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Abstract  
 This paper investigates the forces driving output change in a panel of EU 
 manufacturing industries. A flexible modeling strategy is adopted that accounts for 
 (i) inefficient use of resources, and (ii) differences in the production technology 
 across industries. With our model we are able to identify technical, efficiency, and 
 input growth for endogenously determined technology clubs. Both the technology 
 clubs and the parameters within each club are modeled as a function of R&D 
 intensity. This framework allows us to explore the components of output growth in 
 each club, potential technology spillovers and catch-up issues across industries and 
 countries. 
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1. Introduction

A large body of literature has tried to explain why some countries or industries pro-
duce more than others. Most studies have investigated the relative contribution of fac-
tors of production and unobserved total factor productivity (TFP) to output growth. The
growth accounting literature typically relies, implicitly or explicitly, on a Cobb-Douglas
production function where output depends on inputs such as labor and physical (and
human) capital. Cross-country output variation is then attributed to the variation in pro-
duction factors and the unexplained residual that reflects all output growth that cannot
be ascribed to inputs (see Maddison, 1987, for a survey). The literature, however, is
still divided as to whether input augmentation or TFP dominates in explaining output
growth. 1 The cross-country growth regression literature typically bases its regressions
on a production function specification (Mankiw, Romer, and Weil 1992; Islam 1995),
which is often expanded to include various sets of additional variables in an attempt
to explain economic growth. 2 However, there is considerable disagreement as to the
explanatory variables included in the analyses (see Temple, 1999, for a comprehensive
survey).

This paper investigates the sources of output growth for a panel of manufacturing in-
dustries. We propose a flexible modeling strategy that goes beyond the bipartite division
of output growth applied in the conventional (growth accounting and cross-country
growth regression) studies and the strong assumptions they typically rely upon (e.g. ef-
ficient use of resources, constant returns to scale, etc.). The aim of the paper is to provide
more insight in key issues in the literature related to the use of technology, the sources
of output growth, technology spillovers and catch-up, and to draw policy implications.
To decrease the aggregation bias that may occur when these issues are considered at the
country-level (Bernard and Jones, 1996a,b), we focus on manufacturing industries.

Traditionally, the growth accounting literature has referred to the unexplained part of
output growth as the ‘productivity residual’ or ‘technical change’ (Solow, 1957). This in-
terpretation, however, depends, among others, on the strong assumption that economic
units (countries or industries) are always efficient. In reality, however, economic units
may well use the best-practice (frontier) technology with varying degrees of efficiency.
If this is the case, part of what is measured as technical change is in fact an improved use
of the best-practice technology. Put differently, inefficient industries increase output by
becoming more efficient in the use of the best-practice technology, whereas efficient in-
dustries increase output through technical change. In addition, not controlling for pos-
sible inefficient use of inputs, may also result in underestimating the productivity of
outputs for the best-practce technology.

In this paper, we account for inefficiency and estimate a stochastic production fron-
tier, which is the empirical analog of the theoretical production possibility frontier. This
modeling strategy adds structure to the unexplained residual. Under reasonable as-
sumptions, it disentangles the residual into inefficiency and measurement error. Techni-

1 Numerous studies point to the role of inputs in generating growth (Baumol, 1986; Barro and Sala-i-Martin,
1991, 1992; Mankiw, Romer, and Weil, 1992; Islam, 1995), while more recent empirical evidence shows that
differences in output growth are largely the result of differences in total factor productivity (Bernard and
Jones, 1996a,b,c; Hall and Jones, 1999; Easterly and Levine, 2001; Caselli, 2005).
2 See among others, Barro (1991), Levine and Renelt (1992), and Persson and Tabellini (1994).
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cal change is modeled as a shift of the stochastic frontier, whereas efficiency change is a
movement towards or away from the frontier. This framework allows us to decompose
output changes into three types of change: technical, efficiency and input change.

A growing body of empirical literature carries out efficiency analyses along lines simi-
lar to this paper, although using different modeling approaches. In this literature, output
change is also decomposed into technical, efficiency, and input change. So far, the at-
tention has largely been at decomposing aggregate (country-level) output. 3 Recently, a
number of studies investigate the role of efficiency in explaining growth differentials for
a panel of manufacturing industries in the OECD countries. For instance, Koop (2001)
explores the driving forces of output growth in six manufacturing industries during the
1970s and 1980s, while Kneller and Stevens (2006) investigate the sources of inefficiency
in nine industries over the same period. With the exception of Koop (2001), who esti-
mates six frontiers for six industries, these studies all benchmark industries (countries)
against a common production frontier.

However, it may be the case that not all industries share a single common frontier. Re-
cent theoretical and empirical contributions (Basu and Weil, 1998; Acemoglu and Zili-
botti, 2001; Los and Timmer, 2005) have stressed the ‘appropriateness’ of technology as
industries (countries) choose the best technology available to them, given their input
mix. Industries are members of the same technology club if their marginal productivity
of labor and capital (the technology parameters that characterize the efficient produc-
tion frontier) are the same for a given level of inputs. In other words, their input/output
combinations can be described by the same production frontier (Jones, 2005). With the
exception of a handful of studies that accommodate these technology clubs, therefore,
allowing for parameter heterogeneity when estimating frontier or conventional produc-
tion functions, the empirical literature has largely ignored this issue. 4

In this paper, we allow for different production technologies. We differ from past at-
tempts, which mainly relied on ex ante divisions to classify industries into different tech-
nology clubs, by endogenizing the technology club allocation. To this end, we augment
the stochastic frontier production model with a latent class structure. A logit model
is used to condition group membership probabilities on technological effort as mea-
sured by R&D. As a result, technology parameters depend on the effect of technological
effort on club membership probabilities. Production function parameters differ across
clubs and are estimated simultaneously with membership probabilities. Based on club-
specific production parameters, we identify technical, efficiency and input growth for
endogenously determined technology clubs.

3 For instance, Färe, Grosskopf, Norris, and Zhang (1994) use data envelopment analysis (DEA) while Koop,
Osiewalski, and Steel (1999, 2000) and Limam and Miller (forthcoming) use stochastic frontier analysis (SFA)
to examine country-specific inefficiency in a number of developed and developing countries.
4 A problem with industry-specific frontiers, as in Koop (2001), is that is difficult to compare relative efficiency
scores across frontiers. Dividing industries into technology clubs based on technology effort, measured e.g.
by observed R&D expenditure (Hatzichronoglou, 1997; OECD, 2005), is also problematic since any ex ante
division rule is to some degree arbitrary (Orea and Kumbhakar, 2004). Furthermore, R&D itself may simulta-
neously affect the technology parameters and the efficiency within each technology club. Durlauf and Johnson
(1995) endogenize the division rule using a regression tree analysis to identify multiple technology clubs of
cross-country growth behavior. In their approach, both the parameters and the number of clubs result from a
sorting algorithm applied to the whole sample, incorporating a cost to sample splits to avoid overparameter-
ization.
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We introduce further flexibility to the model by permitting industries to switch be-
tween technology clubs over time. The efficiency of industries in different technology
clubs is estimated simultaneously, but relative to each club’s specific frontier. Thus, the
latent class stochastic frontier model allows us to avoid the routinely imposed assump-
tion of a common production function for all industries, while still yielding results that
are comparable across industries at a given point in time.

