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Abstract  
In the two-way flow connections model of the seminal paper by Bala and Goyal 
(2000a), the marginal benefit of obtaining the information of one more player is 
constant. However, it is plausible that the marginal benefit of such information is 
decreasing. This paper explores the consequences for the stability of networks of 
such decreasing marginal benefits. We start by characterizing the strict Nash 
networks for both the case of constant and the case of decreasing marginal benefits. 
Using this characterization, we next explore how the set of strict Nash networks 
differs for the two cases. The results and intuition tells us that long diameter 
networks have certain features which make them relatively more likely to be stable 
under decreasing marginal benefits of information as compared to short diameter 
networks. 
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1 Introduction

In a seminal article Bala and Goyal (2000a), henceforth BG, introduce the two
way �ow model. In this model, each player has a unique private piece of infor-
mation which he does not mind sharing with others. Each player can sponsor
costly links to any of the other players. All links together form a network. If
players are connected on this network (via any series of links, regardless of who
is sponsoring1 what link) they can all access each other�s information, from
which they all bene�t. In particular, it is assumed that the value of the private
information of each player is the same. Each player�s bene�ts from information
are assumed to be linear in information, so that any player�s bene�ts are simply
equal to the sum of the information of all the players to which he or she is con-
nected. In this case, the center-sponsored star is the only strict Nash network.
BG also treat an extension where information decays as the distance between
players in the network becomes larger. In this case, the scope of strict Nash
networks may be wider; on top of the periphery-sponsored star, it may include
stars where the center sponsors one or more links, linked stars, and networks
with a wider diameter.

Our paper extends the two-way �ow BG model with information decay to
the case of decreasing marginal bene�ts of information.2 We argue that this
is a more plausible assumption. Consider for example the potential buyer of
a second-hand car. It is clear that a buyer who already received an external
evaluation will be willing to pay less for extra information on the quality of
a car than the buyer who has not yet received such an evaluation. Or, more
formally, say that an agent can acquire i.i.d. signals about the true state of the
world. The �rst signal typically conveys more information than the hundredth.
Hence the marginal bene�t of the last signal is lower than that of the �rst.
Moreover, if we abandon the assumption that each player possesses a unique
piece of information, and instead allow for the information of players to partly
overlap with the information held by the other players, the marginal bene�ts of
contacting more other agents decreases further in the number of contacts of the
agent.

We formalise the following intuitions about the e¤ect of decreasing marginal
bene�ts of information. With constant marginal bene�ts, there often is a wide
range of strict Nash networks, ranging from ones with a small diameter to
ones with a large diameter. Which of these networks continue to be strict
Nash under decreasing marginal bene�ts? A �rst intuition is that the networks
survive where the sponsoring of a link means that the sponsor of that link gets
access to the information of a large number of players; in this case, the fact that
the marginal bene�t of information may be small is compensated by the large

1A player is said to sponsor the link if he pays for it.
2Other ways in which the two-way �ow model of BG has been extended include topics such

as the e¤ects of player heterogeneity, e.g. Galeotti et al. (2006) and Kamphorst and van der
Laan (2007), and link failure, e.g. Bala and Goyal (2000b); and Haller et al. (2005).
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change in information from any link. Thus, this argument favour the periphery-
sponsored star, as each sponsored link then gives access to all other players. A
second countervailing intuition is that the networks survive where players have
relatively little information, whereby under decreasing marginal bene�ts their
marginal bene�t of obtaining the information of even a single player becomes
larger. Under information decay, this means that dispersed networks, where
players are at a large distance from one another, are relatively more likely to
survive. Thus, while under constant marginal bene�ts of information, a range
of networks is stable, under decreasing marginal bene�ts, there may be a gap
in diameter between the stable networks. On the one hand, the periphery-
sponsored star is stable. The next networks which are then stable may be
networks with a relatively large diameter.

Hojman and Szeidl (2008) were the �rst to explore the consequences of de-
creasing marginal bene�ts of information. They show, among other things, that
if (a) information can travel only a limited distance, (b) information strictly
decreases in the distance traveled (decay) and (c) if the population is large
enough, then the only non-empty strict Nash network3 architectures (abbrevi-
ated by SNN, SNNs in plural) is that of a periphery-sponsored star (PSS)4 .
Even for non-strict decay they prove that each player will sponsor at most one
link.

Although these and other results in Hojman and Szeidl (2008) are informa-
tive, elegant and clear, we �nd it worthwhile to continue this line of exploration.
One of the reasons for this is that "large enough" for the results above is typi-
cally very large indeed. If information can travel only 3 steps in the network, and
doubling your amount of information at the cost of one link becomes unattrac-
tive when you have �4 information�5 , then you need more than 16 million agents.
This becomes rapidly larger in both of these two variables. Therefore, in this
paper we look at the results when there is no lower limit to the population size.
Our results, which we will discuss below, are quite di¤erent. This is partly due
to the general population size, but in part also due to our use of the more stan-
dard but less general formulation of decay, namely the decay factor. This allows
information to travel as far as needed (decaying along its way). Both these as-
sumptions are essential for the results derived by Hojman and Szeidl (2008) and
changing either one of them would probably already have changed the results
signi�cantly. In this way the combination of this paper and Hojman and Szeidl
(2008) nicely illustrates the importance of any distance limits to information
�ows and population sizes.

3A Nash network is a network which constitutes a Nash equilibrium in the underlying
network formation game.

4A PSS is a minimally connected network where one player, the player in the center of the
star, is the recipient of each link. Network C in Fig. 1 is an example of a PSS (in this paper
links, represented by arrows, point away from their sponsors). Networks A and B are also star
networks but not (completely) periphery-sponsored.

5Each agent possesses one unit of information, see Hojman and Szeidl (2008) for details
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Vergara-Ca¤arelli (2004) studies concave bene�ts6 in the number of connec-
tions in the context of BGs one-way �ow model and in the absence of decay.
Buechel (2007) studies the pairwise-stable networks in a model of two-sided link
formation. Finally, Goyal and Joshi (2006) look at a model in which the bene�ts
may be concave not in the amount of information a player gathers, but in the
number of links that player has.

The structure and results of this paper are as follows. We explore the impact
of decreasing marginal bene�ts of information (DMBI) by comparing the set of
SNNs under constant marginal bene�ts of information (CMBI) with that under
DMBI. To do so we introduce in Section 2 the model, de�nitions and notation.
For ease of exposition, we will follow the notation of Kamphorst and van der
Laan (2007). In Section 3 we expand the characterization (in terms of necessary
architectural conditions) of strict Nash networks in BG7 . We do this in a way
which for most results (all except Proposition 2) encompasses both CMBI and
DMBI functions. As a result we are able to identify a class of architectures to
which all strict Nash equilibria belong. Section 4 proceeds by looking explicitly
at how the set of strict Nash networks changes if we move from a CMBI to
a DMBI bene�t function. We show that new networks may enter the set of
SNNs. Such networks typically have relatively high diameters. Moreover we
will show by examples and intuition, that the low diameter networks (especially
stars), with the exception of the PSS, are quick to drop out of the set of SNNs.
This, and the accompanying intuition suggests that, again excepting the PSS
networks, low diameter networks are relatively unstable under DMBI. This is
�nding nicely supplements Hojman and Szeidl (2008), from which one could get
the impression that DMBI is biased towards low diameter networks. Moreover
examples show that in many, if not most, SNNs there are agents who maintain
several links. Section 5 provides discussions on the relationship between our
results and those in Hojman and Szeidl (2008), the way decay is modelled and
the focus on SNNs. The section ends with a short summary.

