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Impact of Air Pollution on Birth Outcomes: Causal

Evidence from India∗

Shashank Misra† Shobhit Kulshreshtha‡

Abstract

India consistently ranks among the countries with the highest levels of ambient air

pollution worldwide. At the same time, it faces significant challenges in neonatal health,

with newborns having low average birth weights and a high incidence of being born

within the low birth weight (LBW) and very low birth weight (VLBW) category. Using

data from the Indian National Family Health Survey (NFHS), we examine the impact

of in-utero exposure to particulate matter on a number of birth weight indicators. We

exploit variation in wind direction during the in-utero period to capture quasi-random

variation in particulate matter exposure for each child. We find that reducing in-utero

PM2.5 exposure by one standard deviation would lead to 1.3% increase in average

birth weight, a 2.7 percentage point decrease in the incidence of LBW births and a 0.6

percentage point decrease in the incidence of VLBW births respectively. Drawing on

estimates from prior studies, we find that the observed improvements in both average

birth weight and reductions in LBW incidence from meeting WHO air quality standards

could yield substantial long-run economic benefits, potentially amounting to billions of

dollars annually in addition to broader gains in child health, cognition, and educational

outcomes.
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1 Introduction

India has experienced rapid economic growth over the past few decades, accompanied by a

significant increase in air pollution levels (Sicard et al., 2023). Air pollution, particularly

through particulate matter, has substantial adverse effects on the economy, contributing to

the loss of healthy years of life and increasing the burden of disease. In 2019 alone, air

pollution is estimated to have cost the Indian economy over $36 billion due to its negative

impact on human capital (WHO, 2024). Research has shown that air pollution can have a

negative effect on health and cognitive development of children (Balakrishnan & Tsaneva,

2021; Balietti et al., 2022), and a growing body of literature highlights the short- and long-

term consequences of fetal exposure to particulate matter on child health (Ai et al., 2023;

Palma et al., 2022). However, much of this literature focuses on developed countries, raising

concerns that the effects of pollution on child health may differ between developed and

developing countries contexts (Arceo et al., 2016). In this study, we examine the effect of

in-utero exposure to particulate matter (PM2.5) on neonatal health outcomes in India, using

birth weight as the primary health outcome.

Studying the impact of air pollution on neonatal outcomes in low- and middle-income

countries (LMICs) is essential for two main reasons (Currie et al., 2014). First, pollution

levels in these countries are often much higher than in high-income nations. For instance,

average PM2.5 exposure between 2010 and 2019 was 38 µg/m3 in India, compared to 10

µg/m3 in the United States over the period 2010–2019.1 This higher “dose” of pollution

exposure may result in effect sizes that differ substantially from those observed in high-

income countries, regardless of the specific outcome being measured. In support of this,

Arceo et al. (2016) find that the negative impact of pollution on infant mortality is greater

in a developing country such as Mexico than in the United States. Second, baseline maternal

health in developing countries is typically poorer, which may cause the effects of air pollution

on birth outcomes to be more heterogeneous. On one hand, poorer maternal health may

amplify the adverse effects of pollution on neonatal outcomes. On the other hand, it may

1These figures are computed using pollution data from the Goddard Earth Sciences Data and Information
Services Center (NASA) and the United States Environmental Protection Agency.
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obscure pollution’s effects, as other health complications during pregnancy could play a more

dominant role. This highlights the need for context-specific research in developing countries,

where vulnerabilities and exposure patterns differ. In the context of our study, India, despite

its recent economic growth, continues to perform poorly in terms of neonatal health. The

incidence of adverse birth outcomes in India is high not only relative to industrialized nations,

but also compared to other low- and middle-income countries (Marete et al., 2020).

In this study, we use birth weight as the primary indicator of child health. Birth weight

is a well-established predictor of short- and medium-term health outcomes (Hummer et al.,

2014; McGovern, 2019), and it also has long-term implications, including adult mortality

(Risnes et al., 2011). Beyond health, birth weight is closely linked to cognitive development,

educational attainment, and future earnings, making it a strong determinant of labor mar-

ket outcomes (Behrman & Rosenzweig, 2004; Black et al., 2007; Cook & Fletcher, 2015;

Royer, 2009). Improving birth weight yields substantial economic benefits through reduced

healthcare costs and increased productivity, as documented in both developed and develop-

ing countries (Alderman & Behrman, 2006; Almond et al., 2005). By estimating the effect of

in-utero exposure to air pollution on birth weight in India, our study offers valuable insights

into how early-life environmental conditions can shape human capital development in a low-

and middle-income country context.

We use two recent waves of the Indian Demographic and Health Survey (DHS), 2015–16

and 2019–21, to causally estimate the relationship between in-utero exposure to particulate

matter (PM2.5) and birth weight for children born between 2010 and 2019. A simple OLS

regression of birth weight on in-utero pollution exposure may produce biased estimates due

to omitted variable bias—such as unobserved local characteristics that affect both pollu-

tion levels and birth outcomes—and attenuation bias from measurement error. To address

these endogeneity concerns, we exploit quasi-random variation in pollution exposure during

gestation, driven by heterogeneity in wind patterns.

Using our instrumental variables (IV) strategy, we find that a one standard deviation

increase in PM2.5 exposure during pregnancy reduces birth weight by approximately 1.3%

relative to the sample mean of 2.8 kilograms—equivalent to a decrease of about 36.4 grams.
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In comparison, Pons (2022) find no significant average effect of PM2.5 on birth weight in

the United States, though they do observe a reduction of 28 grams in the lower tail of the

distribution. Similarly, Palma et al. (2022) find that an increase in PM10 levels by one

standard deviation in Italy reduces birth weight by 0.5%. Our results indicate a larger effect

size in the Indian context.

Furthermore, we estimate that reducing average in-utero PM2.5 exposure to the WHO-

recommended level of 10 µg/m3 would lead to a 5.4 percentage point decline in the incidence

of low birth weight (LBW), and a 1.2 percentage point reduction in the incidence of very low

birth weight (VLBW). Back-of-the-envelope calculations suggest that compliance with WHO

guidelines could generate economic gains exceeding $1 billion, solely from improvements in

neonatal health outcomes. These findings are robust across a range of alternative model

specifications and sensitivity tests addressing potential violations of the key assumptions

underlying our IV strategy.

