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Abstract 

This paper analyses trends and persistence in atmospheric pollution in ten US cities over 

the period from January 2014 to January 2024 using fractional integration methods. The 

results support the hypothesis of long memory and mean reversion in atmospheric 

pollution in all cities examined. They also indicate that Boston is the only city in the 

sample where atmospheric pollution exhibits a significant positive linear trend, though it 

is also characterised by the lowest degree of integration, which implies that shocks have 

transitory effects and mean reversion occurs at a fast rate.  
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1. Introduction 

According to the World Health Organization (WHO, 2021), exposure to air pollution 

causes seven million premature deaths worldwide each year. Among the most harmful 

pollutants is PM2.5. The World Bank (2022) estimated that the cost of health damage due 

to air pollution is US$8.1 trillion per year, equivalent to 6.1% of global GDP, and that a 

20% decrease in PM2.5 would result in a 16% increase in the employment growth rate and 

a 33% increase in labour productivity. The IMF is also focusing on climate change by 

integrating it into its annual economic assessments and adding climate data to its set of 

key macroeconomic indicators (IMF, 2023). In addition, it is incorporating emission 

reduction targets into its macroeconomic policy discussions with high polluting countries 

and setting climate adaptation targets for vulnerable countries. 

The European Commission Report (2023) on global greenhouse gas (GHG) emissions 

resulting from anthropogenic activities calculates that these have increased, on average, 

by almost 1.5% annually since 1990, and in 2022 were around 62% higher than in 1990. 

In the latter year, among the six major economies that were responsible for 61.6% of 

global GHG emissions (China, US, India, EU27, Russia and Brazil), four showed 

increases in those compared to the period before the onset of the Covid-19 pandemic in 

2019 (China, +7.4%; India, +5.7%; Russia, +2.0%; Brazil, +2.3%), while two exhibited 

a decrease (US, –2.2% and EU27, –3.4%). The US is the second most polluting country 

in the world after China. These two nations alone produce almost half of all the carbon 

dioxide on the planet according to the Global Carbon Atlas (2022). 

The issue of air pollution in the US was addressed by former US president Barack 

Obama in 2015 without success as the plan to reduce emissions of air pollutants was 

blocked before it came into force. However, on 16 August 2022, the Biden administration 

announced new regulations that the US would follow to reduce emissions of polluting 

gases, especially from existing power plants, as specified in the Inflation Reduction Act 
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(The White House, 2022), which was the most important piece of legislation on climate 

regulation in US history and reflected a growing concern about climate change. 

As already mentioned, PM2.5 represents a major health issue as it increases the risk of 

premature death and of various diseases (asthma, heart attacks, respiratory dysfunctions, 

etc.) and, moreover, it has harmful environmental effects such as haze, it affects 

ecosystems diversity, it contributes to acid rain, etc. (EPA, 2020). In 2002, it was 

estimated that, of the total emissions of six pollutants, PM2.5 constituted only 6% of 

emissions, but accounted for 23% of the total gross annual gross human health damages. 

These damages amounted to 17 billion dollars (Muller and Mendelsohn, 2007). Sullivan 

et al. (2018) stressed the importance of analysing long-term data to acquire a better 

knowledge of PM2.5 dynamics and formulate more effective environmental policies. 

The present study contributes to this area of the literature by examining the evolution 

of PM2.5 in ten US cities (Boston, Chicago, Dallas, El Paso, Los Angeles, New York, 

Phoenix, San Antonio, Seattle, and San José) over the period from January 2014 to 

January 2024 by means of a fractional integration framework. This approach is more 

informative than the standard one used in most air pollution studies, as it allows for both 

fractional and integer degrees of differentiation, and therefore it sheds light on the long-

memory properties of the series, the possible presence of trends, mean reversion, 

persistence and the speed of adjustment towards the long-run equilibrium; it also provides 

information on whether the effects of shocks are transitory or permanent, which is a 

crucial piece of information for designing effective environmental policies. 

The remainder of the paper is structured as follows: Section 2 briefly reviews the 

relevant literature; Section 3 outlines the methodology; Section 4 describes the data and 

presents the empirical results; Section 5 offers some concluding remarks. 
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2. Literature Review 

The literature on air pollution and its effects on the health of the US population is 

extensive (Bevan et al., 2021; Malik et al., 2022; Remigio et al., 2022; Liu et al., 2023; 

etc.). Pokharel et al. (2023) note that around 1,300 deaths per year in the US, valued at 

about $13 billion, were due to primary PM2.5 emissions from crop tillage. Other studies 

look at environmental inequality in the US and how the burden of air pollution exposure 

is not evenly distributed (Nadybal et al., 2020; Fong and Bell., 2021; Cook et al., 2021; 

Rubio et al., 2022; Bradley et al., 2024). 