Our empirical analysis is based on a sample that consists of manufacturing industries
that are twice as disaggregated as those used in past related studies (Koop, 2001; Kneller
and Stevens, 2006), while the time span is extended to cover recent developments in the
industrial sector. We apply our modeling approach to 21 EU manufacturing industries
in six countries over the period 1980-1997, with two key questions in mind: (i) do indus-
tries use different technologies?; (ii) eventually, what drives output growth?

The use of a latent class structure in the specification of the stochastic frontier model
results in identifying two technology clubs (regimes). One technology club appears to
be technologically more advanced, as industries in that club exhibit a high R&D spend-
ing and a high marginal productivity of labor. Although we do not impose constant
returns to scale, we indeed find industries in that club exhibit constant returns to scale.
In contrast, industries in the other, less technologically advanced club exhibit decreas-
ing returns to scale. The driving forces of growth are also different across the two clubs.
Technical change is a crucial component for growth for the technologically advanced
club, while input (in particular capital) growth plays an important role in both technol-
ogy clubs. Since we permit switching from one club to another and condition member-
ship on the technological effort (R&D), we can investigate the existence of technological
spillovers and catch-up behavior. Regarding the former, we find some support within
the technologically advanced club. Regarding the latter, we find that the distance be-
tween the clubs has increased over time. Finally, within the advanced club, we also find
some evidence of cross-country technological catch-up.

Overall, our model reveals significant heterogeneity in the growth behavior of the
manufacturing industries in our sample. Many of our findings could not be obtained
using traditional approaches (imposing constant returns to scale, ignoring inefficiency,
assuming a common production function). We find that capital elasticities are, for most
industries, lower than labor elasticities, which contrasts with some of the results of
the conventional literature that reports a marginal product of capital as high as 0.82
(Mankiw, Romer, and Weil, 1992). Our findings are in line with other studies that have
also adopted flexible modeling approaches. More specifically, some evidence of tech-
nological catch-up is also documented by Koop (2001), while the importance of input
growth is also a main finding in Koop, Osiewalski, and Steel (1999), Koop (2001), Kumar
and Russell (2002), and Limam and Miller (forthcoming).

Our findings shed light on important policy questions, in particular for the EU (Lis-
bon Strategy). For instance, does higher R&D spending result in better use of the ex-
isting best-practice technology and/or the invention of new technology? Our results
corroborate that it matters which industries are ‘targeted’ by R&D investment tax cred-
its/subsidies. For industries in the advanced technology club, higher R&D spending
can both increase the efficiency with which industries absorb the best practice technol-
ogy and lead to technological improvements Industries in the other, less advanced club
can improve their chances of becoming a member of this club by spending more on
R&D.
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The remainder of the paper proceeds as follows. Section 2 presents the methodology
and specification. Section 3 introduces the data. Section 4 reports the empirical results
and seeks to explain some of the patterns present in the output change decomposition.
Section 5 summarizes the findings and concludes.

2. Methodology

First, we introduce a production model which accounts for inefficiency. Next, we aug-
ment the model with a latent class structure to allow for more than one type of produc-
tion technology. Finally, we decompose output changes for every technology club into
technical, efficiency and input changes.

2.1. A Stochastic Frontier Production Model

We model the performance of our industries by means of a stochastic frontier produc-
tion model. 5 A frontier production function defines the maximum output achievable,
given the current production technology and available inputs.

If all industries produce on the boundary of a common production set that consists of
an input vector with two arguments, physical capital (K) and labor (L), output can be
described as:

Y∗ijt = f (Kijt, Lijt, t; β) exp{νijt} (1)

where Y∗ijt is the frontier (optimum) level of output in country i, in industry j, at time
t; f and parameter vector β characterize the production technology; t is a time trend
variable that captures neutral technical change (Solow, 1957); and νijt is and i.i.d. error
term distributed as N(0, σ2

ν ), which reflects the stochastic character of the frontier.
Two aspects of equation (1) are important. First, the frontier, as it is defined, repre-

sents a set of maximum outputs for a range of input vectors. Therefore, at any moment
in time, it is defined by the observations from a number of industries, and not just from
one. This differentiates our modeling approach from conventional approaches in the
empirical growth literature where the leader industry, i.e., the industry with the highest
level of productivity, constitutes the frontier (Scarpetta and Tressel, 2002; Griffith, Red-
ding, and van Reenen, 2004; Cameron, Proudman, and Redding, 2005). An implicit, but
non-trivial assumption in this literature is that the leading industry itself constitutes the
frontier and is the single benchmark for all other industries. In the latter case, techni-
cal progress is described by the observations of this single industry over time. Second,
our modeling approach treats the frontier as stochastic through the inclusion of the er-
ror term νijt, which accommodates noise in the data and therefore allows for statistical
inference. In this respect, it fundamentally differs from other (non-parametric) frontier
industry-level analyses (Färe, Grosskopf, Norris, and Zhang, 1994; Gouyette and Perel-
man, 1997; Arcelus and Arocena, 2000; Boussemart, Briec, Cadoret, and Tavera, 2006)
that do not allow for random shocks around the frontier. 6

5 Stochastic frontier analysis (SFA) was introduced by Aigner, Lovell, and Schmidt (1977), Battese and Corra
(1977), and Meeusen and van den Broeck (1977).
6 For comprehensive reviews of frontier methodologies, see Kumbhakar and Lovell (2000) and Coelli, Rao,
and Battese (2005).
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Some industries, however, may lack the ability to employ existing technologies ef-
ficiently (e.g. due to mismanagement, lack of knowledge, etc.) and therefore produce
less than the frontier output. If the difference between optimum and actual (observable)
output is represented by an exponential factor, exp{−υijt}, then the actual output, Yijt,
produced in each country i, in industry j, at time t can be expressed as a function of the
stochastic frontier output, Yijt = Y∗ijt exp{−υijt}, or equivalently:

Yijt = f (Kijt, Lijt, t; β) exp{νijt} exp{−υijt}, (2)

where υijt ≥ 0 is assumed to be i.i.d., with a half-normal distribution truncated at zero
|N(0, σ2

υ)| and independent from the noise term, νijt. 7 Efficiency, exp{−υijt}, is mea-

sured as the ratio of actual over maximum output, exp{−υijt} =
Yijt
Y∗ijt

. 8

An industry is inefficient if it fails to absorb the best-practice technology. In this re-
spect, our approach is comparable to conventional, non-frontier studies (Bernard and
Jones, 1996a,b,c; Scarpetta and Tressel, 2002; Griffith, Redding, and van Reenen, 2004;
Cameron, Proudman, and Redding, 2005) that measure impediments to the absorptive
capacity using TFP changes. However, in their framework TFP changes cannot be sepa-
rated into technical change and efficiency change (Kumbhakar and Lovell, 2000).

