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Fuel taxation and environmental externalities:

Evidence from the world’s largest

environmental tax reform

%

By Piero Basaglia, Sophie M. Behr, Moritz A. Drupp

June 2025

Abstract

We investigate how fuel taxation reduces climate and pollution externalities by
evaluating the world’s largest environmental tax reform. Using spatially detailed
emissions data from more than 1,000 European regions in a synthetic difference-
in-differences framework, we evaluate the impact of Germany’s 1999 ecological
tax reform on transport-related carbon and air pollutant emissions. We document
sizable aggregate reductions for all emissions, exceeding 10 percent on average
per year relative to synthetic baselines. Using official damage valuations, we esti-
mate avoided external costs of more than €100 billion, two-thirds of which stem
from health benefits due to reduced air pollution. Emission reductions and asso-
ciated monetized benefits are larger in lower-income regions, contrasting with a
slightly regressive distribution of fuel costs. These findings underscore the impor-
tance of incorporating air quality co-benefits when evaluating the efficiency and
distributional effects of fuel and carbon pricing.
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difference-in-differences, tax elasticity, climate, pollution
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1 Introduction

Fuel taxation is a key policy instrument to reduce negative externalities of fossil-fueled
transportation (Parry et al., 2007; Sterner, 2007; Hintermann et al., 2025) and has seen
renewed interest due to concerns about climate change, air pollution, and energy secu-
rity (e.g., Grigolon et al., 2018; Parry et al., 2021). Understanding how fuel taxation
affects fuel consumption and associated externalities is essential to effectively leverage
this tool for economic policy. Many assessments primarily focus on carbon abatement
and assume that demand responses to tax changes are equivalent to those of market-
driven price variations and estimate limited impacts of carbon pricing through taxation
(e.g., Green, 2021). In contrast, recent work highlights the considerable role of tax
salience and persistence effects (e.g., Chetty et al., 2009; Li et al., 2014), which may
suggest that more modest taxes may achieve politically targeted fuel reductions. Addi-
tionally, carbon abatement represents only part of the economic benefits that can justify
fuel taxes. Transportation causes considerable externalities beyond carbon emissions,
such as health damages linked to air pollution (e.g., Schlenker and Walker, 2016; Knit-
tel et al., 2016), and reducing fossil fuel use can thus yield substantial health benefits
(e.g., Shaw et al., 2014; Parry et al., 2015). Accounting for such health co-benefits
may change the overall incidence of the policy and may contribute to gathering public
support for fuel and carbon taxes.

We investigate the effectiveness of fuel taxation in reducing carbon and air pollutant
emissions with a quasi-experimental assessment of the world’s largest environmental
tax reform: the German eco-tax. The reform increased fuel taxes in Europe’s biggest
transport sector in yearly steps from 1999 to 2003 up to 15.35 cents per liter. In 2003,
implicit carbon costs of the eco-tax amounted to €58 ($65) per tCO, for diesel and €66
($74) for gasoline. This was then the second highest effective carbon price globally—
higher alone than federal fuel taxes in the US, where regulation has mainly focused on
standards (Jacobsen et al., 2023), and only slightly lower than the Swedish carbon tax
on transport fuels that was levied on a much smaller tax base (Andersson, 2019).

Our analysis starts by estimating effects of the eco-tax on emissions of CO,, PM; 5,
and NOy in the German transport sector drawing on a synthetic difference-in-differences
(SDID) estimation framework (Arkhangelsky et al., 2021). Leveraging high-resolution
data on European transport emissions from more than 1,000 European regions, we
build plausible counterfactuals for how carbon and air pollution emissions would have
trended across German districts in the absence of environmental taxation. Our SDID
results imply that, between 1999 and 2009, environmental taxation led to average emis-
sion reductions of around 15% for CO,, 25% for PM, 5, and 13% for NOyx, which



corresponds to a reduction in external damages in the order of a hundred billion euros
when evaluated using official governmental cost estimates.

Our findings are robust to a host of robustness tests and different quasi-experimental
study designs, including alternative donor pools, adjusting for residual imbalances in
time-varying observables, the exclusion of bordering regions to address concerns re-
lated to fuel tourism, whether pollution is measured in absolute terms or as concen-
trations, and leveraging alternative synthetic control and matrix-completion approaches
(i.e., Abadie 2021; Athey et al. 2021; Xu 2017). We also show that emission reductions
did not occur at the expense of reduced GDP, which might otherwise confound the es-
timation of the effects of environmental taxation due to potential spillovers induced by
economic activity shifting to neighboring countries (also commonly referred to as leak-
age effects), and find that the eco-tax has induced low-carbon innovation, which may
have contributed to the effectiveness of the policy. Finally, we further validate the ro-
bustness and external validity of our findings by harnessing the early gradual roll-out
of other environmentally-motivated taxes in Finland and Sweden, within a staggered
treatment adoption design to address the potential residual confounding impacts of id-
iosyncratic shocks in fuel demand.

While modeling studies consistently indicate considerable health benefits due to
lower fossil fuel use (e.g., Shaw et al., 2014; Choma et al., 2021), this paper is the
first observational study to quantify the climate and pollution reduction benefits of fuel
taxation in a quasi-experimental framework. Our assessment of the world’s largest
environmental tax reform complements studies on the role of emission standards to re-
duce climate and pollution externalities in the transport sector (e.g., Auffhammer and
Kellogg, 2011; Jacobsen et al., 2023; Reynaert, 2021) and substantially extends investi-
gations on the effectiveness of environmental taxes that focused exclusively on carbon
abatement in country-level comparative studies. We make several contributions.

First, our results show that a sole emphasis on CO; reductions when evaluating the
pricing of fuel use through taxation (e.g., Andersson, 2019; Runst and Hohle, 2022;
Mideksa, 2024; Leroutier, 2022) or cap-and-trade schemes (e.g., Bayer and Aklin,
2020; Colmer et al., 2025) considerably underestimates the potential of fuel or car-
bon price instruments to reduce environmental externalities. Specifically, we find that
around two-thirds of the overall reduction in external damages costs of hundred billion
Euros that we estimate due to the eco-tax relate to reductions in air pollution and their
associated health benefits.

Second, we depart from previous quasi-experimental evaluations of carbon and fuel
taxes by assembling a novel dataset combining spatially granular data on transport emis-

sions with small-scale administrative records, which allows us to examine heterogeneity



in emission reductions and health co-benefits across 401 German districts.! While the
consumer costs of fuel taxation tend to burden lower-income households dispropor-
tionately (e.g., Bento et al., 2009; Drupp et al., 2025; Sterner, 2012; Kénzig, 2023),
poorer households may also benefit disproportionately from reduced pollution (e.g.,
Hernandez-Cortes and Meng, 2023). We find that the eco-tax led to larger pollution re-
duction benefits per capita in low-income districts, and that benefits accrue to a greater
extent in areas with higher baseline pollution. This provides new insights on environ-
mental justice effects of environmental taxation for Europe, where evidence has been
sparse (Banzhaf et al., 2019; Bos et al., 2025; Drupp et al., 2025).

We complement our quasi-experimental analyses with panel-data analyses to esti-
mate price and tax elasticities and perform counterfactual simulations. We build on a
large literature exploring effects of gasoline and energy prices on fuel demand and emis-
sions (e.g., Dahl and Sterner, 1991; Levin et al., 2017; Linn, 2019; Parry et al., 2021),
which often relies on fuel and energy prices as proxies for carbon prices and uses price
changes over time to estimate impacts on fuel use. Yet, fuel prices are prone to en-
dogeneity concerns, likely biasing price elasticity estimates downwards (e.g., Kilian,
2009; Davis and Kilian, 2011; Coglianese et al., 2017). We use annual cross-country
panel variations in fuel-specific tax rate changes, coupled with an instrumental variable
approach, and additional model specifications with leads to account for potential tax
anticipation effects (cf. Kilian and Zhou, 2024). Our focus on fuel-specific demand ad-
justments departs from previous studies that rely on changes in gasoline use as a proxy
for aggregate emission reductions (e.g., Davis and Kilian, 2011; Rivers and Schaufele,
2015) and helps to illuminate the role of fuel substitution. Accounting for gasoline-to-
diesel substitution is crucial in the European context with its high diesel share (Zimmer
and Koch, 2017), and allows quantifying trade-offs between climate and health benefits.

We first estimate price and tax elasticities of demand for gasoline and diesel to dis-
entangle behavioral responses in Germany. We estimate a long-term tax-exclusive price
elasticity of demand for gasoline (diesel) of -0.54 (-0.34) and an eco-tax elasticity of de-
mand of -2.7 (-1.1). Fuel-specific eco-tax elasticities are thus around 3 to 5 times higher
than the tax-exclusive price elasticity (a ratio referred to as tax saliency ratio), in line
with prior findings that changes in taxes are more potent than equivalent market-driven
price changes (e.g., Li et al., 2014; Rivers and Schaufele, 2015; Andersson, 2019).2

'A concurrent working paper by Sileci (2023) examines environmental equity impacts of the 2008
carbon tax in the Canadian province British Columbia across 26 metropolitan areas. By contrast, we
examine effects not only in urban but also in rural areas across the whole country. Another concurrent
paper by Runst and Hohle (2022) examined CO, effects of the eco-tax with a country-level synthetic
control analysis, yielding similar effects to ours for CO, reductions.

2Kilian and Zhou (2024) reconsider the analysis by Li et al. (2014) using a distributed lag modeland
find that the tax elasticity is not significantly different from the tax-exclusive price elasticity in the US



This underscores potentially large biases in policy evaluations that rely on responses to
market-driven fuel price changes as a proxy for the effect of environmental taxes.

We then use these fuel-specific tax elasticities to perform simulations and find that
around three-quarters of the (simulated) reduction in CO, emissions is attributable to
lower gasoline use, partly driven by gasoline-to-diesel substitution. Conversely, almost
all decreases in PM> 5, and more than half of decreases in NO, emissions, are driven
by lowered diesel use due to the eco-tax. This highlights important trade-offs that can
arise between climate and air pollution targets, which is particularly relevant for price
instruments set on the carbon content of fuels that can foster fuel substitution. Such fuel
substitution is—with the exception of Linn (2019)—not accounted for in existing policy
evaluations. We complement Linn (2019) by relaxing the assumption that consumers
respond similarly to fuel taxes as to other changes in fuel prices. We find that account-
ing for tax salience effects reveals a much more sizable trade-off between climate and
health benefits. This trade-off, and the associated inefficiency in targeting both climate
and pollution targets with one price instrument, is a more general feature of second-
best taxation (e.g., Knittel and Sandler, 2018), especially when it is not feasible to tax
externalities directly (Jacobsen et al., 2023).

Finally, we explore additional underlying mechanisms for the sizable reductions in
external climate and pollution damages due to the eco-tax. We find that the eco-tax has
likely contributed to fostering fleet renewal of passenger cars and to fewer passenger-
kilometers traveled without having reduced overall economic activity. Furthermore, we
documented that the fuel price increase due to eco-tax has received substantial attention
in newspapers (c.f., Li et al., 2014). This increased salience may have contributed to the
large tax saliency ratios that form an important driver of the effectiveness of the eco-tax
to reduce climate and pollution externalities.

The paper proceeds as follows. Section 2 provides the policy background of the
eco-tax. Section 3 details the main methodologies employed in our research designs.
Section 4 discusses the data. Section 5 presents results derived from the SDID estima-
tor, while Section 6 reports results on fuel and tax elasticities, simulations. Section 7
discusses additional mediating mechanisms. Section 8 quantifies climate and health
benefits, while Section 9 concludes. The Online Appendix (OA) contains additional

results from alternative methods and supporting materials for our analyses.

after accounting for anticipation effects. In our setting, even after accounting for anticipatory behavior,
we still document sizable and significant fax saliency ratios.



2 Policy background

The ecological fiscal reform in Germany. While not officially labeled a carbon tax,
the ecological fiscal reform (hereafter: eco-tax) effectively established a sizable implicit
carbon price in Germany. It came into effect in April 1999 taxing fuels, gas, electricity,
and heating oil (Bundesgesetzblatt I, S.378, 1999; Steiner and Cludius, 2010). The eco-
tax reform adopted a ’double dividend’ approach. The reform targeted environmental
objectives by internalizing the external costs of fossil fuel consumption. Yet, instead of
directing the generated revenues towards environmental initiatives, the additional fiscal
capacity was used to reduce pension fund contributions through non-wage labor costs.>

Owing to economic and social concerns, the eco-tax underwent extensive exemp-
tions across several sectors. Consequently, it primarily affected the pricing of transport
fuels and electricity use in less energy-intensive industries. To account for the miti-
gating impacts of these exemptions (e.g., Gerster and Lamp, 2024), we therefore focus
solely on the transportation sector (Knigge and Gorlach, 2005; Bach, 2009). In each
year between 1999 and 2003, the fuel tax on gasoline and diesel was increased by
3.07 cents (6 Pfennig) per liter (Bach, 2009). This resulted in a total tax increase of
15.35 cents per liter for gasoline and diesel. Effectively, this means that the eco-tax
introduced an implicit carbon price of around 58€ ($65) for diesel and 66€ ($74) for
gasoline between 1999 and 2003.* Thereby, within the timeframe of our study, the eco-
tax represented the second highest tax on CO, globally, after Sweden ($105) and before
Finland ($30) in Europe (cf. Sumner et al. 2011).

We provide descriptive statistics to illustrate the evolution of fuel taxation in Ger-
many’s transport sector before and after the eco-tax introduction in Figure 1, showing
gasoline and diesel taxes from the late 1970s until 2009.° We provide real values and a

comparisons with other existing tax rates in Figure A.3 in the OA.

Concurrent unilateral environmental policies. The eco-tax reform stood out as
Germany’s primary policy measure to mitigate transport-related emissions until the
end of the 2000s. Nevertheless, a few noteworthy concurrent policy changes occurred

during and close to the end of the post-treatment time frame (1999-2009), prompting

3The eco-tax reform may thus have also induced positive effects on labor market outcomes. We do not
investigate potential effects along these lines, as the German government introduced major labor legisla-
tion, the so-called “Hartz Reforms” in 2003 (see, e.g., Dustmann et al., 2014), which likely overshadow
any potential effect that the eco-tax may have had on the labor market.

“Note that the combustion of one liter of gasoline emits 2.325 kg of CO», of one liter of diesel 2.660
kg (US EPA, 2005). Leveraging emission factors, we can then express the eco-tax rate in euros per tonne
of CO, as %1222 x 1000 ~ 66€/tCOze and %1335 x 1000 ~ 58€/tCOze.

>The VAT is levied on the eco-tax, which increases the eco-tax by its percentage. A slight increase of

the eco-tax is visible in 2007 due to the increase of the VAT from 16% to 19% early in that year.




Figure 1: Evolution of transport fuel taxes in Germany and OECD average

(a) Gasoline taxes (b) Diesel taxes
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Notes: Prices are in USD using Purchasing power parities (PPP). Source: Energy Prices and Taxes Statistics from the International Energy Agency (IEA). The eco-tax rates,
expressed in terms of tonnes of CO, equivalent, adjusted for PPP, and includes the value-added tax (VAT), are taken from Bach (2009).

our decision to end our main estimation sample in 2009.First, Germany implemented a
distance-based toll for all lorries of more than twelve tonnes gross weight on motorways
in 2005. Luechinger and Roth (2016) study this policy and find insignificant effects on
overall traffic volume but rather that traffic has been diverted to toll-free roads. Sec-
ond, starting in 2008, some cities implemented low emission zones (LEZs) to restrict
certain vehicles from entering city centers, with other municipalities later adopting and
enhancing these standards. LEzs have led to emission reductions in regulated areas and
neighboring cells (e.g., Wolff and Perry, 2010; Sarmiento et al., 2023; Klauber et al.,
2024). Despite this, we consider it unlikely that LEZs sizably influenced our results
in the last two years of our study as they were only established in a few cities by that
time. Third, the German government responded to the 2008 financial crisis by paying
a scrappage subsidy for the disposal of vehicles that were at least nine years old to
increase new car sales. This program was in force from January 2009 until September
2009. Helm et al. (2023) detect local air pollution improvements following this subsidy.
Finally, following the eco-tax, the next major taxation reform occurred in 2009 when
vehicle circulation taxes were adjusted to consider CO, emissions for cars registered
from July 2009, which Klier and Linn (2015) showed to have lead to fewer registra-
tions. Our main time frame, therefore, ends with the start of the next major nationwide
policy actions in the transportation sector. Yet, as the additional policies towards the
end of our time frame might have reduced emissions, we also explore an estimation
sample that ends in 2007 to precede these potential confounders. Our results remain

qualitatively unchanged to shortening the time frame.



3 Methodology

3.1 Synthetic difference-in-differences estimation

To examine the effects of environmental fuel taxation, we use the SDID methodology
(Arkhangelsky et al., 2021), which combines desirable features of synthetic control
(SC) methods (e.g., Abadie, 2021; Athey et al., 2021; Xu, 2017) and a two-way fixed
effects (TWFE) difference-in-differences (DID) approach. Drawing on Arkhangelsky
etal. (2021), this section summarizes how we employ the SDID estimation procedure in
our research designs and contrasts its relative strengths to the standard SC and TWFE-
DID approaches in addressing potential bias in the identification of effects. Alternative

counterfactual estimators used for robustness tests are described in the OA.