Some authors have studied the long-memory characteristics of air pollutants. Mei 

et al. (2023) use an air pollutant transport model based on complex networks to examine 

spatio-temporal variation of air pollution in several Chinese cities. Guan-Yu et al. (2022) 

emphasise the need for a spatio-temporal prediction model to analyse the chemical 

compositions of PM2.5 and to assess exposure risks. They develop effective air pollutant 

reduction strategies, and, for this purpose, they use a hybrid deep learning/ Kriging model 

incorporating a meteorological normalisation technique. Gil Alana et al. (2020a) 

investigate air quality in the 50 US states by analysing the statistical properties of 

particulate matter (PM10 and PM2.5) data sets; their results show the presence of 

significant negative time trend coefficients in several cases, implying that appropriate 

measures are being taken to improve the level of air quality. Bermejo-Muñoz et al. (2023) 

study the degree of persistence in PM2.5 in 20 megacities using fractional integration 

techniques, and find mean reversion and only transitory effects of shocks. Caporale et al. 

(2021) analyse the statistical properties of PM10 in eight European capitals during 2014-

2020 once more applying fractional integration methods, and conclude that all series are 

characterised by long memory and mean reversion. 
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Hadley et al (2017) identify residual fuel oil from marine traffic, biomass 

combustion emissions, seawater, and crustal materials as explanations for PM2.5 in the 

northwestern United States. Their study uses a US EPA matrix factorisation model to 

analyse seasonal and long-term trends. Finally, Di et al. (2019) examine PM2.5 

concentration in the US between 2000 to 2015, and show that PM2.5 predictions allow 

epidemiologists to obtain accurate estimates of the adverse health effects of PM2.5. 

 

3. Methodology 

Environmental data such as those on air pollution are often thought to exhibit long 

memory, namely a high degree of dependence between observations even if they are very 

distant in time. This property can be modelled using a fractional integration framework. 

Specifically, a time series (say, x(t), t = 1, 2, …) is said to be fractionally integrated or 

integrated of order d, denoted as I(d), if it can be written in the following way: 

     (1 – B)d x(t) = u (t),    t = 1, 2, …,    (1) 

where B is a backshift-operator, i.e., Bsx(t) = x(t-s), and u(t) is a short-memory process, 

such as a white noise with zero mean and a constant variance. 

 The differencing parameter d can capture different types of stochastic behaviour 
such as: 

1. Short memory, if d=0. 

2. Long memory, if d>0, including: 

 2a. Stationary processes, if 0 < d < 0.5, and 

 3a. Nonstationary process with mean reversion, if 0.5  ≤ d < 1 

3. Unit roots if d=1  

4. Explosive processes if d>1. 

 It should be noted that the fractional polynomial in (1) can be expanded as: 

(1 − �)� = ∑ ��
� ��

��� (−1)��� = 1 − �� + �(���)
�

�� − ⋯          
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and thus the equality appearing in Equation (1) can be expressed as: 

  .u...x
2

)1d(dxdx t2t1tt 


     

In this context, if d has a fractional value, xt will be a function of all its past values, 

and therefore can be represented as an infinite AR process. These processes were 

introduced in the early 80s by Granger (1980), Granger and Joyeux (1980), Granger 

(1981) and Hosking (1981), and subsequently used in empirical papers. For instance, Gil-

Alana and Robinson (1997) showed that the twelve US macroeconomic series examined 

in Nelson and Plosser (1982) in fact did not exhibit unit roots but were instead fractionally 

integrated, with an order of integration significantly below 1 implying mean reversion. 

Since then, such models have been estimated in many different fields, such as internet 

traffic and networking (Schennach, 2018), finance (Abbritti et al., 2016, 2023), tourism 

(Perez-Rodriguez et al., 2020; Gil-Alana and Payne, 2020), hydrology (Habib, 2020), 

climatology (Yuan et al., 2022), and environmental sciences (Gil-Alana et al., 2020a,b; 

Claudio-Quiroga and Gil-Alana, 2022, etc.). 

 For the empirical analysis we use a simple version of a testing method described 

in Robinson (1994) which has various advantages over other approaches; in particular, it 

is valid regardless of the order of integration, and it has a standard (normal) limit 

distribution. The functional form of this method is based on the Lagrange Multiplier (LM) 

principle (Gil-Alana and Robinson, 1997). 

 

4.  Data Description and Empirical Results 

The data are taken from the World Air Quality Index (WAQI) website 

(https://aqicn.org/map/world/es/ ). Specifically, actionable information is obtained from 

air quality data using the US Environmental Protection Agency's (EPA) Nowcast 

algorithm that converts raw PM2.5 readings into an air quality index value (ICA). The 
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index is calculated using data for a period of 3 to 12 hours, depending on the particle 

concentration. The series provide information about the daily level of air quality based 

on the measurement of PM2.5 in micrograms per cubic meter of air (μg/m3) over the period 

from January 2014 to January 2024 in ten US cities (Boston, Chicago, Dallas, El Paso, 

Los Angeles, New York, Phoenix, San Antonio, Seattle, and San Jose). 

