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Abstract
This chapter of the Handbook of Computational Economics is mostly about
research on active learning and is confined to discussion of learning in dynamic
models in which the systems equations are linear, the criterion function is
quadratic and the additive noise terms are Gaussian. Though there is much work
on learning in more general systems, it is useful here to focus on models with
these specifications since more general systems can be approximated in this way
and since much of the early work on learning has been done with these quadratic-
linear-gaussian systems.
We begin with what has been learned about learning in dynamic economic models
in the last few decades. Then we progress to a discussion of what we hope to learn
in the future from a new project that is just getting underway. However before
doing either of these it is useful to provide a short description of the mathematical
framework that will be used in the chapter.
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1 Introduction

It is common sense that one can learn about an economic system as time
passes. One can observe the inputs and outputs of the system and make in-
ferences about the relationship between the variables that characterize the
system. An example is a macroeconomic model with inputs like government
expenditure, taxes and the money supply and outputs like gross domestic
product, inflation and unemployment. Another example is a microeconomic
model with inputs like the price level and resources such as capital, labor and
energy and outputs like production, sales and profit.

In the control theory framework one can model the inputs as control variables
and the outputs as state variables and characterize the relationship between
the two with the functional form of the system equations and the parameters
of those equations. In this context previously obtained data may be used to
calculate the means and variances of the estimates of the parameters and of
the additive noise terms in the system equations. Learning then occurs as more
observations are obtained with the passage of time and these observations are
used to modify the means and to reduce the variances of the estimates of the
parameters and of the additive noise terms. This is called passive learning
because no deliberate attempt is made to increase the learning done in each
period.

In contrast active learning? occurs when the control variables are chosen in
each period in such as way as to perturb the system and thus increase the speed
of learning. However, this is done only at some cost in moving the economic
system away from the paths that would otherwise be followed

I This chapter is mostly about research on active learning and is confined
to discussion of learning in dynamic models in which the systems equations
are linear, the criterion function is quadratic and the additive noise terms are
Gaussian Though there is much work on learning in more general systems, it
is useful here to focus on models with these specifications since more general
systems can be approximated in this way and since much of the early work on
learning has been done with these quadratic-linear-gaussian systems.

We begin with what has been learned about learning in dynamic economic
models in the last few decades. Then we progress to a discussion of what we
hope to learn in the future from a new project that is just getting underway.
However, before doing either of these it is useful to provide a short description
of the mathematical framework that will be used in the chapter.

2 A more recent term for active learning is optimal experimentation, see for instance
Beck and Wieland (2002).



2 The Framework

The framework consists of two parts: an optimization part and a learning part.
The optimization part of the framework consists of an objective that has to be
minimized, the criterion value, and the constraints that bind this objective.
In economics the constraints define the dynamics of the system (state). We
start with the constraints.

As mentioned above, optimal control models, like those used in Kendrick
(1980, 1981, 2002), have linear system equations of the form

Tep1 = Ae(0r) e + Be(0p)ue + ¢ (6:) + e (2.1)

where t € {0,.., N —1} is the (discrete) time index, z; € R a state vector,
u, € RO a control vector, v; € R™Y an independently and identically
distributed (iid) additive noise term with v, ~ N(0, %), A, € R™™ a tran-
sition matrix, B, € R™*™ a control coefficient matrix, and ¢, € R an
exogenous variables vector. The vector 6, € RG>V is a vector containing the
subset of the coefficients in A;, B; and ¢; that are treated as uncertain. The
matrix A, is a function of the subset of the uncertain coefficients in 6; which
come from that matrix. The same applies to B; and ¢;.

This class of models permit consideration of situations that are common in
economics where the state variables x; may not all be directly observed or
may not be observed without noise. The equations for this specification are
called the measurement equations and may be written as

Y = Hyxy + G (2.2)
where y; € RO*D is a measurement vector, H; € R0*™ a measurement coeffi-
cient matrix, ¢, € RV a iid measurement noise vector with ¢, ~ N(0, ch).

The parameter estimates ét‘t of the true 6, change over time?; while in most
specifications of this class of models the true values of the parameters are
assumed to remain constant. However, in some specifications the true values
of the parameters are themselves assumed to be time varying. In these cases
one can use parameter evolution equations of the form

Orp1 = D0y + 1y (2-3)

3 Following Bayesian literature, we make a distinction between prior estimates ét|t71

and posterior estimates ét‘t of the true parameter vector 6.



where D, € R**) the parameter evolution matrix, 7, € RC*Y an iid additive
noise term 7, ~ N(0,%/7). When a more general form of equation (2.3) is
needed, the law of motion of the time varying parameters can be written as

9t+1 = Dtﬁt + ([ - Dt>9_ -+ M (24)

where I is the identity matrix and 6 is the unconditional mean of the stochastic
parameter. This is the form used by Tucci (1997, 1998, 2004) to model a wide
variety of time varying parameter specifications. For example, when 6 = 0,
equation (2.4) reduces to equation (2.3). Also, when D; and X} are zero,
0; becomes the usual time-invariant case. In contrast, if D, is equal to zero,
but X7 is nonzero, then equation (2.4) describes a random parameter, i.e. a
parameter varying randomly about the fixed mean 6. If, on the other hand,
6 is equal to zero, equation (2.4) models a vector-autoregressive process of
order one with mean zero. Also, random walk parameters may be modeled by
setting D, equal to one. Finally, equation (2.4) can be used to represent a lack
of knowledge about the parameters. For example, when the true parameter
associated with the control variable is constant, but unknown, then setting D,
equal to zero and X}/ not equal to zero allows one to interpret 6, as the time-
varying estimate of the unknown constant parameter  based on observations
through period t. When this is the case one can interpret ¥J" as the covariance
of the estimates based on all information available at time ¢.

The initial conditions for the systems equation and the parameter evolution
equations model are

Tg ~ N(i‘o, Egm)

, (2.5)
00 ~/ N(eo, 280)

where £ is the expectations operator. The expected states at t = 0, 1o = E|xo],
0y = E[0p], and their covariances ¥2%, 3% are assumed to be known. 4

The criterion function for this class of finite horizon model may be written
with discounting terms as in Amman and Kendrick (1999b) as

J=E{Cy} = E{cSNLN(a;N) + Ni §'Ly(z, ut)} (2.6)

t=0

4 For simulation purposes we usual start with (good) estimates of the variables
Zo|0, Bojos Egl% and 28‘90 and update their prior and posterior estimates when new
information comes available. See equations (2.12) and (2.14).