The SDID estimator. As an input requirement, the SDID estimation requires a bal-
anced panel of N units or groups, observed over T time periods. We consider a setup
where a subset of N (N = N — N, ) is regulated (e.g., German districts after the eco-tax)
as indicated by a binary treatment indicator, which we denote by Eco;;. The indicator
Ecoj; equals 1 if unit i after time T is subject to the eco-tax, and O otherwise. In
this setting, the SDID estimation of the average treatment effect on the treated (or ATT
denoted by 7°919) is written as:

N T
(fs“‘d,ﬂ,&ﬁ) =arg_min {ZZ(YnuaiﬁfEco,ﬂ)z'(b?dld%i‘hd}, (1)
i=1t=1

T,u,0,8

where the parameter £59¢ is the ATT estimated in a TWFE regression with optimally
chosen unit-specific (c?)l.sdid) and time (jtfdid) weights. The underlying intuition behind
the inclusion of (I)fdid and ifdid is that unit-specific weights allow to yield matching
pre-intervention trends while time-specific weights are introduced in the regressions to
reduce the influence of time periods that significantly differ from post-treatment periods
and increase model precision. Crucially, matching pre-intervention trends is pivotal to
assuming quasi-randomization (after re-weighting) in the identification.® In essence,
the SDID estimator can be seen as a DID analysis with weighted observations. This
approach allows the SDID estimator to sidestep some of the typical issues of standard
DID and SC. These include the inability to estimate causal relationships when the par-
allel trends assumption is not satisfied for DID and the requirement in SC for the treated
unit to be located within a convex hull of control units.

The inclusion of unit fixed effects (¢;) implies that the SDID estimator, by choosing
unit weights (@;), will match treated and control units based on pre-treatment trends,

as the fixed effects (o) absorb any level differences. The presence of time effects (f3;)

See Arkhangelsky et al. (2021) (Section 2.1, Algorithm 1) for weight estimation details.

7



allows for common temporal aggregate factors. In our setting, the latter refers to under-
lying trends or fluctuations in emissions that occur due to factors such as technological
advancements, common macroeconomic shocks, or other external drivers that change

emissions levels over time independently of changes in the eco-tax rate.

Conditioning on covariates and inference. To further condition Eq. 1 on time-varying
covariates and adjust our estimations for potential imbalances in time-varying observ-

ables, we apply the SDID algorithm to the residuals:

Y =Y, — X3, )

where 3 is calculated by regressing Y;; on X;;. We can then conduct inference by

constructing the following confidence intervals for the treatment effect, 75419:

B9t 2600/ Ve, 3)

where we implement the bootstrap procedure from (Arkhangelsky et al., 2021) (cf.
Algorithm 2) to estimate the variance, V;. Specifically, this procedure generates a boot-
strap dataset by sampling, with replacement, a portion of the original dataset. Then,
it computes the SDID estimator (%) on this subset of the sample for each iteration, b,
based on a selected number of replications (denoted by B). The bootstrapped variance
(V;? ) is then defined as:

2 13 R 5 Ab ’
Following the iterative procedure described in Eq. 4, our confidence intervals are
estimated based on 200 replications (B = 200).

The staggered adoption design. The design outlined thus far operates under the as-
sumption of block assignment, with a single adoption period for treated units (e.g., a
single adopting country). We now lay out the details pertaining to a staggered adoption
design, where treated units adopt treatment at varying points (e.g., multiple countries
with environmental taxes). To isolate the impact of fuel taxation, we identify other
European countries where environmental taxes were implemented without reinvesting
their revenue into climate mitigation programs, namely Finland in 1990 and Sweden in
1991 (Sumner et al., 2011).

Drawing on Athey and Imbens (2022), here we focus on a staggered adoption con-
figuration where units (e.g, regions) adopt the treatment of interest at a particular point

in time, and then remain exposed to this treatment continuously thereafter. Consider a



row vector A = (al a2, .., aA) consisting of a elements which contains distinct adoption

periods. The ATT can then be calculated in a two-step procedure. First, we apply the

synthetic DID estimator to each of the adoption-specific samples:

N T
(8%t G ) = arg._min, {Z Y (Yi— = 05— B — Ecoiy 1) &7 l:‘,i‘d} SE)
P i=11=1

Notably, adoption-specific unit (d)l?;gid) and time (?lggid) weights ease the quasi-randomization
assumption, which is key to yield unbiased effects in our staggered setting (Athey and
Imbens, 2022). Second, we compute a weighted average of the adoption-specific SDID
estimates, where weights are assigned based on the relative number of treated units and
time periods in each adoption group:

_ T¢ ,

ATT = Y 2. gdid (6)

acA fpost

where T}, refers to total post-treatment periods observed in treated units.

Comparison with alternative estimators. The canonical TWFE-DID procedure es-
sentially mirrors the SDID regression but assigns equal weights to all time periods and
units (cf. Eq. 7), making diverging pre-treatment trends between treated and control
units a potential threat to identifying causal effects. That is, TWFE-DID estimates will
be biased when unobserved time-varying confounders exist, as we cannot plausibly as-
sume that outcomes in control and treatment groups would have trended similarly in the
absence of treatment, given pre-existing systematic differences. Formally, the TWFE-
DID estimation of the ATT (denoted by 7414y can be written as follows:

N T
(#5400, 8) = are min_ {ZZ (Y — = 06— By — Ecoi 1)2} : ™)

The standard SC approach (e.g., Abadie and Gardeazabal, 2003), instead, maintains
optimally chosen unit-specific weights, denoted as @ (cf. Eq. 8). However, it does
not optimize time periods through time weights and excludes unit fixed effects (o),
implying that the SC and treated units should exhibit comparable pre-treatment levels

and trends before re-weighting.

N T
(#=.0.8) = arg mi {ZZ(Yn — i~ p —Ecoy r)Q-@?} : ®)

i=1t=1
While variants of the TWFE-DID (Eq. 7) and SC (Eq. 8) approaches have been com-
monly employed in earlier studies that have investigated the effectiveness of fuel taxes
to reduce CO, per capita (e.g., Andersson, 2019; Leroutier, 2022), the SDID estimator

improves model precision by disregarding pre-treatment periods that exhibit substantial



differences from the post-treatment periods (with time-specific weights), making the
SDID estimator doubly robust to both diverging pre-trends and model mis-specification
(Arkhangelsky et al., 2021). Finally, in contrast to other approaches to address diver-
gent pre-trends in a TWFE-DID estimation, such as one-to-one matching with propen-
sity scores (see Cui et al., 2021, Dechezleprétre et al., 2023, and Colmer et al., 2025 for
examples), our approach avoids discarding non-matching observations. Instead, our es-
timation strategy assigns them lower unit weights, retaining a larger estimation sample
which allows us to preserve greater power for inference and comprehensively explore
results heterogeneity.

To facilitate direct comparisons, each of the three estimators can be reformulated
as a weighted average difference in adjusted outcomes (3,-) using the appropriate unit-

specific weights (@;):

~ Nc() ~ ~ 1 N ~
T =04 — z @;0; where Oy = No i:}%ﬂ 0;. 9)

A first key difference is that while the TWFE-DID estimation leverages constant weights
(@ = NC_Ol) across untreated units (3,-), the SC and SDID approaches generate a set of
weights to approximately match pre-treatment trends of unexposed units with those for
the exposed ones. Secondly, for the adjusted outcomes (3,~), the SDID estimator further

selects time weights to balance pre- and post-exposure periods for unexposed units:

n . 1 T Tpre o
6jsdld — Z Y, — Z ledlint- (10)
Tpmt t=Tpre+1 t=1

3.2 Semi-elasticity models

We subsequently complement our causal inference analyses by estimating price and
tax elasticities of gasoline and diesel demand and use these to perform simulations to
investigate tax effectiveness using log-linear semi-elasticity models. We estimate fuel-
specific elasticities, using two different specifications. First, we calculate real price
elasticities and compare them to typical fuel demand elasticities (cf. Eq. 11: Real
price elasticities). Second, in line with Li et al. (2014) and Andersson (2019), we
split the real price into its three main elements: (i) the eco-tax, (ii) other existing fuel
taxes (henceforth the energy tax), and (iii) the remaining tax-exclusive component, here

called the raw price (cf. Eq. 12: Eco-tax elasticities).

Real price and tax elasticity in Germany. We first estimate a set of models based

on variation in fuel demand within Germany and use the estimated elasticities from Eq.
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12 to simulate predicted pathways of CO; and air pollution emissions under different

taxation regimes.” The static log-linear models for Germany are expressed as:

10g(y;) = Po+ Q10" + BoaD{ + A'X, + & (11)
10g(y1) = Bo+ 20" + @3pi + ap" "™ + BD{ + VX, + & (12)

Elasticity estimates obtained leveraging annual data within a static model typically
approach long-term elasticities (Sterner, 2007), or are alternatively regarded as “inter-
mediate” (Dahl and Sterner, 1991). Outcome y; refers to log fuel consumption per
capita for gasoline or diesel in liters.® p/@ is the real retail price, including VAT. p¢&<c!
is the retail price excluding the energy and eco-tax but with VAT, in real terms. p{“’ and
P8 refer to the eco and energy tax, respectively, including VAT and are included
in the models as separate terms (cf. Eq. 12). D{“° is a dummy equal to one after the
implementation of the eco-tax and zero otherwise. X, is a vector of control variables
that includes GDP per capita, the unemployment rate, and a time trend. The error terms
are denoted by &. We estimate the model using an OLS regression. We use the Newey-
West-estimator, robust to autocorrelation and heteroskedasticity.9

A standard concern with estimating fuel elasticities is an endogeneity problem,
where fuel demand can also affect supply and thus prices (e.g., Kilian, 2009; Coglianese
et al., 2017; Kilian and Zhou, 2024). Endogeneity due to reverse causality is arguably
a lesser source of concern in a single EU country setting, as crude oil prices are set in
a global market and changes in demand in a single country are thus expected to have
a relatively marginal impact on overall demand. One possibility to address this issue
is to adopt an instrumental variable (IV) approach. In line with Li et al. (2014) and
Andersson (2019), we complement our OLS regressions with an IV approach and use
the (Brent) crude oil price as an IV to validate the demand elasticities of the real fuel

price.

Fixed effects models with cross-country panel data. We further estimate a set of
fuel-specific fixed effects models harnessing cross-country panel variation in fuel prices
and tax rates to refine and validate our set of Real and Eco-tax elasticities for Germany.
Crucially, the additional variation across jurisdictions in the estimation sample allows us

to include a host of fixed effects to control more precisely for unobserved time-varying

"We refer to this specification as our Baseline model when discussing results in Section 6.
8Prior to taking logs, we convert fuel consumption to liters.
9Standard errors are calculated using lags chosen following Newey and West (1994).
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confounding factors. The resulting static log-linear fixed effects models are written as:

log(yir) = Bo+ @19 + A" Xt + % + W + DO X ¢ + € (13)
10g(yir) = Bo+ @205 + @35 + apy ™ + A'Xir + % + W + DI X ¢ + €1 (14)

One key difference vis-a-vis Eq. 11 and 12 is the inclusion of country (7;) and time fixed
effects (y;). The former absorb any time-invariant characteristics that might affect fuel
demand in each country, allowing us to focus on changes within countries over time.
The latter captures common time trends that affect fuel demand across all countries
in the same way (e.g., macroeconomic factors, technological advancements, or global
demand changes). The models allow for spatial autocorrelation by clustering standard
errors at the country-year level. We also now include our dummy indicator, D{°, in-
teracted with country-specific dummies, ¢;, to absorb any unobserved country-specific
shocks affecting fuel demand after the implementation of the eco-tax (e.g., other nation-
wide policies affecting fuel demand). Finally, we add an EU-specific time trend among
a vector of cross-country control variables, X;, to account for common trends in fuel

demand (e.g., EU-wide market and/or policy reforms).

4 Data

Our analysis is structured in two parts, which combine several data. First, we use the
SDID estimator to evaluate plausibly causal effects of the eco taxes on CO;, PM; s
and NO, emissions. Second, we perform complementary (non-causal) analyses on un-
derlying mechanisms. To this end, we estimate price and tax elasticities relying on a

cross-country panel dataset. Table A.1 in the OA provides all data sources.

Emissions in the transport sector. To analyze the effect of the eco-tax reform on
CO;,, PM, 5, and NOyx emissions from the transport sector, we draw on several panel
datasets from the Emission Database for Global Atmospheric Research (EDGAR) com-
piled by the European Union (EU) Joint Research Centre (JRC). Data from EDGAR
offers the key advantage of providing worldwide emissions data, disaggregated by sec-
toral definitions, in line with guidelines from the Intergovernmental Panel on Climate
Change (IPCC), which allows us to isolate carbon and pollution emissions originating
specifically from the transport sector (i.e., [IPCC sector code 1A3b). EDGAR is widely
used to support policy design, treaty compliance, the [IPCC, and emission verification to
back countries’ emission reporting to the UN Climate Change Convention Secretariat
(Crippa et al., 2020).
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Global annual gridded maps (with a resolution of around 11km x 11km), plotting
sector-specific emissions, are available from 1970 onward. We extract information on
transport-related CO, emissions (EDGAR v8.0) as well as exhaust and non-exhaust
emissions of PM; 5 and NOy (EDGAR v6.1) from 1970 to 2009, which corresponds
to the end of our estimation sample.'® Within the transport sector, emissions are cal-
culated using national-level activity data, such as fuel consumption and vehicle kilo-
meters traveled, combined with technology-specific emission factors. These emissions
are then spatially disaggregated using proxies, including road network density, traffic
statistics, fleet composition, and urban population distribution. Variation in pollution
estimates stems from annual changes in transport activity (e.g., total distance traveled),
fleet turnover (the replacement of older vehicles with newer, lower-emission technolo-
gies), and shifts in fuel use (e.g., modal shifts to rail or public transport). These changes
are incorporated in EDGAR through updated statistical inputs and the application of
time-dependent emission factors. Emissions data is thus not observed, but represents
estimates, akin to weather re-analysis data. EDGAR’s spatial distribution approach is
detailed in Crippa et al. (2024).

We aggregate transport emissions from the EDGAR grid to the EU territorial grids to
obtain cumulative emission levels (in tonnes of CO, and kilograms of PM, 5 and NOy)
for each NUTS-3 administrative region, which represents our unit of analysis.!' In Ger-
many, this level corresponds to the 401 districts (Kreise or kreisfreie Stidte) across its 16
states. Drawing from the literature, we focus on per capita emissions levels (in tonnes
or kilograms), which we obtain by combining aggregated data from EDGAR with re-
gional population records from the OECD (e.g., Andersson 2019; Leroutier 2022). We
limit our main analyses to current EU members (hereafter EU27) to address concerns
that effects may be partly confounded by post-treatment EU-wide regulation changes,
such as emission standards (e.g., Reynaert, 2021). We also consider two alternative
samples: (a) EU1S5, comprising EU members at the time of the eco-tax reform, and
(b) a restricted sample excluding countries that made large fuel taxation reforms in the
sample period or whose emissions data may be distorted by fuel tourism (cf. Figure 2).
See Table A.2 in the OA for more details.

As a robustness check, we employ an alternative dataset of PM; 5 concentrations

produced by Shen et al. (2024). This dataset provides a measure of PM pollution con-

19Transport emissions include road, rail, domestic aviation, inland waterways, and shipping (Crippa
et al., 2022), but road transport dominated in 1999, accounting for 97% of CO, emissions; rail (1.0%)
and aviation (1.4%) contributed marginally (Umweltbundesamt, 2022).

""The Nomenclature of Territorial Units for Statistics (NUTS) is a geographical nomenclature that
subdivides the economic territory of the EU into distinct regions (i.e., NUTS-1, 2, and 3, progressing
from broader to smaller territorial divisions).
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Figure 2: European territorial grids in the estimation samples
(a) EU membership (b) Border regions (c) Restricted sample

™ Border regions
Others

JRestricted Sample
™ Excluded

. =
Notes: Panel (a) shows the 15 countries (in light blue) that belonged to the European Union (EU) at the time of the eco-tax reform (EU-15) and the current enlargement in
EU membership in darker blue (EU-27). Note that the United Kingdom officially left the EU in 2020. Panel (b) identifies border regions within the EU defined as areas with
a land border or where over 50% of the population resides within 25 kilometers of such border. Panel (c) displays a restricted EU sample excluding countries that made
large changes to fuel taxes over the sample period or are affected by fuel tourism distorting their emissions data (see Table A.2 in the OA for more details). All panels
follow the OECD small territorial level classification (TL3).

centrations derived through a deep learning algorithm supplied with satellite, station and
simulation data. We use this dataset to further validate our main results using a differ-
ent pollution measurement (see Section E of the OA). However, it comes with notable
limitations: it begins in 1998, which leaves us with only one pre-treatment year, covers
PM, 5 concentrations exclusively, and does not distinguish between different emission
sources, which may introduce additional noise in the identification. These constraints

justify the use of the EDGAR dataset as our primary source for the main analysis.