2 The Model

This model is based on the two-way �ow model in BG. The notation, however,
follows more closely Kamphorst and van der Laan (2007). Consider a population
of n agents, denoted by the set N : Each player faces the choice to which of the
other players he will sponsor a link. A link by player i (the sponsor) to player
j (the recipient) is denoted by (i; j) ; or ij for short. The set of all links that a
player i can possibly sponsor is given by

Li�fkj 2 N �N : k = i; j 6= ig :
6 In fact, the paper presents the model as having convex costs. Nonetheless, the model

features decreasing marginal bene�ts of being connected to other agents.
7We have not allowed the decay factor to be so low that some strict Nash networks are

non-minimal. Such networks have di¤erent features, and fall outside the scope of this paper.
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L is de�ned as the set of all possible links, meaning that L �
[
i2N

Li =

fij 2 N �N : i 6= jg :
We typically denote the strategy of player i �the set of links that he sponsors

�by gi. His strategy space Gi, where obviously gi 2 Gi, is therefore the collection
of all subsets of Li, speci�cally:

Gi�fgi � N �N : gi � Lig :

All links together form a network8 , typically denoted by g; so

g�
[
i2N

gi:

The strategy space G is therefore the set of all possible networks, which is
the collection of all subsets of the set of all possible links. Thus

G �fg � N �N : g � Lg ;

Now we come to the (dis)incentives for players to sponsor links. The dis-
incentives arise because sponsoring links is costly. The costs of a link ij are
denoted by cij ; and are incurred completely by the sponsor; the recipient in-
curs no costs. Because we wish to focus on the bene�ts of link formation we
model the cost side as simple as possible: cij = c for all i; j 2 N: Let NS

i (g)
� N be the set of players to whom player i sponsors a link in g; so NS

i (g)
� fj 2 N : ij 2 gg : Hence the total costs for player i in network g are equal
to
��NS

i (g)
�� c:

Players derive bene�ts from being connected to each other by a path of links.
On this path, it does not matter who the sponsor of the links are. The bene�ts
of a link ��ow in two directions�. To make this precise, we let ij 2 g denote
that ij 2 g or ji 2 g or both9 . We say that in network g players i0 and ik are
connected if there exists some subset of players Ni0ik � N ; Ni0ik = fi0; :::; ikg
such that for all ` 2 f1; :::; kg we have that i`�1i` 2 g. When two players are
connected, they exchange their private information. Let Ni (g) denote the set
of players to whom player i is connected in network g:

In this paper we will assume that there is decay. In other words, as this
information travels through the network it becomes less accurate or less com-
plete. We assume that what is lost at each step is independent of the path the
information travels. Hence only the shortest path between any two players is
relevant. The length (i.e. the number of links) of this shortest path between
players i and j in network g is denoted by dij :10 We follow the convention in as-
suming that every time the information is passed on a constant fraction (1� �) ;

8Observe that the strategy pro�le coincides with the network. In this paper we will refer
to any strategy pro�le as a network. Similarly, we will refer to any (strict) Nash equilibrium
as a (strict) Nash network.

9So ij 2 g says that the intersection of fij; jig and g is not empty.
10Note that by two-way �ow we have that dij = dji for all i; j 2 N:
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� 2 (0; 1] ; of the (remaining) information is lost. Observe that decay gives play-
ers incentives to sponsor links to players to whom they are already connected
for the purpose of reducing the distance between them. However, throughout
this paper we assume that � is large enough to ensure minimality of any Nash
network11 , meaning that any two players are not connected by more than one
path of links. So the amount of decay is limited.

To focus on the e¤ects of DMBI, we assume that each player has one unit
of private information. The value of the information does not depend on the
original owner of this information, so any two units of information are a pri-
ori equally valuable. Players derive bene�ts from the information which they
gathered. To model the bene�ts we need a few more de�nitions.

Let Nk
i (g) � N be the set of players at distance k from player i in network g:

So Nk
i (g) � fj 2 N : dij = kg : Due to decay, the total amount of information

gathered by player i in network g is then

Ii (g) =

n�1X
k=0

�
�k
��Nk

i (g)
��� :

Note that by de�nition, N0
i (g) = 1.

The bene�ts derived by player i from network g; Vi (g) ; are an increasing
function of Ii (g) ; speci�cally

Vi (g) = f (Ii (g))

where f 0 > 0 and f 00 � 0. In Section 3 we will characterize the set of SNN
for a given value function. After that, in Section 4, we will analyze how the
set of SNN changes if we move from an CMBI function, where f 00 = 0, to a
comparable DMBI function, where f 00 < 0.

The utility which i obtains in g equals his bene�ts minus his costs. Formally,

Ui (g) = Vi (g)�
��NS

i (g)
�� c:

De�ne g�i as all the links in g excluding the links sponsored by player i. A
network g is an SNN if for each player i 2 N and all g0i 2 Gi; g0i 6= gi; we have

Ui (g) > Ui (g�i [ g0i) :

In an SNN, by de�nition, every player plays his unique best reply strategy.
Denote by BRfi (g) the set of best reply strategies of player i versus network g
under function f: Formally, for any bene�t function f

BRfi (g
�) =

�
gi 2 Gi : Ui

�
g��i [ gi

�
� Ui

�
g��i [ g0i

�
for all g0i 2 8Gi

	
:

This ends Section 2.
11For instance BG and Lemma 3 show that there exists some �� < 1 such that for all � > ��

this is indeed the case.
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3 Characterization

In this section we add to Propositions 5.3 and 5.4 of BG. There BG note that
non-star networks may also be SNNs for a certain range of parameter values
and they introduce the linked star network12 as an example. In this section we
derive necessary architectural properties of the non-star SNN networks13 . Note
that the characterization of the SNN in this section will depend nowhere on
whether there are CMBI or DMBI. The only aspect of f which we will exploit is
that f is increasing. Our additional characterization of the (possibly non-star)
SNNs consists of three parts. First, we show that each SNN is connected and
that there exists some �� such that for all � > �� each SNN is minimal (3.1).
Second, we show that, in any SNN, links point away from each other, unless
they point to one and the same player (3.2). Third, we characterize the non-
empty architectures which can be an SNN(3.3). This will greatly limit the set
of network architectures which can be an SNN. After that, we conclude with
a closer look at the reason why the earlier necessary characterization is not
necessarily e¢ cient (3.4).