J € R* is the (scalar) value of the criterion, a discount factor § € R usual
defined on the interval < 0, 1], L; € R the criterion function and N € N the
terminal period. The two terms on the right-hand side of equation (2.6) are

defined as

LN(ZL’N> = i(xN—a?N)’WN(:UN—f:N)+w§v(1:N—:'i:N) (27)

and

1 N N N N
Lt(flfta Ut) = 5 (5Ut - l’t)IWt(l’t - $t) + (l’t - $t),Ft(Ut - Ut)

1 . i , L _
+ 5 (ut — Ut) At(ut — Ut) + wt(mt — :L‘t) + )\t(ut — Ut) (28)

where 7, € R the desired state vector, u; € R(™x1D) the desired control
vector. W, € RV F e RO A, € R are penalty matrices on the
deviation of states and controls from their desired paths. W, is assumed to
semi-positive definite and A; to be positive definite. w;, € R™YD and )\, €
R™*1) are penalty vectors on the deviation of states and controls from their
desired paths.

In summary, the stochastic optimal control model is specified to find the set
of control variables {u;}~5" that will minimize the criterion function (2.6)
subject to (2.7)-(2.8), the system equations (2.1), the measurement equation
(2.2) and the parameter evolution equation (2.3) or (2.4). Given the initial
conditions (2.5).

This brings us to the second part of the framework. After the optimal control
vector u; is chosen in each time period the outputs of the system are observed
and the means and variances of the parameters and of the state vectors are
updated.

In this optimization procedure the original state vector x; is augmented with
the parameter vector #; to create a new state

P (2.9)
0:

thus the corresponding covariance matrix for the augmented state is written



as

el
P = (2.10)
Y

where ¥% is the covariance for the parameter estimates as previously defined.
In general, ¥7* is not known and has to be estimated. Hence, we have

) T ix@

2z tlt “tt

e = | » | . | (2.11)
Eem 200

tlt et

Also, for all four elements of the covariance matrix Xf; a distinction will be
made between the current period covariance Efﬁ, the projected covariance next
period before new measurements are made %7, and the projected variance

next period after new measurements are made %7, . >

The estimation process used in Kendrick (1981, 2002) is the Kalman filter.
The mathematical expression for the updating of the means of the uncertain
parameters is®

ét+1\t+1 = ét+1\t + ifiﬂthIJrlStjrll Y41 — Ht+1§7t+1\t} (2.12)

where

Str1 = Ht+12f_fl|tHé+1 + Eﬁl (2.13)

From these equations one can see that the change in the parameter estimate
from the projection ét+1|t to the post-measurement updated values étﬂwl de-
pends on the difference between the actual measurement ;1 and the expected
measurement Hyy %41 via the measurement equation (2.2). From equation
(2.12) one can see that the magnitude of this adjustment depends positively
on the estimated covariance of the original state vector x; and the parame-
ter vector 6, in f]ffrl‘t. Also, equation (2.13) shows that the magnitude of the
adjustment depends inversely on the estimated degree of uncertainty about

% Like in footnote (3), f]fjut is called the prior estimate and f]fjl‘tﬂ the posterior
estimate of the covariance matrix %77 .
6 Equations (2.12), (2.13) and (2.14) are based on Kendrick (1981, 2002), equations

(10.61), (10.68) and (10.69).



the original states S2z - and the variance of the iid additive noise term in the

1t
measurement equations, which is Zt 21

In parallel to the updating equation for the parameter means is the updating
equation for the parameter covariances which is shown below

S e = S0y — S0 Hy o ST Hea S5, (2.14)

Note that the degree of learning in period t is represented by the decrease in

the covariance from the prior projection Et L1 to the posterior measurement

update Et 1 Furthermore, in equation (2.14), this is positively related to
the covariance of the original state vector x; and the parameter vector 6; as
represented by the estimated matrix %%% T Also, from (2.13) and (2.14) the
learning is inversely related to the degree of uncertainty about the original
states if—fl\t and the additive noise term in the measurement equations, that

is Et+1

This completes the discussion of the mathematical framework so, with this
framework in mind, we turn to a discussion first of what has already been
learned about learning in this type of dynamic economic models.

3 What We Have Learned

Research on passive and active learning stochastic control of economic models
has been underway for more than thirty years dating back to the early work
of Prescott (1972), MacRae (1972) and Taylor (1974) and including work by
Norman (1976), Kendrick (1976, 1980, 1981), Easley and Kiefer (1988), Kiefer
(1989), Kiefer and Nyarko (1989), Tucci (1989), Mizrach (1991), Aghion et al.
(1991), Amman (1996), Amman and Kendrick (1995, 1997a), Wieland (2000a,
2000Db), Beck and Wieland (2002), Tucci (2004), Cosimano and Gapen (2005b,
2005a), Cosimano (2007), Tesfaselassie, Schaling and Eijffinger (2007) and
others. What have we learned about learning from this research?

3.1 Active Perturbation

The most basic expectation about active learning comes in comparing it to
passive learning. For example, compare Expected Optimal Feedback (FOF)



with Dual Control (DC).” In EOF the choice of control takes into account the
uncertainty in the parameter estimates and may therefore exhibit a tendency
toward caution as compared to methods that do not consider the parame-
ter uncertainty. However, in FOF no consideration is given to the impact of
the current choice of control on future decreases in the uncertainty of the
parameter estimates. In contrast, in the DC method the choice of control in
each period depends on projections of the future covariance matrices of the
parameters ifﬁ for all future time periods.

Thus one expects that the controls variables will be more active in the early
time periods in the active control (DC') solutions than in the passive control
(EOF) solutions. Our experience is that this expectation proves to be true.
In fact, it appears that the perturbations in the control variables with the DC
method are used not to learn all parameters equally but rather to learn more
quickly those parameter that are most crucial to the effective control of the
system. Neither we, nor so far as we know, others have yet quantified these
kinds of results; however our causal observations of the models we have used
suggests that this class of results holds.

3.2 Rapid Decrease in Parameter Variances in the First Few Periods

Also, we have observed that in most active learning solutions there is a very
sharp decrease in the elements of the covariance matrix of the parameters, ifg,
in the first few time periods. Of course, the speed of this learning is related to
the cost of the perturbations in driving the state variables further away from
their desired paths than would otherwise occur. If this cost is high the learning
will progress more slowly. In addition, when the cost of control is high, i.e. in
situations where the penalty weights in the A matrix in the criterion function
are relatively large, then the control will not be very active and the learning
will be slower, i.e. the elements in the f]fg matrix will decline more slowly over
time.

Conversely, if there is large initial uncertainty in the parameter estimates,
igfo, then it is difficult to effectively control the system and there is reason
is provide larger perturbations in order to quickly reduce this uncertainty.
Exactly how this tradeoff will play out in macroeconomic and microeconomic
systems is a matter that deserves substantial attention in future research.

7 For a classification of the various methods that are used in stochastic control of
economic models and the nomenclature that is associated with these methods see
Kendrick and Amman (2006).



