive criterion. 
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finite number of communication stages, we allow for the generation of all possible messages. 
Thus, in the first stage, an informed player sends a message to each other player, after which 
an uninformed player who receives a message sends a confirmation back to each other player, 
including other uninformed players (unlike in Coles, 2007), etc. This is because we want to 
allow players to check in the widest sense possible each other’s information.  Also, this is in 
the spirit of Rubinstein’s (1989) original game, in that our communication protocol is able to 
generate, within a finite number of stages, all possible interactive knowledge. Fifth, along the 
same lines, we leave out all correlation between the probabilities that messages arrive: each 
message gets lost with a small probability that is independent of the event of other messages 
arriving or getting lost. If e.g. player 2 can separately check whether player 1 knows that 
player 2 knows what player 1 knows, and whether player 1 knows that player 3 knows what 
player 1 knows (and not just once all player 1’s knowledge), then it makes sense to assume 
that each of these information checking processes can independently go wrong. The latter two 
modeling decisions drive our results, as they allow for the possibility that players allow for 
multiple channels through which they can become informed. As we will see, equilibria indeed 
exist where players make use of this possibility – though they coexist with equilibria where 
they do not.4 
 
 
3. The model 

 
The multi-player EMG studied in this paper takes the following form. A set of players N 

with cardinality N, 3≥N , play the game. The typical uninformed player is denoted as player 
i. There is a subset of informed players J, with J ⊆  N, and with cardinality I, 1≥I . The 
typical informed player ι in J observes a signal α with probability )1( q− , and a signal β with 
probability q; the signals are assumed to be uncorrelated. We say that state b occurs if all 
informed players observe a signal β; in any other case, we say that state a occurs. State b thus 
occurs with probability Iqp = , state a occurs with probability )1()1( Iqp −=− . We assume 
that 2/1<p . Informed players only observe their own signal, uninformed players do not 
observe any signals. 

The N players can choose between two actions, namely actions A and B. In state a (= less 
than I players obtain signal β), a player who does A always gets payoff zero, and a player who 
does B incurs loss L. In state b (= all I players obtain signal β), a player who does A when less 
than T other players play B, obtains payoff zero (where 3≥T , NT ≤ ).5 A player who does A 
when T or more other players play B, or who does B when T or more other players play B 
along with him or her, obtains payoff M. It is assumed that 0>> ML 6, where we typically 
consider L to be very large. 

                                                 
4 A related paper is Chwe (2000), which equally treats a stag-hunt like collective-action problem. In this paper, 
each player has a different threshold, i.e. holds a different minimal number of players who need to act before 
benefits arise. Players do not know each other’s threshold, but can find these out through exogenously given 
links. Information transmission is not subject to noise, but having a link with a neighbor only gives you 
information on this neighbor’s threshold, and not on the thresholds of the neigbor’s of your neighbor. Chwe 
shows that any network leading to collective action takes the form of a hierarchy of cliques. 
5 This is a multi-player version of a version of the two-player electronic mail game used by Chwe (1995) and 
Morris and Shin (1997), and Morris (2002a, 2002b). In Rubinstein’s (1989) original game, a payoff M is also 
obtained when players coordinate on playing A in state a. Our results also apply in Rubinstein’s original setting, 
but the proofs are more complicated.  
6 Together with the assumption that 2/1)1( >− p , this implies that, if all other players would play A in state a 
and B in state b, an individual player plays A. 
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Just as in the two-player EMG, before players simultaneously decide on their actions, they 
observe messages generated by an automatic communication protocol c(zS, NS). In our multi-
player EMG, the automatic communication protocol lets a set NS ⊆N  of players 
communicate with one another, where J ⊆NS. Denote the cardinality of this set as NS. In the 
spirit of Rubinstein, this automatic communication protocol allows players to achieve tth-order 
knowledge at stage t.7 Concretely, at stage 1, when observing state β, one informed player, 
denoted as player 1, automatically sends an e-mail to all other players in the set NS. At all 
further stages up to the final stage zS, each player automatically forwards each message 
received to each other player in the set NS (where informed players only forward a message if 
they have also observed state β).8 Each e-mail gets lost with small probability ε . We typically 
assume ε  to be small. At any particular stage t, up to t

SN )1( −  e-mails are sent. The idea of 
assuming that a single informed player initiates communication is that there is a single 
communication process between the players, and not several parallel ones. 

We assume that, by scrolling down an e-mail, a player in NS can observe the sequence of 
players through which a message was forwarded. Thus, when player i receives a particular 
message  from player j at stage t, player i knows that j knows that k knows that l knows that 
… player 1 observed signal β, or )(... 0

1
321 bKKKKK t

l
t
k

t
j

t
i

−−− . Superscripts refer to stages, where 
player 1 learns the state of nature at stage 0. This same message also implies 

)(... 0
1

321 bKKKK t
l

t
k

t
j

−−− , )(... 0
1

32 bKKK t
l

t
k

−− , etc. Note that, if player l is also an informed player, 
player i additionally knows that j knows that k knows that l also observed signal β. We call 

)(... 0
1

321 bKKKKK t
l

t
k

t
j

t
i

−−−  a message string, denoted as t
xim ,  (where i denotes the last player to 

receive a message in the message string, t the stage at which i receives this message, and 
where x labels the message string), and )(... 0

1
321 bKKKK t

l
t
k

t
j

−−− , )(... 0
1

32 bKKK t
l

t
k

−−  and 

)(... 0
1

3 bKK t
l
−  sub message strings of this message string, denoted respectively as 1

,
−t
wjm , 2

,
−t
vkm  

and 3
,
−t
ulm , where we say that t

xi
t

wj mm ,
1

, ⊂− , t
xi

t
vk mm ,
2

, ⊂− , t
xi

t
wl mm ,
3

, ⊂− . 
In part of our analysis, we will assume that prior to the start of the game, a social planner 

chooses zS, with zzS ≤  (where z is determined by the deadline at which action needs to 
occur), and chooses the set NS. It is assumed that the social planner’s purpose is to maximize 
the probability of collection action. 
 
 
4. Characterization of the set of Nash equilibria allowing for collective action 
 

We first describe a minimal sufficient set of messages as the basic unit for describing a 
strategy of a player in the multi-player EMG. 
 