To operationalize equation (2) one needs to specify the functional form of the produc-
tion frontier. Specification tests favor a Cobb-Douglas production function. 9 Thus, the
stochastic frontier production function specification is:

yijt = β0 + βkkijt + βl lijt + βttijt + νijt − υijt (3)

where lower case letters denote logarithms and a time trend captures neutral technical
change.

Next, we turn to modeling different technology clubs.

2.2. Technology Clubs (Regimes)

The empirical literature discusses a range of ways to account for technology hetero-
geneity. 10 One approach to test whether innovation intensity explains output differen-
tials is to include a proxy such as R&D expenditure, as an additional input. But that
approach implicitly assumes that R&D expenditure in itself contributes to output. More
likely, however, the former enhances the factor productivity of labor and capital (Gor-
don, Schankerman, and Spady, 1987; Hall and Mairesse, 1995; Griliches, 1998). 11 Im-
plementing an instrumental variable type of analysis using R&D as an instrument for
inputs, in turn, would not allow for distinctively different technology clubs, reflected by

7 We decompose the residual in equation (2), exp{εijt} = exp{νijt} exp{−υijt}, and identify its components,
exp{νijt} and exp{−υijt}, by re-parameterizing λ (=σu/σv) in the likelihood maximization (for an overview,
see Kumbhakar and Lovell, 2000).
8 Such that 0 ≤ exp{−υijt} ≤ 1 and exp{−υijt} = 1 implies full efficiency.
9 See footnotes 14 and 15 in Section 4.
10 See Bos, Koetter, Kolari, and Kool (forthcoming).
11 Note that R&D expenditure and capital stock measures may be contemporaneously and endogenously
related. Building a laboratory to ‘produce’ patents can also accrue as capital expenditure. We therefore also
estimated our model with various lags of R&D as a determinant of group membership probabilities and found
no qualitative change compared to results reported in this paper.
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factor shares varying across industries and countries. Finally, one may cluster industries
a priori on the basis of observed R&D expenditure and estimate best-practice frontiers
for each cluster separately. This approach has been often used in industry classifications
(Hatzichronoglou, 1997; OECD, 2005) as a means of dividing manufacturing industries
into various technology clubs. However, such a division is to some degree arbitrary
since the appropriate cut-off levels of R&D remain unclear.

To allow for different technology parameters when estimating productivity without
strong priors regarding class membership, Orea and Kumbhakar (2004) advocate a la-
tent class stochastic frontier model. 12 In line with Greene (2002, 2005), we also specify
technology club allocation as a latent class problem. We do so by introducing a latent
sorting of yijt into z classes, z = 1, ..., Z. Given that an observed yijt is a member of
technology club z, it has a club-specific density f (i, j, t|z) = f (yijt|xijt, z). Regime mem-
bership is latent, and the probability θz of belong to club z must be estimated. Greene
(2002) formulates the following approximation: 13

f (i, j, t) = f (yijt|β′xijt + δ′zxijt, σz)Fz = exp(θz/σzexp(θz)) (4)

where the θzs add up to zero. Each technology club z has its own parameter vector.
All clubs share the mean (β) of the variables xijt, but there is a club-specific δz. The
probability θz of belonging to club z can be estimated with a multinomial logit model. In
the logit specification, we condition club membership on technological effort, measured
by R&D intensity (RDijt). Hence, for industry j in country i at time t, we can estimate:

θijt =
exp(RDijtθz)

ΣZ
z=1 exp(RDijtθz)

(5)

Now, we can obtain technology parameters by maximizing a weighted log-likelihood
function, considering each observation’s contribution to its club-specific log-likelihood.
This partial likelihood is shown by Greene (2005) to be:

P (i, j, t|z) = f
(
yijt|xijt, βz, σz, λz

)
=

Φ(λzεijt|z/σz)
Φ(0)

1
σz

φ
(

εijt|z
σz

)
, (6)

where εijt|z = yijt − x′ijtβz. To obtain estimates of group-specific technology parame-
ters βz in equation (4), predicted probabilities of technology club membership θijt|z as
well as parameters of R&D intensity θz in equation (5), we follow Greene (2005) and
maximize iteratively back and forth between posterior group probabilities from (5) and
the (weighted) log-likelihood function in (6). Importantly, the likelihood maximization
in equation (6) does not only depend on inputs and outputs per industry, but also on
efficiency (λ and σ). Therefore, in contrast to a priori clustering on the basis of some
innovation proxy, in our latent class model, both our technology parameters β and ef-
ficiency υ are determined endogenously through the latent sorting into z classes. Thus,
conditional on class membership z, we eventually estimate:

yijt = β0,z + βk,zkijt + βl,zlijt + βt,ztijt + νijt|z − υijt|z (7)

12 Alternatively, Tsionas and Kumbhakar (2004) propose a stochastic frontier production function augmented
with a Markov switching structure to account for different technology parameters across heterogenous coun-
tries. Technology group membership depends on priors in their Bayesian framework. Koop, Osiewalski, and
Steel (2000) are critical of this formulation of technology club membership priors.
13 See Greene (2002, section E24.6.4).
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In sum, the latent class approach pursued here allows for (i) inefficient industry pro-
duction, (ii) group-specific input factor parameters, and (iii) R&D expenditure as an
additional determinant of technology club membership.

2.3. Decomposing Output Growth

A key aim of this paper is to relate our results to some of the major macroeconomic
debates on why and how some industries (countries) grow faster than others. To inves-
tigate these issues, we decompose output growth, for each technology club, into three
components: input growth, which represents movements along the frontier; technical
growth, which reflects shifts of the production frontier; and efficiency growth, which
captures movements towards (or away from) the production frontier as industries ab-
sorb and implement best practice technologies and reduce (or increase) technical ineffi-
ciencies.