3.8  Non-convezxities

Also, we have learned that the X% matrices play a major role in determining
whether or not there are nonconvexities in the cost-to-go function. As we have
related elsewhere, Kendrick (2005), in the early work on dual control we did not
expect that the cost-to-go function would exhibit nonconvexities and we did
not make any allowance for this. However, we accidentally discovered that local
optima existed in the cost-to-go functions, Kendrick (1976), Norman, Norman
and Palash (1979), and this was confirmed by theoretical research by Mizrach
(1991) and by numerical research by Amman and Kendrick (1995). Also, the
presence of the nonconvexities has been confirmed by Wieland (2000a) using
a different solution method, namely value function iteration.

Therefore as a guard against the nonconvexity problem we have incorporated
grid search methods into our DualPC software systems®. However the un-
varnished grid search system may be inefficient. This occurs because in our
experience the nonconvexities are most likely to occur in the first few periods
when the ¥ matrix elements are relatively large. We have come to this real-
ization in part by the way that the cost-to-go is divided into three components
in the Tse and Bar-Shalom (1973) framework that we have used. These three
components are labeled deterministic, caution and probing. In our experience
the deterministic term is always convex and the cautionary term is almost
always convex so these two terms do not generally cause a problem. However,
the third component, namely the probing cost term can have a concave shape
when the elements of f]fﬁ are large. In this situation the sum of the deter-
ministic, caution and probing terms may be a non-convex function with local
optima and grid search methods or some global search optimization must be
used.

However, in the cases where the i?ﬁ declines rapidly over time the probing
term diminishes in size relative to the other two terms and change to a less
pronounced concave shape. Thus the cost-to-go function will be nonconvex
in the first few periods but will become convex in later time periods. In this
situation one would like to use a global optimization procedure that checks in
each time period to see whether or not nonconvexities are present. In those
time periods where nonconvexities are present, time-consuming and thorough
grid search methods must be use.

In contrast in time periods where the cost-to-go function is apparently convex,
then efficient gradient methods can be used.? We are still in the early stages
of gaining experience with these approaches; however, it appears that they

8 See Amman and Kendrick (1997b, 1999c).
9 Marco Tucci has devised just such an optimization procedure, viz Tucci (1998,
2004).



may be extremely useful in permitting the rapid solution of active learning
control problems with substantial numbers of Monte Carlo runs in situations
where there are nonconvexities in the cost-to-go function.

Sometimes mathematical results derived for one purpose have the fortunate
side effect that they can later be used for another purpose. Such is the case of
the analytical results that were originally derived to track down the sources of
nonconvexities in small models. These results in Mizrach (1991) and Amman
and Kendrick (1994b, 1995) allow one to fully characterize the three compo-
nents of the cost-to-go function for the simplest one-state, one-control, one
unknown parameter, quadratic linear adaptive control problem with a time
horizon of two periods. Therefore, in Tucci et al. (2007b) we have used these
results as a starting point to compare the ’average’ or 'representative’ cost-
to-go with different parameter sets and thus to analyze the effects of these
different parameter sets on individual runs of a Monte Carlo experiment 1.
The representative cost-to-go helps to sort out the basic characteristics of the
different parameter sets. The Monte-Carlo results are useful in reconciling the
theoretical results in Mizrach (1991) and Amman and Kendrick (1994a, 1995)
with the computational findings in Tucci (1998, 2004) and to shed some light
on the ’outlier problem’ discussed in Amman, Kendrick and Tucci (2008).

3.4 Rankings

One of the key questions in field of learning in dynamic economic models is
whether there is enough difference between the solutions provided by different
methods to justify coping with the complexity of the more sophisticated meth-
ods. We have addressed this question primarily by comparing three methods:
Optimal Feedback (OF'), Expected Optimal Feedback (EOF') and Dual Con-
trol (DC'). We have discussed these methods in detail in Amman, Kendrick
and Tucci (2008); however, the basic difference can be outlined in a few sen-
tences.

The OF method is the most simple since it ignores the uncertainty in the
parameter matrix and considers only the additive noise uncertainty v; in the
system equations. Thus the solution method is very fast. The FOF method
considers the uncertainty in both the additive noise term in the system equa-
tions and in the parameters in the 6; vector which are elements from the
A, B and ¢ matrices from the system equations. This method is more complex
than the OF method but is still computationally very efficient. However, this

10 The term parameter set is used here to include both the parameters and their
covariance and the values used for the penalty matrices, desired paths for the states
and controls and the initial states.

10



method does not consider the potential effect of change in the control today
on the future uncertainty of the parameter estimates as represented in the f]fﬁ
matrices — matters that are considered in the DC' method. This method is sub-
stantially more complex mathematically than the first two and is also much
less efficient computationally — especially so in cases where non-convexities
arise.

When we first started learning about learning we expected that there would
be a clear ranking between these three methods as measured by the criterion
function values from the three solution methods over substantial numbers of
Monte Carlo runs. We thought that DC' would be clearly better than FOF
which in turn would be clearly better than OF. Our experience so far has
turned out to be more complex.

In each case when we have done the comparisons of the methods we have
done it in two ways. One way is the count the percentage on the Monte Carlo
runs in which each method had the lowest criterion value. The other way is
to compute the average criterion value for each of the three methods over the
Monte Carlo runs. A recent example of our work in this realm can be found
in Amman, Kendrick and Tucci (2008) where we compare the three methods
over solutions to the models from Beck and Wieland (2002). These results are
typical of those that we have obtained on other models as well. Basically we
find that the simple OF method does well relative to the more complex FOF
and DC' methods when the “number of runs” comparison is used. In contrast,
the DC method does better than the FOF method which does better than
OF method when one compares “average values”.

We believe that the difference between these two types of results can be
explained in rather simple terms. It appears that the less sophisticated OF
method may work better in most cases; however in situations where it does
not work well it does very poorly. For example, in a Monte Carlo run where
the initial values of the parameter estimates from the random drawing are
relative close to the true values, then the OF methods does well relative to
the EOF and DC methods. However, when the initial values of the parameter
estimates are further from the true values then there is a premium on treat-
ing those values with caution, as is done in the FOF method, or of actively
perturbing the system in order to increase the rate of learning and thereby
obtaining parameter estimates closer to the true values in later periods as is
done in the DC' method.

Since in our judgment the average value method is the most useful approach
in most situations where learning occurs we believe that the DC method is
better than the EOF and OF method. However, this leaves open the question
of how much better. If we compute the variance of the criterion values we
usually find that the difference between the DC method and the FOF method

11



is statistically significant; however one may want to address this question in a
larger realm than purely one of statistically significance.

Also, our experience is that the ranking between these three methods can
be very model dependent.!! With some models one may get the expected
ranking of DC' better than FOF better than OF; however with other models
this ranking may be different. We do not yet have enough experience with
different models to say much about which properties of models affect the
ranking; however we will address this question more in the following section
of this chapter.