                                                 
7 Everybody knows that state b occurs by state 1, everybody knows that everybody knows that state b occurs by 
stage 2... 
8 Players are only allowed to send confirmations of receipt to each other, thus to say: ‘I’ve received your 
message.’ But one can envisage that players would also send notices of non-receipt, where they would say: ‘I 
didn’t hear from you. Are you sure you did not contact me?’. As long as noise is small, a justification for only 
considering confirmations of receipt is obtained when adding costs of paying attention to the model (see 
Binmore and Samuelson, 2001). When noise is small, notices of non-receipt will send so infrequently that it is 
not worth to pay attention to them.  
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Definition 1. Define as a minimal sufficient set xis ,  a set of message strings t
xim , , 

t
yim , ,…, s

vim , , s
wim , ,…  with t

xi
s

vi
s

vi
t

xixi
s

vi
t

xi mmmmsmm ,,,,,,, ,:, ⊄⊄∈∀ , that describe part of player 
i’s strategy in the sense that 
(i) player i plays B when observing all messages in xis ,  (which makes the set xis ,  sufficient); 
(ii) player i plays A when observing no messages outside of the set xis , , and not all messages 

in the set xis ,  (which makes the set xis ,  minimal sufficient).9 
 
A strategy Si by a player i can be described as a set of one ore more alternative minimal 

sufficient sets, { },..., ,, yixi ss , where x, y,… label the sets. Effectively, the assumed automatic 
communication protocol reflects that, within bounds, players are able to check any type of 
higher-order knowledge with one another, where a player’s strategy then says which higher-
order knowledge this player requires in order to play B.  A player’s strategy can be seen as a 
requirement that a particular network, or one out of a particular set of networks, should be 
established before the player is willing to play B. As we show below, any such network 
consist of one or more so-called brooms. We now define for each one-but-final message string 
as the corresponding broom the set consisting of, first, all submessage strings of this one-but-
final message string, and second, all the final confirmation of this one-but-final message 
string. 

 
Definition 2. Consider an automatic communication protocol c(zS, NS). For any message 

⊂−1
,
sz
xim  c(zS, NS), define as the broom corresponding to 1

,
−sz

xim , denoted by bx, the set of all 

messages t
whm , , ⊂Sz

yjm ,  c(zS, NS) with the following characteristics: 

(i) 1
,,
−⊂ Sz

xi
t

wh mm ; 

(ii) 1
,,
−⊃ SS z

xi
z

yj mm . 

Call a set of such brooms, BI = {bv, bw, bx,…} generated from messages 1
,
−sz

vjm , 1
,
−sz
wkm , 1

,
−sz

xim ,… 
⊂  c(zS, NS) a broom set. Call B[c(zS, NS)] = {BI, BII, BIII,…} the set of all possible broom sets 
generated from all possible sets of one-but-final messages in c(zS, NS). 

 

 
 

Figure 1 Broom set for NS = 4, zS = 4. The broom set consists of three brooms, indicated by 
solid arrows, dashed arrows, and dash-dot arrows.  

 

                                                 
9 For a similar definition of minimal sufficient sets, see Chwe (2000). 
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An example of a broom set is given in Figure 1. Note that brooms in a broom set may 
partially overlap, as indicated by the brackets in Figure 1. Consider now the class of broom 
sets where each informed player gets to send a message. Proposition 1 shows that, for 
sufficiently large L, to each possible set of such broom sets corresponds a unique Nash 
equilibrium. The advantage of assuming a large L is that all equilibria where collective action 
takes place with positive probability can be described by means of one and the same basic 
structure, namely the broom set, and that different such basic structures need not be described 
for different parameter levels. More importantly, assuming a large L drives home the point 
that we make in Section 6 below. For large L, it would seem that the risk is high that giving 
the players the liberty to check each other’s information will only lead to a crippling exercise 
of assurance and reassurance: for large enough L, everyone wants to know with certainty that 
all informed players received positive signals, and, as long as confirmations are available, 
everyone wants to receive direct confirmations that everyone else achieved a minimal 
sufficient set. Indeed, this is entirely in the spirit of the two-player EMG, and makes our game 
comparable to the two-player EMG. Yet, our analysis shows that, even if L is very large,  
equilibria exist where players consider several channels as substitutes for getting informed 
about the profitability of collective action. While players require confirmations up to the final 
stage for each of these channels, the benefit of having more channels available when 
increasing the number of players participating in communication and/or increasing the length 
of communication exceeds the cost of more messages being required in each individual 
channel. Before showing this, however, we characterize the Nash equilibria in Proposition 1. 
 
Proposition 1 (Characterization). For c(zS, NS), consider any set of broom sets BN with BN 
⊆  B such that for every BX, BY ∈  BN: BX ⊂/  BY, and such that ∀BX ⊂BN: ∈∀ι J : ∃ bx ⊂  
BX: ⊂s

xm ,ι  bx. Then a level of L exists such for any ε in ] [)(,0 Lε , this set BN describes a 
unique Nash equilibrium, where for each player i and for each broom set BX in BN, the set of 
all messages t

xim ,  such that ⊂t
xim , BX  describes  a minimal sufficient set xis , .10 

Proof: 
Step 1 shows that, for sufficiently large L, each equilibrium minimal sufficient set must 
contain at least one message string received by an informed player. Step 2 shows, for the case 
where L is large, the form of player j’s best response minimal sufficient set xjs ,  when player i 
has a minimal sufficient set xis , . Step 3 shows that, when L is large, any equilibrium minimal 
sufficient set must only contain messages received at the two final stages. Step 4 shows that, 
for large L, all equilibria can be described by means of sets of broom sets, where as shown in 
Step 5 no one broom set can be a subset of another broom set. 

                                                 
10 Consider for instance the case J = {1}, NS = 3, T = 3, zS = 2. The automatic communication protocol can then 
generated two brooms b1 and b2. The set of Nash equilibria is decribed as ({b1,b2}, {b1}, {b2}, [{b1}, {b2}]), where 
{.} denotes an individual minimal sufficient set, and [.] denotes a set of alternative minimal sufficient sets. 
Consider the restriction on ε and L for such an equilibrium to exist. The player facing the maximal uncertainty 
from acting is the uninformed player in equilibrium {b1,b2}, in that 3 messages need to arrive for payoff M to be 
obtained. Thus, it must be the case that [ ] 0)1(1)1( 33 >−−−− LM εε . The player facing the minimal 
uncertainty from acting when receiving too few messages is the informed player who observes state b and does 
not get any messages in equilibrium [{b1}, {b2}]. The probability that no uninformed player received a message 
at stage 1 then equals 2)2/(1 ε− . As  ε  0, this probability approaches ¼, and is the probability that informed 
player incurs a loss of L. It follows that the informed player acts according to equilibrium even for vanishing ε iff  

0)4/1()4/3( <− LM  or L > 3M. Thus, the described equilibria exist for e.g. L = 4, M = 1, ε = 0.10. 
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Step 1. ∈∀ xis , { } ∈∀ι:,..., ,, yixi ss  J xi
t

x sm ,,: ⊂∃ ι . To show this, note that at best, a player who 
does not find all informed players’ signals finds out positive signals for )1( −I  informed 
players, and at best estimates the probability that state b occurs to be q (normally speaking, 
non-receipt of messages will increase his or her belief that state b occurs above q). For large 
enough L, LqqM )1( −−  is such that the player prefers to do A. By the same reasoning, an 
uninformed player not in set NS always plays A. 
Step 2. Consider an equilibrium minimal sufficient set xis , , with typical element s

xim ,  such 

that no xi
t

xi sm ,, ∈  exists with t
xi

s
xi mm ,, ⊂  (“final” messages to be received by i in xis , ). 