In doing so, we take logs and totally differentiate the deterministic part of equation
(2) with respect to time, which yields a convenient expression of output growth:

Ẏ
Y

=
∂ ln fijt

∂t
−

∂υijt

∂t
+ εK

K̇
K

+ εL
L̇
L

(8)

where εK and εL denote the partial elasticity of stochastic frontier output with respect
to the inputs, physical capital and labor, respectively and dotted variables refer to time
derivatives.

Equation (8) indicates that output growth can be broken down into three components.

The first term,
∂ ln fijt

∂t , corresponds to technical growth, where
∂ ln fijt

∂t > 0, represents an
upward shift of the production frontier (technical progress). The second term corre-

sponds to efficiency growth, − ∂υijt
∂t , where − ∂υijt

∂t > 0 represents a reduction of ineffi-
ciency. Finally, the last two terms capture the scale changes, εK

K̇
K and εL

L̇
L due to input

accumulation in capital (β1,zKijt) and labor (β2,zLijt), respectively.

3. Data

Our analysis covers 21 two-, three- and four-digit industries in manufacturing for
six countries (Finland, France, Germany, Italy, Netherlands and Spain) over the period
1980-1997, where the time span is determined by the data availability for the preferred
level of disaggregation. Annual raw data are retrieved from various sources. Data on
industry output (value-added) and investment (for constructing capital stock) are re-
trieved from the OECD (2002) Structural Analysis Database (STAN). Data on labor are
extracted from the Groningen Growth and Development Centre (GGDC) (2006) 60-
Industry Database. R&D data are obtained from the OECD (2002) Business Enterprise
Expenditure on Research and Development (BERD). Finally, import and export flows are
obtained from the OECD (2002) Structural Analysis Database (STAN). The same Interna-
tional System of Industries Classification Code (ISIC, ver. 3) is used for all data sources.
Definitions of the variables are provided in the Appendix.

Table A.1 in the Appendix reports the manufacturing industries employed in our
analysis as well as the growth rates of output, capital and labor in every industry. The
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statistics reveal a wide variety of behavior patterns. Some industries (e.g., chemicals,
machinery) appear to grow fast while some others (e.g., food, wood) grow slowly or
even decline (e.g., textile, petroleum). Similarly, some countries (e.g., Finland) exhibit
fast growth in manufacturing output while others (e.g., France, Germany) do not. This
confirms the need for a flexible modeling approach that allows for considerable het-
erogeneity among manufacturing industries. For most countries and industries labor is
shrinking, while factor growth is driven by capital accumulation.

4. Results

In this section we present our results. First, we discuss whether industries use the
same technology. Next, for different technology clubs, we decompose output growth
into three different components namely input, technical and efficiency growth. Finally,
we explore whether our results support a number of economic theories.

4.1. Do industries use different technologies?

We investigate whether there are different technologies across manufacturing indus-
tries by employing a latent class model, as specified in equation (7). In doing so, we
need to first determine the number of classes, z. Theoretically, the maximum number of
classes is only limited by the number of observations in our study. Empirically, due to
over-specification problems, the maximum likelihood estimation may not converge for
a much smaller number of classes.

We find strong evidence in favor of two classes (clubs). For a possible third class,
parameters are jointly not significantly different from zero, and the number of obser-
vations in the additional class is very small. Accordingly, we classify the industries in
our sample as belonging to club A or B, respectively (see Table A.2 in the Appendix).
The prior class probabilities (at the data means) show that technology club A contains
82% of our sample, whereas technology club B contains 18%. The same industry can be
classified as belonging to club A for some countries, but as belonging to club B for some
others. However, in some countries (e.g., Finland and Germany) the majority of indus-
tries fall in one club (A, in this case). 14 The evidence in favor of two clubs confirms the
role of technology effort. In club A, mean R&D intensity is on average 9.7%, whereas it is
7.7% in technology club B. Importantly, from the logit coefficient of 1.838 ("Conditional
latent class" in Table 1) we find that a one percent increase in R&D intensity increases
the probabilities of belonging to club A by a factor of 6.28 (= exp(1.838)).

14 We follow Greene (2005) and use the following rules when choosing the optimal number of classes: (i) we
compare log-likelihood values; (ii) we consider the joint significance of parameters in a class; (iii) we consider
class size (i.e., the decrease in class size of existing classes if we add another class). In our sample, three is the
maximum number of classes for which neither multicollinearity nor over-specification prohibit convergence
of the maximum likelihood estimator. We follow Orea and Kumbhakar (2004) and test downward. The best
specification has the lowest AIC (respectively the highest BIC) value. The log-likelihood value for a speci-
fication with three classes is -852.32, with 24 parameters (for our specification with two classes, we have a
log-likelihood value of -582.429 and 16 parameters). Hence the AIC for two (three) classes is 19.27 (34.50), and
we prefer the specification with two classes.
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Next, we explore to what extent the technology parameters and efficiency levels dif-
fer between the two clubs. Table 1 reports our latent class results, where the technol-
ogy parameters (the coefficients for k, l and t) and efficiency are conditional on club
membership and thereby on R&D. 15 Industries in each of our two clubs (A and B) are
benchmarked against their own frontier.

Table 1
Latent Class Results

A B

Frontier

coeff. t-ratio coeff. t-ratio

Constant -2.467 -47.694 -0.285 -0.004

k 0.344 51.035 0.331 23.518

l 0.636 76.012 0.294 8.591

t 0.014 10.336 -0.006 -1.272

σ (= (σ2
u + σ2

v )1/2) 0.303 18.605 0.335 0.165

λ (= σu/σv) 1.172 4.806 0.034 0.000

Efficiency scores

Mean SD Mean SD

0.913 0.037 0.992 0.000

Conditional latent class

Constant 1.352 10.915

R&D 1.838 2.000

Prior class probabilities at data means

0.821 0.179

Log-likelihood value = -582.429

As Table 1 reveals, the results are markedly different for our two clubs. We observe
that the marginal product of capital is not significantly different for industries in clubs
A and B. Our estimation of a marginal product of capital of approximately 0.3 is in line
with existing empirical literature (Barro and Sala-i-Martin, 1995; Koop, 2001). It appears,
however, that industries in club A benefit from the fact that the marginal productivity
of a unit of their labor is twice as high as that of industries in club B. Importantly, both
marginal products are estimated here conditional on R&D. Hence, we may interpret this
finding as stating that industries in club B "pay" for their low innovation efforts with
less productive labor. Industries in club A are technologically superior, as is reflected

15 We start with a likelihood ratio test of a frontier Cobb-Douglas production function versus a non-frontier
Cobb-Douglas production function. The latter is rejected with a t-value of 5.99. Subsequently, a likelihood
ratio test of a latent class frontier Cobb-Douglas production function versus a non-latent class frontier Cobb-
Douglas production function yields a t-value of 15.51, with which the former is clearly favored. Tests of Cobb-
Douglas versus translog production function are ambiguous, depending on the specification (latent class or
not, frontier or not), but results for the latent class frontier are qualitatively similar. Therefore, in line with the
literature, we proceed with a Cobb-Douglas specification.
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in their higher R&D effort and their higher marginal productivity of labor. This implies
that, for given input levels, the production frontier of club A is superior to (higher than)
the production frontier of club B.