3.5  Time-Varying Parameters

There is one other more subtle question that we have begun to consider in
this area. This comes from comparison of the methods across two versions of
the same model, one without and one with time-varying parameters. (Here
we mean time varying values of the true parameters and not of the param-
eter estimates since in all learning situations there are time varying values
of the parameter estimates.) The Beck and Wieland (2002) model offers a
good laboratory for this kind of experiment since it has both constant pa-
rameter and time-varying parameter versions.!? Using the “average value”
approach it would seem that the difference between the DC' method and the
EOF method might diminish when one moves from the constant parameter
to the time-varying parameter version of the model. This occurs between the
gain from learning diminishes when the true values of the parameters them-
selves change over time. Our results in Amman, Kendrick and Tucci (2008)
are of this variety.

However, it can also be argued that in situations where the true values of the
parameters are time varying it will be even more important to perturb the
system to try to continue to track those changing true values. Thus the jury
may be out on this more subtle question for some time to come.

3.6 Model Sizes

Our experience with learning about learning is so far limited to small models
with only a few equations and unknown parameters. However, as the speed of
computers continues to increase it may well be possible to do large numbers

' See the discussion in Section 8 of Tucci et al. (2007b).
12 Tucci et al. (2007a) derive the appropriate formulae for the determination of EOF
control in the presence of parameters following a 'Return to Normality’ model’.

12



of Monte Carlo runs using even the more sophisticated DC methods and
even here in cases where there may be some nonconvexities in the cost-to-
go function. The crucial issue will probably not be so much the number of
uncertain parameters but rather the number of control variables since this
governs the number of dimensions in which one must search in cases where
there are nonconvexities.

4 What We Hope to Learn

The field of learning in dynamic economic models got off to a strong start
twenty or thirty years ago but then went through a period where there was
less interest among economists in the subject. That has changed in recent
years with an increase in contributions from two groups, one at the Goethe
University Frankfurt led by Volker Wieland and one at Notre Dame University
led by Thomas Cosimano. These two groups and our own each use different
methods for solving learning models so we have launched a small and informal
project to compare the three methods and thus to learn their comparative
advantage.

The first session of the project included presentation of the three methods.
Wieland presented a dynamic programming method with numerical approx-
imation of optimal decision rules, Wieland (2000a, 2000b), that is based on
previous work on authors such as Prescott (1972), Taylor (1974) and Kiefer
(1989). Cosimano discussed his perturbation method applied in the neighbor-
hood of the augmented linear regulator problem (see Cosimano (2006) and
Cosimano and Gapen (2005b, 2005a) which draws on work by Hansen and
Sargent (2001, 2004, 2007). We talked about the adaptive control method (see
Kendrick (1981, 2002) and Amman and Kendrick (1999a, 1999d, 2003) that
draws on earlier work in the engineering literature by Tse and Bar-Shalom
(1973).

After the session we decided to use all three methods to solve the same model
and thus to begin a new phase of learning about learning in dynamic economic
models. The first model we selected to solve was the Beck and Wieland (2002)
model with both constant parameter and time-varying parameter versions.
In this work Gunter Beck has joined with Volker Wieland, Michael Gapen is
working with Thomas Cosimano and Marco Tucci has become a member of
our group.

The focus of this Methods Comparison project will be to study the compar-
ative advantage of the three methods in a number of dimensions including
accuracy and efficiency and to use the three methods to further explore a
number of questions about learning. These questions are what characteristics
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of models cause different rankings among OF, EOF and DC methods, whether
of not non-convexities will turn out to be a common or uncommon problem
in economic models, whether measurement errors are large enough that they
should be routinely included in learning models and whether the use of con-
stant or time-varying parameters in the models changes the answers to any of
the questions above.

4.1 Accuracy

It would appear that the dynamic programming method used by Wieland and
Beck will produce more accurate solutions than the either of the other two
approaches since they both use approximation methods. However, it remains
to be seen how large this loss of accuracy is for each method relative to the
dynamic programming methods.

4.2 Efficiency

It would also appear that the approximation methods used by (1) Cosimano
and Gapen and (2) by our group will be more efficient and thus be able to solve
larger models and do larger numbers of Monte Carlo runs on those models.
However, it remains to be seen whether or not that difference is substantial
and what dimensions of the models are most important in determining this
relative efficiency. It may be that it is not the number of state variables or of
control variables that is crucial measure of size here but rather the number
of parameters that are treated as unknown. For example, a relatively large
model might have only a few parameters that need to be learned and thus the
least efficient of the three methods will still be very useful for that model.

4.3  Rankings

In the process of applying the three methods to a number of different economic
models we hope to begin to sort out the question of what characteristics of
different economic models results in differences in the rankings between the
OF, FOF, DC and related methods. From the discussion above it appears
likely that the size of the initial parameter uncertainty in 28?0 will be a crucial
element; however, it also seems likely that the nature of the B matrix and the
degree of controllability of the model may also be very important. Likewise
it may be that the nature and size of the measurement errors may play a
large role in determining the rankings of different methods on various types
of models.
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4.4 Non-convexities

As discussed above, it appears that the size of the elements in the initial
estimate of the parameter covariance matrix f]gfo play a crucial role in deter-
mining whether or not there are non-convexities in the cost-to-go function. If
the elements in this matrix are relatively small in macroeconomic, or finance
or microeconomic models then there will probably be little or no problem with
local optima in those models. On the other hand if these elements are rela-
tively large in models from some applications areas then it will be necessary to
redouble our efforts in include efficient global search methods in our computer
codes.

For models with a single control, grid search methods may prove to be an
effective way to obtain the global optimal solution, even though these methods
may not be the most efficient methods. However in models with more than
one control - and even in some models with a single control - it may be wise
to use more sophisticated global search methods. Our experience suggests
that nonconvexities are much more common and subtle than the theoretical
results suggests. For example Amman and Kendrick (1995, page 465) found
that when the MacRae (1972) parameter set is used the cost-to-go function
becomes nonconvex when the variance of the estimated parameter is set to 2.
However Tucci (1998, 2004) found nonconvexities in 28 percent of the cases of
a Monte Carlo experiment with the same parameter set and a variance equal to
0.5 for the unknown parameter. Thus it may be wise to employ sophisticated
global optimization methods with most models until one has gained some
confidence that nonconvexities are not present.

4.5  Measurement Errors

Measurement errors have not been commonly considered in economic models,
yet it seems likely that they may serve as an important limitation of learning
in economic models. The good news here is that stochastic control methods
commonly are equipped to handle measurement errors and we have included
them in the models we have experimented with for some years. Also, there is
recently new attention to this area of economics as in the work of Coenen and
Wieland (2001).

4.6 Time varying parameters

The methods used by all three groups include, to various degrees, the ability
to handle time-varying parameter specifications. In particular, Tucci (1989,
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2004) has done considerable work in this area and has laid the ground work
for exploration of the effects of time-varying parameters on the rankings of OF;
EOF and DC methods and of the relatively efficiency of different approaches
to solving economic models with learning.