3.1 Every non-empty SNN is connected and, for � high
enough, minimal

We �rst introduce some additional notation and concepts. Each network g
partitions the population into components (of g), where two players belong to
the same component if and only if they are connected. Component k is denoted
as Ck (g). A network is connected if it consists of only one component. For a
network g and for M , M � N , de�ne network gM as the set of links of network
g of which both the sponsor and the recipient of the link belong toM: Formally:

gM = fij 2 g : i; j 2Mg :

We now de�ne the concept of best informed player.

De�nition 1 Let M � N be a connected subset of players in network g: Then
player i; i 2 M; is a best informed player of M if Ii (gM ) � Ij (gM ) for all
j 2M:

If in network g some player i is not part of component Ck (g), then his net
bene�t of a link to some j; j 2 Ck (g) ; is given by �f (Ij (g))� c: Because f (�)
is strictly increasing, the best link which player i can have into the component
is to the component�s best informed player14 .

12We refer to BG for details on the linked star.
13The resulting class of networks is a basic generalization of the linked star network, as can

be veri�ed by the reader by comparing Proposition 1 with BG (page 34-35).
14Note that without decay (so � = 1), every player in any connected set is a most valuable

player in that set. This concept can also be useful when considering heterogeneous agents.
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The following two results show that any SNN satisfying the parameter con-
ditions is connected15 .

Lemma 1 Let network g be a non-empty SNN. Then g has no singleton com-
ponent.

Proof. We prove this by contradiction. Suppose that ii0 2 g; and player
j is unconnected to everyone (he is a singleton component). Since Ij (g) �
Ii (gn fii0g), and since we have DMBI or CMBI, he marginal bene�t for player
j to sponsor a link to i0 is at least as large as the marginal bene�t of ii0 to i:
Because the marginal costs of a link are the same for each player, and ii0 is
part of the unique best reply of player i; we have that j prefers sponsoring ji0

to sponsoring no links. Hence g is not an SNN, from which the contradiction
arises.

Lemma 2 Let network g be a non-empty SNN. Then g is connected.

Proof. Suppose not. Then by Lemma 1 there is a strict Nash network g
which contains multiple non-singleton components. Without loss of generality
we have ii0; jj0 2 g such that i and i0 belong to one component, say C1 (g) ;
and j and j0 to another, say C2 (g) : Because g is a strict Nash network, player
i prefers to sponsor a link to i0 and not to any player in C2 (g) : So player i0

has access to more information in gn fii0g than j0 in g: Hence we obtain that
Ii0 (g) > Ii0 (gn fii0g) > Ij0 (g) > Ij0 (gn fjj0g) : Because g is Nash, we also have
that Ii0 (g) < Ij0 (gn fjj0g) ; which gives us a contradiction. Hence any Nash
network has but one component and is therefore connected.

So all non-empty SNNs are connected. Naturally, if costs are low enough the
empty network is not an SNN, implying that all SNNs are connected. Since the
marginal bene�t of a link to an otherwise isolated player is at least f (1 + �)�
f (1), Lemma 2 implies the following corollary.

Corollary 1 Let c < f (1 + �)� f (1) ; then any network g which is an SNN is
connected.

BG pointed out that there always exists a strict Nash network. Under these
more general bene�t functions this remains true. Note that for c > f (1 + �)�
f (1) the empty network is an SNN, while the PSS is always an SNN for c �
f (1 + �)� f (1) :

A network is minimal if the deletion of any link in that network will re-
sult in an increase of the number of components. A cycle is a set of links�
j0j1; :::; jk�1jk

	
such that j0 = jk: This implies that a component (or net-

work) is minimal if and only if it contains no cycles. Finally, a redundant link
is a link which is part of a cycle.
15To let this result be applicable in the case of decreasing marginal returns, we cannot refer

to BG directly, although the intuition is of course similar.
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As we stated before, we will look at the case where � is high enough to ensure
that all SNNs are minimal. The following lemma shows that � can indeed be
high enough.

Lemma 3 Consider any bene�t function f and cost level c Then a level of decay
�� exists such that for all � > �� no SNN contains any cycles.

Proof. First note that if � = 1, then players have no incentive to sponsor costly
links to players to which they are already connected, meaning that there can be
no cycles in any SNN. By continuity of payo¤s in �, this is also true for some
�� < 1 and all � 2

�
��; 1
�
:

If such a �� < 1 exists for any one bene�t function, given c; then it also exists
for any two bene�t functions given that c.16

Corollary 2 Consider any two bene�t functions, f and f 0; and cost level c.
Then a level of decay �� exists such that for all � > �� no SNN contains any
cycles for any of the two bene�t functions..

3.2 In any SNN, links point away from each other unless
they point to the same player

Let ii0 2 g. Then we denote the set of players observed by player i exclusively
via link ii0 by Aii0 (g) : So

Aii0 (g) = fj 2 N : j 2 Ni (g) and j =2 Ni (gn fii0g)g :

Additionally, we de�ne AIii0 (g) as the set of best informed players in Aii0 (g).
So

AIii0 (g) =
�
j 2 Aii0 (g) : j is a best informed player in gAii0 (g)

	
:

In Section 2 we assumed that � is high enough to ensure that each SNN is
minimal. This, together with the de�nition of AIii0 (g) ; gives us the following
Lemma.

Lemma 4 If g is a Nash network then j 2 AIij (g) for all ij 2 g. Furthermore,
if g is a strict Nash network, then fjg = AIij (g) for all ij 2 g.

Having derived this result, we are now ready to show that if both i and j
observe each other via a link that they sponsor themselves, the recipient of the
link sponsored by i is the same player as the recipient of the link by j:

Lemma 5 Let g be a strict Nash network. If j 2 Aii0 (g) and i 2 Ajj0 (g) then
i0 = j0:

16De�ne the new �� as the maximal of the �� of the two individual bene�t functions.
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Proof. We prove this by contradiction. Suppose not, so i0 6= j0: Note that by
minimality there is one path connecting i and j; and this path goes via players
i0 and j0. Now observe that, with decay, the players who lose most if a link is
deleted are the ones closest by. So

Ii0 (g)� Ii0 (gn fii0g) > Ij0 (g)� Ij0 (gn fii0g) ; and (1)

Ii0 (g)� Ii0 (gn fjj0g) < Ij0 (g)� Ij0 (gn fjj0g) (2)

By Lemma 4, i0 is more informed than j0 in gAii0 (g)
; implying that

Ii0 (gn fii0g) > Ij0 (gn fii0g)

Applying Eq. 1 gives:
Ii0 (g) > Ij0 (g) ;

after which Eq. 2 tells us that

Ii0 (gn fjj0g) > Ij0 (gn fjj0g) (3)

However Eq. 3 implies that j0 =2 AIjj0 (g) ; which contradicts Lemma 4. Hence a
contradiction arises.