We make a significant contribution to the growing literature on the health and economic

consequences of air pollution. Numerous studies have provided causal evidence on the ad-

verse effects of air pollution on short-, medium-, and long-run health outcomes (Almond et

al., 2009; Chay & Greenstone, 2003; Fan et al., 2023; Neidell, 2004; von Hinke & Sørensen,

2023). Others have highlighted its impacts on cognitive development and labor market out-

comes (Balakrishnan & Tsaneva, 2021; Isen et al., 2017; Sanders, 2012). Beyond health,

labor, and cognition, research has also explored how pollution affects crime, real estate mar-

kets, and time use (Bondy et al., 2020; Chay & Greenstone, 2005; Herrnstadt et al., 2021;

Jafarov et al., 2023). As noted by von Hinke and Sørensen (2023), much of the existing liter-

ature—particularly within economics—focuses on immediate birth-related health outcomes.

However, these studies have predominantly been conducted in industrialized countries due

to better data availability, leaving a gap in causal evidence from low- and middle-income

countries (Li & Zhang, 2024; Tang et al., 2024).

Using nationally representative Indian data, our study helps fill this gap by providing

causal evidence from a middle-income country characterized by high pollution levels and

poor neonatal health outcomes. To our knowledge, this is the first paper to causally examine
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the relationship between in-utero exposure to air pollution and a range of birth outcomes in

India—one of the most polluted countries globally. It is also only the second causal study

in India to contribute to the literature on the fetal origins hypothesis, which posits that

early-life environmental conditions, including in-utero exposure, have long-term effects on

health and human capital formation (Almond & Currie, 2011). The only other Indian study

we are aware of, Singh et al. (2019), examines postnatal anthropometric outcomes (e.g.,

height-for-age, weight-for-age) rather than neonatal birth outcomes.

We also contribute to the emerging body of research analyzing the impacts of pollution on

neonatal health in developing countries (Arceo et al., 2016; Bharadwaj & Eberhard, 2008;

Jayachandran, 2009; Li & Zhang, 2024). As previously discussed, this line of inquiry is

particularly important in low- and middle-income countries where higher pollution exposure

and poorer maternal health conditions may lead to different effect sizes and mechanisms

compared to high-income contexts. Our study enables meaningful comparisons with esti-

mates from other settings while offering India-specific insights that are crucial for public

health policy.

Our findings are especially timely and policy-relevant given the rising national and inter-

national attention on air quality in India (Murukutla et al., 2017). By linking our causal

estimates to prior literature on the economic costs associated with low birth weight, we also

provide back-of-the-envelope calculations that quantify the potential economic benefits of

improving in-utero air quality. These estimates offer a compelling case for stronger environ-

mental regulation and public health interventions aimed at mitigating the adverse impacts

of air pollution on early-life health.

The rest of the paper is structured as follows, Section 2 outlines the background in India

concerning pollution and health dynamics, Section 3 provides a brief description of the

data sources used in this study, Section 4 illustrates the identification strategy and model

specification, Section 5 reports the results and robustness of our estimates before we use our

point estimates to derive the costs of pollution arising from sub-optimal birth outcomes in

Section 6 and provide concluding remarks in Section 7.
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2 Background

We consider the case of India in this study because it exhibits a striking profile in both

dimensions of the relationship we are exploring, pollution levels and neonatal health out-

comes. In terms of pollution, all Indian states have PM2.5 levels exceeding the UN safe limit

of 10 µg/m3, an important measure of air pollutant (Balakrishnan et al., 2019). PM2.5 is

considered the main pollutant to assess the impact of air pollution on various health indi-

cators (Balietti et al., 2022). In addition, the Central Pollution Control Board of India2

considers the levels of particulate matter to be the most critical and general indicator of air

quality to make policy decisions (Greenstone & Hanna, 2014). Recently, it has been observed

that nearly 80% of the Indian population live in regions with annual PM2.5 concentration

levels of more than 40 µg/m3, which falls under the severe air pollution level category that

can induce health complications according to the World Health Organization (Balakrishnan

et al., 2019).

India also performs abysmally when it comes to indicators measuring neo-natal health.

Approximately 750 thousand neo-nates die in India every year, i.e., within the first month

of birth (Sankar et al., 2016). In addition, 60% of all children deaths under the age of

5 occur within the neo-natal phase (El Arifeen et al., 2017). Birth weight is a critical

indicator of neonatal health and India has one of the lowest average birth weight levels

not only in the world, but also among low- and middle-income countries (Marete et al.,

2020). India continues to have a high prevalence of births that fall into the Low Birth

Weight (LBW) category, estimated to be somewhere between 24 to 30 percent. The nation

accounts for 40 percent of all LBW births globally (Bhilwar et al., 2016; Sankar et al.,

2016). Given India’s dual burden of high ambient pollution and suboptimal neonatal health,

investigating the impact of in-utero exposure on birth weight is not only relevant, but vital to

uncovering the mechanisms through which environmental stressors in-utero shape early-life

health trajectories. The findings can also inform policy makers to improve public health and

mitigate children health problems due to air pollution in India.

2The Central Pollution Control Board (CPCB), established in 1974 under the Water (Prevention and
Control of Pollution) Act and later empowered by the Air (Prevention and Control of Pollution) Act of 1981,
serves as India’s national authority for monitoring and controlling environmental pollution.
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Medical literature has reported various mechanisms through which exposure to pollutants,

such as fine particulate matter, can impact in-utero fetal development and subsequently,

birth weight. Particulate matter exposure can cause pulmonary inflammation among moth-

ers, which can potentially disrupt oxygen supply and nutritional movement to the fetus,

resulting in pregnancy related complications and lower birth weight of children born to these

mothers (Sun et al., 2016). In addition, studies have argued that pregnant women can face

high oxidative stress that is caused by the presence of metals in the particulate matter. An

increase in oxidative stress is likely to hinder embryo growth, which can critically impact the

development of the child in the early stages of pregnancy (Kannan et al., 2007). Moreover,

increased oxidative stress can also cause the formation of DNA adducts within the placenta,

impairing the ability of the uterus to support fetal growth (Topinka et al., 1997). As an

additional mechanism, particulate matter exposure has also been linked to interference with

maternal hormones, with evidence that it can lead to maternal thyroid imbalances, which

in turn negatively impact birth-weight outcomes (Blazer et al., 2003; Janssen et al., 2017).

These mechanisms highlight the plausible biological pathways through which ambient pol-

lution, particularly PM2.5, can adversely influence fetal development and hence cause lower

birth weight. Together, these epidemiological patterns and biological mechanisms underscore

the urgency of examining the causal impact of ambient PM2.5 exposure on birth outcomes in

the Indian context, where both environmental and neonatal health vulnerabilities converge.