4.7 Monto Carlo Runs

While much useful knowledge can be obtained from analysis of representative
runs of stochastic control models, when comparison of solution methods are
being considered Monte Carlo experiments have been the method of choice.
For each Monte Carlo run random values of the system noise v; and the ini-
tial parameter estimate éo|0 are generated using the means and covariances
described above. This corresponds to running the model repeatedly with dif-
ferent additive noise terms and with different initial values of the estimate of
the parameter 6. Figure 4.1 shows (for a model with a single uncertain pa-
rameter) the probability density function of the initial parameter estimate for
selected values of its covariance. It highlights the effect of this quantity on the

actual values of the uncertain parameter used in a Monte Carlo experiment.
13

Therefore it is important to analyze the shape of the approximate cost-to-
go function when the initail parameter estimate takes on values in different
intervals. Recall that even though the probability that the parameter will
take on a specific value is zero, the probability that it will fall in a certain
interval is not zero. In studying the effect of changes in the parameter (when
that parameter is the one multiplied by the control variable) Amman and
Kendrick (1995, page 470) observed that for the MacRae (1972) model the
cost-to-go function will be convex for values either substantially above or below
zero but will be nonconvex for values close to zero. However, they did not
investigate the relationship between this result and the outcomes of the Monte
Carlo experiments. In Tucci et al. (2007b) we have moved in this direction
studying more closely this model. However more general models should also
be considered

5 Algorithms and Codes

One of the most important aspects of research in this area is that the mathe-
matics of the algorithms for learning in dynamic economic models is complex.
It is not difficult but it is complex - both in the sense of there begin a lot of it

13 For further discussion of these issues see Tucci, Kendrick and Amman (2007b).
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Figure 4.1. R
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and in the sense of requiring close attention to a substantial amount of detail.
The mathematics has cost-to-go functions, Riccati equations, Kalman filters
and other components that are themselves not difficult; however, when they
are combined in an active learning framework the whole requires prolonged
and careful work to master.

Also, this is reflected in the computer codes. They too are not inherently
difficult to understand but they require the development of many substantive
subroutines that must be integrated carefully.

The result of this situation is that until recently there have not been many
alternative algorithms and codes developed in this area. This meant that is
has been difficult to cross check both mathematical and numerical results and
therefore to increase the probability that both the math and the codes are
error free. However, this is now changing. Within on own group Tucci (2002)
has developed a variant of the adaptive control code which includes a variety
of ways to specify time-varying parameters. In the process he has modified
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the mathematics in Kendrick (1981, 2002) and thus provided an independent
derivation of the many of mathematical results. Also, Beck and Wieland (2002)
and Cosimano (2007) and Cosimano and Gapen (2005b, 2005a) have provided
detailed results and derivations of those results that permit cross checking of
aspects of the mathematics. A small beginning of cross checking of mathemat-
ical results is in Kendrick (2006) which compares results obtained by Beck and
Wieland (2002) with those obtained by our group.

Also, we now have a variety of computer codes available that permit cross
checking of numerical results. The original Dual code by Kendrick has been
extensively revised and updated by Hans Amman to create DualPC which
is an efficient code in Fortran. Kendrick has developed a Windows version of
Dual in the C language with an easy to use interface (Duall) to permit low cost
entry to the field. Amman has developed code in MATLAB that is useful for
solving models with rational expectations. Tucci has created a version of Dual
with a variety of time-varying parameter specifications (DualTVP). We have
found it most useful to run these codes against one another in a continuing
process of checking numerical results.

Also Wieland has developed code in Fortran to implement his algorithm and
has made it available at his web site (http://www.volkerwieland.com) and
Cosimano and Gapen have developed code in MATLAB to implement their
algorithm. We anticipate in the future that all three groups will be able to solve
a number of different macroeconomic and financial models and thus facilitate
numerical checking across codes. As an example of this, in the following section
we report on work we have done recently on the Beck and Wieland (2002)
model.

6 A Showcase on Active Leaning

In this section we will present a simple model that fits into the framework we
have presented in Section 2 and we focus on the issue of rankings as discussed
in Section 3.4. Thus we compare optimal feedback (OF), expected optimal
feedback (EOF') and dual control (DC') methods. We begin with a brief pre-
sentation of the BW model followed by the results for the constant parameter
version of the model and then progress to the results for the version with
time-varying parameters.
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6.1 Qutline of the Beck and Wieland Model

Following Beck and Wieland (2002) the decision maker is faced with a linear
stochastic optimization problem of the form

A T(, A\
J = Min E|6 (zr—dr)” +

[ue]; 2o
T—1
Z 5t{(xt - i’t>2 + )\(Ut - ﬂt)z} (61)
t=0
subject to the equations
L1 = ATy + Qtut +c+ vy (62)
Orv1 = 0p + (6.3)

In fact the model goes back to an earlier strand of literature in the early Sev-
enties, see MacRae (1975). The model contains one uncertain parameter ¢,

with an initial estimate of its value 09 = by, and an initial estimate of its

; 00 __ 5 _ ,0b
variance Y, = Gg, = vp. The parameters « and c are constant, v, ~ N (0, 0,)

and 7, ~ N(0,0,). Beck and Wieland assume in their paper that 7' — oo.
In contrast we will assume that the planning horizon is finite, hence T" < oc.
Furthermore, we have adopted the timing convention from Kendrick (1981,
2002) where the control, u;, has a lagged response on the state x;.

For the simulations in the next paragraphs we will use the following numerical
values for experiments: o = 1, by = —0.50, v} = 1.25, ¢ =0, 0, =1, 0, =0
for the constant parameter case and o, = 0.04 for the time varying parameter
case (see the next two sections). Furthermore, A = 107, T" = 10, Vt 3; = 0,
Vtﬁt:0,5:1,x0:1.

With this set of parameters, the above model can be solved in DualPC, see
Amman et al. (2008), allowing us to simulate the various situations in the
next sections.

6.2 Constant Parameters

We make a distinction, at each time step, between the true parameters, [,
and the estimates of those parameters, b;. In this version of the model the true
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values of the parameters are constant but the estimates change over time. In
contrast, in the time-varying parameter version of the model in Section 6.3,
both the true parameters and the estimates change over time.

The parameters are the same as those used with the versions of the model
solved with Duall except for the discount factor, §, which is set at 0.95 in the
Duall versions and at 1.00 in the DualPC' versions. The reason for this is that
the DualPC' software does not yet support discounting.

We used the DualPC software to run 10,000 Monte Carlo in which we com-
pared the criterion values obtained with three different methods OF, EOF
and DC. As indicated above, the first two methods are described in the com-
plementary paper, Kendrick et al. (2006). For each Monte Carlo run random
values of the system noise ¢ and the initial parameter estimate b, are gener-
ated using the means and covariances described above. This corresponds to
running the model repeatedly with different additive noise terms and with
different initial values of the estimate of the parameter b;.