Consider the set xjs ,  consisting of 1) for every xi
s

xi sm ,, ∈ , all messages r
xjm ,  with s

xi
r

xj mm ,, ⊂ ; 

2) for every xi
s

xi sm ,, ∈ , all messages 1
,,

1
, : ++ ⊂ s

xj
s

xi
s

xj mmm ; 3) if xis ,  contains any message sz
xim , , 

for all ss z
xi

z
xh mm ,

1
, ⊂− , all messages sss z

xj
z

xh
z

xj mmm ,
1

,, : ⊂− . We show that, for sufficiently large L, it 
is a best response for player j to hold the set xjs ,  as a minimal sufficient set. 

We first show that it is a best response for player j to hold xjs ,  as a sufficient set. If player j 
observes the constructed message set, then player j believes with high probability that player i 
achieved this particular message set xis , . So player j believes that player i believes that 
collective action is sufficiently likely to take place. But beliefs should be confirmed in 
equilibrium, so that player j should then also believe that collective action is sufficiently likely 
to take place. Note that if player j observes every message in xjs , , then for any message string 

t
xhm ,  with s

xi
t

xh mm ,, ⊂  (where xi
s

xi sm ,, ∈ ), player j does not need any additional confirmation 
1

,
+t
xjm  such that 1

,,
+⊂ t
xj

t
xh mm , as the information that player h observed message t

xhm ,  is already 
contained in xjs , . 

Second, we show that xjs ,  is a minimal sufficient set to player j. Suppose that player j does 
not observe any messages outside of the set xjs , , and not all messages in xjs , ; we show that 

for large L it is then a best response for player j to play A. At best, only a single message sz
xjm ,  

in xjs ,  did not arrive to j,11 and for a message 2
,
−sz
vgm   with ss z

xj
z

vg mm ,
2

, ⊂− , player j still observes 

a message 1
,
−sz
yjm  such that 1

,
2

,
−− ⊂ ss z
yj

z
vg mm . Player j then believes that with probability 

[ ] )2/(1)1(/ εεεεε −=−+ , player i did not observe all messages in xis , . Of any other minimal 
sufficient set ', xis  that player i may hold, player j also at best believes with probability 

)2/(1 ε−  that it has not been established. Player j thus at best believes with probability 
[ ] 1)2/(1 −− iσε  that player i has not achieved any other minimal sufficient set, where σi is the 
number of minimal sufficient sets held by player i. For a finite Ns and zs, σi is finite, and this 
probability is positive. It follows that player j believes that with a positive probability, player i 
believes it to be too unlikely that )1( −T  or more other players play B for player i to play B. In 
equilibrium, player i’s beliefs should be confirmed. Finally, for sufficiently large L, player j 
thus plays A. 

                                                 
11 Note that for any message t

xjm ,  in xjs ,  with t < zS, by virtue of not having received any messages after t, 

player j will consider it even more likely that player i did not observe all messages in xis , . 
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Step 3. We show here that any minimal sufficient set xis ,  consists of messages that player i 
requires at stages )1( −sz  and sz . 

Assume player i observes only the messages in set xis , . Note that player i then does not 
receive messages confirming that player j achieved every message in any other minimal 
sufficient set than set xjs , , where such other sets are denoted as ', xjs . At best, player i believes 

with probability [ ] 1)2/(1 −− jσε  that player j has not achieved any other minimal sufficient set, 
where σj is the number of minimal sufficient sets of player j. For a finite Ns and zs, σi is finite, 
and this probability is positive. For large enough L, the risk of playing B based on the belief 
that player j has achieved some alternative minimal sufficient set ', xjs  is too high. It follows 
that player i will only play B when believing with sufficiently high probability that at least 

)1( −T  players of the type j observe the minimal sufficient set xjs ,  as defined in Step 2. Such 
beliefs cannot be achieved by player i getting confirmations of messages in xjs ,  – otherwise 
such messages would already be included in the xis ,  itself. The only alternative is that c(zS, 
NS) does not allow player i to receive confirmations of messages in xis , , which is only 
possible if xis ,  consists of messages sent at stages )1( −sz  and/or sz . Note that a by-product 
of this result is that player i, when observing set xis , , believes that with high probability that 
(NS – 1) other players (rather than )1( −T  other players) play B. 
Step 4. If xis ,  is a minimal sufficient set in equilibrium, then by Step 2, it is a best response 
for players 121 ,...,...,, −SNm jjjj  to consider respectively xjxjxjxj SNm

ssss ,,,, 121
,...,,...,,

−
 as minimal 

sufficient sets, where each such set is as defined in Step 2. Given that by Step 3, xis ,  must 
consist of messages sent at stages )1( −sz  and/or sz , it follows that any such minimal 
sufficient set xjm

s ,  itself consists of messages sent at stages )1( −sz  and/or sz . By Step 2, 
when a player jm holds any such minimal sufficient set xjm

s , , it is a best response for players 

11121 ,...,,...,, −+− SNmm jjjjj  to consider respectively sets xjxjxjxjxjxi SNmm
ssssss ,,,,,, 11121

,...,,,...,,,
−+−

 as 

minimal sufficient sets. We thus have mutual best responses. Note finally that the set 
xjxjxjxjxi SNm

sssss ,,,,, ,...,,...,,,
21

 of minimal sufficient sets that are mutual best responses taken 

together constitute a broom set. 
Step 5. If one equilibrium broom set is a subset of another equilibrium broom set, then this is 
not compatible with the corresponding sets of messages that players observe being minimal 
sufficient sets. QED  

 
The intuition for the broom, consisting of a single chain of messages up to the final stage 

and an explosion of messages at the final stage, as the unit for describing all equilibria is the 
following. Because there is a possibility that  information does not get through, and because 
there is a large loss L, if other players require information from you or from others, and if you 
can receive confirmations on whether other players received this information, you will only 
do your part of the action if you receive confirmations that all the required information got 
through to the other players. If information is required from you at the last stage, 
confirmations on whether your information got through is not available; in this case, as long 
as noise is small enough, you will trust that your information got through.  