Taken together, this implies two things. First, whereas industries in club A produce at
constant returns to scale, as is often reported in the literature (Barro and Sala-i-Martin,
1995; Mankiw, Romer, and Weil, 1992), industries in club B produce at decreasing re-
turns to scale. Second, the marginal rate of technical substitution (MRTS) is 0.630 (1.086)
for industries in class A (B), demonstrating that the rate at which labor can be substi-
tuted for capital while holding output constant is much higher for industries in club
B. Put differently, industries in club B may use relatively cheap capital. Indeed, in the
next section, we find evidence of this when we compare capital accumulation across
technology clubs and observe that fast growing industries in club B are rapid capital
accumulators.

As stated above, each technology club is characterized by its own optimal production
frontier, where the frontier of club A is superior to the frontier of club B. Including a
time trend t for each club allows us to measure technical growth. Interestingly, for the
industries that consider the frontier of technology club B their benchmark, we find that
technical growth is not significantly different from zero. In contrast, for industries in
club A, technical growth is positive and significant at approximately 1.4% per year.

The latter finding does not necessarily imply that all industries in club A indeed benefit
from 1.4% technical growth. The technical growth is measured at the frontier. Hence,
we also need to consider the efficiency of industries in both clubs. In fact, the average
efficiency in technology club A is almost 8% lower than the efficiency in technology
club B and it is quite dispersed. Industries in club B appear to be quite efficient and
operate very close to their (club-specific) frontier. This is confirmed by the parameters
σ and λ, which measure the total variance and the relative magnitude of variance that
is attributed to inefficiency, respectively. For the industries in club B, both parameters
are insignificant, as inefficiency does not play a role. However, for the industries in
club A a positive and significant λ shows that much of this variance indeed consists
of inefficiency. This is important, given that most industries in our sample turn out to
belong to club A.

Do industries change technology club membership?
Industries are not restricted to one club. In principle, an industry in club B can de-

velop to become a member of club A (and vice versa). One of the key assumptions in
our modeling strategy is that our latent classes are conditional on the technology effort
(R&D intensity). This implies that an important way in which an industry can try to
become a member of club A is by engaging in more R&D. Put differently, we expect that
the conditional probability of belonging to club A increases with R&D intensity.

In Figure 1, we explore this issue for both groups. We find large increases in the prob-
ability of being a member of club A during the 1980s. During the same period, we ob-
serve a sharp increase in R&D intensity. In the case of club A, the latter increase almost
perfectly matches the former.

For the industries in club B, the story appears to be rather different. The link between
the development of R&D intensity and the conditional probability of belonging to club

11



Figure 1. R&D intensity and conditional probability of belonging to club A
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A is - on average - absent. 16 Therefore, only some industries in club B manage to suc-
cessfully capitalize on their higher R&D intensity by becoming a member of club A.

In Table 2, we further investigate this issue by looking at the transition probabilities
of industries switching technology clubs. As we saw, some industries in club B have
been rather successful in increasing R&D. These industries may try to make the shift
from club B to club A. In Table 2, we observe that over the sample period 8.37% of the
industries in club B manage to shift to club A. This means that 19 industries that were
before a member of club B, now joined club A. Average R&D intensity for this group
is 17.1% in the year they shift, compared to an average of 7.1% for the industries in
club B. We also find that 0.52% of the industries make the opposite move (a total of 10
industries, half of them in the Netherlands). 17

Table 2
Transitions between Technology Clubs

To
From A B

A 99.48 % 0.52 %
B 8.37 % 91.63 %

Most of the industry transitions from club B to A take place in Spain (where 10.34%
of the industries in club B become members of club A). The Netherlands and France
are close followers with 9.3% and 8.3%, respectively. However, we find no pattern as to

16 Correlation is 0.3 and insignificant.
17 There is no overlap among the industries that transition (i.e., there is no switching back and forth).
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when these transitions take place. Among the industries that became a member of club
A, the office machinery industry stands out: over time, this industry became a member
of club A in almost all countries. A remaining question, beyond the scope of this paper,
is why some industries successfully use a strategy of high R&D growth, whereas others
use the same strategy without much success.

Overall, our results confirm the high discriminatory power of our model. As Figure
1 indicates, for the industries in club B, the maximum (average) conditional probability
of begin a member of club A is approximately 23% (Figure 1, right panel, right axis),
whereas for the industries in club A, the minimum (average) conditional probability of
being a member of club A is approximately 85% (Figure 1, left panel, right axis). Indeed,
this explains the low number of club transitions over our sample period.

4.2. How do industries grow?

Now that we have identified two technology clubs, we want to find out how indus-
tries in each technology club grow. To this purpose, we decompose output growth into
three components, using equation (8): input growth, technical growth and efficiency
growth. In Section 3, we explained that output growth patterns are markedly differ-
ent across industries. Hence, we analyze the output growth components in detail, by
distinguishing different growth patterns within each technology club.

In Table 3, we break down the industries in each technology club according to their
growth pattern. We identify high-, medium- and low-growth industries by using the
33rd and 66th percentile of the total growth distribution as cut-off points.

Table 3
Output growth decomposition of high-, medium- and low-growth industries

output input technical efficiency
growth growth growth growth

K L
Club Growth obs.

A High 680 0.094 0.077 0.000 0.014 0.004
(0.323) (0.325) (0.012) (0.001) (0.016)

Medium 681 0.016 0.004 -0.002 0.014 0.000
(0.005) (0.008) (0.006) (0.001) (0.007)

Low 563 -0.133 -0.138 -0.005 0.014 -0.004
(0.721) (0.721) (0.017) (0.001) (0.017)

B High 48 0.244 0.246 0.001 -0.006 0.004
(0.648) (0.649) (0.005) (0.005) (0.010)

Medium 26 0.015 0.020 -0.002 -0.006 0.003
(0.004) (0.010) (0.003) (0.005) (0.010)

Low 144 -0.089 -0.081 -0.002 -0.006 0.000
(0.288) (0.290) (0.007) (0.005) (0.003)

Standard deviations in brackets (standard errors from frontier estimation for technical growth);
high growth > 66th percentile of the total growth distribution; low growth < 33rd percentile of the
total growth distribution.
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From Table 3, we can draw the following conclusions. First, high growth industries in
both technology clubs benefit from efficiency growth. Efficiency growth increases con-
sistently with total output growth. Capital accumulation is important for high-growth
industries, and in particular for industries in club B. This finding is not surprising, given
the latter club’s high marginal rate of technical substitution, which makes capital ac-
cumulation an attractive growth strategy. Second, medium growth industries in both
technology clubs appear to substitute labor for capital. Once these industries start ex-
periencing high growth, capital accumulation continues, but no longer at the expense
of labor. Third, especially in technology club B, low (i.e., negative) growth is almost
completely the result of capital depletion.