The DC (adaptive control) methods used here is the one described in Chap-
ters 9 and 10 of Kendrick (2002). In addition, the DualPC software includes
a grid search method that is designed to deal with possible non-convexities
in the cost-to-go function. This is a two level grid search that begins in the
neighborhood of the OF solution. The best grid point obtained in the first
search then provides the starting point for the second level search which is
done in finer detail over a lesser range than the first grid search.

When we applied the OF, EOF and DC methods to the BW model we found
that in a substantial number of the runs the criterion value for one or more of
the methods was unusually large. Or, to say this in another way, the distribu-
tion of criterion values had a long right tail.

This outlier problem may be caused by the initial parameter estimates for
the uncertain parameter, which are themselves outliers in either the right or
left tails of that distribution. Assuming that the uncertain parameter has mean
-.5 and variance 1.25 implies that the initial value used in the Monte Carlo
runs is in the interval (-1.62, .62) approximately 68% of the cases, and in
the intervals (-2.74, 1.74) and (-3.86, 2.86) approximately 95% and 99%, re-
spectively, of the cases. Alternatively put, the initial estimate of the unknown
parameter is outside the 'benevolent’ interval (-1.62,.62) approximately 32%
of times and this is obviously reflected in the associated value of the criterion
function. To see how the various methods perform in the different situations
we decided to run the comparison three times. In the first test we kept the
runs in which the criterion value for all of the three methods was less than or
equal to 100. In the second test we set this boundary at 200 and in the third
run we set the boundary at 500. Thus in the three test we include a larger and
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larger number of the runs that we are uneasy about. Therefore we are inclined
to give more credence to the test with the lower cut off values.

Our calculations were performed on a 64 bit AMD Dual Opteron Linux ma-
chine. Each simulation run of 10,000 Monte Carlo runs took about an hour
of processing time on one processor. In comparing the results we looked first
at the percentage of runs in which each method proved to have the lowest
criterion value. These results are shown in Table 6.1.

Table 6.1

Percentage of Runs in Which Each Method
had the Lowest Criterion

J OF FEOF DC
J <100 | 442 18.1 37.7
J <200 | 43.0 184 38.6
J <500 | 41.7  19.0 39.2

The first line of Table 6.1 shows that for the J < 100 case the percentage of
Monte Carlo runs for which each method obtained the lowest criterion value
was OF 44 percent, EOF 18 percent and DC 38 percent. These results proved
to be relatively constant across the three rows of Table 6.1 which indicated
that the outlier problem does not seem to affect the relative performance of
the three methods.

The second way we compared the results was by examining the average cri-
terion value for each method with their standard errors.'* These results are
shown in Table 6.2.

The first row in Table 6.2 shows that the OF and FOF method do not do as
well as the DC' methods in this J < 100 case. This is the result to which we
currently assign the most credence because it describes a situation where the
estimated parameter is not "too far” from the true unknown value. The sim-
ulated probability density function for OF, EOF and DC, J < 100, is plotted
in Figure 6.1.

14 The standerd errors are printed between parentheses and defined as ﬁ where s
is the standard deviation in the sample and n the number of monte carlo runs. With
the help of the standard errors it is possible to compute the confidence intervals for
the various methods. For instance, the 95% procent confindence for the mean of the
DC solution is 10.979 £ 2 x 0.103, cf. Glasserman (2004, page 541).
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Table 6.2

Average Criterion Value for Each Method
J OF EOF DC

J <100 | 14.247 17.527 10.979

(0.158) (0.163) (0.103)
J <200 | 18.021 18.627 11.732
(0.267) (0.188) (0.133)

J <500 | 25.970 18.803 12.142

(0.564) (0.188) (0.155)

Looking down the columns in Table 6.2 we see, not unexpectedly, that the
average criterion values increase as more of the outliers are included. How-
ever, it is worth noting that the criterion values in the FOF' column do not
increase as rapidly as do those in the OF column. This is consistent with
our results in Amman and Kendrick (1999¢), that when the OF solutions are
bad they may be really bad, i.e. when you have an outlier estimate for the
parameter value and treat it as though you trust that it is correct one can get
a seriously bad solution. In these cases FOF' is better, because it is cautious,
and DC' is better yet, because it devotes a part of the control energy to ex-
periments to help learn the parameter value. Next we turn to the version of
the BW model with time-varying parameters.

6.3 Time-Varying Parameters Version

In this version of the BW model the true value of the parameter is time vary-
ing and follows a first order Markov process. The major change from the first
version of the model is that the variance of the additive noise term in the
parameter evolution equation, o, is not zero, as in the previous version, but is
0.04. Also, recall that for both versions of the model solved with the DualPC
software, the discount factor, d, is not 0.95 but rather 1.00.

Just as with the constant parameter version of the model, in comparing the
results we looked first at the percentage of the 10,000 Monte Carlo runs in

which each method proved to have the lowest criterion value. These results
are shown in Table 6.3.

The first line of Table 6.3 shows that for the J < 100 case the OF method and
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Figure 6.1.
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Table 6.3
Percentage of Runs in Which Each Method had the Lowest Criterion
J OF FEOF DC
J <100 | 30.9 28.0 41.1
J <200 |294 289 41.7
J <500 | 279 30.6 41.5

the FOF method each had the lowest criterion valve in roughly 30 percent of
the Monte Carlo runs and that the DC method had the lowest criterion value
in roughly 40 percent of the runs. So the DC' method proves to be the best of
the three when the comparison is done in this way.

Then a comparison of the second and third rows in Table 6.3 to each other
and to the first row shows that the percentage of the Monte Carlo runs in
which each method had the lowest criterion value was not affected much by
the number of the outliers that were included. Again the outliers do not seem
to affect the relative performance of OF, EOF and DC.

The second way we compared the results was by examining the average cri-
terion value. These results with their standard errors® are shown in Table

15 The standerd errors are between parentheses. See also footnote 14.
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6.4.

Table 6.4

Average Criterion Value for Each Method
J OF  FEOF DC

J <100 | 18.612 17.289 12.529

(0.197) (0.167) (0.126)
J <200 | 26.511 19.362 15.433
(0.357) (0.207) (0.212)

J <500 | 43.733 20.254 20.493

(0.788) (0.219) (0.423)

The first row in Table 6.4 shows that the OF method does not do as well as
the FOF method which in turn does not do as well as the DC methods in the
J < 100 case. This is the result to which we currently assign the most credence.

Looking down the columns in Table 6.4. shows, not unexpectedly, that the
average criterion values increase as more of the outliers are included. How-
ever, it is worth noting that the criterion values in the FOF' column do not
increase as rapidly as do those in either of the other columns.

Overall the most important results from these Monte Carlo experiments to
provide ranking among methods using the Beck and Wieland model is that
the Dual Control (DC') method is better that the Expected Optimal Feedback
(EOF) and the Optimal Feedback (OF) method in the constant parameter
case. Also, in the time-varying parameter case the DC method is better than
the EOF method which in turn is better than the OF method.