3 Data and Descriptive Statistics

3.1 Birth and Demographics Data

3.1.1 Birth Weight and Size

We obtain data on birth outcomes from the Demographic Health Survey (DHS) of India

which is a nationally representative repeated cross sectional survey covering key metrics

related to maternal and child health and nutrition in India. We use the last two waves of the
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DHS, which were conducted during the years 2015-2016 and 2019-2021, respectively3. The

women taking part in the survey who fall between the reproductive age of 15-49 are classified

as ‘eligible’ for questions on the health of their offspring, and are asked detailed questions

on births which took place in the last 5 years since the date of the survey. From the two

waves of the survey we have information on the birth weight of children born in the period

2010 to 2021.4 We exclude children born in 2020 and 2021 from our analysis, as we believe

that children born during the pandemic period might systematically vary from those born

prior to this period. Moreover, there can be other unobservable factors during the pandemic

period which may impact child health and the pollution level in the region. Therefore, we

restrict our analysis to births between the period 2010 and 2019. The final sample consists

of 322,340 children born during this period.

We are able to identify the birth weight of the children using the women’s questionnaire.

The respondents report birth weight (in grams) of the children born in the last 5 years, either

via a written medical card, which was recorded upon the birth of a child, or via recall. In our

sample, approximately 60% report the birth weight via the medical card, while the remaining

report the birth weight of their children via recall. The data enables us to construct three

measures of birth weight, 1) a continuous measure of birth weight, 2) a binary measure of

Low Birth Weight (LBW), which is 1 if the child was born with a weight of less than 2500

grams and 0 otherwise, and 3) a binary measure of Very Low Birth Weight (VLBW), which

is 1 if the child was born with a weight of less than 1500 grams and 0 otherwise. As an

additional outcome, we construct a variable that equals 1 if the size of the child at birth is

reported as average or above average, and 0 otherwise.

3We are unable to use the previous three waves since they do not hvae information on the exact location
of residence of respondents. A precise location of the respondent is crucial since we construct our measure
of in-utero pollution exposure by matching district level particulate matter levels over this period

4Our data on in-utero variables weather variables (such as wind, pollution and other weather variables)
spans from the years 2010-2019, hence, births in the first 9 months of 2010 are not included as in-utero data
for these births stretches into 2009.
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3.1.2 Demographics, and Socio-economic Background

DHS also provides information on various socio-economic and demographic characteristics of

the households that are surveyed. We include a number of mother and child characteristics.

Specifically, we include mother’s anemic level, mother’s BMI, age of the mother when child

was born, gender of the child, and birth order of the child. As birth weight has been shown

to be affected by the socioeconomic background of the mother and other characteristics of

the household in the Indian context (Kader & Perera, 2014), we control for these variables

in our baseline model. Specifically, we include wealth index to control for socio-economic

background.5 In addition, we include demographic characteristics such as religion and caste

of the household. We also include a binary variable for whether the mother lives in an urban

area or not. Moreover, the cooking fuel used by the family has been shown to influence the

exposure of children to indoor air pollutants (Pope et al., 2010). As a result, we also control

for a binary indicator taking the value 1 if the cooking fuel used by the household was dirty

and 0 otherwise.6

3.2 Pollution Data

Air pollution data are taken from the Goddard Earth Sciences Data and Information Services

Center (GES DISC) funded by NASA which provides a total surface mass concentration of

PM2.5 with spatial resolution of 0.5◦ × 0.625◦. The data is sourced from the MERRA-2

satellite. For our analysis, we obtained the monthly data for the Indian union for the period

2010 to 2019. For each year and month, we have calculated the average concentration of

PM2.5 at the district level. To construct in utero exposure to PM2.5, we computed the

10-month average concentration including the month of birth and nine months preceding it.

We make the assumption that the mother resided in the same district in which the child was

born during her pregnancy. We will discuss this assumption in more detail in Section 5.2.

5Wealth Index variable is provided on a 5 point scale ranging from 1 to 5 with 1 indicating the lowest
wealth level and 5 indicating the highest wealth level

6Dirty fuel sources include kerosene, coal, charcoal, wood, straw/shrubs/grass, agricultural crop waste,
and animal dung.
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3.3 Weather Data

3.3.1 Wind Direction

To gather information on wind direction—which influences the concentration of PM2.5 in

a district—we obtain wind data for India from the ERA5 hourly dataset on surface levels,

available through the Copernicus Climate Data Store. We use 10 daily observations of wind

direction at the surface level to construct district-wise monthly averages of both the share

of time the wind blew from each of the four cardinal directions, and the average wind speed,

based on the u- and v-components of wind data.7 The data are available at a resolution

of 0.25◦ × 0.25◦ (approximately 25 km × 25 km), enabling the construction of accurate

aggregated wind patterns for each district and month.

Following the method used to calculate in-utero PM2.5 exposure, we compute the 10-

month average of the share of time the wind blew from each of the four cardinal directions

during pregnancy and the month of birth of the child. This variable serves as an instrument

for in-utero exposure to PM2.5 concentration.

3.3.2 Temperature, Wind Speed, and Precipitation

In-utero weather conditions are known to influence fetal growth and development (Hong,

2025). Accordingly, we include weather controls such as mean temperature, wind speed,

humidity, and precipitation during the in-utero period. Incorporating these controls allows

us to account for the atmospheric conditions to which the fetus was exposed throughout

gestation. These data are obtained from the same source as the wind direction data—the

ERA5 hourly surface-level dataset provided by the Copernicus Climate Data Store—and are

constructed at the district-month level using 10 daily observations. In-utero weather vari-

ables are calculated by averaging the monthly values over the ten-month period comprising

the nine months preceding birth and the month of birth, consistent with the methodology

used to construct the pollution and wind direction variables.

7Details on how to convert the u- and v-components of wind into wind speed and direction are provided
in Appendix A.
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3.4 Descriptive Statistics

3.4.1 Regional and Temporal Variation: Pollution

Figure 1 illustrates regional patterns in particulate matter trends, based on average PM2.5

concentrations from 2010 to 2019. A clear north-south divide emerges, with significantly

higher pollution levels in northern states compared to the south. One major source of

pollution spikes is crop residue burning in the agricultural plains of North and Northwest

India, typically occurring between mid-October and early November to prepare fields for the

next harvest (Jain et al., 2014; Jethva et al., 2019). A second pollution wave affects the

Indo-Gangetic Plain from November to January, driven by secondary aerosol formation due

to increased biofuel use and waste burning, compounded by meteorological conditions that

trap pollutants (Kanawade et al., 2020; Saharan et al., 2024; Sen et al., 2017). Additionally,

dust storms in the Thar Desert during May to July elevate particulate levels in Northwestern

state of Rajasthan and adjacent regions.