On the whole, there seems to be considerable heterogeneity in the growth patterns
across technology clubs. Technical change is a crucial component for growth for the
industries in club A, while input (capital, in particular) growth plays an important role
in both technology clubs. These findings are consistent with Koop, Osiewalski, and Steel
(1999), Koop (2001), Kumar and Russell (2002) and Limam and Miller (forthcoming). 18

Next, we explore whether our results support a number of economic theories. Our
discussion is mainly organized around the following three questions.

Is there any evidence of leader-follower behavior?
Our decomposition results, and in particular the differences we observe with respect

to technical growth and efficiency, may shed some light on leader/follower models
of technical growth. A body of research has examined whether technology spills over
across countries, via R&D and trade. In these models, all countries have access to the
same technology and the leader country, ie., the country with the highest TFP growth in
an industry, develops a new technology while the rest of the countries (followers) can
imitate the technology (Scarpetta and Tressel, 2002; Griffith, Redding, and van Reenen,
2004; Cameron, Proudman, and Redding, 2005).

In our model, leaders in club A operate on, or close to the frontier, and they can try
to push the frontier further outward through technical growth. Leaders in club B also
operate on, or close to their own frontier, but they have an additional means of improv-
ing their technology: they can try to switch to club A. In both technology clubs, follower
industries that do not immediately adopt new technologies may be left behind, unless
they manage to increase efficiency and move closer to the output frontier. Therefore,
support of the leader-follower model would imply in our case technical growth accom-
panied by improvements in efficiency.

For technology club A, our results provide clear evidence in favor of the leader-
follower model. We find positive and significant technical growth of 1.4%. At the same
time, Figure 2 shows that average efficiency in club A increases by approximately 7%
(from 84% to 91%) while the spread (standard deviation) of efficiency decreases.

In club B, technical growth is not significantly different from zero. As a result, within
club B, we do not find any support of leader-follower behavior as there is no evidence
of technical growth accompanied by improvements in efficiency. However, as discussed
above, leaders in club B may try to shift to club A. Our estimation results in Table 1

18 Kumar and Russell (2002) use data envelopment analysis (DEA).
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Figure 2. Efficiency patterns

0
.0

2
.0

4
.0

6
.0

8
sd

.8
5

.9
.9

5
1

m
ea

n

1980 1986 1992 1997

A

0
.0

2
.0

4
.0

6
.0

8
sd

.8
5

.9
.9

5
1

m
ea

n

1980 1986 1992 1997

B

Value added weighted mean results

mean efficiency (left y−axis) sd efficiency (right y−axis)

(lower section) have shown that increasing R&D spending is a means of achieving this
shift. In our discussion of the transition probabilities in Table 2, we indeed found that
approximately 18% of the industries in club B manage to shift to club A. However, few
industries in this club manage to follow the leaders of club A by switching to this more
advanced technology club.

Does openness increase efficiency?
It is often argued in both the international economics (Melitz, 2003) and the indus-

trial organization literature (Caves and Barton, 1990) that increased openness to trade
should be positively related with increases in productivity and/or efficiency. Higher
exposure to trade facilitates the imitation of an advanced foreign technology and/or
places greater pressure on the industries to adopt best practice technologies and im-
prove efficiency in order to cope with competition. 19 In Figure 3, we investigate this by
comparing openness to trade (defined as the sum of industry imports and exports over
value added) with the level of efficiency, for the industries in club A. 20

Broadly speaking, our results are in line with Koop (2001), who states that openness
does not correlate well with efficiency. Apparently, openness to trade does not wipe out
inefficient industries. However, our results provide some indication that there is a pos-

19 See Connolly (1998), Keller (2002) and Hallward-Driemeier, Iarossi, and Sokoloff (2002).
20 We also considered using only the import shares, and results are qualitatively similar. Comparing openness
to the change in efficiency also does not change our findings. Likewise, including the industries in club B does
not alter our conclusions.
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Figure 3. Efficiency and openness to trade
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itive relationship once exposure to openness becomes very substantial. Alternatively,
this result might merely corroborate findings in new international economic theory that
emphasize the positive effects of openness on firm-level productivity of the very few
firms that actually account for the major share of trade flows (Helpman, 2006). 21

Is there any evidence of technological catch-up?
A frequently expressed hypothesis is that less technologically advanced industries

can grow faster than advanced ones because they only need to copy the technology of
the latter. In our framework, we should observe catch-up as efficiency improvements.
The existence of two different frontiers makes it difficult to analyze this globally. There-
fore, we look within technology clubs.

In the preceding sections, we discussed the levels of efficiency of the two technology
groups. Compared to their own frontier, industries in club B are found to be efficient.
On the other hand, in club A, efficiency is quite dispersed. This group could move closer
to their frontier by becoming more efficient.

The evolution of the gap between the two technology clubs is also of interest to study.
Recall that industries in each of our two clubs (A and B) are benchmarked against their
own frontier, where industries in club A are compared to a higher frontier than indus-
tries in club B. Hence, the further away an industry in club A lies from its frontier, the
closer it is to the frontier of technology club B. As Figure 2 showed, the average effi-
ciency has increased in club A, while it is fairly stable in club B. Therefore, over our

21 Incorporating firm-level evidence beyond the already highly disaggregated industry-level data we use here
is, however, beyond the scope of this paper and we reserve the issue for further research.
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sample period, the difference between industries in both clubs has widened to a seem-
ingly insurmountable gap.