Verbally the proof of this lemma is that player i0 receives more information
via the link ii0 than player j0 does, as i0 is at least one link closer to i and
the players behind i than j0 is. Similarly, player j0 receives more information
than i0 via the link jj0: Now, if g is a SNN, then i0 is more informed than j0 in
gAii0 (g)

; and therefore i0 is also more informed than j0 in gAjj0 (g)
: However that

contradicts that g is Nash, since jj0 is sponsored in g:

3.3 Characterization

For the following proposition, recall that � is large enough to ensure that strict
Nash networks are minimal. This gives us the following characterization of strict
Nash networks:

Proposition 1 Let g be a non-empty strict Nash network and Vi (g) = f (Ii (g))
for all i 2 N : Moreover let � be high enough to ensure that all SNN under
function f are minimal. Then:

1. AIij (g) = fjg for all ij 2 g;

2. there exists a player iC ; said to be the �central player�, such that between
iC and any player j 2 N n

�
iC
	
there is a unique path

�
j0j1; :::; jk�1jk

	
where j0 = iC , and jk = j: All links on this path, with the possible ex-
ception of j0j1; are center-sponsored; thus: for 1 < l � k we have that
jl�1jl 2 g; and jljl�1 =2 g.
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Proof. Part 1 is a repetition of Lemma 4. Part 2 claims two things. First that
the network is connected. This follows immediately from Lemma 2. Second it
tells us that there exists a central player who is connected with all other player
through paths of links which contain links directed away from him and links
which he receives. This we will now prove by construction. By minimality of g;
there exists a player i who receives no links. By connectedness (Lemma 1) he
sponsors at least one link, so NS

i (g) is non-empty. Note that if N
S
i (g) contains

multiple players, Lemma 5 implies directly that only one of them can receive
multiple links (so a link by any player other than i). Let i0 2 NS

i (g) be the player
who receives the maximal number of links in NS

i (g). In the rest of this proof
we will show that i0 �ts the de�nition of a central player. We can distinguish
three cases. First, there is some player j; j 6= i; sponsoring jj0 2 g such that
he observes i via i0: In that case, by Lemma 5 j0 = i0: And by the same lemma
any other link, say ll0; either has i0 as its recipient, or i0 =2 All0 (g) ; meaning
that the link is directed away from i0: Given connectedness, this ensures that i0

�ts the requirements of a central player. Second, any sponsor j; j 6= i; of a link
jj0 2 g such that i0 2 Ajj0 (g) observes i0 via i: Because i receives no links this
connection runs through a link ii00 2 g; and by Lemma 5 i00 = j0: In that case
i00 receives more links than i0; which is a contradiction by construction (i0 being
the player who receives the maximal number of links in NS

i (g)): Third, there
is no player j; j 6= i, sponsoring a link jj0 2 g such that i0 2 Ajj0 (g) : In that
case i0 is connected with every other player through links directed away from
him, with link ii0 as the only exception: Hence i0 again satis�es the condition
for being a central player. Hence there exists a central player as described by
Part 2. This concludes the proof.

Note that Part 2 of Proposition 1 does not say that there is a unique central
player. It only says that there is at least one player satisfying the conditions.
The characterization applies, no matter which �central player� is considered.
However we can say more based on this characterization. Part 2 of Proposition
1 implies that if a player receives two or more links, then he is the unique central
player. To see this, consider some SNN, say g; and let ij; i0j 2 g: Now suppose
that some j0 is a central player. Because ij and i0j point towards each other,
either one or both of these links point towards j0: However Part 2 of 1 directly
says that then j0 must be the recipient of that link. Hence j0 must be j and
there are no other central players.

Corollary 3 Let g be an SNN. Then any player who receives more than one
link is the unique central player.

Now suppose that in some SNN g; there is no player who receives two or
more links. Who are then the central players? By minimality n � 1 links are
received, and by construction no player receives multiple links. Hence there is a
unique player who receives no links, say player i. By connectedness, the set of
recipients of links by i; NS

i (g) ; is non-empty. Furthermore, no link is directed
towards player i: If not, then the link pointed towards i should be received by

10



a player in NS
i (g) as proved by Lemma 5. Hence that recipient would receive

two links, which is ruled out by construction. However if all links point away
from i; then i is a central player. And since the �rst link may point towards
a central player, all of the players in NS

i (g) are central players too. Hence the
following Corollary follows from Part 2 of Proposition 1.

Corollary 4 Let g be an SNN where no player receives more than one link.
Then the unique player to whom no links are sponsored is a central player, as
are all players to which this unique player sponsors links.

Let us discuss a few examples to clarify. Figure 1 on Page 12 show examples
of networks satisfying Proposition 1. For instance, in network A in Figure 1.all
players are central players. However in each of the other six networks there
is but one central player. For Networks B and C it is the center of the star
(the player in the middle). Also for Network F it is the player in the middle.
For Networks D, E and G it is player i. In each of these networks, except
for Network A, the central player received at least two links, and was unique
(Corollary 3). However, note that if we would reverse the link ki in Network G
(so replace the link ki by the link ik); denoting the resulting network GR then
the resulting network can still be an SNN and it would have two central players,
namely player i and player k0. In Networks A and GR no players receive more
than two links, so the player who receives no links (the center in Network A,
k0 in Network GR) is a central player, as well as all the recipients of his links
(Corollary 4).

The following lemma says that all best informed players are central players,
and therefore at least one central player is a best informed player. It does not
imply that all central players are best informed players.

Lemma 6 In any non-empty SNN, the best informed player is one of the central
players, as de�ned in Proposition 1.

Proof. We prove this by contradiction. Suppose not. Then there exists a g
which is an SNN such that there is a link ii0 2 g through which i observes j;
where j 6= i0 and j is the most valuable player. By the same arguments as in the
proof of Lemma 5, this implies that Ij (gn fii0g) > Ii0 (gn fii0g) ; which implies
that i would bene�t from replacing ii0 by ij in g. Hence we have a contradiction.

Corollaries 3 and 4 e¤ectively classify all non-empty SNNs into two categories
on the basis of the number of central players: 1 or multiple. In the �rst type
of equilibrium, at least two links are sponsored to a particular player. This
player is then the unique central player, and is also the best informed player.
In the second type of SNN, there is no player to whom more than one link is
sponsored. In this case, all links are (directly or indirectly) center-sponsored.
The multiple central players in this case are the unique player to whom no links

11
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Figure 1: Example networks �tting Proposition 1.
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are sponsored, and the players to whom this unique player sponsors links. At
least one of these multiple central players is the best informed player.

Finally we know that in equilibrium, every recipient, say player j; of a link,
say ij; has either at least two other links, or no other links. The reason is the
following. If j has one other link, then player i observes at least two players
through ij: If there are two players then he will be indi¤erent between them,
hence g is not be an SNN. If there are more than two players, then j is certainly
not the best informed player of the group, because he is at the complete edge.
His neighbor in that group will be better informed. In this case i would strictly
prefer to replace ij by some other link. This gives us the following Corollary.

Corollary 5 Every recipient of a link in an SNN either has no other links, or
at least two other links.

As a �nal remark of this section, we point out that the simulation results
reported by BG are all consistent with the characterization above.