In contrast, southern India experiences relatively stable pollution levels year-round, with

slight increases between November and April due to dry conditions. More generally, the

monsoon period, for which the exact month(s) of incidence varies for each region results

in improvements in particulate matter readings. The monsoon period is largely contained

between the months of June and September for most regions in India. Figure B1 in the

Appendix B presents the seasonal variation in average particulate matter concentration.

We observe that temporal patterns are in line with aforementioned descriptions, with the

Indo-Gangetic belt experiencing severe particulate matter pollution in the last quarter of

the year and the North-Western desert regions encountering pollution spikes in the hot and

dry summer months.
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Figure 1: Average PM2.5 concentrations across Indian districts

3.4.2 Regional and Temporal Variation: Wind Direction

Table 1 presents the average within- and between-district variation in wind direction, mea-

sured by the standard deviation of the share of wind coming from each direction across

districts within a region.8 We observe considerable variation in wind patterns both across

districts and over time within districts, indicating that there is substantial variation that can

be used for our identification strategy. The regional and spatial variation in wind patterns

implies that children born within the same region–month pair may be differentially exposed

to pollution due to exogenous wind patterns, thereby generating plausibly random variation

in in-utero PM2.5 exposure. Table 1 shows that approximately 15–19% of the variation in

wind direction shares arises between districts within the same region. The presence of sub-

stantial cross-district variation within the same regions supports our identification strategy,

which leverages wind direction as an instrument and includes region-by-month of birth fixed

effects.

8Following the approach by Deryugina et al. (2019), we divide India into 30 regions using a K-means clus-
tering algorithm based on district centroid coordinates, in order to create clusters of uniform size. Figure C1
displays the resulting clusters.
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Table 1: Decomposition of Wind Direction Share Variation: District-Level Averages by
Region

Direction Overall SD Between SD Within SD Between (%) Within (%)

North 0.1327 0.0478 0.1197 18.72 81.28
East 0.1945 0.0603 0.1781 16.01 83.99
South 0.2527 0.0749 0.2347 15.02 84.98
West 0.1555 0.0511 0.1429 16.04 83.96

Notes: This table decomposes the standard deviation of district-level wind direction shares
into between- and within-district components averaged across regions. Between SD reflects
cross-sectional variation across districts within each region, while Within SD captures average
temporal variation within districts. Percentages indicate the share of total variance attributed
to each source.

3.4.3 Summary Statistics

Table 2 presents summary statistics for the sample of children used in our baseline analysis.

The average birth weight in the sample is approximately 2,800 grams, with 17% of children

classified as having low birth weight (LBW) and 1% as very low birth weight (VLBW).

Nearly 90% of children were reported to be of average or above-average size at birth. The

lower value of birth order (2.07) indicates that the majority of children were either first-

or second-born. Approximately 48% of the children in the sample were female. Regarding

household characteristics, about 59% of households used dirty cooking fuel, highlighting the

importance of controlling for this variable. On average, in-utero exposure to PM2.5 was 40

µg/m3, which exceeds the levels recommended by the World Health Organization (WHO).

Other household and demographic characteristics used as covariates are also reported.

Table 3 reports the summary statistics for our PM2.5 data with other weather variables

such as wind speed, temperature, and precipitation at the month-district level, spanning

from the years 2010-2019. We observe a clear pattern of extremely high average PM2.5

levels, with a sizable share of all of our district-month pairs having PM2.5 levels which fall

within the ‘severe’ category as defined by the WHO.
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Table 2: Summary Statistics: DHS Sample

Variable Mean SD Min Max

Mother and Child Characteristics
Birth Weight (grams) 2,825.25 582.11 500 9,000
LBW 0.167 0.373 0 1
VLBW 0.010 0.100 0 1
Size is Average or Above 0.896 0.306 0 1
Mother is Anemic 0.824 0.826 0 3
Mother’s BMI (×100) 21.642 3.954 12.02 59.99
Mother’s Age at Birth 25.023 4.792 11 49
Child’s Birth Order 2.071 1.205 1 6
Female Birth 0.478 0.500 0 1

Religion
Hindu 0.764 0.425 0 1
Muslim 0.114 0.318 0 1
Christian 0.079 0.269 0 1
Other Religion 0.043 0.203 0 1

Caste
Scheduled Caste 0.202 0.402 0 1
Scheduled Tribe 0.204 0.403 0 1
OBC 0.408 0.491 0 1
Other Castes 0.387 0.487 0 1

Household
Urban 0.241 0.428 0 1
Wealth Index 2.830 1.376 1 5
Dirty Cooking Fuel 0.589 0.492 0 1

Pollution Exposure
PM2.5 In-utero (µg/m3) 39.837 14.678 4.739 94.203

Number of Observations 322,340

Notes: Sample includes children born between 2010–2019 from waves 4 and 5
of DHS. BMI Variable from DHS is scaled by 100 for readability. Household
level cooking fuel has over 10 categories; we summarize it as a binary indicator
for use of dirty fuel sources: kerosene, coal, charcoal, wood, straw/shrubs/-
grass, agricultural crop waste, or animal dung.
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Table 3: Summary Statistics: Weather and Pollution Variables

Variable Mean SD Min Max

Wind Shares
East Share 0.228 0.219 0 1
North Share 0.135 0.180 0 1
South Share 0.417 0.278 0 1
West Share 0.220 0.205 0 1

Weather
Temperature (K) 298.001 8.724 246.784 311.945
Wind Speed (m/s) 3.413 1.841 0.379 11.018

Pollution
PM2.5 (µg/m3) 38.064 21.829 1.751 174.547

Number of Observations 71,160
PM2.5 > 35 (µg/m3) 33,051 observations (45%)

Notes: Summary based on merged monthly panel of 71,160 district-
year-month observations (2010–2019). PM2.5 values above 35 µg/m3

are considered above severe byWHO standards. Wind shares represent
the proportion of time wind blew from a particular 90-degree bin using
10 daily observations. Summary table reported based on all Indian
districts except for Lakshwadeep for which the data is missing.