7 Learning with Forward Looking Variables

In the mid 1970’s the use of optimal control techniques for deriving a opti-
mal macroeconomic policy, e.g. Pindyck (1973) and Chow (1975), came under
scrutiny. The critique by Lucas (1976) argues that it is difficult to determine
optimal macroeconomic policies because the announcement of these policies
results in changes in behavior by economic agents and thus changes in the
parameters on which the optimal policy was based.

In this view one of the major drawbacks was that control methods could
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not deal with forward looking variables or rational expectations. Subsequently
a number of generic methods to solve models with forward looking variables
were developed. For instance, Fair and Taylor (1983) used an iterative method
for solving RE models and, in the tradition of Theil (1964), Fisher, Holly and
Hughes Hallett (1986) used a method based on stacking the model variables.
Blanchard and Kahn (1980) and Anderson and Moore (1985) both presented
methods based on the saddlepoint property.

A computational attractive and widely applicable method was introduced by
Sims (2001) and applied in a control framework by Amman and Kendrick
(2003). Sims solves forward looking model by using a generalized inverse ap-
proach based on the a Q)Z decomposition. In the following subsection we will
show how Sims’ approach can be used with forward looking models that in-
clude learning.

7.1 Eztending the framework

The state equation (2.1) can be augmented to accommodate for forward look-
ing variables like this

k
Tir1 = At<8t>xt + Bt(ﬁt)ut + C’t(Qt)zt + Z Pj,t(et)Etxt+j + (2 (71)

j=1

where additionally to Section 2 the matrix P;;(6;) € R™*™ is a parameter
matrix, Cy(6;) € R™**) is a parameter matrix for the exogenous variables,
2z € R® is the vector of exogenous variables, Eyz,; € R" is the expected
state for time ¢ + j at time ¢, k being the maximum lead in the expectations
formation.

In order to compute the admissible set of instruments we have to eliminate
the rational expectations from the model. In order to apply Sims’ method we
first put (7.1) in the form

Doimipr = Digme + Do guy + Tz + Dyvy (7.2)

where
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and the augmented state vector

Tt
Exyy

T = | BExyio (7.3)

Exiig

Taking the generalized eigenvalues of (7.2) allows us to decompose the system
matrices I'y; and I'y; in the following manner, viz. Coleman and Van Loan
(1988) or Moler and Stewart (1973),

At = QtFO,tZt
O = Qtrl,tZt

with Z,Z, = I and Q;Q; = I. The matrices A; and €, are upper triangular
matrices and the generalized eigenvalues are Vi w;;/\;;. If we use the trans-
formation w; = Zjm and w1 = Z{m41 we can write (7.2)

Awipr = Quwy + Qil'giue + Qul's 12 + Qilgvy (7.4)
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It is possible to reorder the matrices Z; and (); in such a fashion that the
diagonal elements of the matrices A; and §2; contain the generalized eigenvalues
in ascending order. In that case we can write (7.4) as follows

An,t A12,t W1 ,t4+1

0 A22,t W2,t+1

Q11 Q| [
11,¢ 32124 Lty Que Tyt + Qe [si2 + Que Lyoe  (7.5)

0 Q22,t_ Wa,¢ Q2. Q2 Q2.

where the unstable eigenvalues are in lower right corner, that is the matrices
Ao and gy ,. By forward propagation and taking expectations, it is possible
to derive wy; as a function of future instruments and exogenous variables

Y=oy =— Y My Q50 i Qoasi(Topijtiery + Tsorjzes) (7.6)
=0

The matrix Mt,j is defined as

- i-1
Mt,j = H Mt—i—i fOI' ] > O
i=0
and
M,;=1 for j=0
with

-1
Mt - Q227tA22,t

Given the fact that €95, contains the eigenvalues outside the unit circle, we
have applied the following condition in deriving (7.6)

lim M, ; =0

J—00

In contrast to Sims, M; is not time invariant since we explicity want to allow
for time dependent matrices in the model. Reinserting (7.6) into (7.5) gives us
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]\twt—i-l = Quwy + f2,tut + f3,tzt + I~14,1;% + % (7.7)

with

~ A11,t A12,t ~ Qn,t Qo ~ Q1
= = Iy, = Iy
0 I 0 0 0
. Qu o Joul . o o
F3,t = F3,t F4,t = Iy Y =
0 0 Vi

Knowing that m, = Z,w, and m11 = Zyw,1 we can write (7.7) as

i1 = At(at)ﬂ-t + Bt(ﬁt)ut + C’(Qt)it + V¢ (78)
with
At = th\t_lﬁtzt/ Bt = Zt[\t_lf‘lt ét = Zt/&?lf&t Zt]\;l (7-9)
and
-1 ALty —AT Aoy ~ <t - O
At_ = ' ' Zt = Vs = ZtAt_ F4,tvt (710)
0 1 Vi

Now that we have the augmented state equation (7.1) in the form of equation
(7.8) we can compute the admissible controls as a function of the expected
future states

Ut = u(l’t, Etxt+17 cey Et.ZCT) (711)

Once we have applied these controls, we can go back to the augmented system
and compute the expected futere state {Eyx;. 1, Fyxiio...} and estimate the
parameters éﬂt when new information on the state z;,; comes available. Hence,
like with the controls {uy, u;y1...} the same holds for the estimation of the
parameter that is a function of expected future states.
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ét|t = Q(It, Etxt—l-l; cey Et.TT)) (712)

More detail about the corresponding algorithm is presented in Amman and
Kendrick (1999a).

7.2 An example

In an earlier paper Amman and Kendrick (2003) we introduced a model in
which one can address the question of how best to do macroeconomic policy
formulation in an environment in which agents may change their behavior over
time and as well as in response to economic policy pronouncements. To mimic
the Lucas critique in our example we will assume that the random vector 6,
is influenced by the real money supply in the following way

AMEY |1 0
9t+1:9t+( t)

M ] o 21

which means that an increase in the real money supply has an increasing ef-
fect on inflation and a decreasing effect on output. The policy maker will be
unaware of this relationship and will try to estimate #; based on the random
walk assumption.

Consider first the unrealistic case in which the policy makers knows exactly
the component of the drift in the parameters which is due to policy changes.
We call this scenario ”Known Parameters”. This is accomplished in the model
by correcting the estimation of the parameters each time period when the
updating occurs as in equations (2.12)-(2.13), that is

R\ (1
AMt) 0, (7.14)

A N Oz LT - -
Ouger1 = Oue + S0 (B8 (@ — Bgge) + ( ME | | 1

so the policy maker is aware of the parameter shifts described in equation
(7.13). Also, the parameters in this scenario are stochastic and time varying
due to n;. Note that equation (7.14) is slightly simpler then equation (2.12)
due to the fact there is no measurement error and therefore V¢ H, = I and
E§< = 0. While, in reality, it would be impossible for policy makers to know
exactly the parameter shifts like those modeled in equation (7.13) the ” Known
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Parameter” case provides us with an infeasible but useful standard with which
to compare other policy selection methods.