Consumption and price of transport fuels across countries. To estimate price and
tax elasticities and disentangle the different taxation changes, we first construct an an-
nual time-series dataset for Germany, spanning from 1971 to 2009.'? The data for the
gasoline and diesel prices reflect yearly consumer prices for both fuels including VAT.
We convert all nominal prices to real prices, including the energy and eco-tax rates and
the strategic reserve component (the OA details data sources). As VAT is not only im-
posed on the tax-free price p but also on the eco and energy taxes, 7¢“° and 7¢"¢'8”, and
the strategic reserve, 7%, in the same way as on the price, the retail price p” can be
defined as:

pr=(p+1° 4+ 1" + 1) % (1 + VAT) (15)

12 A peculiarity of Germany is its division until the year 1990. As there was no market economy in East
Germany, there were no market prices and no taxes in the same sense as in West Germany. All prices
we use thus relate only to West Germany prior to 1991, while price data from 1991 onwards, and all fuel
consumption data, reflects the entirety of modern Germany.
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To account for this, VAT is already included in each retail price element.'?

All prices
given in Deutsche Mark (DM) are converted to Euro, and all nominal prices and abso-
lute tax rates into real 1995 values. We chose 1995 as a convenient base year close to the
implementation of the eco-tax. Whenever a tax rate changed within a year, we weighted
rates according to the date at which the change took place and used these average tax
rates. The (Brent) crude oil price used for the IV regressions is from the International
Energy Agency (IEA), converted from USD per barrel to €/1 using the Eurostat (2020)
€/USD rate.

Second, we construct an annual panel dataset with country-level diesel and gasoline
consumption and prices to expand our country-level time series. Data on per capita
gasoline and diesel fuel consumption in the road transport sector (in kg of oil equivalent)
are sourced from the International Road Federation’s World Road Statistics and the
International Energy Agency (IEA), as compiled and adjusted by the World Bank using
annual population estimates (see A.1 of the OA). Data on gasoline (diesel) prices and
taxes are consistently available from the IEA for 24 (19) major countries starting from
1978 onwards.'* We harness the additional cross-country variation to estimate a set of
fuel-specific price and tax semi-elasticity models which employ a host of fixed effects

to control more precisely for unobserved time-varying confounding factors.

Additional data. To study the heterogeneity of emission reductions across geograph-
ical and socio-economic characteristics and shed light on potential mechanisms and
complementary outcomes, we collect a series of additional data.

First, to conduct sensitivity analyses, we gather country-level economic activity data
to further condition our analyses on time-varying observables and adjust our estimations
for potential residual imbalances in GDP growth patterns across treated and control
groups. GDP data refers to expenditure-side real GDP in purchasing power parities (in
2011 USD) from the Penn World Table.

Second, to measure how the eco-tax may have affected innovation, we use patent
data from the OECD Patent Database. We extract a panel dataset of climate change
mitigation patents related to transportation (YO2T category) filed by inventors in OECD
countries spanning from 1985 (earliest availability) to 2009. We focus on triadic patent

families to improve the quality and the international comparability of patent counts.!”

I31f the eco-tax was raised by 10 cents, the fuel price would increase by 11.90 cents with a VAT rate of
19%. Thus, the eco and energy tax rates include VAT. In our calculations, the price increase is attributed
to a change in the eco-tax rate.

14The difference in the number of jurisdictions covered by the IEA data for gasoline and diesel prices
stems from the lack of a sizable market for diesel in a number of jurisdictions.

STriadic patents are a sub-set of patents taken at the European Patent Office, the Japan Patent Office
and the US Patent and Trademark Office that protect the same invention. We treat multiple application
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Triadic patents are generally of higher value: patentees only take on the additional
costs and delays of extending protection to other countries if they deem it worthwhile
(Aghion et al., 2016).'¢ Patents in our data are counted according to the earliest priority
date, corresponding to the first patent application worldwide.

Third, to investigate the role of fleet renewal, we obtain data on the share of new
passenger cars in the German fleet (aged 2 years or less) from the UNECE Statistical
Database. Fourth, to examine how the eco-tax may have affected emissions via re-
duced travel volumes, we obtain data on road passenger-kilometers driven from OECD
Statistics.

Fifth, to asses how the salience of the eco-tax in the media may have played a
role, we develop a newspaper-based index to capture the evolution of salience related to
environmental taxation based on textual analysis of newspaper articles (Gentzkow et al.,
2019). To this end, we rely on the four largest newspapers in the Factiva database,
which stores all articles published by major newspaper in print or online format. To
obtain article counts, we rely on text-based search strategies that identify around 5,700
unique articles. After scaling the raw counts to ensure that index spikes are not driven by
newspaper-specific publishing trends, we standardize each newspaper’s series, average
across all papers, and normalize the resulting index to 100 over the period, following the
same standardization and normalization procedure of Baker et al. (2016). A description
of our search strategies and the steps to construct newspaper-based indices is detailed
in Section F.2 of the OA.

Sixth, we obtain socio-economic information for Germany aggregated at the district-
level from the Leibniz Institute for Economic Research (Breidenbach and Eilers, 2018a).
In particular, we extract gridded data on the distribution of household-level purchasing
power, which comprises records on labor, capital, rental and leasing income minus taxes
and social security contributions (i.e., social transfers such as unemployment benefits,
child-allowances and pensions). Finally, we retrieve NUTS-3-level statistics from Eu-
rostat to consistently identify the border and urban-rural classification of each European

region.!”

filings of an invention (i.e., a patent family) as one innovation. We focus on patent families to capture the
number of low-carbon technologies that are developed in Germany rather than the count of underlying
patent applications.

16Considering the number of jurisdictions in which a patent application is filed is a common approach
to capture patent quality (e.g., Calel and Dechezleprétre, 2016).

"The European urban-rural typology categorizes areas into three groups: (i) Predominantly urban
regions, where at least 80% of the population resides in urban clusters, intermediate regions, where more
than 50% but less than 80% of the population lives in urban clusters, and predominantly rural regions,
where at least 50% of the population resides in rural grid cells.
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5 Average treatment effects of the eco-tax reform on en-

vironmental externalities

In this section, we present the average treatment effects of the eco-tax reform on CO;,
PM, 5 and NO, emissions, leveraging the SDID estimator described in Section 3.1. We
additionally discuss findings from several robustness tests in subsection 5.1, including
a complementary research design with a staggered configuration, which leverages the
gradual rollout of similar environmental taxation reforms in other EU countries in the
1990s, namely Finland (Mideksa, 2024) and Sweden (Andersson, 2019).

Table 1 summarizes our baseline ATTs for the SDID estimation. Figure 3 of-
fers a graphical representation of each estimation. The SDID estimator re-weights
the unexposed EU-27 control regions to make their time trend parallel to Germany
pre-intervention, and then carries out a DID analysis to the re-weighted panel. Cru-
cially, due to the presence of time weights (ifdid), we only focus on a subset of the
pre-treatment periods during this final step. Pre-treatment time-weights are represented
in light blue at the bottom of Panels (a) - (c) in Figure 3. Overall, the estimator performs
well in approximating parallel pre-trends and assigns positive weights to years where
treated and control units show similar trends. Panel (d) displays the composition of
the SDID donor pools by aggregating unit-specific weights (d)fdid) at the country level.
In line with Arkhangelsky et al. (2021), our SDID estimation yields more balanced
weighting than previous SC applications (e.g., Andersson, 2019; Leroutier, 2022), with
no single country receiving, on average, more than 17% of the weight.

The estimated ATTs point to sizable decreases in CO,, PM; 5 and NO, emissions in
the transport sector following the eco-tax reform. First, between 1999 and 2009, mean
annual emission reduction amounted to 0.37 metric tonnes of CO, per capita, which
cumulatively sums up to 334,970,340 tonnes of CO,. Notably, our 95% confidence in-
tervals encompass mean reductions estimated in Andersson (2019) from 2001 to 2005,
amounting to around 0.35 metric tonnes, coinciding with the period when the Swedish
carbon tax reached and later surpassed the eco-tax rate.!8 Second, we find that, on aver-
age, 0.17 kg of per capita PM; 5 less were emitted each year in comparison to a scenario
with no eco-tax, which amounts to total PM; 5 savings of around 158,432 tons. Finally,
our SDID estimation suggests that, after the eco-tax, per capita NO, emissions were

lower by 2.2 kg, on average, with a cumulative reduction in NO, of 2,030,644 tonnes.

18Using historical exchange rates, the Swedish carbon tax rate per liter increased from approximately
11.4 to 19.5 euro cents from 2001 to 2005 (The Swedish Tax Agency, 2023).
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Table 1: Average SDID effects of environmental taxation

CO; emissions (t) PM; s emissions (kg) NO, emissions (kg)

Mean estimate (2544 from Eq. 1) -0.370 -0.175 -2.243
Standard error (1/ \77 from Eq. 4) (0.015) (0.009) (0.075)
Percentage change relative to baseline (%) -15% -25% -13%

Observations 45440 45440 45440
Countries EU-27 EU-27 EU-27

Notes: All outcome variables are expressed in per capita terms and the unit of measurement is indicated in the column heading. The table displays the estimated average
effects of the eco-tax on CO,, PM; 5, and NOy emissions leveraging the SDID estimation procedure introduced in Section 3.1. Standard errors were computed using the
bootstrap variance estimation procedure described in Eq. 4 with 200 replications. Percentage changes were calculated as the ratio of mean estimates (deid) to baseline
emissions in Germany in 1998 (i.e., the year prior to the eco-tax reform) amounting to around 2.36 tonnes per capita for CO,, 0.68 kilograms per capita for PM; 5, and 16.55
kilograms per capita for NOy.

Figure 3: Graphical SDID effects of environmental taxation

(a) CO; changes (b) PM, 5 changes (¢) NO, changes
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Notes: Panels (a) - (c) plot average trends in air emissions over time for German districts and the relevant weighted average of control European NUTS-3 regions, with the
weights used to average pre-treatment time periods at the bottom of the graphs. Panel (d) displays the composition of the SDID donor pools by aggregating unit-specific
weights (ﬁ)fd‘d) at the country level. The grey bars indicate the average aggregate weights by country.

We additionally compute mean annual changes in emissions in percentage terms to
provide perspective on the magnitude of the effects. Percentage changes are calculated
as the ratio of mean estimates (£°%¢) to baseline emissions in Germany in the year prior
to the eco-tax reform. CO; per capita emissions decrease, on average, by 15% between

1999 and 2009, while PM, 5 and NOx emission reductions amount to 25% and 13%,
respectively.
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Figure 4: Average treatment effects across specifications and models
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Notes: The panels above compare our baseline ATTs to (i) alternative specifications and (ii) alternative models with a different estimator or study design. For more details
on the restricted sample (denoted by restr.), see Section 4 and Table A.2 in Section A of the OA.

5.1 Robustness tests

We now discuss further results from (i) additional SDID specifications and (ii) alter-
native models based on different estimators and a staggered design. These robustness
analyses are summarized in Figure 4. Additional country-level analyses and diagnostics

are presented in Section B in the OA.

Alternative SDID specifications. Our baseline estimates from Table 1 are robust to
various data and specification changes. First, we consider alternative compositions of
donor pools: (a) extending our sample to other OECD countries, (b) leveraging the re-
stricted sample described in Section 4, (c) restricting the sample to EU-15 countries,
(d) dropping border regions due to concerns related to fuel tourism, and (e) dropping
districts in Eastern Germany to mitigate concerns regarding the local impacts of their
EU economic integration after German reunification. While relying on all OECD coun-
tries allows us to amplify statistical power, we note that this could potentially overstate
the impact of the eco-tax, due to concurrent EU-wide shocks (such as standards). In
contrast, by focusing on EU-15 countries we trade-off statistical power to rule out that
the observed effects are sizably influenced by some control countries joining the EU
during the post-treatment period. Second, we consider a shorter time frame ending in
2007 to ease concerns related to unilateral environmental policies implemented towards
the end of our considered time frame (cf. Section 2). Finally, we condition our baseline
model to national GDP per capita to control for how economic activity variations over

time have affected emissions.?

19To rule out potential endogeneity concerns, we later test in Section 7 whether the introduction of the
eco-tax led to significant impacts on economic activities in Germany.
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Alternative estimators. We also compare our SDID estimations to the TWFE-DID
and SC approaches described in Section 3.1. We observe that without any re-weighting
a simple DID estimation tends to overestimate the impacts of the eco-tax. The inclusion
of unit weights (&7°) in the SC method already mitigates most of the upward bias, yield-
ing comparable estimates for CO; reductions and slightly higher decreases in PM, 5 and
NOy. Overall, the further use of time weights (ifdid) leads to more conservative base-

line estimates.

Alternative design. We finally report complementary results from a staggered adop-
tion design leveraging the early introduction of similar environmental fuel taxes within
other European transport sectors in our sample to mitigate the concern that post-treatment
idiosyncratic shocks could confound our SDID estimations for Germany and investigate
their external validity. The bar denoted by Staggered SDID in Figure 4 displays the av-
erage treatment effects of environmental fuel taxes on air emissions (i.e., 594 from
Eq. 6) harnessing their gradual rollout in Finland (in 1990), Sweden (in 1991), and
Germany (in 1999). Overall, these findings further support our baseline estimates for

Germany. Additional insights on country-level heterogeneity are presented in the OA.

6 Results on fuel and tax elasticities

This section leverages the semi-elasticity models described in Section 3.2 to disentangle
the effects of the eco-tax, the energy tax, and VAT to compare behavioral responses. We
report price elasticities for gasoline and diesel leveraging both national time series and

cross-country panel variation.

6.1 Real price semi-elasticities for gasoline and diesel

Tables 2a and 2b report estimates from Real price elasticities specifications (cf. Sec-
tion 3.2) for gasoline and diesel consumption.” Using our estimate from column (1)
in Table 2a, we derive a real price elasticity of gasoline of -0.54.2! The IV regression
yields a very similar price elasticity of -0.50 (column (2) of Table 2a), indicating that
the endogeneity of gasoline prices is likely not a major concern in our setting. To test

the instrument’s relevance condition, we use an F-test for that single instrument. For the

208ee Tables C.2a and C.2b in the OA for results using a shorter time frame (1991-2009).
2ITo calculate elasticities from our log-level model estimates (log(Y) = a + bX), the coefficient for
each tax is multiplied by the average sample mean of the real fuel price (90 cents for gasoline and 76

cents for diesel), as the elasticity of demand is given by € = % * % This implies that % = beebX,

Plugging in, we obtain € = Ziueebb)?( *X = bX.
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Table 2: Real price semi-elasticities for transport fuels

(a) Gasoline consumption (b) Diesel consumption
1 ()] 3) (&) 2) 3)
OLS: Baseline IV: Brent crude OLS: Fixed effects OLS: Baseline IV: Brent crude OLS: Fixed effects

Gasoline Price -0.00603** -0.00553% -0.00553"** Diesel Price -0.00440™ -0.00361*** -0.00454**

(0.00278) (0.00305) (0.00103) (0.00103) (0.000856) (0.00147)
Instrument F-statistic 69.47 Instrument F-statistic 168.86
Price elasticity -0.54 -0.50 -0.50 Price elasticity -0.34 -0.28 -0.34
Sample Germany Germany OECD Sample Germany Germany OECD
Controls ' v v Controls v v v
Observations 38 38 765 Observations 39 39 574

Notes: The dependent variable is the log of fuel consumption in liters per capita, which refers to total fuel consumption or either gasoline or diesel consumption (as
indicated by the column heading). Columns (2) use the Brent crude oil price as an instrumental variable for the real fuel price. Results for gasoline consumption refer to
1972-2009 in column (1) due to missing price data prior to 1972. Newey-West standard errors in parentheses are heteroskedasticity and autocorrelation robust. Standard

errors in columns (1) - (2) are calculated relying on the automatic bandwidth selection procedure following Newey and West (1994). Standard errors in column (3) are
clustered at the country-year level * p < 0.05, ** p < 0.01, *** p < 0.001.

price of gasoline, the F-statistic is 69.47 suggesting that the relevance condition is ful-
filled and that Brent crude oil price can be considered a suitable instrument for gasoline
prices. The cross-country elasticity based on OECD data presented in column (3) also
yields a very similar elasticity of 0.50. Table 2b displays results for diesel consumption
from the real price elasticity specification (cf. Section 3.2). The real price elasticity of
demand for diesel shown in column (1) of Table 2b is somewhat lower than for gasoline
at -0.34. The IV regression in column (2) yields an estimate of -0.28, which deviates
slightly more than the IV and OLS regressions for gasoline, but is still sufficiently close
to corroborate the magnitude of the real price elasticity for diesel. Once again, our real
price elasticity for Germany is almost identical to what we yield in column (3) harness-
ing cross-country variation across OECD jurisdictions, indicating that Germany does
not display distinctive fuel price elasticity patterns compared to other OECD countries,
reinforcing the broader applicability of our results. Overall, our estimates fall into the

range of price elasticities of demand in the literature (e.g., Frondel and Vance, 2014).