The original sources are Boston: https://www.mass.gov/topics/air-quality 

AirNow.gov; Chicago: http://www.epa.illinois.gov/;  Dallas: Homepage-Texas 

Commission on Environmental Quality - www.tceq.texas.gov; El Paso: 

http://www.tceq.texas.gov/.; Los Angeles: AQMD-Home Homepage | California Air 

Resources Board; New York: https://dec.ny.gov/; Phoenix: 

https://www.maricopa.gov/AirNow.gov; San Antonio: Homepage-Texas Commission on 

Environmental Quality - www.tceq.texas.gov; San José: Homepage|California Air 

Resources Board; Seattle: http://www.ecy.wa.gov/. These ten cities have been chosen on 

the basis of two criteria: first, they are the most populated cities in the US according to 

the latest 2020 census, and second, data on PM2.5 are available for the whole period under 

investigation.  

Table 1 displays the estimated values of d in Equation (2), and their 95% 

confidence bands, for three different model specifications, namely without deterministic 

terms, with an intercept only, and with an intercept as well as a linear time trend. The 

general model is the following one: 

y(t)  =  a  +  b t   +   x(t),         (1 – B)d x(t) = u (t),    t = 1, 2, …, (2) 

where y(t) is the observed variable of interest at time t; a and b are unknown parameters 

to be estimated, specifically a constant and the coefficient on a linear time trend; x(t) are 

the residuals from a linear regression model; d is the order of integration and measures 
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the degree of persistence in the data; u(t) is the error term which is assumed to be a white 

noise process. 

The estimates reported in the second column of Table 1 are those obtained when 

a = b = 0 in equation (2), i.e., when no deterministic terms are included; by contrast, those 

in column 3 correspond to the case when b = 0 and therefore only an intercept is included; 

finally those in column 4 are the ones for the specification with both parameters, a and b, 

freely estimated from the data, i.e. including both a constant and a linear time trend in the 

model. To select the best specification a general to specific approach is followed, i.e. the 

most general model including both the intercept and the time trend is estimated first, and 

is chosen if both coefficients are statistically significant; if the time trend is found to be 

insignificant, the model with a constant only is estimated next and this specification is 

chosen if this coefficient is significant; if it is not, the model without deterministic terms 

is finally selected. The estimates from the preferred model are shown in bold in Table 1. 

The upper half shows the results for the original series, while the lower one those for the 

logged series.  

TABLE 1 ABOUT HERE 

 The results for the deterministic terms (not reported to save space, but available 

upon request) are very similar for the original and logged values. Boston is the only city 

where a linear time trend is found to be statistically significant, the estimated coefficient 

being 0.0054 for the original data, and 0.0001 for the logged series. Regarding the degree 

of persistence, which is measured by d, all the estimated values are in the interval (0, 1), 

which supports the hypothesis of long memory (d > 0) and mean-reverting (d < 1) 

behaviour. In the case of the original data, the highest degree of persistence is found for 

San Jose (with an estimated value of d of 0.71), followed by Seattle (0.67), Los Angeles 

(0.59) and Vancouver (0.59), all on the West Coast; by contrast, the lowest estimates of 
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d are those for Chicago (0.44) and Boston (0.42). Similar results are obtained when using 

the logged series, all estimates being in the interval (0, 1), though being slightly lower 

than in the previous case, the highest coefficients being those for cities on the West Coast, 

namely Seattle and Los Angeles (d=0.57), while the lowest one is found in the case of 

Boston (d = 0.40), where in the event of a shock mean reversion occurs at the fastest rate.  

To sum up, all the series analysed exhibit long memory and mean reversion. San 

Jose has the highest degree of persistence, followed by Seattle and Los Angeles, all these 

cities being on the West Coast, whilst the lowest estimates are obtained for Chicago and 

Boston. Interestingly, the latter city is also the only one with a positive linear trend in 

PM2.5 pollution over the period under examination, with a possible negative impact on 

labour productivity, medical costs, quality of life and attractiveness of investments. 

However, its low degree of persistence suggests that the effects of shocks disappear faster 

than in the other cities, which is an important piece of information for the design of 

appropriate environmental policies. In fact, concern about pollution in Boston led to the 

adoption of a Climate Action Plan (2019) with 18 strategies focused mainly on the 

decrease of pollutants from buildings and transport, these being the main causes of 

pollution in the city. 