4 Methodology

To estimate the relationship between in-utero pollution exposure and birth outcomes we use

the following equation:

Yidrmt = β PM2.5i(d,m,t) + λXi + νWi(d,m,t) + δmr + γt + ϵidrmt (1)

where the dependent variable is the birth outcome of the child i, born in district d of

region r, in month m of year t.9 The key variable of interest is PM2.5, which measures in-

utero exposure to air pollution and is constructed as the average particulate matter (PM2.5)

concentration in the child’s district over the month of birth and the nine preceding months of

gestation. The parameter of interest, β, captures the effect of particulate matter exposure on

the selected birth outcome. X andW are a vector of socio-demographic and in-utero weather

9The regions as defined in Section 3.4 are construed using the K-means clustering algorithm. We divide
India into 30 region clusters which is similar to previous studies which have used this method in the Indian
context (Balietti et al., 2022; Jafarov et al., 2023).
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controls respectively, as defined in Sections 3.1.2 and 3.3.2. Our specification includes region-

by-month-of-birth fixed effects (δmr(d)), which control for region-specific seasonal confounders

that systematically influence birth outcomes as well as year-of-birth fixed effects to control

for year-specific shocks that may affect all individuals born within the same cohort.

In a large country like India, seasonal trends vary substantially across regions. Conse-

quently, factors such as cultural factors, labor market dynamic, income and consumption

patterns differ not only across months but also across areas of the country. Incorporat-

ing region-by-month-of-birth fixed effects allows for greater flexibility in capturing seasonal

un-observables that differ across regions, compared to a specification with only a month-

of-birth fixed effects, which assume seasonal patterns are uniform nationwide. These fixed

effects together imply that our identification comes from variation in pollution exposure

among children born within the same region-month pair, while controlling for aggregate

nation-wide year-specific confounders.

Despite the inclusion of a comprehensive set of controls and fixed effects, several potential

confounders may still bias our estimate of the β parameter by simultaneously affecting both

pollution exposure and birth outcomes. These include time-varying factors such as changes

in industrialization, which can influence pollution levels while also improving birth outcomes

through enhanced access to healthcare (Sanders, 2012). In such cases, our estimate of β may

be biased downward. Moreover, prior health conditions and unobserved behavioral choices

during pregnancy may influence relocation decisions. These decisions, in turn, affect pollu-

tion exposure while also directly impacting child health, thus introducing endogeneity. In

rural areas, practices such as crop residue burning can simultaneously elevate local pollution

levels and reduce soil fertility, which negatively affects farm income and potentially child

health, thereby confounding the relationship of interest (Singh et al., 2019). In addition, as

our analysis relies on satellite-derived pollution data, we are unable to measure individual-

level exposure with high precision. While these data enable the construction of district-level

estimates of ambient PM2.5 concentrations linked to DHS respondents, they are available at

a relatively coarse spatial resolution. This limitation introduces potential measurement error

in estimating localized pollution exposure, which may result in attenuation bias, leading to

estimates of β that are biased toward zero.
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To address the endogeneity concerns in our main specification, we employ an instrumental

variables (IV) strategy following Balietti et al. (2022) and Deryugina et al. (2019). Specifi-

cally, we exploit quasi-random variation in in-utero exposure to PM2.5 induced by prevailing

wind directions during the gestation period. The first-stage equation is specified as follows:

PM2.5idrmt =
30∑
r=1

ρr1Share
S
i(d,m,t) +

30∑
r=1

ρr2Share
N
i(d,m,t) +

30∑
r=1

ρr3Share
E
i(d,m,t)

+ αXidrmt + ωWi(dmt) + δmr + γt + εidrmt

(2)

We rely on wind patterns to provide exogenous variation in particulate matter levels, driven

by the direction of wind flows. In our first-stage equation, we instrument a child’s in-utero

exposure to particulate matter using the share of time the wind blew from the North, East,

and South (ShareN , ShareE, and ShareS, respectively) during the in-utero period in the

child’s district of residence. Wind from the West serves as the reference category to avoid

multicollinearity and to enable meaningful interpretation of the coefficients. We allow the

effects of wind direction to vary by region. All other covariates and fixed effects remain as

specified in Equation 1.

A potential threat to our identification strategy is the absence of within-region varia-

tion in wind direction across districts. However, the regional and spatial variation in wind

patterns, as shown in Table 1, suggests that this concern is unlikely to affect our analysis.

Our main specification includes region-by-month-of-birth fixed effects, meaning that the es-

timated impact of in-utero particulate matter exposure is identified from variation among

births occurring in the same region and month. If temporal and spatial wind patterns were

uniform across all districts within a region, our instrument would fail to capture sufficient

exogenous variation in pollution levels attributable to wind trajectories. The observed vari-

ation in wind patterns reinforces the validity of our identification strategy by demonstrating

that wind-driven differences in pollution exposure are likely to persist even after accounting

for the fixed effects embedded in our model.

Another potential threat to our identification strategy arises if the regions are too small,

causing the wind instruments to reflect primarily local pollution sources. In such cases,

wind patterns may capture emissions from nearby sources that are likely correlated with
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unobserved, time-varying determinants of birth outcomes, thereby reintroducing endogeneity.

To mitigate this concern, we define regions that are sufficiently large so that wind instruments

capture variation in pollution driven by non-local sources—i.e., emissions originating outside

the immediate area. Our first-stage specification allows the effects of wind direction to vary

only at the regional level, imposing a uniform impact across all districts within a region. This

restriction helps ensure that the variation in pollution captured by our instruments reflects

broader, regional air flows rather than localized sources. However, defining regions that are

too large may violate the monotonicity assumption, as wind from a given direction could

have heterogeneous effects across distant districts within the same region. To assess the

robustness of our identification, we repeat the analysis using alternative region definitions

based on different numbers of clusters.

To causally capture the relationship between PM2.5 pollution and birth outcomes based

on our instrument, it must hold that wind direction impacts birth outcomes only through

its influence on pollution levels. This assumption is plausible, as wind direction itself is a

natural and quasi-random meteorological phenomenon that is unlikely to directly affect fetal

development or correlate with other determinants of birth outcomes. Based on our first stage

fitted values, the second stage specification is the following:

Yidrmt = β P̂M2.5i(d,m,t) + λXidrmt + νWi(d,m,t) + δmr + γt + ϵidrmt (3)

Equation (3) follows the same structural form as Equation 1, with the key distinction that

the main explanatory variable, P̂M2.5, represents predicted in-utero PM2.5 exposure values

obtained from the first-stage regression. We use a Linear Probability Model (LPM) to esti-

mate the relationship between binary outcomes, including LBW and VLBW, and pollution

exposure. We choose LPM because it is able to accommodate multiple fixed effects and

produces marginal effects that are straightforward to interpret. In addition, LPM with fixed

effects tends to provide more accurate probability estimates in cases of rare outcomes, as in

our study, compared to alternative binary outcome models with fixed effects, such as fixed

effects logit (Timoneda, 2021). In the results section that follows, we present both OLS

estimates based on Equation 1 and IV estimates based on Equation 3.
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5 Results