6.2 Tax semi-elasticities for gasoline and diesel

Table 3a displays results for gasoline consumption from the Eco-tax elasticities spec-
ifications (cf. Section 3.2).22 The OLS results in column (1) in Table 3a indicate that
the price elasticity of demand for the price excluding the energy and the eco-tax (but
including the VAT) is -0.32. The energy tax elasticity of demand, instead, amounts to
-0.22. Both elasticities are computed relying on coefficients that exhibit a considerably
lower significance. This contrasts the eco-tax elasticity of demand, which is estimated
at -2.7 and is thus around 8.5 times larger than the tax-exclusive price elasticity. The

eco-tax elasticity of diesel demand is also significantly higher than that for the real

22We cannot reject the hypothesis of full pass-through, see Section C in the OA.
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Table 3: Eco-tax semi-elasticities for transport fuels

(a) Gasoline consumption (b) Diesel consumption
1) 2 3) 1) 2 3)
OLS: Baseline OLS: Fixed effects OLS: Fixed effects OLS: Baseline  OLS: Fixed effects OLS: Fixed effects
Raw price of Gasoline -0.00357* -0.00256 -0.00427" Raw price of Diesel -0.00346"** -0.00525"** -0.00506"*
(0.00179) (0.00165) (0.00163) (0.00104) (0.00164) (0.00187)
Energy Tax on Gasoline -0.00242 -0.00485"* -0.00413%** Energy Tax on Diesel -0.00729* 0.000388 0.000937
(0.00476) (0.00128) (0.000569) (0.00292) (0.00152) (0.00155)
Eco-tax on Gasoline -0.0306"* -0.0296"* -0.0247** Eco-tax on Diesel -0.0143" -0.0232"* -0.0197*
(0.00700) (0.00479) (0.00350) (0.00359) (0.00351) (0.00328)
Raw price = Eco-tax (p-value) <0.001 <0.001 <0.001 Raw price = Eco-tax (p-value) <0.001 <0.001 <0.001
Eco-tax elasticity 27 -2.7 <22 Eco-tax elasticity -1l -1.7 -1.5
Sample Germany OECD EU Sample Germany OECD EU
Controls ' v v Controls v v v
Observations 38 765 509 Observations 39 574 415

Notes: The dependent variable is the log of fuel consumption in liters per capita, which refers to total fuel consumption or either gasoline or diesel consumption
(as indicated by the column heading). Results for gasoline consumption in column (1) refer to 1972-2009 due to missing price data prior to 1972. Newey-West
standard errors in parentheses are heteroskedasticity and autocorrelation robust. Standard errors in column (1) are calculated relying on the automatic bandwidth
selection procedure following Newey and West (1994). Standard errors in columns (2) - (3) are clustered at the country-year level * p < 0.05, ** p < 0.01, ***
p <0.001.

price. Table 3b displays the results for the different tax rates for diesel. Using col-
umn (1) in Table 3b, the elasticity for the real price, excluding the energy and eco-tax,
is -0.26. The energy tax elasticity of demand is -0.56, slightly higher than the price
elasticity. The eco-tax elasticity is again the highest level at -1.1, about 4 times larger
than the tax-exclusive price elasticity. These magnitudes and the corresponding fax
saliency ratios are corroborated by our set of fixed effects models both when leveraging
panel variation across OECD jurisdictions in column (2) and restricting the sample to
EU members only in column (3). It follows that an increase in the eco-tax predicts a
stronger response in demand than that of a market-driven price change for both gasoline
and diesel.”

Li et al. (2014) discuss two underlying reasons that may reconcile our findings and
explain the estimated stronger response to the eco-tax. The first one is persistence,
meaning that consumers rely on tax changes to build expectations for the future price
of gasoline. A tax increase may thus be perceived as more enduring than market-driven
price fluctuations, which, in turn, would stimulate a stronger consumer response. The
second is salience, meaning that consumers are more aware of the price increase due to
media coverage. In Section 7, we examine whether the introduction of the eco-tax was

accompanied by an increase in its salience in newspaper coverage.

23We additionally amend our semi-elasticity models with a lead to test if consumers increased their
purchases of fuel in anticipation of tax increases, which may bias estimated price and eco-tax coefficients
(Coglianese et al., 2017). We do not find evidence of anticipatory effects, and the estimated real price
and eco-tax elasticities are very similar to the main result reported in Tables 2a - 3b (see Figure C.1 in
the OA). One explanation is that anticipatory behavior is a lesser source of concern when dealing with
yearly data than relying on monthly variation.
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6.3 Emission scenarios

We next rely on fuel-specific price and tax elasticities estimates from columns (1) in
Tables 3a and 3b in a Simulation Approach to predict CO,, PM; 5 and NOyx emissions
across three taxation scenarios: (1) A scenario where no VAT and no taxes are intro-
duced, (2) a scenario where either VAT or VAT and the energy tax is added, and (3) a

scenario where all are implemented.*

Predicted emissions in the Simulation Approach. Panels (a) and (b) in Figure 5
summarize the estimated evolution of CO, (left-hand side primary y-axis) and PM; s
(right-hand side secondary y-axis) emissions by fuel in the German transport sector un-
der different tax regimes. The black line represents predicted emissions accounting for
all existing tax measures, including the eco-tax, energy tax, and VAT. The purple line
plots the estimated evolution of emissions in the absence of the eco-tax, while the yel-
low line depicts expected emissions with neither the eco-tax nor the energy tax, solely
incorporating VAT. The green line shows predicted emissions without any tax policies.
The gap between the black and purple line highlights the estimated emission gap at-
tributable to the eco-tax, while the other lines represent alternative counterfactuals.
Panel (a) in Figure 5 shows that, between the years 1999 and 2009, the decrease in
emissions of CO;, (PM; 5) from gasoline induced by the eco-tax was around 0.27 tons
(0.002 kg) per capita on average per year. Similarly, Panel (b) provides the estimated
emission reductions for diesel. The corresponding mean decline in annual emissions
of CO; (PM; 5) from diesel induced by the eco-tax was around 0.11 tons (0.04 kg) per
capita, i.e. less marked than for gasoline due to the lower eco-tax elasticity for diesel.?
Panels (a) and (b) in Figure 6 contrast the estimated share of aggregate reductions in
emissions attributable to contractions in gasoline or diesel use for CO, and PM; s, also
including reductions in NOy emissions. On average, contractions in gasoline (diesel)
use were responsible for 72% (28%) of overall reductions in CO; emissions. Con-
versely, reduced diesel use is responsible for almost all (95%) of the reduction of PM 5
emissions. In other words, reductions in diesel consumption have contributed around

21 (0.4) times more to the decline in PM; 5 (CO,) emissions relative to gasoline.

24The combustion of one liter gasoline (diesel) emits 2.235kg (2.66kg) of CO, (US EPA, 2005). Using
this factor, the predicted log gasoline (diesel) consumption values can first be turned into liters and
then CO; emissions. To estimate PM; 5 exhaust emissions from fuel consumption, we rely on average
emission factors by the European Environment Agency (EEA) for gasoline (diesel) vehicles in Germany
(Ntziachristos and Samaras, 2019) of 0.02 grams (1.12 grams) of PM, 5 per kg of gasoline (diesel).
Although EEA only reports emission factors for PM without specifying the size range, it clarifies that
PM mass emissions in vehicle exhaust mainly fall in the PM; 5 category.

Z3Note that simulations are not directly comparable to the SDID results for PMj 5, as the former only
accounts for exhaust emissions, thus missing a share of PM; 5 emission reductions.
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Figure 5: Predicted emissions by fuel under different taxation scenarios

(a) Gasoline consumption (b) Diesel consumption
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Notes: The figures plot predicted emissions from the eco-tax specification of our log-level semi-elasticity models (cf.
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our estimates from column (1) in Tables 3a and 3b. Panel (a) refers to predicted emissions from gasoline consumption, while
Panel (b) covers diesel. In each panel, the left-hand side primary y-axis refers to per capita CO, in metric tons, while the
right-hand side secondary y-axis refers to per capita PMj s in kg. The top green line displays predicted emissions when the eco
and energy tax elasticities are set to zero, and VAT is deducted from the fuel price. For the yellow line, the eco and energy tax
elasticities are set to zero but VAT is included. The purple line shows how predicted emissions change when the eco-tax is set to
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Figure 6: Share of total emission reductions by fuel due to the eco-tax
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Notes: The figures above plot the share of total predicted emissions reductions by fuel type from our log-level semi-elasticity
models (cf. Section 3.2). The share of total emission reductions for each fuel type is computed from the estimated post-treatment
gap in emissions from gasoline (diesel) consumption due to the eco-tax, which refers to the distance between the bottom black
line and the purple line in Figure 5.

7 Exploration of mechanisms

Fleet renewal and passenger-kilometers. An important argument for regulating emis-
sions in the transport sector is that it can prompt a more rapid adoption of more efficient
vehicles (e.g., Jacobsen et al., 2023). Panel (a) of Figure 7 provides descriptive evi-
dence of the change in fleet renewal rate by plotting the share of new passenger car
registrations in the German fleet over time. We observe a discontinuity following 1999:
after the eco-tax reform, the share of new passenger cars increased on average by 2%. It

seems plausible that the eco-tax has played a role in accelerating cleaner vehicles adop-
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tion, which could, at least partly, explain the contraction in emissions. We then resort
to our semi-elasticity models to investigate how changes in the eco-tax rate affected the
volume of road passenger transport, proxied by passenger-kilometers (pkm). Panel (b)
of Figure 7 shows that, on average, the eco-tax is associated with a decrease in pkm
by around 6.5% (5.7%) for gasoline (diesel).2° These results offer suggestive evidence
that a share of the estimated emission reductions may be due to both an accelerated fleet

renewal and a reduction in the volume of road transport.

Salience. Our analysis continues by providing suggestive evidence of the role of
salience of the eco-tax in the media, drawing on a growing number of economic stud-
ies leveraging newspaper data as a source of variation in the salience of events (e.g.,
Li et al., 2014; Baker et al., 2016). Panel (c) of Figure 7 displays our environmen-
tal taxation salience introduced in Section 4, which traces variations in the salience
of the public debate on environmental taxes. Salience rises sharply before and shortly
after the eco-tax’s introduction. This increased salience in the media may have af-
fected behavioral responses, alongside other features of the tax-such as its perceived
persistence-contributing to the substantially higher tax elasticity compared to the mar-

ket price elasticity.

Fuel substitution and abatement trade-offs. Diesel fuel vehicles contribute consid-
erably more to emissions of fine particulates, such as PM, s, than gasoline vehicles.?’
However, diesel vehicles have lower CO, emissions rates per kilometer traveled com-
pared to gasoline vehicles, by around 20% for otherwise virtually identical vehicles
(Linn, 2019), as diesel engines are typically much more fuel-efficient. It follows that
policy measures that foster a switch from gasoline vehicles to diesel vehicles (e.g., taxes
based on the carbon content of fuels), could, in turn, lead to a decrease in CO, emis-
sions but also an increase in PM, 5 emissions. Previous research on fuel and carbon
taxation has not explicitly considered this trade-off in policy evaluations, except for
Linn (2019).%

26We provide suggestive evidence that the eco-tax, via reduced pkm, contributed to fewer road
casualties-a major externality of road transport (e.g., Anderson and Aufthammer, 2014). Using our semi-
elasticity models, we estimate an average 11% drop in casualties following the tax (cf.FigureC.4 in the
OA). This suggests that our focus on climate and air pollution co-benefits likely understates the full
benefits of the eco-tax.

2’Relying on EEA emission factors for Germany, the average PM, 5 emission factor for diesel vehicles
is around 56 times larger than for gasoline (Ntziachristos and Samaras, 2019).

28 A related channel is a modal shift from road to rail. Expanded rail infrastructure may have also
contributed to reduced pollution (e.g., Lalive et al., 2018). While passenger transport on rail has contin-
uously increased in Germany between 1994 and 2009, this development has been less pronounced than
in France, the largest synthetic donor country (OECD, 2025).
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Figure 7: Mechanisms of reductions in emissions
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Panel (d) of Figure 7 plots the estimated gasoline-to-diesel substitution induced by
the eco-tax (cf., Table C.3b in the OA), implying that part of the contraction in CO,
linked to reduced gasoline use came at the expense of greater PM; 5 emissions due to
fuel substitution. We estimate that the share of diesel consumption is predicted to have
increased by around 4% more than it would have had in the absence of the eco-tax
throughout the post-treatment period. Our calculations suggest that gasoline-to-diesel
substitution due to the eco-tax led to a cumulative increase in PM; 5 exhaust emissions
of around 25,000 tons.

Innovation. The introduction of higher environmental taxes can affect firms’ inno-
vation behavior, which can, in turn, affect the potential to reduce emissions. Here,
we analyze how the eco-tax has affected low-carbon triadic patents in the transport
sector using the SDID approach at a country level.”” We backdate the start of the post-
treatment period to 1995, when the eco-tax bill began to be discussed in parliament
(Beuermann and Santarius, 2006), to account for potential anticipatory effects, which
are not uncommon in innovation dynamics (Lemoine, 2017). We consider four differ-
ent model specifications. The first is a simple baseline specification with no controls,
focusing on OECD countries (No Controls). The second restricts the sample to Euro-
pean Union countries to allow for a more homogeneous comparison group (EU). The
third specification includes a set of covariates, adding a dummy for EU membership
and controlling for the total number of patents per capita in each country (Covariates).
Finally, the fourth specification discards potential anticipation effects and restricts the
post-treatment period to 1999 onwards (No Anticipation).

Panel (e) of Figure 7 shows a sizeable increase in low-carbon triadic patents follow-
ing the introduction of the eco-tax. Our most conservative estimate links the eco-tax
reform with an additional 0.51 patents per million population each year. This implies
that between 1999 and 2009, around 3.5% of transportation-related carbon mitigation
patents may be associated with the effects of the eco-tax. This finding complements
previous studies on the innovation response of regulated companies to carbon pricing
schemes (e.g., Calel and Dechezleprétre 2016), which generally find limited aggregate
effects.?”

2We opted for a countrywide analysis because innovation tends to be concentrated in a few districts,
and leveraging a more disaggregated level of analysis would result in a zero-inflated outcome distribution,
which makes synthetic control approaches less reliable (Abadie, 2021).

30Two key differences may explain our larger magnitudes. First, employing an economy-wide ap-
proach can additionally capture innovation occurring along the supply chain and across unregulated
agents, due to the pass-through of regulatory costs or knowledge spillovers (Popp, 2019). Second, inno-
vation in the automotive industry is arguably of greater importance in Germany than in other countries
that do not feature comparatively large automobile industries.
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Decoupling. A common contention against the implementation of carbon taxation
revolves around potential detrimental effects on economic growth. We thus investigate
whether the observed reduction in emissions may have occurred alongside a reduction
in economic activity. Panel (f) of Figure 7 plots the ATTs of a set of SDID estimations
where we examine the impact of the eco-tax on the evolution of GDP per capita in
Germany relative to synthetic counterfactuals based on other OECD peers. Specifically,
we rely on both the entire balanced sample of OECD countries and its restricted version
(cf. Section 4). We additionally consider a shorter time frame starting after the German
reunification in 1990. Across the different specifications, we do not document any

significant negative effects on German GDP from the eco-tax reform.

8 Reductions in external damages

Previous sections have demonstrated that reductions in emissions are significant and
sizable. In this section, we quantify how economically substantial the associated re-
ductions in external damages are and assess how they are distributed across German

districts, with a special emphasis on how they are distributed along income levels.

Aggregate reductions in external damages. To quantify societal benefits from re-
duced climate and pollution costs, we apply official cost estimates from the first com-
prehensive guidelines by the Umweltbundesamt (2012). They recommend using a so-
cial cost per ton of CO, emitted in 2010 by 80 Euros (in 2010 Euros), and provides
disaggregated cost estimates for PM; 5 in the transport sector, distinguishing costs of
PM, 5 exhaust emissions released within cities, denoted ‘urban’ (364,100 €/t) and out-
side of cities, which we denote as ‘non-urban’ (122,800 €/t), recognizing that within
city emissions contribute more to human health costs. Using their reported breakdown
of the share of PM; 5 within and outside of cities for different transport modes, we
compute a weighted average of PM; 5 damages. External costs of NO, are not distin-
guished across locations, with an average cost estimate of 15,400 €/t.>! We convert all

cost estimates from the base year 2010 to 2022 values using official inflation statistics.

31The cost estimates provided by Umweltbundesamt (2012) were derived from the EU NEEDS project
which—in the time frame relevant for our historical analysis—provided the most comprehensive cost
estimates available. In terms of damage sources, the full PM, s damages were related to (human) health
damages, which compares to a health damages share of 82% for NO,, where the remaining share of
damages derives from biodiversity loss (14%), crop yield damages (3%) and material damages (1%).
See Umweltbundesamt (2012) for details. These cost estimates have recently been revised upwards, with
the latest guidance from 2024. We retain the 2012 cost estimates, as this was closest to the time frame of
our analysis, but note that cost estimates are conservative compared to more recent estimates.
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Figure 8: Reductions in climate and pollution damages due to the eco-tax
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Simulation Approach and (b) the Synthetic Difference-in-Differences Estimation on CO; (green), PM, 5 (orange), and NOy
(blue) reductions and compares their magnitudes with the implied estimates from a prior analysis by Steiner and Cludius (2010).
Simulation results for PM; s emissions do not account for non-exhaust emissions. Aggregate cost reductions are computed
relying on pollutant-specific official cost estimates provided by the Umweltbundesamt (2012) and expressed in 2022 Euros.