By the same reasoning, for all information that is required by other players at the one-but-
last stage, you will want to receive a message at the last stage. Given that each received 
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message contains information on a string of players through which a message was forwarded, 
you do not need earlier confirmations of messages that are already contained in the forwarded 
messages which you receive. For this reason, the number of required messages explodes, 
which explains why the broom is the basic unit by means of which the Nash equilibria can be 
described.  

We note that, broadly speaking, there are two types of Nash equilibria allowing for 
collective action described by Proposition 1. In a first type, each player holds only a single 
minimal sufficient set. To each single broom set letting each informed player send a message 
that can be constructed from c(zS, NS) corresponds one such equilibrium. Note that this both 
includes an equilibrium described by a single broom (at least if all informed players are 
included so that everyone finds out the signal of each informed player), and an equilibrium 
described by the broom set consisting of all brooms, such that each player wants to receive 
the maximum possible number of messages. This we call the total-welfare minimizing 
equilibrium, as the probability of collective action is minimized in such an equilibrium. In a 
second type of equilibrium, each players considers several alternative minimal sufficient sets 
as equally valuable. This includes the equilibrium described by the maximal number of broom 
sets allowing each player to receive a signal from each informed player, where each player 
then has the largest possible number of alternative minimal sufficient sets. As this equilibrium 
allows for the maximum number of different ways in which collective action can be achieved, 
we call this the total-welfare maximizing equilibrium. For instance, for the case where there is 
a single informed player, this is the equilibrium described by set of all singleton broom sets, 
or simply put the set of all brooms. 

It should be noted that a larger zS and a larger NS makes the results in Proposition 1 tight 
from two sides. First, a larger zS and a larger NS mean that the total-welfare minimizing 
equilibrium, where players require all messages from each other, only exists for a smaller and 
smaller ε. When zS and/or NS is increased, the number of required messages increases 
exponentially. A player who has received all messages is then to a higher extent uncertain 
about other players also having received all their messages, and the risk for such a player of 
playing B is then larger. For given L, such equilibria therefore only exist for ever smaller ε as 
zS and/or NS is increased. Second, a larger zS and a larger NS means that the described total-
welfare maximizing equilibrium, where players consider each smallest possible minimal 
sufficient set as an equally valuable alternative, only exists for ever larger L. Given that many 
alternative sets of messages can lead to collective action, when not receiving any confirmation 
from uninformed players, an informed player may still consider it quite likely that each 
uninformed player received at least one message. This probability will be higher the larger zS 
and a larger NS, such that an ever larger L is needed to support the described equilibrium 
where players require strong evidence that at least one minimal sufficient set has been 
established. The point of still assuming large L and small ε, in spite of these tight results, is 
the following. Small ε means that equilibria exist where players require all available messages 
from one another. Large L means that even in the equilibria where players consider several 
alternative minimal sufficient sets as substitutes, players still require quite a lot of messages 
from one another: each individual minimal sufficient set runs all the way to the last stage, and 
in each minimal sufficient set, the number of required messages explodes at the last stage. If, 
as we show, players can even under these unfavorable circumstances become better when 
having more information, then we have convincingly shown that this is generally possible 
(thus also for larger ε and smaller L).12 
                                                 
12 Consider again the case J = {1}, NS = 3, T = 3, zS = 2 (see Footnote 10), but assume that L = 2, M = 1, ε = 0.15. 
Then [ ] 0)1(1)1( 33 <−−−− LM εε , such that {b1,b2} no longer describes an equilibrium. As 

[ ] 0)1(1)1( 22 >−−−− LM εε , {b1} and  {b2} continue to describe equilibria. To show that [{b1}, {b2}] no 
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For an application of Proposition 1, consider the game with 3=== sNTN , 3=sz  J ={1}, 
and consider the broom set in the bottom part of Figure 2, represented by solid arrows. An 
equilibrium exists where each player holds a single minimal sufficient set consisting of the 

messages in this broom set, where }}1321,121{{
32121

1 →→→→→=S , 2121{{
321

2 →→→=S , 

}}2321
321
→→→ , 321{{

21

3 →→=S , }}3121
321
→→→ . In this equilibrium, player 1 and  player 3 

obtain payoff [ ]{ }LMp 334 )1(1)1()1( εεε −−−−− , and player 2 obtains payoff 
[ ]{ }LMp 225 )1(1)1()1( εεε −−−−− .  

Compare this to a similar strategy profile where, however, players ignore messages at stage 

3: }}121{{
21

1 →→=S , }}21{{
1

2 →=S , }}321{{
21

3 →→=S . In this strategy profile, player 1 and  
player 3 obtain payoff { }LMp εεε −−− )1()1( 2 , and player 2 obtains payoff 

[ ]{ }LMp 22 )1(1)1()1( εεε −−−−− . Thus, all players are better off. If so, why is this not an 

equilibrium? Let player 2 observe }2321{{
321
→→→ , but not  }2121{

221
→→→ . Then player 2 

believes with probability )2/(1 ε−  that player 1 did not  observe }121{
21
→→ . For ML > , 

player 2 plays A; it follows that player 2 also plays A when not getting any messages at stage 

3. Thus, given  }}121{{
21

1 →→=S , }}321{{
21

3 →→=S , it is a best response for player 2 to put 

2121{{
221

2 →→→=S , }}2321
221
→→→ . But players 1 and 3 will then in turn play the best 

responses as specified in the above Nash equilibrium. In general, in equilibria where each 
player holds a single broom set, players require messages up to the final stage of 
communication. Simply, as long as extra information is available, players will inevitably 
require it, even if this triggers further information being required by other players. Moreover, 
the number of messages required explodes at the final stage. The intuition for this is that there 
is no further opportunity to find out information after the final stage.  