5.1 Baseline Results

Panel A of Table 4 presents OLS results based on Equation 1, while Panel B reports IV

estimates from Equation 3 for three outcomes: birth weight (in grams), an indicator for low

birth weight (LBW), and an indicator for very low birth weight (VLBW). Using our causal

IV estimates, we find that a one standard deviation decrease in PM2.5 exposure during the

gestational period (15 µg/m3) is associated with a 1.3% increase in birth weight relative to

the mean, and a 2.7 and 0.6 percentage point reduction in the incidence of LBW and VLBW,

respectively, holding other factors constant. A one standard deviation change in ambient

PM2.5 exposure also explains 6.4%, 7.2%, and 6% of the standard deviation in birth weight,

LBW, and VLBW, respectively. Compared to existing estimates, we find that a one standard

deviation increase in in-utero exposure to PM2.5 reduces birth weight by approximately 36.4

grams in India. This effect is substantially larger than the statistically insignificant average

impact found for the United States, where only a 28 grams reduction was observed at the

lower tail of the birth weight distribution (Pons, 2022) and is higher than the 0.5% reduction

in birth weight associated with a one standard deviation increase in PM10 exposure in Italy

(Palma et al., 2022).

Our OLS estimates are consistently smaller in magnitude than the corresponding IV es-

timates across all birth outcome indicators. This suggests that the OLS estimates may be

biased downward due to unobserved confounders and/or attenuation bias arising from mea-

surement error, as discussed in the previous section. A simple Hausman test confirms that

the difference between OLS and IV estimates is statistically significant for the LBW and

VLBW outcomes, but not for the continuous birth weight measure. This indicates that

endogeneity and measurement error may be more pronounced in the case of binary birth

weight indicators. Nevertheless, both the OLS and IV estimates are statistically significant

across all birth outcomes. These findings underscore the economically and statistically sig-

nificant impact of ambient air pollution on birth outcomes and highlight the importance of

addressing in-utero environmental exposures as a means of improving early-life health.
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Table 4: Effect of PM2.5 Exposure on Birth Outcomes: OLS and IV Estimates

Panel A: OLS Estimates
Dependent variable: Birth Weight LBW VLBW

PM2.5 Exposure -1.759*** 0.001*** 0.0001**

(0.389) (0.0002) (0.00004)

Controls Yes Yes Yes
Region×Month of Birth FE Yes Yes Yes
Year of Birth FE Yes Yes Yes
Mean of Dependent Variable 2825 0.17 0.01
Observations 322,340 322,340 322,340
Adjusted R2 0.053 0.016 0.002

Panel B: IV Estimates
Dependent variable: Birth Weight LBW VLBW

Instrumented PM2.5 Exposure -2.629*** 0.002*** 0.0004***

(0.717) (0.0004) (0.0001)

First Stage F-statistic 129 129 129
Controls Yes Yes Yes
Region×Month of Birth FE Yes Yes Yes
Year of Birth FE Yes Yes Yes
Mean of Dependent Variable 2825 0.17 0.01
Observations 322,340 322,340 322,340

Notes: Clustered robust standard errors at the district level are re-
ported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. F-statistics
reported are heteroskedasticity-robust F-statistics, based on a joint sig-
nificance test of excluded instruments, with standard errors clustered
at the district level from the first stage.

5.2 Robustness Checks

To test the reliability of our findings and demonstrate the robustness of our identification

strategy, we conduct a comprehensive set of robustness and sensitivity checks. This section

addresses potential methodological concerns and outlines the steps we take to ensure that

our results are not driven by alternative explanations or model assumptions.

5.2.1 Concerns Related to Instrumental Variable Assumptions

Monotonicity: As discussed in Section 4, there is a trade-off in selecting the optimal

size of regions over which the wind instruments are allowed to vary. By restricting the

impact of wind direction coefficients to be uniform across all districts within a region, we

aim to ensure that our instruments primarily capture variation in pollution from non-local
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sources—that is, pollution originating from outside the region. However, increasing the size

of these regions may risk violating the monotonicity assumption, as the same wind direction

could have heterogeneous effects on different districts within a region. Such heterogeneity

could compromise the validity of our IV strategy, making it essential to test this assumption.

To address this concern, we conduct several robustness checks. Specifically, we reduce the

size of the regions by increasing the number of them and re-estimate the first-stage fitted

values of in-utero pollution exposure. This approach, adopted in several prior studies using

similar IV strategies, rests on the logic that with smaller regions, it becomes less likely that a

given wind direction affects districts in systematically different ways—thereby reducing the

likelihood of monotonicity violations. Figures C2, C3, and C4 in the Appendix present the

IV coefficient estimates for our three birth outcomes, using alternative specifications with

40, 50, and 60 regions. The results remain robust across these specifications, lending support

to the validity of the monotonicity assumption in our setting.

Hierarchical Clustering: To test the robustness of our results to the method of region

construction, we employ an alternative deterministic clustering algorithm—hierarchical clus-

tering—to form 30 regions. We then re-estimate our main results using this alternative re-

gional specification. As shown in Panel A of Table 5, the coefficients obtained from this

approach are similar to those from our baseline model, suggesting that our findings are not

sensitive to the specific clustering method used.

First Stage using District-Month-Year Pairs: n our baseline IV specification, we use

the average wind direction shares over the 10-month in-utero period as instruments for the

corresponding average in-utero pollution exposure. However, aggregating wind patterns

over such a long duration may smooth out important month-to-month variation, potentially

weakening the first-stage relationship. To address this concern, we adopt a more granular

approach by predicting monthly pollution levels at the district level using district-month-

year-specific wind patterns. These predicted monthly pollution levels are then aggregated

over the gestational period for each child, based on their district of residence. The first-stage

regression used to estimate monthly pollution is specified as follows:
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PM2.5drmt =
30∑
r=1

ρr1Share
S
i(d,m,t) +

30∑
r=1

ρr2Share
N
i(d,m,t) +

30∑
r=1

ρr3Share
E
i(d,m,t)

+ ωWdmt + δmr + γt + εdrmt

(4)

where PM2.5drmt denotes the average concentration of PM2.5 in district d, belonging to

region r, in month m of year t, and the remaining variables are defined as in Equation 2.