We start with an aggregate assessment of how the eco-tax has reduced climate and
pollution damages and contrast our SDID results to estimates based on simulations.
First, we consider results from a previous report, which focuses on carbon reductions
only and suggests that environmental improvements due to the German eco-tax have
been limited (Steiner and Cludius, 2010).32 Evaluating estimated emission reductions
using their elasticities with the cost of carbon by the Umweltbundesamt (2012) in 2022
Euros yields a climate benefit of 4.9 billion Euros (first bar of Panel (a) in Figure 8).

We contrast this prior assessment with results from our Simulation approach (Panel
(a) in Figure 8). Simulating emission reductions of CO, relative to the counterfactual
without the eco-tax yields 344 million fewer tons, and an aggregate climate benefit of
around 35 billion Euros. We further simulate reductions of PM, 5 and NO,, emissions of
36,368 tons and 1.08 million tons,33 translating into pollution reduction benefits of 31
billion Euros. In sum, our Simulation Approach suggests that the eco-tax has reduced
external damages by 66 billion Euros, which is 13 times the previous estimate.

We further consider an alternative scenario with no fuel substitution from gasoline

to diesel induced by the eco-tax. We compute the no fuel substitution scenario by hold-

$Steiner and Cludius (2010) estimate a price elasticity of fuel demand of -0.18 based on household
survey data and attribute -0.1 to the tax elasticity component, with which they quantify reductions of
CO; emissions due to the eco-tax amounting to 120 kg CO, per household per year. Multiplying with
household numbers in Germany from 1999 to 2009, this sums up to 50.73 million tons of CO; emissions.

3To estimate NO, emissions from fuel consumption, we rely on estimates from the EEA on average
emission factors for gasoline (diesel) vehicles in Germany (Ntziachristos and Samaras, 2019) of 5.61
(20.1) grams of NO, per kg of gasoline (diesel).
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ing annual traveled km per capita fixed. As gasoline vehicles are less fuel efficient
than comparable diesel vehicles, we assume that the foregone increase in diesel use
due to fuel substitution translates into a 1.2 times increase in gasoline use to account
for lower fuel efficiency drawing on Linn (2019). Foregone gasoline-to-diesel substitu-
tion is computed using column (3) in Table C.3b in the OA. We then add (subtract) the
estimated foregone substitution towards diesel to predicted gasoline (diesel) use from
column (1) in Tables 3a and 3b. Without fuel substitution, external damage reductions
would have amounted to 55.5 billion Euros with no fuel substitution, with a very differ-
ent composition: While not switching to diesel would have led to much lower climate
benefits (34.9 vs. 18.7 billion Euros), benefits due to reducing PM; 5 would have been
higher (30.9 vs. 36.7 billion Euros).

We now move to quantifying externality reductions using our SDID estimates.*
The first three bars in Panel (b) of Figure 8 show results of our preferred SDID spec-
ifications presented in Table 1 yielding minimal, average, and maximal emission re-
ductions based on point estimates and their 95% confidence intervals. The average
estimates from our preferred specification suggest benefits from reduced carbon and
pollution costs due to the eco-tax of 112 billion euros, more than 22 times as much as
the estimate by Steiner and Cludius (2010).% Our baseline SDID results thus suggest
that the eco-tax has reduced external damages by 120 Euros per capita on average per
year, amounting to around 0.7 percent of the average purchasing power per-capita in
the year 2005.

Overall, our results indicate that the eco-tax was orders of magnitude more effective
in reducing external damages than previously suggested. Crucially, evaluations of fuel
or carbon taxes that focus solely on climate benefits (e.g., Andersson, 2019; Mideksa,
2024) miss a substantial share of benefits. For the case of the German eco-tax, we
estimate that neglecting health co-benefits due to reduced pollution would miss the

majority share—amounting to around 70 percent of reductions in external damages.

3#Note that the SDID and simulations for PM, 5 are not directly comparable, as the simulation relies
on conversion factors that do not include non-exhaust emissions (Ntziachristos and Samaras, 2019) and
thereby leads to a non-negligible underestimate of pollution reductions.

3Note that both EDGAR data and the emission factors used in the Simulation approach are based on
laboratory emission rates, which tend to underestimate actual on-road NOy and PM; 5 emissions (Crippa
etal., 2018), also partly due to the recent Dieselgate scandal (Grange et al., 2020). Our estimated impacts
for on-road emissions may thus represent lower-bound estimates.
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Distribution of pollution-reduction benefits. We next examine how pollution reduc-
tion benefits are distributed. In Panels (a) and (c) of Figure 9, we show the heteroge-
neous pollution reductions per capita across the 401 German districts. We combine
this data with high-resolution spatial data of purchasing power (total available income
after taxes and transfers) from the RWI-GEO-GRID (Breidenbach and Eilers, 2018b;
RWI microm, 2020) for the year 2005, which we also aggregate to average purchas-
ing power at a district level. We denote this as "income” and illustrate its distribution
in Panel (b) of Figure 9. In a second step, we combine incomes and pollution reduc-
tions, separately for PM, 5 and NOy, per district and depict the relationship between
income as well as per capita changes in pollution reductions on average from 1999 to
2009, showing effects for PM, 5 in Panel (d) and for NOy in Panel (e). Each individual
dot in the respective scatterplots signifies a single district. We further provide a non-
linear (quadratic) fit and find that—for both pollutants—pollution reductions are larger
when incomes are lower, i.e. that poorer districts experience larger pollution reduc-
tions. Pollution reductions are thus distributed regressively (i.e., pro-poor). The result
that pollution reductions accrue disproportionately in poorer districts also holds when
employing an alternative specification based on the satellite-derived concentration data
for overall PM, 5 pollution levels from Shen et al. (2024); the corresponding estimates
are reported in Section E of the OA.

In Panel (f) of Figure 9 we report the distribution of average monetized pollution
reductions benefits per capita for PM; 5 and NOy combined and relate these benefits
to incomes. We hereby contrast two non-linear (quadratic) fits: One using the implicit
assumption of an income elasticity of pollution reduction benefits of zero in the of-
ficial guidance by the Umweltbundesamt (2012), and one with the assumption of an
income elasticity of unity.>® We show that the benefits from pollution reductions due
to the eco-tax are also distributed regressively, i.e. they are disproportionately higher in
poorer districts. Specifically, benefits amount to around 1 percent for the lowest income
segment and less than 0.5 percent for the richer half of the districts. Unsurprisingly, the
distribution of benefits is less regressive when assuming an income elasticity of unity.
In both cases, we find that the health benefits from pollution reductions due to the eco-
tax are distributed pro-poor across districts, with a Suits index of -0.195 (-0.126) with

an income elasticity of zero (unity).

36While guidelines on benefit-cost analysis commonly do not distinguish benefits across income levels,
making the normative assumption that the value of a statistical life (VSL) within a country is independent
of individual incomes, an income elasticity of zero is not a good descriptive assumption. We contrast this
with an alternative assumption of an income elasticity of unity, implying that benefits increase proportion-
ally with incomes. This value has been recommended as a generic default for policy evaluation (Drupp
et al., 2024a) and has been found to rationalize prior VSL estimates (Ito and Zhang, 2020). Empirical
evidence typically lies in-between an income elasticity of zero and unity (Drupp et al., 2025).
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Figure 9: Distribution of pollution changes and health co-benefits
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While determining the costs induced by the eco-tax and its distribution is challeng-
ing,3’ rendering a comprehensive welfare assessment out of reach, we can compare our
results on the incidence of benefits to the distributional effects of fuel taxes on the cost-
side concerning the primary effect of higher fuel prices. Here, the literature has found
that the distributional effect depends on the measure of income, while costs tend to ac-
crue disproportionally to the poor (rich) when using a temporary (lifetime) measure of
income, with a Suits index of -0.067 (0.008), respectively (see, e.g., Sterner, 2012). A
recent study for Germany, using a temporary measure of income but focusing on private
passenger cars only, Jacobs et al. (2022) has found a Suits index of the overall fuel tax
of -0.0307. Thus, the regressive effect on the cost side is far less pronounced as the
regressive distribution of health co-benefits that we have documented here, suggesting
that the eco-tax may have had a pro-poor effect overall.

Panel (g) of Figure 9 shows the distribution of pollution reduction benefits, for both
PM, 5 and NOy, as a percent of purchasing power not along income but along baseline
PM; 5 pollution prior to the introduction of the eco-tax. We hereby consider the case
with an income elasticity of zero and further investigate the heterogeneity of effects
along a common territorial typology: Urban, intermediate and rural. We find that while
pollution reduction benefits due to the eco-tax tend to be higher the higher the level of
baseline pollution, this relationship is pretty flat in urban areas and strongly pronounced
in rural areas. Overall, we thus find that districts with a lower per capita purchasing
power, higher initial pollution levels, and located in rural areas disproportionally benefit
from the pollution reductions. The eco-tax has therefore contributed to environmental

justice along a number of dimensions.

9 Conclusion

This paper provides the most comprehensive assessment of how fuel taxation has re-
duced climate and pollution externalities with a quasi-experimental evaluation of the
world’s largest environmental tax reform. Our synthetic difference-in-differences (SDID)
approach, accompanied by a battery of alternative specifications as well as related in-
ference designs, shows that the German eco-tax introduced in 1999 has led to sizable

reductions in CO;, PM; 5 and NO, emissions from 1999 to 2009, with emission reduc-

37Besides the primary incidence of higher fuel costs, one would need to consider how these costs are
mitigated by reduced social security contributions and how additional costs may have occurred, e.g. due
to the earlier updating of the vehicle fleet. The latter would require estimating vehicle fleet updating (e.g.,
Jacobsen et al., 2023) based on micro-data, which the German Federal Motor Transport Authority is not
able to provide going back sufficiently in time.
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tions relative to synthetic baselines of 15%, 25%, and 13%, respectively. The external
validity of our findings on the average effectiveness of environmental fuel taxation is
corroborated by an SDID approach that also leverages the staggered implementation
of environmental taxes in Sweden and Finland. Using official governmental cost esti-
mates, we show that the eco-tax internalized more than 100 billion Euros of externalities
between 1999 and 2009. The majority of reductions in external costs relate to reduced
air pollution and associated health benefits. We show that these pollution reduction
benefits are distributed regressively, i.e. they accrue disproportionately to lower-income
districts, which we corroborate using alternative emissions data.

We complement our quasi-experimental analysis with multi-country panel regres-
sions to estimate price and tax elasticities. We show that the eco-tax elasticity is 3 to
5 times larger than the market price elasticity. We employ these elasticity estimates to
simulate emission reductions and to highlight the importance of fuel substitution from
gasoline to diesel for navigating the trade-off between attaining climate and pollution
targets. We provide further complementary evidence on mechanisms, suggesting that
the eco-tax has likely contributed to fostering fleet renewal of passenger cars and to
reduced passenger-kilometers traveled, without having reduced economic activity. We
also find evidence for an increased salience of the eco-tax driven fuel price increases
in the news, which may have contributed to the much higher demand response to the
eco-tax as compared to market-price changes. Finally, we document that the eco-tax
has likely induced low-carbon innovation.

Overall, our results underscore the pivotal role of pollution-reduction co-benefits for
the assessment of fuel and carbon pricing schemes, which falls substantially below rec-
ommended levels of stringency in most countries (e.g., Drupp et al., 2024b). First, a sole
focus on carbon abatement—as is common in the literature (e.g., Andersson, 2019; Ler-
outier, 2022)—substantially underestimates the potential of (environmental) fuel taxes
or carbon prices to reduce externalities (e.g., Basaglia et al., 2024; Hernandez-Cortes
and Meng, 2023).38 Thus, accounting for reductions in pollution costs and associated
health co-benefits is crucial when evaluating the benefits of carbon pricing. Accounting
for such health co-benefits, which more immediately benefit those who bear the costs
of higher fuel prices, may also be crucial for gathering support for fuel and climate
policies (e.g., Loschel et al., 2021).

Second, it is important for evaluations of fuel and carbon pricing to consider the

trade-offs that can arise between climate and air pollution targets (e.g., Linn, 2019;

BOur results likely still provide a lower-bound of eco-tax induced externality reductions, as the eco-
tax may also have contributed to reducing congestion (e.g., Hintermann et al., 2025), fatality risk (e.g.,
Anderson and Auffthammer, 2014) or the reliance on fossil imports and related security concerns.
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Parry et al., 2021). We show that this is particularly relevant in the context of price
instruments based on the carbon content of fuels that can foster gasoline-to-diesel sub-
stitution. While this general feature of second-best taxation (Knittel and Sandler, 2018)
is less important in the US context, due to a predominant share of gasoline-fueled cars, it
is key when evaluating fuel pricing schemes in Europe (Zimmer and Koch, 2017; Linn,
2019). We show that relaxing the assumption that consumers respond similarly to fuel
taxes as to other sources of fuel price variation (Linn, 2019) suggests that policymakers
face a much larger trade-off between climate and pollution-reduction benefits.

Finally, we offer insights for the discussion on the distributional effects of envi-
ronmental policies and environmental justice implication of fuel pricing (e.g., Banzhaf
et al., 2019). While the consumer costs of fuel taxation tend to be either distribution-
ally neutral or burden lower-income households disproportionately (e.g., Bento et al.,
2009; Sterner, 2012; Jacobs et al., 2022; Kinzig, 2023; Drupp et al., 2025), poorer
households may also benefit disproportionately from better air quality (e.g., Banzhaf
et al., 2019; Hernandez-Cortes and Meng, 2023). Consequently, the overall distribu-
tional effect of fuel taxation may be less regressive than as often suggested based on
consumer cost incidence only (e.g., Drupp et al., 2025). Here, we shed light on the
distribution of pollution reduction benefits delivered by the world largest environmental
tax reform across 401 German districts and find that health co-benefits are distributed
pro-poor and disproportionally occur districts with higher share of the population living
in rural areas and with higher levels of baseline transport-related pollution. The eco-tax
thereby reduces environmental justice concerns along a number of dimensions. Fur-
thermore, when assessed along the income dimension by means of the Suits index, our
estimate of the regressivity of benefits is between 4 and 6 times as large as the regres-
sivity of higher fuel costs (Jacobs et al., 2022). The pro-poor health co-benefits may
thus overturn the mildly regressive costs of fuel taxation and render the eco-tax a pro-
poor policy. This suggests that it is more important to provide assessment of the full
range of distributional effects of fuel taxation even before the crucial correcting level
of revenue-recycling is devised (e.g., Bento et al., 2009). Furthermore, as perceived
effectiveness and distributional outcomes are key considerations affecting climate pol-
icy sopport (e.g., Dechezleprétre et al., 2025), communicating the substantial health
co-benefits of environmental taxation and their pro-poor distribution may provide an

important impetus for deliberations on more stringent fuel and carbon pricing.
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Appendix A Descriptive statistics and data sources

This section provides descriptive statistics referenced in the main text, details on the
data sources, and additional information on the sample definitions used throughout the
analysis.

Figure A.1: Fuel consumption over time in Germany

(a) Total fuel use (b) Total fuel use by fuel type
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Notes: Data on fuel consumption is expressed in liters per capita or percentage terms, as denoted on the y-axis.
Source: World Bank (see Table A.1 for more details).
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Figure A.2: Nominal taxes of gasoline and diesel over time
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Notes: The figure above plots nominal taxes of gasoline and diesel from 1939 to 2009 as reported by the
Bundesministerium der Finanzen (2014). Note that whenever a tax changes throughout a year, the
average tax is calculated and shown here. Numbers are in cents.

Figure A.3: Real fuel prices and their tax components over time
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Figure A.4: Fuel taxes in Germany and the OECD average
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Table A.1: Data Sources

Variable

Source

Share of CO, emissions from transport

CO; emissions from fuel combustion

PM,; 5 ad NOy emissions from EDGAR

Population

Expenditure-side real GDP at current PPPs (in mil. 2011 US$)

Urban population (% of total population)

Road sector diesel (1) and gasoline (2) fuel consumption per capita (kg of oil equivalent)
Road sector gasoline fuel consumption per capita (kg of oil equivalent)
Consumer price index for Germany (1995=100)

Strategic Reserve for Gasoline and Diesel in DM/t

Energy Tax for diesel and gasoline in cents per litre

Eco Tax for diesel and gasoline in cents per litre

Value-added tax rate

Fuel prices and taxes for OECD countries

Unemployment Rate

U.S. Crude Oil First Purchase Price (Dollars/Barrel)

Euro/ECU exchange rates - annual data

Vehicles ownership per 1,000 people

Low-carbon patents related to transportation: triadic patent families and total
Newspaper-specific article frequency counts

Road passenger transport (pkm)

Vehicle registrations by age

Road casualties

Data downloaded from World Bank
IEA

EDGAR

World Bank

Penn World Tables

World Bank

‘World Bank (1), World Bank (2),
Mineralwirtschaftsverband
Statistisches Bundesamt (Destatis)
Erdolbevorratungsverband
Bundesminesterium fiir Finanzen
Bundesminesterium fiir Finanzen
Statista

IEA Energy Prices and Taxes Statistics (Commerical data)
Bundesagentur fiir Arbeit

EIA

Eurostat

Received from Professor Gately (Dargay et al., 2007).
OECD

Factiva (Commercial data)

OECD

UNECE

OECD

Definition of restricted sample. Table A.2 below summarizes the list of countries
excluded from our estimation sample whenever we refer to the "restricted sample” (also
denoted as restr) throughout the paper. We include the rationale and references to

justify each exclusion.