Note that there is a Pareto superior Nash equilibrium with }}1321{{
221

1 →→→=S , =2S  

}}2321{{
221
→→→ , }}321{{

21

3 →→=S . Why does the Pareto inferior Nash equilibrium 
specified above then exist as well? If player 2 believes that players 1 and 3 each only play B 
when receiving a message at stage 2, then it is a best response for player 2 to require both 
messages at stage 3. But this in turn makes it a best response for players 1 and 3 to require the 
messages at stage 2. Thus, the players’ mutual best responses can lock them into requiring a 
large number of messages from one another. A difference with the two-player EMG is that 
players do not necessarily require every single message generated by the automatic 
communication protocol. 
                                                                                                                                                         
longer describes an equilibrium, consider what happens if players 2 and 3 play the corresponding strategy 
profile, and player 1 does not receive any messages. Denoting )2/()1( εεα −−= , player 1’s expected payoff 

from playing B equals { } 0)1)(1(2)1()1( 222 >−−−+−− LM αεααεα , so that player 1 plays B even 
when not receiving any signals. Nevertheless, it is easy to see that an equilibrium continues to exist where player 
1 does not require any messages, player 2 (3) either wants to hear directly from 1 or wants to hear from 1 
through 3 (2). Thus, increasing ε eventually eliminates the equilibrium where players require all available 
messages. Decreasing L eventually means that total-welfare maximizing equilibrium is described by alternative 
lines rather that alternative brooms. Note that in examples with more than three players, equilibria described by a 
single large communication network will continue to exist (even though this will not include the maximum 
number of messages). Thus, our results extend to such cases, but the description of the equilibria is only made 
more complex. 
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Let us next use the same example to get the intuition for the existence of additional 
equilibria, where players consider several minimal sufficient sets as equally valuable 
alternatives. We first show that, even if other players have several alternative minimal 
sufficient sets, for sufficiently large L, each individual player will require strong evidence that 
the other players have observed at least one minimal sufficient set. Consider the strategies 

}}1231{},1321,121{{
32132121

1 →→→→→→→→=S  and },3121,321{{
32121

3 →→→→→=S  

}}1231{
321
→→→ , such that it is efficient for players 1 and 3 to either receive all message in 

the top (singleton) broom set (dashed arrows), or in the bottom broom set (solid arrows). Let 

player 2 only observe message }2121{
321
→→→ . Then by the same reasoning as above, player 

2 believes that with probability )2/(1 ε− , player 3 has not observed all messages in the 
bottom broom set (note that the same then certainly applies when player 2 only observes 

}21{
1
→ ). Additionally for this case, player 2 believes that with the same probability )2/(1 ε− , 

player 3 has not observed all messages in the top broom set. The probability that player 3 
plays A therefore equals 4/1)2/(1 2 >− ε . For sufficiently large L, player 2 plays A.  Thus, 
even if other players hold several alternative minimal sufficient sets, the individual player 
continues to demand strong evidence that at least one minimal sufficient set has been 
established. For this reason, each individual minimal sufficient set runs to the last stages of 
the communication protocol. 

 
 

Figure 2 Game 3=== sNTN , 3=sz  J ={1}. Equilibria described by broom set consisting 
of dashed lines, and broom set consisting of solid lines. 

 
Proposition 1 reveals a plethora of Nash equilibria for the game: to every possible set of 

non-fully overlapping broom sets corresponds an equilibrium. Equilibrium refinements have 
no cutting ground in selecting among this plethora of equilibria. All these equilibria are 
sequentially rational; moreover, since communication is automatic, forward induction 
arguments do not have cutting ground. As we would still like to provide arguments on how 
much information a social planner should allow the players to have with a view of 
maximizing the probability of collective action, we investigate two different types of 
equilibria in the following two sections. In Section 5, each player requires a specific set of 
messages for playing B, and does not allow for any alternatives. As such equilibria involve the 
most scope for inefficiency, from this perspective the available information should be limited. 
The intuition here is that the more information you make available, the more danger that the 
players get locked into requiring a large number of messages from one another. In Section 6, 
the focus is on equilibria where there are several alternative information states that induce the 
players to undertake collective action. These type of equilibria have the most scope for 
efficiency, and it is shown that from this perspective the available information should on the 
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contrary be maximized. Intuitively, the more players are involved, and the longer they talk, 
the larger the different manners in which the players can find out about the opportunity for 
collective action. 

 
 

5. “Need to know”: in favor of limited information 
 
In order to illustrate the danger of making a lot of information available, we start by 

showing that equilibria exist in which players act in exactly the same manner as if there would 
be more informed players than there are in reality. We call such uninformed players 
performing the same role as informed players “pseudo-experts”. Simply, as we have shown, 
every set of brooms sets describes an equilibrium as long as each broom set allows each 
informed player to send a message. But a set of brooms sets where, along with each informed 
player, a certain subset of uninformed players also send a message in each broom set, then 
also describes an equilibrium. Players’ mutual expectations may then be seen to lock them in 
considering certain uninformed players as pseudo-experts. 

 
Corollary 1 (Pseudo-experts). Consider the set of equilibria as described in Proposition 1 for 
a multi-player EMG with a set J1 of informed players. Consider an identical EMG, except that 
there is smaller set J2 of informed players, with J2 ⊂  J1. Then to the set of equilibria of the 
game with a set J1 of informed players corresponds an identical set for the game with set J2, 
where this set is a subset of the complete set of equilibria in the game with set J2. 
Proof: It is clear that to all equilibria of the game with set J1 correspond equilibria of the game 
with set J2, as the minimal sufficient sets of the equilibria for the game with set J1 contain all 
informed players in J2. 
 

Given the possibility of pseudo-experts, the social planner may decide to put zS low. To see 
why, consider the case where NS = 5, J = {1, 3}. For zS = 3, an equilibrium described by a 
single broom set consisting of a single broom exists where player 1 sends a message to player 
2, after which player 2 forwards this message to player 3, who finally forwards this message 
to all other players. This is illustrated in the left part of Figure 3. In this case, player 2 plays 
the role of a pseudo expert: nobody acts unless a message is received from player 2, as well as 
from player 1 and 3. This is in spite of the fact that player 2 does not observe any signal that 
determines the state of nature. The effect is generated by players’ mutual expectations that 
they will need such a signal from player 2. The social planner can avoid this possibility by 
putting zS = 2, as illustrated in the right part of Figure 2. In a similar way, more players can 
assume the role of pseudo-experts the longer is zS. If the social planner attaches a high 
probability to the event where players play an equilibrium involving pseudo-experts, then the 
social planner should put zS low. 

 
Figure 3. Player 2 as a pseudo-expert 
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A second way in which we illustrate the potential inefficiency caused by allowing for a lot 
of information is by showing that for any automatic communication protocol with given zs 
and NS, the equilibrium where players require the maximum number of available messages 
from one another exists for any game, independently of the level of the threshold T. Thus, 
players’ mutual expectations can lock them into acting as if the threshold is larger than it 
really is. 
 