3.4 Why the necessary characterization above may not be
su¢ cient.

We conclude with a �nal proposition which tells us two things. First, not every
network satisfying Proposition 1 is an SNN. Second, if a network satisfying
Proposition 1 is not an SNN, then this is because some player has a strict
preference to sponsor a redundant link (note that this is not necessarily excluded,
even if � is high enough to exclude non-minimal networks from being an SNN).

Proposition 2 Let c < f (1 + �) � f (1) and let there be CMBI: Then any
network g satisfying Proposition 1 is either an SNN or contains a player who
wishes to sponsor a redundant link.

Proof. Suppose that g satis�es Proposition 1 and is not an SNN. Then there
exists at least one player, say player i; who prefers to sponsor a di¤erent, possibly
empty, set of links. By minimality of g and c < f (1 + �) � f (1) we have that
i does not want to sponsor less links than he currently does. By AIij (g) = fjg
for all ij 2 g (see Proposition 1) he also doesn�t want to replace his link to
player j by a link to any player in Aij (g) : Replacing this link by a link to
any player outside Aij (g) is not preferred, again by minimality of g and c <
f (1 + �) � f (1). So the only option is that player i prefers to sponsor more
links than before, including therefore a redundant link.

This Proposition does not apply to DMBI functions however. To see this,
note that an end sponsor, say player i; in a network g satisfying Proposi-
tion 1 will have more information than 1. This is because g is connected
and � > 0. Hence Ii (g) > 1. And under DMBI we have that fD (Ii (g)) �
fD (Ii (gn fijg)) < fD (1 + �)�fD (1) ; where j is the recipient of an end link by
i: If c > fD (Ii (g))� fD (Ii (gn fijg)) ; then g is not an SNN. Note that as this
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problem depends both on the information obtained through the link as well as
the infomation the sponsor would have without the link, this problem can also
be caused by better informed players who only sponsor non-end links. Under
CMBI this consideration plays no role, since a player�s incentives to sponsor a
non-redundant link are independent on the amount of information without the
link.

4 Decreasing marginal bene�ts of information

In this section we look at the e¤ects of DMBI, formally of f 00 < 0: To compare
the two regimes we need to make the value functions comparable. We do this
by assuming that f 0D (1) = f

0
C (1). Of course f

00
D (x) < 0 and f

00
C (x) = 0 for all

x � 1: See Figure 2 for an illustration on the relation between fC and fD:

De�nition 2 For any CMBI value function fC (I) a DMBI function fD (I) is
comparable if fD (1) = fC (1) and f 0D (1) = f

0
C (1) :

1

f(I)

fC(I)

fD(I)

I

Figure 2: Relation between CMBI and DMBI.
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In the previous section we derived a characterization with necessary condi-
tions for non-empty SNNs (Proposition, provided that the bene�t function is
increasing. In this section we will look what changes with the set of SNN if we
switch from any CMBI function, say fC ; to any comparable DMBI function, say
fD:

The switch from CMBI to a comparable case of DMBI decreases therefore
the incentives of players to sponsor links. As a result some networks which were
SNN under fC ; are not SNN under fD: We will prove that if any non-minimal
SNN exists, then any PSS is an SNN for any f: So if PSS is not an SNN then
no non-empty networks are SNN. One could say that the PSS is the last non-
empty network to �leave�the set of SNN when changing from CMBI to DMBI.
However, we also prove that any other type of star is among the �rst to leave
the set of SNN when switching to DMBI. We continue by showing that networks
with higher diameters may stay an SNN, even when shorter diameter networks,
like all non-periphery-sponsored stars, are not an SNN anymore. Although the
intuition for this result is clear and accessible, it also has limits, which will be
discussed. Finally, we will look into the possibilities of networks which become
an SNN due to the switch. Here we will also see that these networks have a
relatively high diameter, in a sense which will be explained in detail there.

For optimal exposition, we de�ne any link through which the sponsor ob-
serves only the recipient as an end link; the sponsor of this link an end sponsor
and the recipient an end player. Moreover, we will look at the case in which
all SNN are connected under CMBI, so with c < fC (1 + �)� fC (1) : Although
c < fC (1 + �) � fC (1) ; it is possible that c > fD (1 + �) � fD (1) or even
c > fD

�
1 + � + (n� 2) �2

�
�fD (1) ; because the marginal bene�ts of links have

decreased. As this a¤ects the set of SNN its e¤ects are included in the following
proposition

Proposition 3 Let fC (I) be an CMBI function, and let fD (I) be a comparable
DMBI function; let c < fC (1 + �) � fC (1) ; and �nally let GSNNC be the set of
SNNs under the CMBI function, and GSNND be the set of SNNs under DMBI.
Then

1.

(a) If c < fD (1 + �)� fD (1) ; then Proposition 1 applies.
(b) If c > fD

�
1 + � + (n� 2) �2

�
� fD (1) ; then GSNND consists of the

empty network alone.

(c) If fD (1 + �) � fD (1) < c < fD
�
1 + � + (n� 2) �2

�
� fD (1) ; then

GSNND encompasses only all PSS and the empty network.

2. If there exists any non-empty network g which is an SNN, then any PSS
is also an SNN.
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3.

(a) If there exists a network g 2 GSNNC such that g =2 GSNND then the
only stars which are SNN under fD are PSS.

(b) If c > fD (1 + (n� 1) �)� fD (1 + (n� 2) �) ; then any star which is
not a PSS is also not an SNN.

4. If any network g is SNN under DMBI but not under CMBI, so GSNND nGSNNC ;
then this network g is not an SNN under CMBI because it is either empty
or at least one player wished to sponsor a redundant link in g under fC :

Proof. 1. (a) This follows directly from Proposition 1. (b) The bene�t to the
sponsor of any link in a PSS with n players is fD

�
1 + � + (n� 2) �2

�
� fD (1).

This is also the maximal bene�t any link can generate. Hence if such a link
is too costly, no link is worth sponsoring and sponsoring no links is strictly
prefered by every player. Consequently the empty network is the unique SNN.
(c) Note �rst that Proposition 1 is independent of the value function, as long
as the value function is increasing. Hence it also applies to this cost range.
Second note that any non-empty SNN, say g; other than the PSS will contain
an endsponsor, say i; who observes at most one player (j) through his link.
However, by connectedness of g; DMBI and fD (1 + �) � fD (1) < c we have
that fD (Ii (g)) � fD (I (gn fijg)) < fD (1 + �) � fD (1) < c: Hence the set of
non-empty SNN can only contain PSS networks. The marginal bene�t of the link
sponsored by any peripheral player is given by fD

�
1 + � + (n� 2) �2

�
� fD (1) :