Table A.2: Restrictions in the donor pool

Country Restricted Rationale Reference
Finland v Carbon tax Kossoy et al. (2015); Mideksa (2024)
Sweden v Carbon tax Kossoy et al. (2015); Andersson (2019)
Norway v Carbon tax Kossoy et al. (2015)
The Netherlands ' Environmental reform Kossoy et al. (2015)
Italy v Fuel tax OECD (2001)
Spain v Fuel tax Bosch (2001)
UK v Fuel tax OECD (2001)
Japan v Fuel efficiency standards Osamu (2012)
Austria v Fuel tourism Dings (2004)
Luxembourg v Fuel tourism Dings (2004)
Ireland v Economic boom Andersson (2019)
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https://databank.worldbank.org/reports.aspx?source=2&series=EN.CO2.TRAN.ZS
https://webstore.iea.org/co2-emissions-from-fuel-combustion-2019-highlights
https://edgar.jrc.ec.europa.eu/emissions_data_and_maps
https://databank.worldbank.org/reports.aspx?source=2&series=SP.POP.TOTL
https://databank.worldbank.org/reports.aspx?source=2&series=SP.URB.TOTL.IN.ZS
https://databank.worldbank.org/reports.aspx?source=1277&series=IS.ROD.DESL.PC
https://databank.worldbank.org/reports.aspx?source=1277&series=IS.ROD.SGAS.PC
https://www.mwv.de/statistiken/verbraucherpreise/
https://www.destatis.de/DE/Themen/Wirtschaft/Preise/Verbraucherpreisindex/Publikationen/Downloads-Verbraucherpreise/verbraucherpreisindex-lange-reihen-pdf-5611103.pdf?__blob=publicationFile
https://www.ebv-oil.org/cms/pdf/beisatz.pdf
https://web.archive.org/web/20141030103421/http://www.bundesfinanzministerium.de/Content/DE/Standardartikel/Themen/Zoll/Energiebesteuerung/Entwicklung_der_Energie_und_Stromsteuersaetze/2009-05-05-geschichte-energie-stromsteuersaetze.pdf?__blob=publicationFile&v=3
https://web.archive.org/web/20141030103421/http://www.bundesfinanzministerium.de/Content/DE/Standardartikel/Themen/Zoll/Energiebesteuerung/Entwicklung_der_Energie_und_Stromsteuersaetze/2009-05-05-geschichte-energie-stromsteuersaetze.pdf?__blob=publicationFile&v=3
https://de.statista.com/statistik/daten/studie/164066/umfrage/entwicklung-des-mehrwertsteuersatzes-in-deutschland-ab-1968/
https://www.oecd-ilibrary.org/energy/data/iea-energy-prices-and-taxes-statistics_eneprice-data-en
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiay5G95e_rAhWECOwKHUerCxIQFjAAegQIBhAB&url=https%3A%2F%2Fstatistik.arbeitsagentur.de%2FStatistikdaten%2FDetail%2FAktuell%2Fiiia4%2Falo-zeitreihe-dwo%2Falo-zeitreihe-dwo-b-0-xlsx.xlsx&usg=AOvVaw2iaxEeVjgd-tNBXDSQBMO4
https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=F000000__3&f=A 
http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=ert_bil_eur_a
https://stats.oecd.org/Index.aspx?DataSetCode=PAT_DEV
https://www.dowjones.com/professional/factiva/
https://www.oecd-ilibrary.org/transport/data/itf-transport-statistics/passenger-transport_g2g5557f-en
https://w3.unece.org/PXWeb2015/pxweb/en/STAT/STAT__40-TRTRANS__03-TRRoadFleet/02_en_TRRoadtypVeh_r.px/
https://stats.oecd.org/Index.aspx?DataSetCode=ITF_ROAD_ACCIDENTS

Appendix B Alternative causal inference methods

This section of the Online Appendix presents additional supporting material and results
for the synthetic control method (SCM) and its generalized version (GSCM). Unlike
the main paper, which focuses on more granular units, these analyses are conducted
at the country level. To maximize the number of observations, we use a donor pool of
OECD countries while applying the restrictions detailed in Table A.2 to reduce potential
confounders, following the approach of Andersson (2019).

B.1 The Synthetic Control Method

This section introduces the synthetic control method (SCM) (e.g., Abadie and Gardeaz-
abal, 2003; Abadie, 2021) and explains how we leverage this approach to corroborate
our estimations of the causal effects of environmental taxation on carbon and air pollu-
tant emissions presented in the main paper.

The SCM estimator. Suppose there are J + 1 countries. Each country is indexed by
J, where j =1 denotes the treated country (i.e., Germany), while j =2,....,J 4+ 1 are
untreated countries (the donor pool), which may be used to construct a control group.
The T time periods are divided into pre-treatment and post-treatment (i.e., after the
eco-tax reform in 1999) with Tj as the period prior to the policy (¢t = fg,t_1, ..., Tp).
Denoting the intervention as /, the SCM considers that the observed outcome, y j;, is the
effect from the treatment, o,/ j;, and the counterfactual outcome, yft:

Yje = el + (16)

The idea of the SCM is to construct a vector of weights over J donor countries such that
their weighted combination mimics the pre-treatment outcome of the treated country.
This weighted combination of donor units is the called a synthetic Germany. Defining
X as the k£ x 1 vector of the k characteristics of Germany in the pre-intervention period,
and Xy as the k x J vector with the same pre-treatment characteristics for donors, the
SCM algorithm identifies non-negative donor weights W, such that Zji% wj =1, to
minimize the divergence between pre-treatment characteristics X; and Xy of the treated
country and the untreated donors. More formally, the vector W* is chosen to minimize
the mean square prediction error (MSPE) over k pre-treatment characteristics:

k
MSPE =Y v (Xim — XomW)?, (17)

m=1

where V is a matrix of non-negative components measuring the relative importance of
each predictor, v,,. Given optimal weights w;‘. for each j = 2,...,J 4+ 1 donor country,
the synthetic control at any time ¢ is the weighted combination of the outcome variable
(e.g., CO, emissions in the transport sector) in the donor countries, Zji% w; vji. The

treatment effect ¢, is then the difference between emissions in the treated country yy;



Table B.1: Overview of the specification choices for the SCMs

Specification Lagged outcome variable Selected literature examples

Baseline Lagged outcome in 1998 (t9) Andersson, 2019; Kaul et al., 2022; Leroutier, 2022
Lags (Mean) Pre-treatment outcome mean Abadie and Gardeazabal, 2003; DeAngelo and Hansen, 2014
Lags (All) Lagged pre-treatment outcome (9,¢_1, ..., 7o) Bohn et al., 2014; Dustmann et al., 2017; Isaksen, 2020
Lags (Selected) Lagged outcome in 1971, 1980, 1991, 1998 Cavallo et al., 2013; Cunningham and Shah, 2018
Reunification Lagged outcome in 1991 and 1998 Specific to the German case (cf. Abadie et al., 2015)
Tax anticipation Lagged outcome in 1999 (¢1) Abbring and Van den Berg, 2003; Coglianese et al., 2017
No covariates Lagged pre-treatment outcome (fo,¢_1, ..., 7o) Gobillon and Magnac, 2016; Lindo and Packham, 2017

Notes: Summary of SCM specifications. Specification denotes the name that we use for SCM specification henceforth. Lagged outcome variable specifies the number
and years of the pre-treatment outcome lags. All except No Covariates include as predictors (i) GDP per capita (PPP, in mio 2011 USD), (ii) gasoline and (iii) diesel
consumption per capita, (iv) the share of the urban population, and (v) the number of vehicles per 1000 people. SCM specifications for NO, emissions also include (vi)
PM; s emissions in the transport sector as a general proxy for air pollution to account for the impact of unilateral policies affecting emission levels. We refer to the
specification used by Andersson (2019) as the Baseline model. We start the post-treatment period in 1999 even if the first fully treated year is 2000 to capture
anticipation effects (cf. Section A in the OA for details). Our Tax anticipation specification provides results when we set ¢; in the year 2000 for comparison.

and emissions in the synthetic counterfactual in the post-treatment period, > Tp:

J+1
o =y — Zw;fyj,.39 (18)
j=2

Choice of SCM predictors. There are various methods for choosing the relative im-
portance of predictors (v,,) (Abadie and Gardeazabal, 2003; Abadie et al., 2010). The
standard approach selects the matrix V along weights W to minimize the pre-treatment
difference between actual and synthetic Germany’s emissions, using the synth package
in STATA by Abadie et al. (2010). Despite being a primarily data-driven approach,
there is some discretion in specifying the SCM, which may lead to “cherry picking”
combinations of predictors to influence the result (e.g., Ferman et al., 2020).*° Given a
lack of consensus on how to choose the best specification, we report results for a range
of specifications used in previous SCM evaluations (see Table B.1).

Statistical inference for the SCM. A key advantage of the SCM is that it offers an
approach to causal analysis that does not rely on parallel pre-intervention trends like dif-
ference in difference methods. Yet, it does not allow to employ standard (large-sample)
inferential methods, primarily because the number of suitable donors and time periods
are usually very limited. Abadie et al. (2010, 2015) and Abadie (2021) suggest using
placebo experiments using permutation techniques to make inferences. We implement
cross-sectional placebo tests by sequentially applying the SCM algorithm to every po-
tential donor country and compare estimated placebo effects with the baseline results
for Germany, after accounting for the quality of the pre-treatment match, which we
do by scaling effects by the relevant pre-treatment root MSPE (RMSPE). Examining
whether potential comparison countries show larger treatment effects helps assess the

The average treatment effect is thus given by: Bir = + Y, O — Zjié Wiyii)-

40While Kaul et al. (2022) point out that including the entire pre-treatment periods of the outcome
variable as a predictor causes all other covariates to be obsolete, Ferman et al. (2020) advise using all
pre-treatment periods as it is less arbitrary.
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robustness of our results. A p-value is then computed as the proportion of control units
that have an estimated effect at least as large as Germany’s. Suppose that the estimated
standardized effect for some post-treatment period is ofj; and that the distribution of
in-place placebo is dﬁL = {dj; : j # 1}, the one-sided and two-sided p-values are then:

p=Pr(a;* > dy,) and p=Pr(6z,€LsOeu>, (19)
. o Ty 168 > fd])
p=Pr(|af] = Joh]) = =1 0)

Following Firpo and Possebom (2018) and Abadie and L’hour (2021), we imple-
ment a one-sided test, which allows constructing p-values based on placebo effects,
dﬁL, that yield reductions in post-treatment emissions, as only reductions in emissions
due to fuel taxes are of interest for the rank statistics (we also report two-sided p-values).
To evaluate how the significance of the effects unfolds over time—as the eco-tax rate in-
creased in yearly steps from 1999 to 2003 (see Figure B.3)— we apply the permutation-

based inference procedure for each post-treatment year.

B.2 Emissions reductions according to SCMs

We, first, focus on examining emission reductions according to the SCM, performing
inference using permutation tests and assessing their robustness using standard sensi-
tivity and placebo tests (cf. Section B.2) before turning to the GSCM (cf. Section B.7).

Panels (a), (c) and (e) in Figure B.1 plot the path of CO,, PM; 5 and NO, emissions
in the German transport sector (solid line) and in synthetic Germanies (dashed lines)
across specifications (cf. Table B.1) from 1971 to 2009. The overlap between the solid
and dashed line before 1999 captures the quality of the SCM pre-treatment fit; the same
comparison after 1999 plots the dynamic treatment effects for the eleven years that
followed. All panels reveal sizable emission reductions following the eco-tax reform.

The validity of SCM effects depends on synthetic Germany’s ability to replicate
emissions from the German transportation sector prior to the eco-tax introduction. Pan-
els (a) and (b) show that prior to the treatment, emissions from transportation in Ger-
many and its synthetic counterpart exhibit a high degree of similarity, with an average
absolute difference of slightly more than 0.02 metric tons of CO,, less than 0.01 kg
of PM, 5 and around 0.22 kg of NO,. Figure B.4 in the OA plots the distribution of
country-specific weights across all specifications and shows that the composition of our
synthetic Germanies varies considerably across outcomes and specifications. Tables B.2
- B.4 in the OA compares the values of key predictors for Germany prior to 1999 with
those for our baseline synthetic Germany (cf. Section 4). Overall, synthetic Germany
exhibits a much more refined fit compared with the donor pool average.

Panels (b), (d) and (e) of Figure B.1 report the estimated gap in metric tons of CO,
and kg of PM; 5 and NO, emissions across the seven SCM specifications (colored lines),
where Average refers to the average estimated emission gap (green line). All specifica-
tions point to sizable decreases in CO,, PM; 5 and NO, emissions due to the eco-tax.
Panel (b) shows that the distance between Germany and the synthetic Germanies is
steadily growing between 1999 and 2007.#! In 2007, this distance was on average -0.42

#IThere are different possible explanations for the convergence in emissions after 2007. An obvious
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Figure B.1: Synthetic Control Method results for emissions
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Notes: The figure plots the estimated reductions in CO,, PM; 5 and NO, emissions relative to (synthetic) counterfactuals. Panels
(a) and (b) refer to reductions in CO, emissions per capita in metric tons or percentage terms. Panels (c) - (f) refer to reductions
in PM; 5 and NO, emissions per capita expressed in kg. Panels (a), (c) and (e) plot the absolute paths of emissions in Germany
and Synthetic Germanies for our specifications (see Table B.1). Panels (b), (d) and (f) report gaps in emissions over time relative

to synthetic Germanies, estimated by our seven different SCM specifications and their average.

metric tons of CO, per capita, equivalent to a 19 percent reduction. Between 1999 and
2009, annual emission reduction amounted to 0.23 metric tons of CO, per capita on

one is the financial crisis, which evolved into an economic crisis across the EU in 2008, which likely
affected German transport differently than that of donor countries, implying that synthetic Germany may
not describe the counterfactual after 2007/2008 as accurately as before. Another explanation is decreasing
fuel taxes in real terms. As the last increase of the eco-tax took place in 2003, the real fuel tax on gasoline
and diesel has been decreasing ever since then due to inflation.
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average, which cumulatively sums up to 208,216,572 tons of CO,. Panel (d) presents
the emission gap over time for PM, 5. On average, 0.15 kg of per capita PM; 5 less
were emitted each year in comparison to a scenario with no eco-tax, which amounts to
total PM; 5 savings of around 135,632 tons. Finally, Panel (f) displays emission gaps
for NO,. Following the eco-tax reform, per capita NO, emissions were lower by 1.5
kg, on average, with a cumulative reduction in NO, of 1,347,190 tons.

Figure B.2: Mean annual percentage gap in CO,, PM; 5 and NO, emissions
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Notes: The figure plots the average annual percentage gap for each specification in CO;,, PM; 5 and NO, emissions between
Germany and a synthetic counterfactual development reported in Figure B.1.

Figure B.2 plots mean annual changes in emissions in percentage terms to put into
perspective the distribution of the effect magnitudes from different specifications. CO;
per capita emissions decrease, on average, from 8.1% to 13.4% between 1999 and 2009,
conditional on the specification used, while PM, 5 and NO, per capita emission reduc-
tions range between 22.4% - 30.3% and 10% - 16.5%, respectively. Our finding that
emission reductions due to the eco-tax are sizable is thus robust across a range of spec-
ifications.

B.2.1 Inference from permutation tests for the SCM

We rely on permutation tests to gauge the significance of our treatment effects. Fig-
ure B.3 plots estimated one-sided p-values in each post-intervention year. We report
yearly permutations for a number of SCM specifications: (i) Baseline, (ii) Baseline re-
stricting the pre-intervention period after German reunification in 1991, (iii) Tax Antic-
ipation, and (iv) No covariates following Ferman et al. (2020). Overall, the distribution
of the estimated p-values is centered well below a 10% threshold level, and generally
below a 5% threshold, particularly after the last eco-tax rate increase in 2003. The mean
joint two-sided p-values are below 5% for CO, and NOy and below 1% for PM, 5 (see
Figure B.3).

B.2.2 Additional sensitivity and placebo tests for the SCM

Our SCM findings are robust to a host of standard sensitivity and placebo tests, includ-
ing in-time placebos and the use of alternative donor pools.