It is interesting to relate our findings with the past literature. Previous studies (Bernard
and Jones, 1996a,b; Gouyette and Perelman, 1997; Scarpetta and Tressel, 2002) find ev-
idence that there is little or no convergence in manufacturing. This is not supported
by our results. Neither are we in line with those studies which provide evidence of
strong convergence across all industries (Arcelus and Arocena, 2000; Boussemart, Briec,
Cadoret, and Tavera, 2006). The use of a latent class approach and highly disaggregated
industry-level data demonstrates the existence of diverse catch-up patterns in the EU
industrial sector. We find evidence that industries in club A catch-up by eliminating in-
efficiencies while industries in club B do not. In this respect, our findings are closer to
studies that use highly disagregated data and compare industries with similar technolo-
gies (e.g., Garcia Pascual and Westermann, 2002). A possible explanation for our finding
is that industries in club A have the capacity to absorb and assimilate advanced tech-
nology due to higher R&D spending. Indeed, the evidence in Figures 1 and 2 supports
this rather convincingly.

A follow-up question to ask at this point, is whether there is any evidence of catch-up
across countries. Figure 4 provides some prima facie evidence. In this figure, we compare
the (value added weighted) average efficiency of industries in club A at the beginning of
our sample, 1980, in each of our six countries with the subsequent growth of efficiency
over our sample period. If there is cross-country technology catch-up, we expect low
starting levels of efficiency to be accompanied by high, positive growth in efficiency,
and vice versa. Indeed, we find some evidence of technological catch-up. 22

Overall, our results highlight the importance of employing highly disaggregated man-
ufacturing data and comparing similar technologies when analyzing spillovers and
catch-up issues. The use of aggregated industry data may lead to serious aggregation
bias, as efficient and less efficient industries may erroneously be lumped together. Like-
wise, lumping industries with a low technology effort (in club B) with industries with
a high technology effort (in club A) may lead to a downward bias of the labor elasticity
of the latter. A case in point is our finding that, in technology club A, technology catch-
up indeed takes place, once we are able to distinguish between technology clubs using
highly disaggregated industry data. In this respect, our modeling strategy of combining
a stochastic frontier production function with a latent class structure provides useful
insights.

5. Conclusion

This paper investigates the forces driving output growth in a panel of manufacturing
industries over the period 1980-1997. Relevant past studies typically assume that (i) in-
dustries use resources efficiently, and (ii) the underlying production technology is the
same for all industries. We address these issues by estimating a stochastic frontier model
which explicitly accounts for inefficiency, augmented with a latent class structure which

22 We exclude industries of club B from this part of the analysis, since, as we have seen in previous section,
efficiency is stable over the sample period in that club (which contains 18% of our sample).
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Figure 4. Cross-country catch-up

Finland

France

Germany

Italy
Netherlands

Spain

−2
−1

0
1

2
gr

ow
th

 in
 e

ffi
ci

en
cy

.89.9.91.92.93.94
mean efficiency in 1980

Value added weighted numbers for industries in club A, growth in percentages

allows for production technologies to differ across classes of industries. Class member-
ship is estimated conditional on R&D intensity. This framework allows us to explore
whether industries use different technologies, the sources of output growth in each tech-
nology club, potential technology spillovers and catch-up issues across industries and
countries.

Our results support the existence of two technology clubs. There seems to be consid-
erable heterogeneity in growth patterns across technology clubs. Technical change is a
crucial component for growth for industries in the technologically advanced club, while
input (capital, in particular) growth plays an important role in both technology clubs.
Switching from one club to another is possible and it depends on the technological ef-
fort of the industries. Some evidence of technology spillovers and catch-up is found
only within the technologically advanced club, while the distance between the clubs
has been enlarged over time. Finally, within the technologically advanced club, we also
find some evidence of cross-country catch-up.

Our findings have important policy implications. Policy makers generally agree that
higher R&D spending is desirable and are willing to subsidize and/or give tax credits
to industries that engage in R&D. According to our results, the effects of an increased
R&D effort depend on the allocation of R&D tax credits/subsidies. In both technology
clubs, we find some evidence of a positive relationship between R&D and efficiency.
Therefore, a preliminary conclusion can be that increasing the R&D effort facilitates the
absorption of existing technologies. For industries in the less technologically advanced
club, in rare cases, this may involve the adoption of an existing, superior technology.
However, increases in R&D effort do not always lead to increased technical growth.
For industries in the technologically less advanced club, no technical growth is to be
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expected. In fact, we find that if R&D spending is to enhance technical growth, it should
be aimed at efficient industries in the technologically advanced club.
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Appendix: Data and Sources

Value-Added (Y): gross value-added expressed in 1995 constant prices (euros). Gross
value-added was deflated by implicit value-added deflators to yield deflated gross value-
added expressed in 1995 constant prices (euros). We follow the OECD (2002) practice
for the construction of the implicit value-added deflators. Data on gross value-added
are retrieved from the OECD (2002) Structural Analysis Database (STAN).

Physical capital (K): gross capital stock expressed in 1995 constant prices (euros).
Following common practice in the literature (e.g. Hall and Jones, 1999), we employ
the perpetual inventory method to construct a proxy for capital stock, using data on
gross fixed capital formation (GFCF). The initial value for the 1980 capital stock is
specified as K1980= GFCF1980/(g + ffi), where g is the average geometric growth rate
of the gross fixed capital formation (constant prices) series from 1970 to 1980 and δ
is the depreciation rate. Instead of assuming a constant depreciation rate, we use the
average service life (ASL) of capital per industry (ISDB98-methods used by OECD coun-
tries to measure stocks of fixed capital, OECD, 1993). Each industry’s capital stock is con-
structed as capital stock minus depreciated capital stock plus gross fixed capital for-
mation (Kt= (1− ffi) ∗Kt−1+GFCFt). Data on gross fixed capital formation (GFCF) are
retrieved from the OECD (2002) Structural Analysis Database (STAN).

Labor (L): annual total hours worked in an industry (in thousands). Data are re-
trieved from the Groningen Growth and Development Centre (GGDC, 2006) 60-Industry
Database.

Research and Development (R&D): R&D intensity, defined as R&D expenditures
to value-added ratio. Data on R&D expenditure are retrieved from the OECD (2002)
Business Enterprise Research and Development (BERD).