As this is larger than c; any PSS is an SNN. Finally, in the empty network the
marginal bene�t to player i of sponsoring k links instead of zero is smaller than
k (fD (1 + �)� fD (1)) and therefore smaller than c. Hence PSS and the empty
network are SNN, and all other networks are not.
2. The maximal marginal bene�t any link can yield is one in which the

sponsor would access no other player without that link, and all other players at
a maximal distance of two with that link. In the PSS, every sponsor receives
this maximal marginal bene�t for the link that he sponsors. So, if any player
prefers to delete a link, no non-empty network can be stable. Replacing the
link by a link to another player (so replacing a link to the star center by a link
to another peripheral player), has no other e¤ect than putting n� 3 players at
distance 3 which were at distance 2. Hence this is also not optimal. Lastly, we
show that in any other non-empty network g there exists a player who has at
least as much incentives to sponsor redundant links as any player in the PSS.
Because g is an SNN, the bene�ts of this link are apparently not larger than
the costs, hence the same will hold true for any PSS. Note �rst that in the PSS
a redundant link brings a maximal increase in information of � � �2 (reducing
the distance to one other player from 2 to 1). At the same time, the sponsor
in the PSS has a minimal information of 1 + � + (n� 2) �2: In g there is, by
minimality of g; at least one player who receives maximally 1 + � + (n� 2) �2
information, while being able to sponsor a link to an agent who presently is at
least two distance away. Concluding, if there is a non-empty g which is an SNN
then any PSS is an SNN too.
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3. (a). Of all the links in all the minimal networks, a center-sponsored
link in a star yields the lowest possible net bene�t to its sponsor. The sponsor
has the maximal amount of information without that link, namely 1+(n� 2) �;
while he receives the minimal possible extra information via a non-redundant
link, which is �: Therefore every other sponsor of any non-redundant link will
have at least as much incentives to sponsor his links, as the center of the star
has. It follows that, if any network is an SNN under CMBI but not under DMBI,
non-PSS stars are not SNN under DMBI. (b) Consider any star network. If
the center of the star, in the sense that he shares a link with each other player,
sponsors any of those links, the marginal bene�t on any one of those links to
him is given by fD (1 + (n� 1) �) � fD (1 + (n� 2) �) : Hence for costs larger
than this, there exists no star other than the PSSs which is an SNN.
4. Note �rst that under DMBI the marginal costs of each link are the same

as under CMBI, but the marginal bene�ts are lower. Hence the only thing
in terms of payo¤s which changes from CMBI to DMBI is that the marginal
bene�ts of links decreases. The preference ordering of any player i in network
g�i over the potential recipients of his links does not change, since this ordering
depends only on the gain of information through a link and not on the marginal
bene�t which this gain would entail. It is therefore impossible that a strict
best reply of player i against g under fD contains any link which the best
reply of i against g under fC does not contain: In other words given a network
g; if gci 2 BRfCi (g) and gDi 2 BRfDi (g) then gDi � gCi : Since � > �C and
c < fC (1 + �) � fC (1) imply that all g 2 GSNNC are minimally connected, we
have that for any g 2 GSNND nGCNNC ; then either g is empty (which is not a SNN
under CMBI); or there exists some player j who prefers to sponsor a redundant
link in g under CMBI but not anymore under DMBI.

Note that point 2 of Proposition 3 implies that the PSS are the �last�17

networks to leave the set of SNN18 when DMBI is introduced, while point 3a
implies that all other stars are the ��rst�networks to leave the set of SNN when
this occurs. They are least stable in this respect. As the proof indicates, this is
because if the center of a star sponsors a link in the SNN, he gets relatively little
new information because it will be an end link, while he already has the maximal
possible information within a network where one player is isolated (unconnected
to all other players). Hence his marginal bene�t is minimal.

But accepting this reason, it follows that a network is less quick to leave the
set if the critical sponsors (the sponsors who would be �rst to stop sponsoring
some link) are (a) receiving more information through that link and (b) receiving
less information via the rest of the network. If we follow up on this than we
17Obviously, they are not the last networks in the sense that by the switch to DMBI all

networks leaving the set of SNN will leave at the moment of the switch. However the PSS
are last in the sense that they will only leave this set if all other networks in that set leave
as well. For a more literal interpretation one could consider increasing the degree of DMBI
(de�ned in some appropriate way) in several steps. Then the PSS would be literally among
the last network of the original networks in the set to leave.
18Or �least likely�.
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understand that a non-star network in GSNNC will be more stable than star
networks like A and B from Figure 1, because the sponsors get at least as much
information through any one of their links then the unique end sponsor in those
stars, while they receive less information via the rest of the network.

As clearly stars including any sponsoring to the center are the �rst to drop
out, this suggests two aspects that can make a network stable under DMBI. The
�rst aspect is that a single link gives access to a large number of players. The
fact that the marginal bene�t is reduced under DMBI then plays less of a role.
This is why PSS are always stable. The second aspect leading to stability is
that players have relatively little information, and therefore still �nd it worth to
sponsor links under DMBI. This is witnessed by the fact that degrees of DMBI
exist such that the only networks that are potentially stable next to PSS are
networks with a diameter of three or more.

We will now argue that higher diameter networks are relatively stable under
DMBI. The intuition is that in a large diameter network players tend to have
less information, giving them more incentives to maintain their links. We will
�rst give a few examples to illustrate the intuition. After that we will present a
proposition which shows that non-PSS networks of diameters 2 and 3 drop out
before all networks of diameter 4 drop out. Hence a gap in diameter may arise
due to DMBI, where the PSS is the only �short diameter�network, and all other
networks have a minimum diameter larger than 3. Finally, we will place a few
comments to show why this relationship between diameter and stability is not
absolute.

Example 1 Assuming CMBI, network A in Figure 1 is stable if and only if
� > c: With DMBI the incentive for the central player to sponsor the last of his
links, say the link to player i, is reduced. He will only wish to sponsor all of
these eight links if

f (1 + 8�)� f (1 + 7�) > c; (4)

and by decreasing returns we have that

� > f (1 + 8�)� f (1 + 7�) : (5)

Hence the stability condition has become more strict under decreasing returns.
So for

f (1 + 8�)� f (1 + 7�) < c < �; (6)

a CSS is stable under CMBI but not under DMBI.
Suppose that c satis�es the conditions in Eq. 6. Then the CSS is unstable,

while the PSS is still stable. But what about other star networks? For example,
would Network B be stable? It is easy to check that the stability condition for
Network B is the same as for network A, namely the one in Eq. 4. In fact, if
Eq. 6 holds, the only stable star is the PSS (see Network C).
Now consider Network D instead of networks A and B. D is the same as

B except that in D one of the formerly peripheral players, namely i0; sponsors
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links to players j and j0, whereas in network B j and j0 sponsor links to player
i. Network D is stable if both of the following two conditions is satis�ed (for
respectively links ii0 and i0j):

f
�
1 + 6� + 2�2

�
� f (1 + 5�) � c (7)

f
�
1 + 3� + 5�2

�
� f

�
1 + 2� + 5�2

�
� c: (8)

Eq. 7 is certainly satis�ed if Eq. 8 is satis�ed and � > 3
5 :
19 More importantly,

note that Eq. 8 is a weaker condition than Eq. 6. Hence, even if Network B
is not stable due to decreasing returns, Network D may still be stable. But
if Network D is unstable as a result of decreasing returns, then Network B is
unstable too. The reason why D is stable while B is not, is because end sponsor
i in Network D has less information than the end sponsor in networks A and B.
Moreover, but probably for a very tight range of parameters, it could be pos-

sible to replace the link ki by ik and that the network is still an SNN, while in
B the player in the center of the star would prefer not to sponsor any link at
all. The reason is that i has less information than the center of the star in B,
so that it has higher incentives to sponsor a link then the star center in B.