This specification allows us to flexibly estimate monthly pollution levels at the district level,

which can then be aggregated into individual-level in-utero exposure measures with better

temporal precision. Using these first-stage estimates, we present the corresponding second-

stage results in Panel b of Table 5. The results remain robust to this alternative method of

constructing the exposure estimates.

Placebo Test: To ensure that our instruments capture meaningful variation in pollution

driven by differential wind directions rather than spurious correlations, we conduct a placebo

exercise. Specifically, we randomize wind direction variables across individuals in the sample

and re-estimate our baseline model over multiple iterations. Across these placebo regres-

sions, we consistently find null results, indicating that the original estimates are unlikely

to be driven by random chance and that the instrumented variation reflects genuine quasi-

experimental exposure to pollution.

Table 5: Alternate First Stages

Dependent variable: Birth Weight LBW VLBW

Panel a: Hierarchal Clustering

PM2.5 Exposure -1.637** 0.001*** 0.0003***

(0.730) (0.0004) (0.0001)
First Stage F-statistic 159 159 159
Adjusted R2 0.054 0.017 0.003
Panel b: First Stage: District-Month-Year Pairs

PM2.5 Exposure -3.483** 0.003*** 0.001***

(1.064) (0.001) (0.0001)
First Stage F-statistic 215 215 215
Adjusted R2 0.054 0.018 0.003

Observations 322,340 322,340 322,340

Notes: IV estimates. Clustered robust standard errors at the district level are reported in
parentheses. All regressions include full controls and fixed effects. *** p<0.01, ** p<0.05, *
p<0.1.
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5.2.2 Alternative Specifications

Maternal health, pregnancy complications, and behavioral or educational characteristics can

also influence a child’s birth weight. We do not include these variables in our baseline

specification, as they may vary over time and could be endogenous—potentially correlated

with regional pollution levels. However, to demonstrate the robustness of our estimates to the

inclusion of such factors, we control for a set of maternal and birth-specific characteristics

in an extended model. These include binary indicators for whether the mother has any

chronic health condition, smokes, or consumes alcohol; a categorical variable for maternal

education attainment; the number of antenatal checkups attended; a categorical variable for

place of delivery; indicators for multiple births (twins), and whether the child was delivered

via surgery. We present the results in Panel A of Table 6. While the point estimate is

lower than in the baseline specification, the results remain robust to the inclusion of these

additional maternal and birth-related controls.

We noted that approximately 60% of our sample reports birth weights of their offspring

via a medical card, whereas 40% report birth weights via recall. In order to avoid potential

measurement error in our outcomes, we retain only the sample which reported birth weight

via a medical card and re-estimate our results. In Panel b of Table 6, we observe that our

key results remain similar in terms of magnitude and statistical significance.

Table 6: Alternative Model Specifications

Dependent variable: Birth Weight LBW VLBW

Panel a: Additional Mother and Birth Controls

PM2.5 Exposure -1.507*** 0.001*** 0.0003***

(0.504) (0.0003) (0.0001)
Adjusted R2 0.073 0.041 0.013
Observations 322,340 322,340 322,340
Panel b: Card only Sample

PM2.5 Exposure -2.462*** 0.001** 0.0001
(0.797) (0.0005) (0.0001)

Observations 183,093 183,093 183,093
Adjusted R2 0.049 0.014 0.002
Mean of Dependent Variable 2828 0.16 0.007

Notes: Clustered robust standard errors at district level are reported in parentheses. All re-
gressions include full set of controls and fixed effects as the baseline equation. *** p<0.01, **
p<0.05, * p<0.1
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5.2.3 Sensitivity Checks

We conduct a series of sensitivity checks, we also replicate our analysis after filtering out

outliers in birth weight. The results, presented in Tables C1 and C2 in the Appendix, are

consistent with our baseline findings. Figures C5, C6, and C7 show the estimates obtained

using alternative geographical clusters for standard error computation. The robustness of our

results to this alternate clustering approach further reinforces the validity of our findings. In

addition, in Figures C8, C9, and C10 in the Appendix, we present the estimates by iteratively

excluding births from one State or Union Territory (UT) at a time. This iterative exclusion

confirms that our results are not being disproportionately driven by any single region.

6 Economic Costs of Pollution

A substantial body of literature highlights the critical role of birth weight in shaping a wide

range of long-term child outcomes. In this section, we link our estimates to the findings of

some of the studies in this literature. Table C3 in the Appendix provides a brief overview

of some of these studies. We focus on reporting estimates from studies which are performed

using data from developing countries, preferably in the Indian setting, since their setting

and estimates would be the ones which most closely resemble the backdrop of our analysis.

This is due to the fact that health shocks at birth in the context of developing countries

may be more poignant, as they occur in environments with limited access to medical care,

inadequate nutrition, and fewer resources to mitigate their long-term effects, ultimately

amplifying their impact on later outcomes (Currie & Vogl, 2013). Hence, similar topical

studies from developed countries may not be directly comparable, given the stark differences

in baseline health conditions, institutional capacity, and the ability to buffer early-life shocks.

The average in-utero exposure for PM2.5 within our sample was 40 µg/m3. The 2005

WHO Air Quality Guidelines recommend that average annual concentrations of PM2.5

should not exceed 10 µg/m3. Reducing average in-utero PM2.5 exposure to this threshold,

equivalent to a 30-unit reduction would imply based on our estimates, a 75-gram increase

in birth weight on average, and a 5.4 percentage point decline in the incidence of LBW. To
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interpret these effects in light of the broader literature on the longer-term consequences of

birth weight on child health and cognition, we draw comparisons from the studies summa-

rized in Table C3. Assuming linear transformation of effects reported, a 75g gain translates

into approximately 0.32 and 0.19 percentile increases in weight-for-age and height-for-age,

respectively (Keshav, 2021). Similarly, based on estimates from Baguet and Dumas (2019),

a 75g increase would correspond to a 0.014 standard deviation increase in educational attain-

ment, and according to Kumar et al. (2022), a 0.03–0.04 standard deviation improvement

in cognitive test scores. On the LBW margin, Alderman and Behrman (2006) estimate that

shifting one child from LBW to normal weight yields a lifetime productivity gain of $510

(Based on 2006 USD, equivalent to $810 in 2025). In the Indian context, where approxi-

mately 25 million births occur annually, a 5.4 percentage point reduction in LBW prevalence

implies 1.35 million fewer LBW births per year. Applying the estimate from Alderman and

Behrman (2006), this corresponds to a potential $1.1 Billion (2025 USD) in aggregate life-

time gains as a result of decline in LBW incidence simply by complying with WHO air

quality standards. While figures in this section are useful for contextualizing the potential

scale of benefits, they rely on simplifying assumptions and should therefore be interpreted

as illustrative rather than precise estimates.