Corollary 2 (Endogenous thresholds). Consider the automatic communication protocol for 
given NS and zS. Then for any multi-player EMG with T such that NT ≤≤3 , an equilibrium 
exists where each player in NS  only plays B when receiving each message in the automatic 
communication protocol .  
Proof: 
This follows directly from Proposition 1. As, for a given automatic communication protocol, 
an equilibrium is described by every set of broom sets that let every player receive a message 
from every informed player, this includes the case of a set consisting of a single broom set 
spanning all messages that can be generated by the automatic communication protocol. QED 
 

For an example of an endogenous threshold, consider the case with N = 5, J { }1= , and 
suppose that the social planner has put  zS = 2. Assume that 4=T . Let the social planner 
adopt a minimax criterion, and for each given NS take into account only the worst possible 
outcome, where the probability of collective action is minimal. Consider first the case where 
NS = 4. By Proposition 1, the probability of collective action is lowest in the equilibrium 
where all players require all messages from one another, as indicated in the right part of 
Figure 4. Consider next the case where NS = 5. Then the probability of collective action is 
lowest in the equilibrium represented by the broom set in the left part of Figure 4. This 
involves five players even though 4=T . If everyone believes that everyone else needs to be 
reassured that four uninformed players know the state of nature, then it is a best response for 
the individual player to require such assurances, which again justifies the other players’ 
strategy of requiring such assurances. Thus, even though the real threshold is lower, players’ 
mutual expectations may induce them to adopt a virtual threshold. In the example in Figure 4, 
player 5 is a “fifth wheel on the cart”. The social planner can increase the probability of 
collective action by only involving four people in the communication process (NS = 4), so that 
the threshold T = 4 is exactly achieved.  

 
 

 
 
Figure 4. Player 5 as a” fifth wheel on the cart”. 
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Pseudo-experts and endogenous thresholds illustrate a wider principle, saying that the more 
information players are given, the more they can potentially lock each other into requiring a 
large number of confirmations and confirmations of confirmations from one another. This 
follows directly from Corollary 2, as equilibria where the players require the maximal number 
of messages from each other in the communication protocol exist for any multi-player EMG.  

Having looked at a social planner who can only change zS and/or NS, let us now go one step 
further and look at a social planner who can also remove messages in any given c(zS, NS). 

 
Proposition 2 (“Hierarchy”). Consider any EMG as described in Section 3 with T < N.13 
Assume that players only play the subset of the set of Nash equilibria described in Proposition 
1 where players hold only a single broom set to be a minimal sufficient set. Let a total-welfare 
maximizing social planner be able to design the communication network by, first, choosing 
c(zS, NS), and second, by removing messages at will from the chosen c(zS, NS). Then 
(i) The social planner chooses as a communication network a single broom b with length zS = 

I (= the cardinality of the set of informed players); 
(ii) In the first (zS – 1) stages of this broom, only the informed players are involved, and are 

ordered along a line. By stage zS, one informed player has aggregated all other informed 
players’ information, and informs all other players about this information.14 

Proof: 
Note first that it does not make sense that messages are sent to uninformed players before it 

has been established that state b occurs. In order to establish this with the least possible links, 
this should be done by first letting only the informed players send messages between each 
other. The shortest way to establish whether state b has occurred is to order all informed 
players along a line, where the last informed player in the line can then find out that state b 
occurs. 

This informed player can then inform other players that state b occurs. With T < N, the 
probability of collective action is highest when at a final stage a message is sent from the last 
informed player in line to each other player. QED 

 
Proposition 2 has a natural interpretation. First, a committee of informed player needs to 

establish whether state b has occurred, without any involvement of the uninformed players. 
Once one informed player has gathered the signals of all other informed players, he or she 
directly informs everyone, in order to maximize the probability that T players are reached. 
Note that as long as zS = I, and NS = N, for the complete c(zS, NS), an equilibrium as described 
in Proposition 1 exists that replicates the total-welfare maximizing outcome, in that players 
can require messages from a single broom and ignore all other messages. But the removal of 
messages in c(zS, NS) prevents that, first, pseudo-experts would be included in any given 
expert committee, and that, second, players would require evidence from multiple 
committees.  
                                                 
13 The case T = N is special in that there are multiple total-welfare maximizing communication networks. In each 
of these networks, it continues to be the case that in the first (I – 1) stages all the informed players need to be 
ordered along a line. However, once one informed player has found out that the state is b, any structure involving 
(N – 1) further messages may follow. Still, if this structure also involves (N – 1) players ordered along a line, so 
that the whole communication network consists of a single line of length (I + N – 2),  then the risk of players is 
reduced to the maximal extent, in that players at a later stage increasingly get more certainty that collective 
action takes place. There is no conflict here between maximizing the probability of collective action and the 
players individual incentives to take little risk. 
14 If the social planner is only able to control NS in an automatic communication protocol c(zS, NS), then by 
Corollary 2, it may be a good idea to limit NS. If, however, the social planner is able to design all aspects of the 
communication protocol, then all players should be included. Having each other player receive a message at the 
final stage then does not create a risk of further confirmations being asked. 
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Yet, such an analysis is based on the premise that players play equilibria where a single 
broom set is considered to be a minimal sufficient set. They may, however, play equilibria 
where they consider many such minimal sufficient sets as equally valuable substitutes. In this 
case, as we now go on to show, a total-welfare maximizing social planner should not remove 
any messages from a given c(zS, NS); moreover, the social planner should make zS and NS as 
large as possible. 

 
 

6. “Spread the word”: in favor of unlimited communication 
 
We start by showing that, if players play total-welfare maximizing equilibria where they 

consider many alternative information sets as sufficient, the probability of collective action is 
increased the more players are included in the automatic communication protocol. Thus, if 
players choose “good” equilibria, including many players does not create the risk of 
inefficiencies arising because of endogenous thresholds or pseudo-experts, but on the contrary 
creates more ways in which the players can achieve collective action. Intuitively, the chances 
of collective action are increased if the word is spread over many players. To formalize this 
argument, for simplicity, we concentrate on the case where player 1 is the only informed 
player. We start by showing that, for any given automatic communication protocol, the unique 
total welfare maximizing Nash equilibrium is described by a set of singleton broom sets, 
where each broom set consists of a single broom, and where all brooms that can be 
constructed from the automatic communication protocol are included in the set. 
 
Corollary 3 (“Total-welfare maximizing equilibria”). For any automatic communication 
protocol with given zS and NS, the unique total welfare maximizing Nash equilibrium of an 
EMG with J = {1} and any T is described by the set {{b1}, {b2}, {b3},…} consisting of all 
brooms contained in the automatic communication protocol. 
Proof: 
It was already shown in Proposition 1 that each broom set in an equilibrium set of broom sets 
must let each informed player send at least one message. In the case of one informed player, 
this is the case for any singleton broom set contained in the automatic communication 
protocol. 
Consider any equilibrium where at least one broom set contains more than one broom. Then 
the probability of collective action is increased if it suffices for each individual player to 
receive all the messages in one of these brooms. QED.15 
 

Next, we show that, whatever the level of T, for any automatic communication protocol 
with fixed number of stages, total welfare can potentially be increased by involving more 
players in the game. This is true even if the number of players in the automatic 
communication protocol surpasses the threshold. 
 