Example 2 Consider Network G in Figure 1. By Proposition 1 this network
can be stable under CMBI. Let this be the case. With decreasing returns it is
stable if all of the following conditions (for respectively links ii0; i0i00 and i00j)
are satis�ed:

f
�
1 + 4� + 4�2 + 8�3

�
� f

�
1 + 3� + 2�2 + 4�3

�
> c (9)

f
�
1 + 3� + 6�2 + 2�3 + 4�4

�
�

f
�
1 + 2� + 4�2 + 2�3 + 4�4

�
> c (10)

f
�
1 + 3� + 2�2 + 4�3 + 2�4 + 3�5

�
�

f
�
1 + 2� + 2�2 + 4�3 + 2�4 + 3�5

�
> c (11)

Note that for large enough �; namely � > 0:77, again only the last condition is
relevant. Now compare this to a network such as D, but with 15 players. Such
a network is Network E. Now note that the two relevant conditions for stability
are (for respectively the link received by i and the link ij)

f
�
1 + 12� + 2�2

�
� f (1 + 11�) > c (12)

f
�
1 + 3� + 11�2

�
� f

�
1 + 2� + 11�2

�
> c (13)

Also here only the last condition is relevant for � large enough, speci�cally � > 9
11

su¢ ces. And by decreasing returns, the condition in Eq. 13 is more strict than
that in Eq. 11.

19Note that f (�) is an increasing function in its argument, and that for � 2
�
3

5
; 1

�
we can

rank the arguments as follows:

1 + 5� < 1 + 2� + 5�2 < 1 + 3� + 5�2 < 1 + 6� + 2�2:
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These examples, point 3 from Proposition 3 as well as the intuition pro-
vided networks suggest that DMBI relatively favors longer diameter networks
to shorter diameter networks as compared to the base CMBI function. This
suggestion is further reinforced by point 4 from Proposition 3, because in any
non-empty network entering the set of SNN some player wants to sponsor a
redundant link under CMBI, but not under the comparable DMBI. Sponsoring
a redundant link is only worthwhile if without the link su¢ ciently many play-
ers are far enough away which can be brought su¢ ciently closer by the link.
Although this does not prove a large diameter, this is rather more typical for
large diameter networks. So there is some evidence that low diameter networks
are relatively quick to leave the set of SNN at a switch from CMBI to a com-
parable DMBI, while the networks which enter have typically higher diameters.
Does this imply that DMBI may create a gap in diameters, where after the PSS
(with diameter 2) the lowest diameter of a stable network is larger than 3? The
following Proposition shows that this can indeed be the case.

Proposition 4 Consider a network formation game with n; n � 6, players,
decay level � and a cost level c such that 1 > c > � + (n� 4) �2 � (n� 3) �3:
Then there exists a comparable DMBI bene�t function f such that all networks
with diameter lower than 4 (except for the PSS networks), are not SNNs, while
there exists an SNN of diameter 4 or more. There does not exist a comparable
DMBI function g such that all diameter 4 networks are not SNN while some
network with diameter 2 (other than PSS) or 3 is an SNN.

Proof. For the given limits on n, c and �, networks g and g0 which we will
present below are SNNs under CMBI. We will �rst prove that for some f; no
diameter 3 network is an SNN (by Part 3a of Proposition 3 this implies that
only the PSS is stable for diameters lower than 4). We do this by considering
some network g of diameter 3 which is an SNN if any diameter 3 network is
SNN. We �nd the parameter values for which it is not an SNN anymore and
then prove that for these parameters network g0 of diameter 4 can still be an
SNN. The reader can verify that for the cost range in the lemma, both g and
g0 will be SNN under CMBI (so, for example, no player wishes to sponsor a
redundant link).
The most stable diameter 3 network is a periphery sponsored star with one

alteration, namely that one link by a peripheral player, say j; is deleted and
replaced by a link from one non-isolated peripheral player i; i 6= j, to player j.20
In that case i has with link ij information equal to 1 + 2� + (n� 3) �2, while
without that link he has 1 + � + (n� 3) �2: If

f
�
1 + 2� + (n� 3) �2

�
� f

�
1 + � + (n� 3) �2

�
< c (14)

then no diameter 3 network will be an SNN.
20This is most stable in any diameter 3 network the end link is critical. So for stability

purposes, the sponsor of the end link should have as little information as possible. This
network puts most players at distance 2 (the maximal distance) from player i:
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Now we will show that the incentives to sponsor the critical link for some
diameter 4 network which we will name g0 are strictly larger. Consider a minimal
connected network g0 which looks like an n-player version of Network F in Figure
1. Speci�cally, let (i) player 1 sponsors no links, whilst receiving one link from
n� 1
2

(rounded up) distinct other players other than player 1, (ii) these distinct

other players receive no links, while sponsoring at most 2 themselves. Clearly,
the end links are the critical links in this network. Consider some arbitrary end
link, say i0j0 2 g0: Link i0j0 is optimal if21
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> c: (15)

So if Eq. 15 holds, then at least one network with diameter 4 exists, namely
g0.

Because 1 + � +
n� 2
2

�2 +
n� 4
2

�3 < 1 + � + (n� 3) �2; and the additional
information through the link in both cases is �; DMBI gives us
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Hence Eq. 15 is only violated if Eq. 14 is satis�ed, but the reverse is not true.
Hence we can �nd a DMBI function f such that
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:

This concludes our proof.

However, this suggestion (DMBI favors higher diameter as compared to
CMBI) deserves some criticism, at least because of two main reasons. First,

21Player i0 sponsors (without his one end link) only a link to the central player of g0: So there
are (n� 3) players distributed over distance two and three. By construction this distribution
is as uniform as possible, with, if (n� 3) is odd, one more player at distance two than at
distance three.
This gives us respectively

Ii0
�
g0n

�
i0j0

	�
= 1 + � +

n� 3
2

�2 +
n� 3
2

�3; and

Ii0
�
g0n

�
i0j0

	�
= 1 + � +

n� 2
2

�2 +
n� 4
2

�3:

Because �2 > �3; the latter expression is higher, so that this is the upper bound of the
knowledge of player i0:
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the reasoning above sidesteps the fact that having larger diameter doesn�t im-
ply that the maximal information among the set of end players is lower. As far
as we know, this far from proven, and we doubt that this is true. For instance,
the diameter may not directly depend on whether the most informed player
is or is not an endsponsor (see Network G with link ki replaced by ik for an
example). Second, it ignores that having a larger diameter may decrease the
marginal information received through links. That this is not irrelevant is also
shown by the stability of the PSS.