Imports (IMP), Exports (EXP), Trade (Openness): import flows, export flows, ex-
port+import flows scaled by value-added of the industry. The OECD (2002) Structural
Analysis Database (STAN) provides information per industry.
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Table A.1
Manufacturing Industries and Growth Rates of Output and Inputs

Y K L

industry FI FR DE IT NL ES FI FR DE IT NL ES FI FR DE IT NL ES

Food products 0.019 0.001 0.003 0.021 0.029 0.009 0.045 0.039 0.021 0.037 0.006 0.040 -0.027 -0.009 -0.011 -0.004 -0.016 -0.005
Textile products -0.039 -0.019 -0.006 0.010 -0.010 0.002 -0.007 0.025 0.044 0.021 0.026 0.047 -0.076 -0.048 -0.064 -0.022 -0.048 -0.030
Wood products 0.019 0.021 0.002 0.014 0.013 0.021 0.043 0.064 0.017 -0.002 0.091 0.060 -0.036 -0.025 -0.012 -0.024 -0.029 -0.009
Paper products 0.035 0.000 0.017 0.024 0.023 0.010 0.083 0.054 0.031 0.060 0.058 0.061 -0.019 -0.010 -0.009 -0.004 -0.011 0.014
Petroleum products 0.032 -0.084 -0.010 -0.039 0.017 0.030 0.251 -0.040 0.074 0.001 0.043 0.223 -0.011 -0.038 -0.065 -0.019 -0.011 -0.015
Chemicals 0.037 0.019 0.020 0.046 0.039 0.030 0.084 0.052 0.043 0.057 0.092 0.090 -0.009 -0.020 -0.016 -0.019 -0.012 -0.013
Pharmaceuticals 0.037 0.019 0.020 0.046 0.039 0.030 0.068 0.123 0.051 0.138 0.075 0.102 -0.009 -0.020 -0.016 -0.019 -0.012 -0.013
Rubber/plastics 0.035 0.019 0.032 0.024 0.048 0.030 0.031 0.085 0.060 0.029 0.056 0.073 -0.006 -0.011 0.009 0.009 0.010 0.005
Mineral products 0.014 0.010 -0.002 0.013 0.008 0.026 0.047 0.012 0.018 0.035 0.071 0.047 -0.027 -0.029 -0.023 -0.007 -0.019 -0.017
Iron and steel 0.047 0.012 0.008 0.019 0.013 0.039 0.109 0.012 0.032 0.026 0.058 0.118 -0.017 -0.038 -0.037 -0.028 -0.025 -0.034
Non-ferrous metals 0.047 0.012 0.008 0.019 0.013 0.039 0.093 0.083 0.080 0.074 0.084 0.145 -0.017 -0.038 -0.037 -0.028 -0.025 -0.034
Fabricated metal 0.057 0.012 0.007 0.020 0.022 0.039 0.087 0.037 0.022 0.043 0.048 0.080 0.011 -0.020 -0.007 -0.013 -0.006 0.003
Machinery 0.039 0.012 0.010 0.005 0.028 0.025 0.051 0.053 0.025 0.024 0.057 0.092 -0.009 -0.022 -0.019 -0.013 -0.001 -0.002
Office machinery 0.167 0.012 0.109 0.036 0.020 0.020 0.311 0.044 0.104 0.056 0.258 0.178 0.026 0.012 -0.008 0.009 -0.014 0.021
Electrical machinery 0.046 0.012 0.031 0.040 0.020 0.026 0.051 0.042 0.073 0.082 0.144 0.079 -0.006 -0.008 -0.009 -0.010 -0.020 -0.011
Communication 0.210 0.012 0.035 0.040 0.020 0.021 0.133 0.064 0.077 0.117 0.310 0.138 0.064 -0.032 -0.039 -0.020 -0.013 -0.034
Precision instruments 0.097 0.012 0.017 0.036 0.008 0.025 0.097 0.036 0.022 0.011 0.064 0.161 0.020 -0.014 -0.014 -0.005 -0.021 0.002
Motor vehicles 0.022 0.015 0.027 0.015 0.023 0.026 0.051 0.043 0.034 0.075 0.017 0.120 -0.010 -0.037 0.000 -0.038 0.011 0.001
Ships and boats 0.004 0.029 0.052 0.010 0.008 0.021 0.092 0.135 0.117 0.099 0.066 0.220 -0.046 -0.031 -0.061 -0.024 -0.051 -0.013
Aircraft and spacecraft 0.043 0.029 0.052 0.010 0.008 0.021 0.133 0.010 0.062 0.039 0.176 0.072 0.036 -0.016 0.002 0.032 -0.044 0.042
Manufacturing n.e.c. 0.010 0.012 -0.002 0.010 0.011 0.023 0.110 0.052 0.018 0.022 0.099 0.053 -0.026 -0.025 -0.020 -0.005 -0.011 -0.016
Note: FI, FR DE IT NL ES stand for Finland, France, Germany, Italy, Netherlands and Span, respectively.
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Table A.2
Manufacturing Industries and Technology Classes

All years FI FR DE IT NL ES
Manufacturing Industries ISIC code (Rev.

3)
A B A B A B A B A B A B A B

Food products 15-16 108 0 0 18 18 0 18 0 18 0 18 0 18 0
Textile products 17-19 108 0 18 0 18 0 18 0 18 0 18 0 18 0
Wood products 20 108 0 18 0 18 0 18 0 18 0 18 0 18 0
Paper products 21-22 98 10 18 0 14 4 18 0 18 0 18 0 12 6
Petroleum products 23 59 49 18 0 5 13 18 0 0 18 18 0 0 18
Chemicals 24 less 2423 95 13 18 0 18 0 18 0 18 0 5 13 18 0
Pharmaceuticals 2423 61 47 18 0 0 18 18 0 2 16 18 0 5 13
Rubber/plastics 25 108 0 18 0 18 0 18 0 18 0 18 0 18 0
Mineral products 26 105 3 18 0 18 0 18 0 18 0 15 3 18 0
Iron and Steel 271+2731 108 0 18 0 18 0 18 0 18 0 18 0 18 0
Non-ferrous Metals 272+2732 108 0 18 0 18 0 18 0 18 0 18 0 18 0
Fabricated metal 28 108 0 18 0 18 0 18 0 18 0 18 0 18 0
Machinery 29 108 0 18 0 18 0 18 0 18 0 18 0 18 0
Office machinery 30 74 34 18 0 3 15 18 0 18 0 11 7 6 12
Electrical machinery 31 105 3 18 0 18 0 18 0 18 0 15 3 18 0
Communication 32 95 13 15 3 18 0 18 0 18 0 8 10 18 0
Precision instruments 33 81 27 18 0 18 0 18 0 18 0 0 18 9 9
Motor vehicles 34 108 0 18 0 18 0 18 0 18 0 18 0 18 0
Ships and boats 351 90 18 18 0 18 0 18 0 18 0 0 18 18 0
Aircraft and spacecraft 353 89 19 18 0 18 0 18 0 18 0 0 18 17 1
Manufacturing n.e.c. 36+37 108 0 18 0 18 0 18 0 18 0 18 0 18 0

Total 2032 236 375 3 328 50 378 0 344 34 288 90 319 59

χ2 495 60 298 n.a. 356 282 249
A = technology club A, B = technology club B. χ2 is Pearson’s chi-squared statistic for the hypothesis that the rows and columns
in a two-way table are independent.
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