Corollary 4 (“Spread the word”). For any EMG with J = {1} and general T, across all 
automatic communication protocol with fixed zS, the equilibrium with the highest total 
welfare exists for the automatic communication protocol with NS = N. 

                                                 
15 Consider again the case J = {1}, NS = 3, T = 3, zS = 2 (see Footnote 10), and consider the parameters L = 4, M 
= 1, ε = 0.10.  In the equilibrium {b1,b2}, collective action takes place in state b with a probability equal to 

=− 6)1( ε  53%; in equilibria {b1} and {b2} with a probability equal to =− 3)1( ε  72%, and in equilibrium 

[{b1}, {b2}]  with a probability of +− 3)1(2 εε  [ ]{ }2222 )1()1(1)1()1( εεεε −−−+−−  = 93%. 
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Proof: 
Start from any set NS’ included in the automatic communication protocol, and enlarge this 

set to any set NS’’. Consider the new total welfare maximizing equilibrium for the case with 
NS’’. All the brooms that where sufficient for the case NS’ are now also sufficient for the case 
NS’’, with the only modification that extra players receive messages in these brooms at stage 
zS. This increases the probability that each individual broom leads to collective action. 
Second, note that the fact that  NS’’ is larger means that, in the new total-welfare maximizing 
equilibrium, extra brooms will be included, again increasing the probability of collective 
action. QED16 
 

To complete the argument that having more information available potentially makes players 
better off, we show that for a fixed number of players in the automatic communication 
protocol, total welfare can be increased by adding stages to the automatic communication 
protocol (taking as a premise that players continue to play the total-welfare maximizing 
equilibrium after the increase in the number of stages). 
 
Proposition 3. (“Talk as long as possible.”) For any EMG with J = {1} and general T, 
across all automatic communication protocol with fixed NS, for sufficiently small ε, the 
equilibrium with the highest total welfare exists for the automatic communication protocol 
with zS = z. 
Proof: 

For any EMG with J = {1} and general T, consider the total welfare maximizing Nash 
equilibrium described by a set of singleton broom sets {{bI}, {bII}, {bIII},…}. Take any 
singleton broom set {bX} from this set, and extend the automatic communication protocol with 
one more stage, by making it possible for each player to receive a confirmation at stage 

)1( +Sz  of each message in {bX} received at stage zS. This leads to )1( −SN  new brooms  
{bX,1},{bX,2}, …, {bX,(NS-1)} being formed. Consider the strategy profile described by the set 
{{bI}, {bII}, {bIII},…,{bX,1},{bX,2}, …, {bX,(NS-1)},…} where each player plays B as soon as 
receiving at least all messages of one broom in this set. We show that in this new strategy 
profile, the probability of collective action is increased. If this is true for any single {bX}, it is 
also true when one stage is added to all brooms in the set {{bI}, {bII}, {bIII},…}. 

Consider the probability that broom set {bX} leads to collective action in the original 
communication protocol. This probability equals πε 1)1( −− Sz , where 

∑
−

−=

−−−






 −
=

1

1

1)1(
1S

S

N

Tk

kNkS

k
N

εεπ , or the probability that )1( −T  or more players receive a 

message from {bX} at stage zS (such that the threshold is achieved). For reasons that will 
become clear below, we rewrite the expression πε 1)1( −− Sz  as 

 
 [ ] πεεε 11 )1()1( −− +−− SS Nz , (1) 

                                                 
16 Consider the case J = {1}, N = 4, T = 3, zS = 2, and consider the parameters L = 8, M = 1, ε = 0.10. The 
automatic communication protocol can then generate three brooms b1, b2 and b3. The reason that a larger L is 
needed compared to Footnote 10 is that in the case where NS = 4, the informed player who does not receive any 
messages in equilibrium [{b1}, {b2}, {b3}] for vanishing ε estimates the probability that two other players act to be 
7/8. In this equilibrium, the probability of collective action in state b is equal to +− αεε )1(3 2  2)1(3 εε −  

[ ]+−+ ααα )1( [ ]{ }αααααε )1()1()1( 3 −+−+− =99.8%, where [ ]23 )1(3)1( εεεα −+−= . This 
is larger than the probability 93% in the case where NS = 3, zS = 2 (see Footnote 15).  
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where the term [ ] 1)1( 1 =+− −SNεε  can be interpreted as the probability that any number of 
messages arrive at a fictitious stage between )1( −Sz  and zS, where receipt of messages at this 
fictitious stage is independent on the event of receipt of previous or future messages. Note 

that the term [ ] 1)1( −+− SNεε  can be rewritten as ∑
−
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Consider next the probability of achieving collective action in the set of brooms 
{bX,1},{bX,2}, …, {bX,(NS-1)}. This equals 
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1
εερ   is the probability that S messages are received at stage zS, 

and Sπ  is the probability that )1( −T  or more players receive messages at stage )1( +Sz  in at 
least one out of S of the brooms {bX,1},{bX,2}, …, {bX,(NS-1)}. 

Note that the probabilities Sρ  together consist of all the terms in the sum [ ] 1)1( −+− SNεε , 
with the exception of term 1−SNε . It follows that expressions (1) and (2) consist of analogous 
terms – one for each term of  [ ] 1)1( −+− SNεε  – with the exception of the extra term 

 
 πεε 11)1( −−− SS Nz  (3) 

 
contained in (1). Note that ππ =1 , so that for S = 1 in (2), the corresponding term in (1) is 
identical.  For any 2≥S  it is the case that ππ >S , so that for 2≥S , the term in (2) is always 
larger than the corresponding term in (1). This reflects the gains that are obtained from the 
fact that, contrary to what is the case in (1), collective action is possible even if less than 

)1( −T  messages arrive at the last stage in one particular broom (= the equivalent of the single 
broom in the equilibrium corresponding to (1)). Such gains are obtained for all cases where 
less than )1( −T  messages arrive at the last stage in one particular broom set. At the last stage, 

k messages, with 20 −≤≤ Tk , arrive with probability kNkS S

k
N −−−




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

 − 1)1(
1

εε ; to obtain the 

individual gain of (2) over (1), this must then be multiplied by the probability 1−Sπ  that 
)1( −T  or more players receive messages in at least one of the )1( −S  other brooms. Thus, the 

gains of having the brooms {bX,1},{bX,2}, …, {bX,(NS-1)} instead of a single broom {bX,1} equal 
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Note now that, as long as 2>T , (4) contains at least one term that contains an expression 
kN S −−1ε  with )1()1( −<−− SS NkN ; this is because ∑