IX



Figure B.3: Inference results for the Synthetic Control Method
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Notes: The figure plots estimated one-sided p-values (primary left-hand side y-axis) computed as the proportion of effects
from control units as great as the treated unit in each post-intervention period, after scaling it by the relevant pre-treatment
RMSPE (Abadie, 2021). Joint two-sided p-values represent the proportion of placebos that have a ratio of post-treatment
RMSPE over pre-treatment RMSPE at least as large as the average ratio for Germany. The gray bars plot the annual real
eco-tax rate in 1995 cents (secondary right-hand side y-axis). The darker gray bars indicate the post-treatment periods
where the full nominal eco-tax rate increase fuel was in place.

In-time tests. For the in-time placebos, the year of treatment is shifted to a number of
years prior to the actual eco-tax reform. Any sizable and enduring placebo effect would
cast doubt on the validity of the results from Figure B.1. Figure B.5 in the OA shows
that the synthetic control closely resembles the actual emission trajectories in Germany
after the placebo treatment and that no significant divergence is detected.

Alternative donor pools. To investigate the sensitivity of our emission results to the
composition of the donor pool, we perform the following tests: (i) implementing the
SCM without any sample restriction either with the inclusion of covariates as predic-
tors or solely based pre-treatment lags, (ii) excluding only countries that implemented
carbon taxes, and (iii) “leave-one-out” tests (cf., Abadie et al., 2015), where we sequen-
tially exclude from the restricted donor pool all control countries with a weight larger
than 0.001 (0.1%). The results (see Figures B.6 and B.7 in the OA) show that none of
the possible alternative donor pool compositions yield a consistent non-negative post-
intervention gap.

B.3 Standard SCM diagnostics

This section contains the following material: Tables B.2 - B.4 report country-specific
weights used for the construction of our synthetic counterfactuals in Figure B.1. The
three panels in Figure B.5 plot in-time placebo tests when we assign a placebo treatment
to Germany in 1995. Figure B.6 reports SCM results when we do not impose any of
the sample restrictions discussed in Section 4. Figure B.7 reports leave-one-out tests
(cf. Abadie et al., 2015) for our Baseline (i.e., Panels a, ¢ and e) and No covariates
specifications (i.e., Panels b, d and f). The former is in line with the recommendations
in Kaul et al. (2022), while the latter follows Ferman et al. (2020).

X



Table B.2: SCM for CO;: Pre-Treatment Predictor Means for Germany, Baseline

Synthetic Germany and the Sample Average

Variables Germany Synthetic Sample Mean
GDP per capita 22,197.42 23,615.94 17,972.24
Diesel consumption per capita 185.23 185.27 130.29
Gasoline consumption per capita 332.55 332.77 343.23
Share of urban population 0.73 0.73 0.73
Number of vehicles per 1,000 people 410.34 410.48 290.14
CO2 from transport in 1998 2.10 2.10 2.12

All variables except lagged CO, per capita are averaged from 1971-1998. GDP per capita is measured at current PPPs in million 2011 USD. Gasoline and diesel con-
sumption is measured in kg of oil equivalent. Share of urban population is measured as a percentage of total population. CO2 emissions are measured in metric tons per

capita and are retrieved from the IEA.

Table B.3: SCM for PM; 5: Pre-Treatment Predictor Means for Germany, Baseline

Synthetic Germany and the Sample Average

Variables Germany Synthetic Sample Mean
GDP per capita 22,197.42 22,346.93 17,972.24
Diesel consumption per capita 185.23 170.25 130.29
Gasoline consumption per capita 332.55 367.82 343.23
Share of urban population 0.73 0.75 0.73
Number of vehicles per 1,000 people 410.34 410.39 290.14
PM, 5 from transport in 1998 0.58 0.61 0.58

All variables except lagged PM; 5 per capita are averaged from 1971-1998. GDP per capita is measured at current PPPs in million 2011 USD. Gasoline and diesel con-
sumption is measured in kg of oil equivalent. Share of urban population is measured as a percentage of total population. PM; 5 emissions are measured in kg per capita

and are retrieved from the EDGAR v6.1 database.

Table B.4: SCM for NO,: Pre-Treatment Predictor Means for Germany, Baseline

Synthetic Germany and the Sample Average

Variables Germany Synthetic Sample Mean
GDP per capita 22,197.42 22,199.20 17,972.24
Diesel consumption per capita 185.23 179.35 130.29
Gasoline consumption per capita 332.55 303.51 343.23
Share of urban population 0.73 0.76 0.73
Number of vehicles per 1,000 people 410.34 360.88 290.14
PM, 5 from transport 0.50 0.50 0.42
NOy from transport in 1998 14.13 14.26 16.72

All variables except lagged NOy per capita are averaged from 1971-1998. GDP per capita is measured at current PPPs in million 2011 USD. Gasoline and diesel con-
sumption is measured in kg of oil equivalent. Share of urban population is measured as a percentage of total population. NO, emissions are measured in kg per capita

and are retrieved from the EDGAR v6.1 database.
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Figure B.4: Comparing donor pool weights across SCM specifications
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Notes: The figure plots the estimated country-specific weights assigned by the synthetic control algorithms across our set of
SCM specifications (cf. Table B.1).
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B.4 Placebo in time

Figure B.5: In-time placebos
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Notes: The figure plots the in-time placebo for our results on (a) CO,, (b) PM; 5, and (c) NO, emissions where a placebo
treatment is assigned in 1995.

B.5 No sample restrictions

Figure B.6: Results with no donor pool restrictions
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Notes: The figure plots our Baseline SCM results without applying the sample description described in Section 4 and
summarised in Table A.2.
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B.6 Leave-one-out tes
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Figure B.7: Leave-
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Notes: The figure plots leave-one-out tests following Abadie et al. (2015) where we iteratively exclude countries that receive at
least a 1% in the construction of the synthetic counterfactual. More details can be found in Section B.2.2.
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B.7 Emissions reductions according to generalized SCMs

We next construct GSCM counterfactuals by modeling emissions of countries with in-
teractive fixed effects (IFE) models following Xu (2017). For our GSCM analysis, we
assume that each outcome (y), i.e., emissions of CO,, PM; 5, or NOy, can be explained
by a corresponding factor model of the form:

yir = TyEcoy + X+ AF, + &, (21)

where 1 = {1970,...,2009} corresponds to the time period and i represents a coun-
try. The sets .7 and % contain Germany and unregulated countries, respectively. Eco;
refers to the binary treatment indicator and equals 1 for treated units in the post-treatment
period (i.e.,i € . and t > tEco, tEco — 1999). The main parameter of interest is T;, the
treatment effect at time . X;, and 3 are vectors of observed covariates and their param-
eters, respectively. F; and A; correspond to vectors of unobserved time-varying latent
factors and their unit-specific factor loadings. Finally, €; refers to idiosyncratic shocks.
The ATTs in periods ¢ > t£¢° are given by T;; which is equal to ¥; (1) — Y;(0), i.e., the
difference between the observed outcome of unit i at time ¢ and its counterfactual out-
come. As Y;(0) is by definition unobserved for treated units, we employ the three-step
GSCM estimation (Xu, 2017) to obtain the counterfactual:

Yy =X, B+ AF, + &, i€¥ (22)
Yi = X\uB + AF 41, ic T, 1<iF (23)
9:(0) = X}, B + AIF, ic T, t>E (24)

First, leveraging data on control units, Eq. 22 is estimated to retrieve the coeffi-
cient on the observed covariates, B and time-varying factors, F +. Second, the GSCM
algorithms select factor loadings A; for treated units by minimizing the mean squared
prediction error (MSPE) in pre-treatment years (Eq. 23). Third, it imputes the predicted
counterfactual outcome ¥ (0) utilizing 3, F;, and A; (Eq. 24). The GSCM selects the
number of factors, F;, and their loadings, A;, based on a data-driven cross-validation
algorithm, which limits arbitrariness and reduces risks of over-fitting. With predicted
counterfactual outcomes for treated units, we estimate the ATT. Finally, to construct
confidence intervals, we apply the parametric bootstrapping scheme from Xu (2017).

We provide three different model specifications. First, we include controls to explic-
itly account for the impacts of EU membership, namely a binary EU member indicator
and a dummy identifying EU member countries after 2005 (denoted IFE only). We
include this dummy to control for potential spillovers due to the EU Emissions Trading
Scheme (EU ETY), introduced in 2005, and the EU-wide PM | limits in cities, also
introduced in 2005. These spillovers are likely not substantial, as transport emissions
were not covered by the EU ETS and have not decreased due to the scheme (Bayer
and Aklin, 2020). Further, Germany failed to meet the 2005 PMq limits, triggering
infringement proceedings in 2009, and EU-wide PM( limits on were not very effective
initially, with 70% of all cities with larger populations than 250,000 having exceeded
the limits at some point as of 2007 (Wolff and Perry, 2010). Some German municipali-
ties responded by implementing low-emission zones from 2008 onward, limiting access
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for highly-polluting vehicles within city centers.

Second, we additionally model each country’s emissions as a function of their eco-
nomic activity (Economic activity), proxied by GDP per capita (Bayer and Aklin, 2020).
Finally, we restrict the donor pool to EU countries (EU only) to further address concerns
that effects may be partly driven by EU-wide regulation (e.g., Reynaert, 2021).

Wald tests for pre-treatment fitting checks show that all the different models capture
the variability in the data well prior to the eco-tax reform, validating the main identifica-
tion assumption. Table B.5 summarizes our GSCM results. We report mean reductions
of emissions due to the eco-tax with bootstrapped 95% confidence intervals. Figure
B.8 plots the dynamic treatment effects estimated for each of our GSCM specifications.
Our GSCM results are comparable in magnitude to the average SCM results reported
in Figure B.1, pointing towards slightly larger magnitudes in carbon reductions and
almost identical average reductions in air pollution. Figure C.3 in the OA further com-
pares the dynamic treatment effects across all empirical strategies at the country level,
highlighting the consistency of our findings.

Table B.5: Effects of the eco-tax with a Generalized Synthetic Control

IFE only Economic activity EU only
Panel A: CO; (1)
Mean [95% CI] -0.43 [-0.53; -0.34] -0.39 [-0.50; -0.25] -0.44 [-0.57; -0.29]
Panel B: PM,; 5 (kg)
Mean [95% CI] -0.15 [-0.26; -0.04] -0.14 [-0.25; -0.07] -0.21 [-0.27; -0.13]
Panel C: NO, (kg)
Mean [95% CI] -1.98 [-3.32; -0.24] -1.65 [-3.09; -0.14] -3.34 [-5.33; -0.26]
Observations 1053 939 451
Countries 27 27 14
Wald test p-value <0.001 <0.001 <0.001

Notes: Summary of average treatment effects and 95% confidence intervals for different GSCM specifications. Wald test p-values refer to
pre-treatment fitting tests (cf. Xu, 2017): for each specification, we report the highest p-values across panels. All models include IFE and a binary
indicator for German reunification and post-intervention. IFE only includes a dummy for EU membership and for EU member countries after 2005
Economic activity also controls for GDP per capita, while EU only restricts the donor pool to EU countries.

Figure B.8: GSCM with Interactive Fixed Effects Models

(a) Change in CO; over time (b) Change in PM, 5 over time (c) Change in NO, over time
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Notes: The figure plots the estimated gaps in emissions relative to a synthetic counterfactual development based on a Generalized Synthetic Control Method with interactive
fixed effects models Xu (2017). More details on the GSCM specifications can be found in Section B.7.
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Figure B.9: Effects of the eco-tax with the GSCM on low-carbon patents
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Notes: The figure plots the estimated gaps in emissions relative to a synthetic counterfactual development based on a Generalized Synthetic Control Method with interactive
fixed effects models and no sample restrictions (Xu, 2017). More details on the GSCM specifications can be found in Section B.7.

Appendix C Elasticities

This Section is structured as follows. First, we provide evidence of tax pass-through
to prove that taxes are noticeable to consumers. Second, Tables C.1a - C.1b provide a
host of robustness tests for our real and eco-tax elasticity results presented in Section
6. Figure C.1 plots our elasticity results when using a distributed lag model with one
lead to account for anticipatory behavior (Coglianese et al., 2017; Kilian and Zhou,
2024).*> Table C.3a and C.3b provides evidence of gasoline-to-diesel substitution in our
setting again leveraging the semi-elasticity models presented in Section 3.2. Figure C.2
displays predicted NOx emissions under different taxation scenarios complementing
Figure 5 in the main text. Figure C.3 compares the dynamic treatment effects across
all supplementary empirical strategies employed in our study, namely the (a) SCM, (b)
the GSCM and (c) the simulation approach.*? Finally, Figure C.4 leverages again the
semi-elasticity models to provide complementary suggestive evidence on the average
effects of the eco-tax on road casualties (i.e., considering fatalities and injuries).

Tax pass-through. Before computing fuel-specific price and tax elasticities, we check
if the tax increases get effectively passed through to the retail price of fuel to ensure that
changes in taxation are noticeable to consumers (c.f. Andersson, 2019). We use first-
differencing to regress the crude oil price i and the combined nominal energy and eco
tax 7¢°?¢"¢’8Y on the retail fuel price p* of gasoline and diesel, respectively:

Ap; = ap+ Ao, + AT g (25)

42We also run first-differences models including different sets of leads and lags of the normalized
tax change (c.f., Kilian and Zhou, 2024). We produce a distribution of p-values for testing the null of
equal effects between tax-exclusive and eco-tax price changes, which we reject across all specifications.
Results are available upon request.

4Note that simulated PM5 5 emissions are not directly comparable to our SCMs results as the former
do not account for non-exhaust emissions.
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Table C.1: Comparing real price, aggregate tax and eco-tax elasticities by fuel

(a) Gasoline consumption (b) Diesel consumption
Real price  Aggregate tax ~ Eco-tax Real price  Aggregate tax Eco-tax
Real price of Gasoline -0.00603** Real price of Diesel -0.00440**
(0.00278) (0.00103)
Raw price of Gasoline (only VAT) -0.00584* -0.00357* Raw price of Diesel (only VAT) -0.00384"  -0.00346"*
(0.00331) (0.00204) (0.000908) (0.00104)
Energy + Eco Tax -0.00798* Energy + Eco Tax 20,0111+
(0.00375) (0.00141)
Energy Tax on Gasoline -0.00242 Energy Tax on Diesel -0.00729**
(0.00497) (0.00292)
Eco Tax on Gasoline -0.0306"* Eco Tax on Diesel -0.0143"*
(0.00773) (0.00359)
Dummy Eco Tax -0.154 -0.144 0.104** Dummy Eco Tax -0.0205 0.0574* 0.0794**
(0.131) (0.126) (0.0393) (0.0564) (0.0315) (0.0174)
Trend 0.00158 -0.00328 0.0240 Trend 0.0189*** 0.0104** 0.0187**
(0.0138) (0.0118) (0.0210) (0.00587) (0.00456) (0.00774)
GDP per capita 0.000174 0.00893 -0.0245 GDP per capita 0.0177** 0.0287** 0.0201**
(0.0116) (0.0168) (0.0318) (0.00528) (0.00702) (0.00753)
Unemployment rate 0.0292 0.0311* 0.00902 ‘Unemployment rate 0.0107* 0.0104* 0.00651
(0.0176) (0.0177) (0.0239) (0.00558) (0.00538) (0.00816)
Observations 38 38 38 Observations 39 39 39

Notes: The dependent variable is the log of fuel consumption in liters per capita, which refers to total fuel consumption or either gasoline or diesel consumption
(as indicated by the column heading). Prices are in 1995€. Results for gasoline consumption refer to 1972-2009 due to missing price data prior to 1972.
Unemployment is measured as percentage of total labor force. Newey-West standard errors in parentheses are heteroskedasticity and autocorrelation robust.
Standard errors are calculated relying on the automatic bandwidth selection procedure following Newey and West (1994). * p < 0.05, ** p < 0.01, *** p < 0.001.

Table C.2: Real price elasticities for transport fuels after 1991

(a) Gasoline consumption (b) Diesel consumption
m @ ) @ M @ O] @
OLS OLS OLS IV: Brent Crude OLS OLS OLS IV: Brent Crude
Real price of Gasoline -0.00698***  -0.00693***  -0.00510*** -0.00531** Real price of Diesel -0.00404**  -0.00456™* -0.00358"** -0.00317**
(0.00142) (0.00150)  (0.000592) (0.000640) (0.00161)  (0.00112)  (0.000318) (0.000315)
Dummy Eco Tax 0.105* 0.106" 0.106™* 0.106™* Dummy Eco Tax 0.0687***  0.0635"** 0.0634** 0.0632***
(0.0371) (0.0354) (0.0164) (0.0135) (0.0151) (0.0167) (0.0111) (0.00961)
Trend -0.0237* -0.0217* -0.0336"* -0.0332%** Trend 0.0206*** 0.0108 0.00457 0.00384*
(0.00703) (0.0111) (0.00544) (0.00505) (0.00596)  (0.00670) (0.00264) (0.00227)
GDP per capita -0.00311 0.00795 0.00793 GDP per capita 0.0172+ 0.0217** 0.0211*
(0.00686) (0.00636) (0.00575) (0.00388) (0.00355) (0.00235)
Unemployment rate 0.0181% 0.0178** Unemployment rate 0.0104* 0.0113**
(0.00309) (0.00268) (0.00388) (0.00378)
N 19 19 19 19 N 19 19 19 19

Notes: The dependent variable is the log of fuel consumption in liters per capita, which refers to total fuel consumption or either gasoline or diesel consumption (as
indicated by the column heading). Columns (4) use the brent crude oil price as an instrumental variable for the real fuel price. Prices are in 1995€. Unemployment is
measured as percentage of total labor force. Newey-West standard errors in parentheses are heteroskedasticity and autocorrelation robust. Standard errors are
calculated relying on the automatic bandwidth selection procedure following Newey and West (1994). * p < 0.05, ** p < 0.01, *** p < 0.001.