7 Conclusion

This paper provides novel causal evidence on the impact of in-utero exposure to air pol-

lution on birth weight outcomes in India, a country characterized by both high ambient

air pollution and poor neonatal health indicators. Leveraging exogenous variation in wind

direction to instrument for ambient PM2.5 exposure during gestation, we document that

even modest reductions in particulate matter can yield significant improvements in neonatal

health. Specifically, we find that a one standard deviation decrease in PM2.5 leads to a

1.3% increase in average birth weight and a 2.7 percentage point reduction in LBW rates

respectively. These findings are robust across a range of sensitivity checks.

Linking our results to previous literature on the consequences of birth weight on a num-
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ber of child cognition and health outcomes, our back-of-the-envelope calculations suggest

that aligning in-utero PM2.5 levels with WHO air quality standards could yield substantial

economic benefits, including over one billion dollars annually from reductions in lifetime pro-

ductivity losses stemming from LBW infants each year, along with broader long-run gains in

child cognition and health. While these estimates rely on simplifying assumptions, they un-

derscore the potentially large returns to improving air quality for maternal and child health.

Our research also comes with several limitations. First, we are unable to precisely ac-

count for time spent outdoors, pollution avoidance or defensive behaviors, and migration

patterns, all of which influence actual ambient exposure during pregnancy. Second, since

our data come from a repeated cross-section rather than a longitudinal panel, we are unable

to examine the long-term effects of in-utero pollution exposure, or direct mediation effects

through birth-weight on these longer run relationships, which remains an important area for

future research. Third, and finally, the granularity of our satellite-based pollution data lim-

its our ability to capture micro-level variation in exposure. While our IV strategy addresses

concerns of attenuation bias due to measurement error, this coarseness may weaken the first-

stage relationship between wind patterns and individual exposure, potentially resulting in

noisier estimates than would be obtained with finer-grained pollution data

Overall, our findings highlight the importance of prenatal environmental conditions in shap-

ing early-life health outcomes and suggest that reducing air pollution exposure during preg-

nancy may be a cost-effective strategy for improving public health in low- and middle-income

countries.
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Appendix

A. Calculation of Wind Direction and Wind Speed based on U-V

wind components

The wind speed (WS) and wind direction (θ) can be calculated from the zonal (u) and meridional

(v) wind components using the following formulas:

WS =
√

u2 + v2 (5)

θ =

(
arctan 2(v, u) · 180

π

)
+ 180 (6)

• u is the zonal (east-west) component (positive toward the east), v is the meridional (north-

south) component (positive toward the north),
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B. Spatial and Temporal Variation of PM2.5

Figure B1: Quarter of Year Wise PM2.5
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C: Additional Tables and Figures

Figure C1: 30 clusters based on K-means clustering algorithm

Figure C2: Monotonicity (Continuous Measure of Birth Weight): Alternative Number of
Regions for Instrument
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Figure C3: Monotonicity (LBW Binary Measure): Alternative Number of Regions for In-
strument

Figure C4: Monotonicity (VLBW Binary Measure): Alternative Number of Regions for
Instrument
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Figure C5: Baseline Results Birth Weight: Alternative Clustering of Standard Errors

Figure C6: Baseline Results LBW: Alternative Clustering of Standard Errors
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Figure C7: Baseline Results VLBW: Alternative Clustering of Standard Errors

Figure C8: Iteratively dropping States/UTs from the Indian Union one at a time and rerun-
ning baseline first and second stage models for birth weight
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Figure C9: Iteratively dropping States/UTs from the Indian Union one at a time and rerun-
ning baseline first and second stage models for LBW indicator
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Figure C10: Iteratively dropping States/UTs from the Indian Union one at a time and
rerunning baseline first and second stage models for VLBW indicator
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Table C1: Effect of PM2.5 Exposure on Birth Outcomes: IV Estimates (1st–99th Percentile
Sample)

Dependent variable: Birth Weight LBW

PM2.5 Exposure -2.0079*** 0.0013***

(0.6081) (0.0004)

First Stage F-statistic 127 127
Observations 311,089 311,089
Adjusted R2 0.0582 0.0122
Mean of Dependent Variable 2838 0.15

Notes: IV estimates. Clustered robust standard errors at
the district level are reported in parentheses. All regres-
sions include full controls and fixed effects. *** p<0.01, **
p<0.05, * p<0.1

Table C2: Effect of PM2.5 Exposure on Birth Outcomes: IV Estimates (Birth Weight
1600g–4000g Sample)

Dependent variable: Birth Weight LBW

PM2.5 Exposure -1.9655*** 0.0014***

(0.5557) (0.0004)

First Stage F-statistic 125 125
Observations 303,235 303,235
Adjusted R2 0.0549 0.0117
Mean of Dependent Variable 2810 0.15

Notes: IV estimates. Clustered robust standard errors at
the district level are reported in parentheses. All regres-
sions include full controls and fixed effects. *** p<0.01, **
p<0.05, * p<0.1
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Table C3: Birth Weight and Its Long-Run Consequences in Developing Countries

Study Country / Data Key Result

Alderman and
Behrman (2006)

Literature based synthe-
sized evidence from stud-
ies in multiple developing
countries

Estimated $510 lifetime economic benefit per
child moved from LBW to normal weight, pri-
marily via higher productivity

Keshav (2021) 39 longitudinal datasets
from developing countries

Birth weight strongly associated with height and
weight outcomes; 100g increase linked to 0.43
and 0.25 unit increase in Weight for Age and
Height for Age percentiles

Baguet and Dumas
(2019)

Phillipines, CLHNS
Dataset tracking a 1983-84
birth cohort from infancy
until age 22

100 g increase in birth weight associated with a
0.019 SD increase in years of schooling at age 8
and an increase 0.02 SD increase in IQ at age 8

Kumar et al. (2022) India, use the Indian
Young Lives Surveys
(YLS), a survey dataset
designed to analyze the
impact of early life in-
equality and poverty on
life outcomes

A 10% increase in birth and being born within
the LBW threshold leads to a 0.11 SD positive
impact and 0.09 SD negative impact on cogni-
tive test scores among children aged 5-8 respec-
tively

Sicuri et al. (2011) Mozambique, rural sample
covering over 3000 births

Average cost per LBW infant in the first year
following birth for the health system amounts is
4.5 times that of a normal birth weight infant
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