=
−

SN

S
SS

2
1πρ  contains terms where all 

messages arrive. Finally, note that the loss of (2) over (1), given in (3), contains a probability 
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1−SNε . It follows that, for sufficiently small ε, the loss of (2) over (1) (given in (3)) vanishes 
compared to the gains of (2) over (1) (given in (4)). QED17 

 
 
Thus, concluding, players can benefit from more information not only by the fact that it 

may be more likely that a threshold of players act if the word is spread over more players. A 
fixed number of players can also benefit from talking a longer time. The longer players talk to 
each other, the more different avenues are created along which information can travel, and the 
more robust information transmission is to disruption of one of these avenues; the benefit 
from having extra avenues exceeds the cost of more messages being required in every single 
avenue. In terms of the analysis in the previous section, it may not matter if players consider 
the information of several committees as important, as long as they are considered as 
substitutes, and not as complements. Also, it may not matter if individual committees include 
pseudo-experts. Indeed, for any committee involving only informed players, one can make 

)( IN −  new committees by putting each uninformed player in a committee once. If these are 
then all considered as alternatives, the probability of collective action increases. 

 
 

7. Hearsay: unsophisticated players 
 
A criticism on the analysis so far may be that players are assumed able to process a large 

degree of interactive knowledge. For instance, in the case of five players with one informed 
player, it may be that Edward wants to hear from David that David heard from Carl that Carl 
heard from Bob that Bob heard from Alice that she found out that there is an opportunity to 
benefit from collective action. It does not suffice for Edward to hear from David that David 
heard from Bob that Bob heard from Carl that Carl heard from Alice that she found out that 
there is an opportunity for collective action.  

Yet, an unsophisticated player may not be able to distinguish between such knowledge. Let 
us consider an unsophisticated player who is only able to count how many messages he or she 
receives at individual stages, but is not able to distinguish between messages. We now show 
that, even with such unsophisticated players, efficient equilibria continue to exist along with 
inefficient ones.  

 
Corollary 5 (Unsophisticated players). For the case J = {1}, consider a variant of the game 
described in Section 3 where players are only able to count how many messages they receive 
at each stage. Then the subset of the Nash equilibria described in Proposition 1 where in each 
minimal sufficient broom set, players receive at least a sum of X messages over the stages 

)1( −Sz  and zS are also Nash equilibria of this modified game. This subset includes both the 
total-welfare maximizing equilibrium of the original game (where players require the 
messages in any one broom from one another), and total-welfare minimizing equilibrium of 
the original game (where players require all messages from one another). 
                                                 
17 Consider again the case J = {1}, NS = 3, T = 3, zS = 2 (see Footnotes 10 and 15), and consider the parameters L 
= 4, M = 1, ε = 0.10.  In case zS = 2, in equilibrium [{b1}, {b2}] collective action takes place 93% of the time (see 
Footnote 15). In case zS = 1, in the unique equilibrium collective action takes place with probability 

=− 2)1( ε 81% of the time. The latter probability can be rewritten as [ ] 222 )1()1(2)1( εεεεε −+−+− , the 

former probability equals [ ]{ } 22222 )1)(1(2)1()1(2)1()1( εεεεεεεεε −−+−+−+−− . In terms of the 

proof of Proposition 3, the loss of switching from zS = 1 to zS = 2 thus equals 22 )1( εε − , while the gain equals 

[ ] 222 )1()1(2)1( εεεεε −+−− . 
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Proof: 
Proposition 1 shows for the case J = {1} that a Nash equilibrium corresponds to any set of 
broom sets where one broom set is not a subset of another broom set. This includes sets of 
broom sets such that, in each minimal sufficient broom set, players receive a fixed number of 
messages X over stages )1( −Sz  and zS, where )1)(1(1 −−≤≤ SS NzX . It follows that these 
are also equilibria of a modified game where players are only able to count how many 
messages they receive at each stage. Note that for 1=X , the total-welfare maximizing 
equilibrium described in Corollary 3 is replicated. For )1)(1( −−= SS NzX , we have the total-
welfare minimizing equilibrium where players require all available messages from each other. 
QED 
 

While unsophisticated players are equally well able to play inefficient equilibria, in spite of 
the large assumed loss of acting with less than T players, in the total-welfare maximizing 
equilibrium, players act only based on “hearsay”: each player acts when having recently (i.e., 
over the two last stages) heard from someone (i.e., any other player) that there is an 
opportunity for collective action. 
 
 
8. Conclusion 
 

The literature on the two-player EMG shows that two players involved in a collective action 
problem can lock themselves into requiring a large number of assurances and reassurances 
from each other that there is an opportunity for collective action, thus reducing the probability 
of collective action. We have shown that for the multi-player EMG, equilibria exist that 
generalize this effect. Particular aspects of this effect for the multi-player EMG are that 
players’ mutual expectations can create endogenous thresholds, where players only act when 
receiving information that more people know about the opportunity for collective action than 
is strictly necessary, and can create pseudo-experts, where a player who does not have 
information on whether there is an opportunity for collective action still gets to be considered 
as having such information. From this perspective, a rationale is obtained for limiting the 
extent to which players can check each other’s knowledge, and players are best ordered in a 
hierarchy where the informed players first form a committee establishing whether there is an 
opportunity for collective action, after which all other players are informed about this 
opportunity. Thus, it seems players’ knowledge should be restricted, so that each is informed 
on a need-to-know basis. From this perspective, we obtain a rationale for setting up 
hierarchies to solve collective-action problems. 

Yet, unlike what is the case for the two-player EMG, in the multi-player EMG equilibria 
also exist where players use the many messages that can be generated by a process of 
confirmation and reconfirmation not only as an instrument of mutual reassurance, but as an 
instrument to generate several alternative channels through which players can be informed 
about the opportunity for collective action. In the equilibrium of this form that maximizes the 
probability of collective action, each player acts as soon as receiving at least a single message 
at the one-but-last or last stage. From this perspective, the players are better off if, first, more 
players are involved in the collective action problem, and, second, if these players are allowed 
to talk for a longer time. This is simply because more alternative channels for informing 
players are then created, thus reducing the effect of noise. Therefore, the probability of 
collective action may be increased when players are allowed to spread the word as much as 
possible, and if players are to the maximal extent allowed to check each other’s information. 
From this perspective, players’ knowledge should not be restricted, and hierarchies should not 
be created to solve collective-action problems. Our aim in this paper has been to point out the 
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possibility of such an effect. Yet, we are unable to eliminate inefficient equilibria which 
justify a completely opposite measure where communication between players is severely 
restricted. The selection between such equilibria, on further theoretical grounds and/or on 
experimental grounds, is the subject of future research.  
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