 

5.  Conclusions 

In 2015, 9% of the American population lived in areas with PM2.5 concentrations higher 

than the WHO recommendation of 10 μgm-3, and 89% in areas with concentrations 

between 5 to 10 μgm-3. Therefore analysing trends and persistence in PM2.5 in the most 

populated US cities is essential to design better environmental policies. This paper sheds 

new light on these issues by applying fractional integration methods to data for 10 such 

US cities over the period from January 2014 to January 2024. The chosen framework is 



10 
 

more general and flexible than standard models based on the standard I(0) versus I(1) 

dichotomy as it allows the differencing parameter to take any real value, including 

fractional ones; in this way crucial evidence about trends, persistence and mean reversion 

can be obtained, which can inform policy decisions.  

In brief, long memory is detected in all cases, but different degrees of persistence 

are found in the 10 US cities considered; this implies that there is a greater need for 

decisive policy actions in cities, especially those on the West Coast, where the effects of 

shocks are more long-lived.  

 Our analysis can be extended in several ways. First, the pollutant examined here 

is PM2.5, but the US Air Quality Index (AQI) which rates air conditions is based on the 

concentrations of five pollutants: tropospheric ozone, particulate matter (PM10 and 

PM2.5), carbon monoxide, sulfuric dioxide and nitrogen dioxide; therefore it would be 

interesting to analyse the evolution of all these series to obtain more comprehensive 

evidence on trends and persistence in air pollutants.  Further, the analysis could also be 

carried out for cities in other parts of the world. In terms of econometric modelling, the 

possible presence of structural breaks could be investigated by performing endogenous 

break tests to capture abrupt changes or by running rolling-window and recursive 

regressions for the case of gradually evolving parameters. Finally, possible cyclical 

patterns could be modelled, still in the context of long memory, by allowing for 

singularities in the spectrum at frequencies away from zero. Future work will focus on 

those issues. 
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Table 1: Estimates of the orders of integration 

i) Original data 
Series No deterministic 

terms 
An intercept An intercept and a 

linear time trend 

BOSTON 0.44 (0.40, 0.47) 0.42 (0.39, 0.46) 0.42 (0.39, 0.46) 

CHICAGO 0.48 (0.44, 0.53) 0.44 (0.39, 0.50) 0.44 (0.39, 0.50) 

DALLAS 0.55 (0.51, 0.59) 0.54 (0.50, 0.58) 0.54 (0.50, 0.58) 

EL PASO 0.40 (0.38, 0.44) 0.40 (0.37, 0.43) 0.40 (0.37, 0.43) 

LOS ANGELES 0.60 (0.56, 0.64) 0.59 (0.54, 0.63) 0.59 (0.54, 0.63) 

NEW YORK 0.54 (0.51, 0.54) 0.52 (0.49, 0.56) 0.52 (0.49, 0.56) 

SAN ANTONIO 0.49 (0.45, 0.53) 0.47 (0.43, 0.51) 0.47 (0.43, 0.51) 

SEATTLE 0.67 (0.64, 0.72) 0.67 (0.64, 0.72) 0.67 (0.64, 0.72) 

SAN JOSE 0.72 (0.68, 0.76) 0.71 (0.67, 0.75) 0.71 (0.67, 0.75) 

PHOENIX 0.47 (0.45, 0.51) 0.46 (0.43, 0.49) 0.46 (0.43, 0.49) 

i) Logged values 
Series No deterministic 

terms 
An intercept An intercept and a 

linear time trend 

BOSTON 0.61 (0.55, 0.65) 0.41 (0.38, 0.44) 0.40 (0.37, 0.43) 

CHICAGO 0.60 (0.55, 0.64) 0.42 (0.38, 0.48) 0.42 (0.38, 0.48) 

DALLAS 0.57 (0.55, 0.60) 0.50 (0.46, 0.54) 0.50 (0.46, 0.54) 

EL PASO 0.59 (0.54, 0.63) 0.42 (0.39, 0.45) 0.42 (0.39, 0.45) 

LOS ANGELES 0.70 (0.64, 0.73) 0.57 (0.53, 0.61) 0.57 (0.53, 0.61) 

NEW YORK 0.57 (0.54, 0.62) 0.47 (0.44, 0.50) 0.47 (0.44, 0.50) 

SAN ANTONIO 0.55 (0.52, 0.58) 0.43 (0.40, 0.47) 0.43 (0.40, 0.47) 

SEATTLE 0.67 (0.64, 0.70) 0.57 (0.53, 0.61) 0.57 (0.53, 0.61) 

SAN JOSE 0.67 (0.64, 0.70) 0.53 (0.49, 0.57) 0.53 (0.49, 0.57) 

PHOENIX 0.57 (0.54, 0.61) 0.47 (0.44, 0.50) 0.47 (0.44, 0.50) 
Note: the reported values are the estimates of d with their corresponding 95% confidence intervals in 
brackets. In bold, the results for the best specification chosen on the basis of the statistical (in)significance 
of the deterministic terms. 