5 Concluding remarks

In this �nal section we will �rst relate our work to Hojman and Szeidl (2008).
Then we will discuss a few modelling choices in which we followed the conven-
tions of the literature. The advantages of following such conventions are clear.
It enhances the comparability of the results in the literature and, typically, sim-
pli�es the analysis. However the way in which decay is modelled, as well as
the focus on SNNs warrant some additional considerations of which the reader
should be aware. Finally we will brie�y summarize the main points of the paper.

5.1 Hojman and Szeidl

Why do our results di¤er from Hojman and Szeidl (2008)22? They assume that
information cannot travel further than some number of links d: As a result and
regardless of population size, in any SNN all players will be within a certain
distance from each other, based on d: Then, if one increases the population
enough, no player will ever want to sponsor more than two links23 , for if there
are su¢ ciently many players, they will receive so much information through any
links received and possibly the �rst link sponsored that the bene�ts of the second
link can never warrant the costs of a link. For reasons similar to those in our
paper their SNN is also minimally connected. And for reasons similar to those
of Corollary 5 no recipient of a link will sponsor exactly one link himself. Since
no player �nds it worthwhile to sponsor two or more links, the only remaining
candidate is the PSS network.

Comparing this to our previous discussion of the suggested relative instabil-
ity of short diameter networks, we can ask ourselves what would happen if we
take a large enough population and considering only networks with a diameter
of less than some positive integer: Each end sponsor would then have so much
information that he would prefer not sponsoring the end link. Hence only net-
works without end sponsors can be non-empty SNN, which means that PSSs
are the only non-empty SNN. So we can reproduce this result by Hojman and
Szeidl (2008) if we impose an upper limit on the diameter of networks. However,

22We will focus here on their result with strict decay, so a1 < a2 < a3; etc.
23The limited distance which information can travel in Hojman and Szeidl (2008) e¤ectively

restricts the maximum diameter SNNs can have in that model.
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the necessary population size could be very large indeed, as it is in Hojman and
Szeidl (2008).

5.2 Decay and irrelevance of number of paths

We follow the literature by assuming that the number of paths between any
pair of players i and j does not matter. Without decay this seems perfectly
reasonable, if the bene�ts are derived from, for instance, information which
is exchanged. However, when we assume that there is decay, this assumption
becomes important. Decay represents that information is lost, or becomes less
reliable or accurate, each time that it is passed on. However, it is not obvious
that the same information is lossed (or the same noise is added) at step k along
any path of length k or larger.

Abandonment of this assumption would however give players additional in-
centives to sponsor redundant links, which would either complicate the analysis
greatly24 or limit the applicability of the analysis to instances of more reliable
transmission of bene�ts. We observe that many empirically documented net-
works do feature cycles. Burt (1992) argues that a sponsor can bene�t if his
recipients do not sponsor links to one another. The network is then not only
more e¢ cient, but the sponsor is then also in a stronger bargaining position,
because he is bridging gaps in the network. An implication of Burt�s analysis is
that networks will tend not to include cycles. An opposite view is held by Cole-
man (1988) and Coleman (1990), who argues that redundant links are important
to build up social capital in a network, in the form of reputation, trust, social
norms and social control. Burt (2000) reviews mixed empirical support that
corroborates both the structural hole view, and the social capital view. While
Burt cites evidence on structural holes, he recognises that empirical evidence on
redundancy in networks supports the social capital view. We end by noting that
redundancy is in fact not incompatible with the structural hole view: players
may form redundant links to avoid positional disadvantages, see e.g. Goyal and
Vega-Redondo (2007). A study on BG�s basic model with potentially di¤erent
decay along di¤erent paths would therefore be relevant and interesting.

5.3 The focus on strict Nash networks.

In current non-cooperative models of network formation, the most common
solution concept is that of SNNs. The reason for that is twofold. First, the
set of solution would expand greatly, both in terms of architectures (network
types) as well as in actual networks, if we would include weak Nash networks too.
Second, BG found that the set of minimal curb sets25 as well as the recurrent
classes of a myopic best reply dynamic (with inertia) both coincide with the set

24The analysis could well become similar to models where links are not fully reliable.
25How and why the concept of minimal curb sets (which involves mixed strategies) can be

applied to these models with pure strategies only, is discussed in Kamphorst and van der Laan
(2007).
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Figure 3: Weak Nash networks which survive a myopic best reply dynamic.

of SNNs. This provides ample support for focussing on SNNs, and most of the
literature restricts its attention to SNNs.

However, in the presence of for instance heterogeneous players the myopic
best reply dynamics (with inertia) also yields non-singleton recurrent classes
which consist of multiple, equivalent, weak Nash networks. Nevertheless, the
vast majority of weak Nash networks were not part of any recurrent class. More-
over the set of minimal curb sets of the game coincides with the set of recurrent
classes, (see for instance Galeotti et al. (2006) and Kamphorst and van der Laan
(2007)), so some minimal curb sets consisted of weak Nash networks. In this
regard it is worthwhile to see whether we loose sight of certain relevant long
run network architectures by focussing on SNNs. Figure 3 shows that in models
with decay, this is indeed a problem too.

Consider player i: He is indi¤erent between sponsoring a link to j and j0:
No set of best replies by the other players is a¤ected by the choice of player i:
They have a unique best reply, which is their current strategy (set of sponsored
links). Thus in a myopic best reply dynamic such that a player randomises
over all his best replies if indi¤erent, there exists a recurrent class in which all
players other than i keep on sponsoring the same links as in Figure 3, and player
i occasionally replaces his link ij by link ij0 and the other way around.

Our focus in this paper has stayed on SNN for reasons of simplicity and
comparibility with the literature. However, an obvious and interesting extension
would be to look at the recurrent classes of dynamics in which players learn
which links to sponsor, and to apply the solution concept of MCS.

5.4 Conclusions

In this paper we explore what decreasing marginal bene�ts of information (DMBI)
implies for the set of strict Nash networks26 (SNNs) in the two-way �ow con-

26Strict Nash networks are those networks which constitute strict Nash equilibria.
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nections model by BG, when there is a small amount of decay27 . To do so, we
need a characterization of the networks which may be SNNs. Hence we start
by extending the characterization of the set of non-star SNNs in BG for CMBI
and DMBI. We show that any non-empty SNN will be a tree network with a
central player, where the tree is semi-center sponsored in the sense that all links
are center sponsored, with the possible exceptions of the links with the central
player itself (see Figure 1 on page 12 for examples). The results clearly show
that the results by Hojman and Szeidl (2008) do not extend to unlimited (albeit
decaying) traveling of information along the links and an arbitrary population
size.

After this characterization we look at how the set of SNNs changes if we
move from a CMBI function to a comparable DMBI function. We �nd that if
any non-empty SNN exists, then for sure the PSS has survived. Moreover, if
there exist some networks which were SNN under CMBI but not under DMBI,
then no star which is not a PSS will be an SNN under DMBI. Finally, we
show that the results, examples and intuition suggest that DMBI may favor
networks with larger diameters, as compared to CMBI. However, despite the
strong examples and intuition, this suggestion is rather tentative, as we argue
in the �nal paragraph of Section 4.
We conclude in this section by discussing several modelling choices.
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