In the face of the fact that parameter drift may be occurring in the economy;,
policy may be determined in a deterministic manner treating all parameters
as known and constant - i.e. a ”Deterministic” scenario. In this case the true
values of the parameters drift but the policy maker does not know what these
values are and does not modify his or her policy in any way because of the
stochastic elements of the model. One can then compare these two cases to
asks whether or not knowing the parameter drift makes a difference. In order
to do this we performed 1000 Monte Carlo runs with the model above and
obtained the results shown in Table 7.1.

Table 7.1

Comparison of the ” Known Parameters” and ”Deterministic” Scenarios
Scenario E{Jp} Jmno gmar g,
Known Parameters | 1.638 1.280 1.808 0.089
Deterministic 1.675 1.386 3.591 0.193

In both of these cases the true parameters are drifting over time and also
changing in response to shifts in policy values; however, in the "Known Pa-
rameters” case the policy maker knows the effect of policy changes on the
drift and in the ”Deterministic” case he or she uses parameter values which
are not correct, but treats those values as though they are (i) correct and (ii)
that there is no uncertainty attached to the parameter estimates. Not surpris-
ingly, the average criterion values is better at 1.638 for the known parameter
case than at 1.675 for the deterministic case. Also from the max and min
comparisons one can see that there is considerably more variability in the de-
terministic case than in the known parameter case and this is confirmed in the
last column which shows the standard deviation of the criterion values across
the 1000 Monte Carlo runs.

As an example of the nature of these results compare Figures 7.1 and 7.2 which
show the values of parameter #(1) in the two cases. The actual value of the
parameter drifts down in both cases but changes by different amounts because
the use of the policy variables is not the same in the two cases. In contrast
the estimated value tracks the actual very closely in the ” Known Parameter”
case but does not track and indeed does not change in the deterministic case.

So for the example at hand the scenario of ”Known Parameters” is better than
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Figure 7.1. Known Parameters (6(1))
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the scenario of ignoring the fact of the unknown parameters in the ” Determin-
istic” case. Thus the Lucas critique is valid in this case. Ignoring the fact that
the parameters are drifting and changing in response to policy pronounce-
ments results in higher loss functions for the performance of the economy.

Would it be possible to do better with some other policy formulation method?
One alternative approach would be to use game theory between the policy
makers and the agents. Another, and the one which is examined here, is for
the policy makers to (1) treat seriously the fact that they are using parameter
estimates rather than the true parameter values when making policy and (2)
update parameter estimates as the true values of the parameters drift over
time and shift in response to policy announcements. We call this scenario
the ”"Learning” approach. One can then asks whether the learning approach
is indeed better than the Deterministic case. This comparison is provided in
Table 7.2.
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Table 7.2
Comparison of the ”Deterministic” and ” Learning” Scenarios

Scenario E{Jr} Jpm Jmes g,

Deterministic | 1.675 1.386 3.591 0.193
Learning 1.646 1.292 1.817 0.090

The average value of the criterion function over the 1000 Monte Carlo runs is
better at 1.646 for the "Learning” case than at 1.675 for the ”Deterministic”
case. Also, the variability is lower for the learning case than the deterministic
case as is shown in the remaining three columns of Table 7.2. Thus, for the
case at hand, it is better to take account of the uncertainty in the parameters
when determining policy in an environment where parameters are changing.
Figures 7.3 and 7.4 show the true and estimated parameter estimates for the
deterministic and learning scenarios - this time for parameter 6(2).

Figure 7.3. Deterministic (6(2))
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Figure 7.4. Learning (0(2))
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As before, in the deterministic case there is no change in the parameter es-
timate in Figure 7.3. In contrast Figure 7.4 shows that there is a very rapid
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learning of the 0(2) parameter in the learning scenario and that this parameter
estimate then tracks closely the drift in the actual parameter over time.

Finally, one can ask whether the Lucas critique still carries heavy weight
when policy makers treat seriously the uncertainty of parameter estimates in
determining policy levels. Table 7.3 provides an indication of how this question
may be answered by providing a comparison of the ”Known Parameters” and
the ”"Learning” scenarios.

Table 7.3

Comparison of the ” Known Parameters” and ”Learning” Scenarios
Scenario E{Jr} Jpmo Jmer g,
1: Learning 1.646 1.292 1.817 0.090

2: Known Parameters | 1.638 1.280 1.808 0.089

There is little difference between these two cases in either the means in the first
column or in the indicators of variance in the remaining three columns. Thus
for this commonly used small macroeconomic model, the effects of the Lucas
critique are substantially mitigated if one uses policy determination methods
which treat the uncertainty in parameter estimates seriously and track the
drifting parameters over time by using Kalman filter estimators. Moreover, it
is not possible for policy makers to have as much knowledge about parameter
drift as the "Known Parameter” method implies; therefore, the difference be-
tween the ”Learning” method and a feasible method similar to the " Known
Parameter” method would be even smaller.

A comparison of Figures 7.5 and 7.6 show that the " Known Parameters” sce-
nario provides a better tracking of #(1) than does the ”Learning” scenario.
However, a comparison of Figures 7.7 and 7.8 shows that the ”Learning”
method does almost as well at tracking 6(2) as does the " Known Parameters”
method.
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Figure 7.7. Known Parameters (6(2))
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In summary, forward variables and the effects of policy choices on the param-
eters modeling agent behavior can be included in stochastic control settings
with learning. Furthermore, these methods can be used to mitigate the effects
of the Lucas critique.
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8 Summary

Thus looking back one can see that much has been learned about learning in
dynamic economic models. It has been confirmed that in many cases the ex-
pected ranking between Optimal Feedback, Expected Optimal Feedback and
Dual Control methods holds, but we have also learned that this is not always
the case. We have been surprised to find that non-convexities can occur in the
cost-to-go function but have been able to track down in the mathematics the
reasons that this occurs and have been able to confirm numerically in the com-
puter codes that these effects are significant. We have developed algorithms
and computer codes for global search methods that are specifically tailored
to deal with the way that non-convexities appear in economic models in early
time periods but disappear in the later time periods of the same model.

We have also learned how to incorporate forward variables and the effects of
policy choices on the parameters that model agent behavior into stochastic
control models with learning and time-varying parameters. And, in addition,
we have found that models in this class can be used to show how one can
mitigate the effects of the Lucas critique.

However, we have not yet been able to learn the characteristics of various
economic models which change the ranking among the methods. We do not
yet know whether or not non-convexities will occur in most economic models
or in only a few models. We do not yet know whether measurement errors will
be large enough in many economic settings to substantially alter the results
when they are included or excluded.

There are now a number of research groups actively working in this field and
this has opened the possibility for fruitful checking of both mathematical and
numerical results across algorithms and codes as well as the development and
use of a variety of models from different fields of economics in order to learn
more about learning.
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