The p-values of a linear Wald test show that for both regressions, the tax coefficient
@, is not significantly different from unity.** For gasoline, o equals 0.94 (with a
95% confidence interval of [0.79; 1.08]). The result is comparable for diesel, where
the coefficient is 0.86 [0.54; 1.17]. We repeat the estimation with the tax rates being
formally separated into energy and eco-tax in the model:

eco,VAT

Ap; = o + o Ao, + o AT VAT | auAT +g (26)

4The p-value of the linear Wald test for Ao, = 1 is equal to 0.38 for gasoline and 0.34 for diesel.
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Again, we are not able to reject the hypothesis that there is full pass-through.*> This
indicates that fuel taxes have been noticeable for consumers and that we can interpret
our estimates of fuel-specific tax elasticities as price elasticities of demand.

C.1 Time-series elasticities with a distributed lag model

Figure C.1: Fuel-specific real price and eco tax elasticities with a lead

(a) Gasoline: Real price elasticity (b) Gasoline: Eco tax elasticity
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Notes: The figure plots the estimated fuel-specific elasticities of gasoline and diesel demand by amending our log-level semi-elasticity models with the introduction of a
lead (c.f. Section 3.2). Specifically, Panel (a) and (c) show the real price elasticity of gasoline and diesel demand respectively (c.f. Table 2b and 2a). Panel (b) and (d)
display the gasoline and diesel eco tax elasticities (c.f. Table 3b and 3a). Prices are in 1995€. Results for gasoline consumption refer to 1972-2009 due to missing price
data prior to 1972. Unemployment is measured as percentage of total labor force. Confidence intervals are based on Newey-West standard errors are heteroskedasticity and

autocorrelation robust. Standard errors are calculated relying on the automatic bandwidth selection procedure following Newey and West (1994). * p < 0.05, ** p < 0.01,
P

“SFor gasoline, oz equals 0.92 [0.75; 1.09] and o 1.02 [0.83; 1.20]. While the eco-tax coefficient for
diesel is similar at 0.96 [0.49; 1.43], the energy tax one is lower at 0.64 [0.02; 1.25]. The p-values of the
linear Wald tests for Aoz = 1 are 0.34 for gasoline and 0.24 for diesel, and 0.84 and 0.87 for Aoy = 1.
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C.2 NOy emission under different taxation regimes

Figure C.2: Predicted NOy emissions by fuel under different tax scenarios
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Notes: The figures above plot predicted emissions from the eco-tax specification of our log-level semi-elasticity models (c.f. Section 3.2) under different taxation scenarios.
‘We rely the estimated fuel-specific price and tax elasticities computed from our estimates from column (3) in Tables 3a and 3b. Panel (a) refers to predicted emissions from
gasoline consumption, while Panel (b) covers diesel consumption. In each panel the y-axis refers to per capita NOy in kilograms. The top black line displays predicted
emissions when the eco and energy tax elasticities are set to zero, and VAT is deducted from the fuel price. For the gray line, the eco and energy tax elasticities are set to
zero but VAT is included. The light blue line shows how predicted emissions change when the eco tax is set to zero, but we include the energy tax and VAT. The red line
provides predicted emissions using the full model.

C.3 Fuel substitution due to the eco-tax

Table C.3: Fuel substitution

(a) Diesel-to-Gasoline ratio (b) Share of Diesel

(O] @ [©)]

Share of Diesel ~Share of Diesel ~ Share of Diesel

(1 @) 3)

Diesel/Gasoline  Diesel/Gasoline  Diesel/Gasoline

Raw price of Gasoline (only VAT)  0.000255 0.000250 0.000248
Raw price of Gasoline (only VAT) 000187 000185 0.00184
(0.000565) (0.000314) (0.000317)
(0.00241) (0.00124) (0.00126)
Energy Tax on Gasoline 000179 0.000697 0.000917
Energy Tax on Gasoline 0.00471°** -0.000316 0.000991
(0.000396) (0.000658) (0.000721)
(0.00123) (0.00263) (0.00237)
Eco Tax on Gasoline 000415 000376 0.00325°*"
Eco Tax on Gasoline 001757 00157 00126
(0.00144) (0.00110) (0.00108)
(0.00634) (0.00463) (0.00482)
Dummy Eco Tax 000367 -0.00746 -0.00339
Dummy Eco Tax -0.0108 -0.0619" 0.0377
(0.00645) (0.00747) (0.00630)
(0.0276) (0.0296) (0.0242)
Trend 000482 0.000554 0.00286
Trend 00126 -0.00700 0.00671
(0.000731) (0.00168) (0.00378)
(0.00306) (0.00700) 0.0152)
GDP per capita 0.00810" 000546
GDP per capita 00372 00214
(0.00352) (0.00491)
(0.0149) (0.0187)
Unemployment rate -0.00239
Unemployment rate 0.0142
(0.00420)
Observations 38 38 38
Observations 38 38 38

Notes: The dependent variable is either (a) the ratio of diesel-to-gasoline consumption in litres per capita or (b) the share of diesel of total fuel consumption in
percentage terms (as indicated by the column heading). Prices are in 1995€. Results for gasoline consumption refer to 1972-2009 due to missing price data prior
to 1972. Unemployment is measured as percentage of total labor force. Newey-West standard errors in parentheses are heteroskedasticity and autocorrelation
robust. Standard errors are calculated relying on the automatic bandwidth selection procedure following Newey and West (1994). * p < 0.05, ** p < 0.01, ***
p <0.001.

XX



C.4 SCMs and the Simulation Approach

Figure C.3: Gap in per capita emissions: SCMs vs Simulation Approach
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Notes: The figures above plot the estimated average gap in per capita emissions from our synthetic control experiments (c.f.
Section B.1) and the simulation approach based on our log-level semi-elasticity models (c.f. Section 3.2). Nationwide reductions
in emissions in the simulation approach have been computed by accounting for predicted emission reductions from both gasoline

and diesel. Note that simulated PM; 5 emissions are not directly comparable to our SCMs results as the former do not account
for non-exhaust emissions.

C.5 Impacts of the eco-tax on road casualties

Figure C.4: Effects of the eco-tax on road casualties

% decrease in road causalties
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Notes: The dependent variable is the number of road casualties (i.e., including fatalities and injuries) in logarithmic terms. The

estimated effects refer to the average eco-tax rate of 13 cents. All regressions control for the fuel raw price, the energy tax rate,

GDP per capita (in 1995€), the unemployment rate, and include a time trend as well as a dummy for the post-treatment period

(i.e., equal to 1 after 1999). We use Newey-West standard errors that are heteroskedasticity and autocorrelation robust following
Newey and West (1994).
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Appendix D Staggered adoption setting

This section provides additional information on the staggered synthetic difference-in-
differences approach from Section 5.1. To isolate the impact of fuel taxation, we iden-
tify other European countries where environmental taxes were implemented without
reinvesting their revenue into climate mitigation programs, namely Finland in 1990 and
Sweden in 1991 (Sumner et al., 2011).

Table D.1: Average effects of environmental taxes with staggered adoption

CO; emissions (t) PM, s emissions (kg) NO, emissions (kg)

Mean estimate (244 from Eq. 6) -0.385 -0.164 -2.943
Standard error (1/ ‘7r from Eq. 4) (0.019) (0.008) (0.149)
Observations 45440 45440 45440
Countries EU-27 EU-27 EU-27

Notes: All outcome variables are expressed in per capita terms and the unit of measurement is indicated in the column heading. The table displays the estimated average
effects of the eco-tax on CO,, PM; 5, and NO, emissions leveraging the SDID estimation procedure introduced in Section 3.1.

Overall, the average estimates for emission reductions presented here are compara-
ble in magnitude to our baseline specification (cf. Table 1) based on Germany only. In
Figure D.1, we further report average effects in percentage terms (scaled by baseline
emissions) by country to compare the relative magnitude of emission reductions. We
observe greater average reductions in CO; and NO, emissions for Sweden and Finland,
but lower decreases in PM, 5. Several factors are expected to contribute to the esti-
mated heterogeneity across countries. First, while Sweden had a higher tax rate, which
we would expect to reasonably translate into larger effects, the magnitude of the effects
for Finland—despite its lower tax rate—may be, partly, explained by two factors: (i)
a period of economic recession during the 1990s which had deep and persistent reper-
cussions on the Finnish economy and labor market, plausibly affecting fuel demand (cf.
Mideksa, 2024) and (ii) a concurrent nationwide tax relief scheme on the registration
of cars with catalytic converters which might have contributed to shape and accelerate
the fleet renewal rate towards more efficient and less-polluting vehicles (Ministry of the
Environment, 1995). By contrast, Germany and Sweden did not levy registration taxes
on new vehicles (aside from VAT) but imposed considerably higher and more compara-
ble fuel taxes (ACEA, 2022). Second, since PM emissions primarily stem from diesel,
variations in the composition of the vehicle fleet (e.g., a larger base of diesel use) could
explain the heterogeneous reductions observed in PM; 5 emissions. At the time when
the eco-tax had been fully phased in, approximately 40% of new car registrations in
Germany were diesel vehicles. By contrast, Sweden and Finland exhibited considerably
lower percentages, at around 1% and 5% respectively, when they introduced a carbon
tax in the transport sector. These differences shed light on the underlying mechanisms
behind the differences in emission reductions.

Finally, Table D.2 presents an alternative specification of our staggered approach at
the country level. The results remain qualitatively similar to our baseline findings in
Table D and the innovation results described in Section 7 of the paper (cf. Figure 7).
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Figure D.1: Percentage changes relative to baseline in each country

(a) Average CO; changes (b) Average PM; s changes (¢) Average NO, changes

30 30

-30

30

-30 -30

Average change in CO, emissions per capita (%)
Average change in PM, , emissions per capita (%)
Average change in NO, emissions per capita (%)

50 50 -50
Finland (1990) Sweden (1991) Germany (1999) Finland (1990) Sweden (1991) Germany (1999) Finland (1990) Sweden (1991) Germany (1999)

Notes: Panels (a) - (c) plot percentage changes which were calculated as the ratio of country-specific mean estimates (%599 from Eq. 6) to baseline emissions in each
country in the year before the implementation of the environmental fuel tax.

Table D.2: Effects of environmental taxes (SDID with staggered adoption)

CO; emissions (t) PM; s emissions (kg) NO, emissions (kg) Low-carbon patents

Environmental fuel taxation -0.245%** -0.099%* 2771 0.643%%**
(0.057) (0.039) (1.104) (0.246)

Observations 858 858 858 550

Countries 22 22 22 22

Notes: All outcome variables are expressed in per capita terms. Patents are expressed in per million population terms. Standard errors are computed using the
bootstrap variance estimation algorithm outlined in Arkhangelsky et al. (2021), which requires multiple treated units. All regressions control for GDP per capita and
include unit-specific and time-specific fixed effects as well as a binary variable indicating whether a country was regulated by EU-wide regulations after 2005.
Emissions reductions are estimated by additionally controlling for pre-treatment diesel and gasoline consumption. For low-carbon innovation, we control for
pre-treatment triadic patents per capita.

Appendix E Results with PM concentration data

As discussed in Section 4, we validate our main findings on air pollution using an alter-
native dataset from Shen et al. (2024). This dataset provides annual estimates of PM; 5
concentrations at a 0.1°x0.1° resolution, constructed via a deep learning algorithm com-
bining satellite imagery, ground-based monitoring, and chemical transport models. We
aggregate these data to the NUTS-3 level to construct a balanced panel covering the
period 1998-2022, and compute yearly mean concentrations of PM, 5 for each region.
Compared to the EDGAR dataset used in the main analysis, this alternative source
differs in three important ways. First, it provides information only on PM, 5, whereas
EDGAR includes a wider range of pollutants. Second, it does not allow for source-
specific decomposition of emissions, so we cannot isolate pollution from the transport
sector-potentially introducing measurement error if other sources were simultaneously
affected by the eco-tax reform. Third, the dataset starts in 1998, providing a shorter
pre-treatment window-particularly relevant since the eco-tax was implemented in April
1999. To partially address this, we treat 2000 as the first post-treatment year in a com-
plementary specification, thereby gaining at least one pre-treatment observation.
Despite these limitations, the key advantage of the Shen et al. data is that it captures
ambient concentration levels rather than emissions in absolute terms. This allows us to
assess whether our main findings hold when using a different pollution metric and to
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Figure E.1: Average SDID effects on PM, 5 concentration

(a) Average SDID effects (b) Graphical Baseline SDID effects
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Notes: Panel (a) plots the mean estimates (£5919) of the SDID specifications described above. Pnael (b) plots average trends in air
emissions over time for German districts and the relevant weighted average of control European NUTS-3 regions in the Baseline
(see text above for more details).

test the robustness of the pro-poor pattern in pollution reductions discussed in Section 8.

Panel (a) of Figure E.1 summarizes our main SDID results on the effects of the
eco-tax on PM, 5 concentrations, while Panel (b) provides a graphical representation
of each specification. We present evidence from three different model setups. First,
a baseline specification csimply ompares German Kreise to other European NUTS-3
regions. Second, we adopt an alternative timing assumption by shifting the first post-
treatment period to 2000 (following the notation from Equation 1), which allows us to
gain an additional pre-treatment observation. Third, we restrict the sample to the period
up to 2005. This restriction is motivated by the introduction of the EU Emissions Trad-
ing System (EU ETS) in 2005, which-although it did not directly regulate the transport
sector-could act as a potential confounder when using economy-wide pollution concen-
tration data. This concern does not apply to our main analyses based on the EDGAR
dataset, which allows for sector-specific emissions (see Section 4).

Across all three specifications, we find a significant reduction in PM, 5 concentra-
tions of approximately 1 microgram per cubic meter. For context, this effect size ex-
ceeds that of the British Columbia carbon tax, which was associated with a reduction of
0.62 g/m3 in PM, 5 concentrations (cf. Sileci 2023). This reinforces the conclusion that
the German eco-tax had substantial co-benefits in terms of air quality improvements.

We next examine the relationship between pollution concentration reductions and
income levels across districts. To proxy income, we use high-resolution spatial data
on purchasing power (total disposable income after taxes and transfers) from the RWI-
GEO-GRID dataset (Breidenbach and FEilers, 2018; RWI microm, 2020) for the year
2005, which we aggregate to the district level. Following the approach outlined in Sec-
tion 8, we combine this income measure with estimated reductions in PM; 5 concentra-
tions and fit a non-linear (quadratic) model. The results presented in Figure E.2 confirm
that-even when using a different dataset-reductions in pollution are larger in lower-
income districts, indicating that the poorer areas experienced the greatest air quality
improvements.
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Figure E.2: PM, 5 concentration changes along income
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Notes: The figure above plots the reductions PM2.5 concentrations along purchasing power and overlays a quadratic fit. For
more details on this approach see Section 8.

Appendix F A newspaper-based proxy for salience

This section provides additional information on the salience analysis conducted in Sec-
tion 7, and it is structured in two parts. First, we report the different search strategies
that were used to extract frequency counts of newspapers’ articles from Factiva. Second,
we provide a detailed description of the construction of our newspaper-based index.

F.1 Search strategies

Here below, we report the two different search strategies that were developed to down-
load articles’ count used in the construction of our indices. A brief description of each
strategy will follow. Strategy #I extracts all articles published in a given newspaper
within a specific year to provide an overview of publishing trends. Strategy # 2 re-
stricts our search to articles talking about environmental/ecological taxation. The goal
is to identify publishing trends directly related to environmental taxation, which will be
used to proxy salience in the public debate on this topic.

Strategy #1: Publishing trends. Total number of articles published in a given
newspaper. To do this, we use the word und — the German word for and — assuming
that it appears in virtually every published text.

Strategy #2: Environmental taxation trends. (Okosteuer* or ”Okologische Steuer-
reform” or Umweltsteuer® or Okologische Finanzreform” or Umweltabgabe*)

F.2 Using information in newspaper articles as an indicator of salience

For each newspaper, we separately downloaded the annual count of articles that are
picked up by our search strategies. To account for publishing trends specific to the
topic of environmental taxation, we begin by computing a simple newspaper-specific
ratio of articles matching Strategy #2 over the frequency counts from Strategy #1. A
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challenge with these raw article ratios is that the number of articles varies a lot across
newspapers and time, making it difficult to simply average the ratios across several
newspapers. We, therefore, apply the standardization approach of Baker et al. (2016) to
obtain our salience index.

We begin with the simple ratio of articles matching Strategy #2 divided by the
total article counts for Strategy #1 for each newspaper, and then divide this ratio by
the newspaper-specific standard deviation across all years. This creates a newspaper-
specific time series with a unit standard deviation across the entire time interval, which
ensures that the volatility of the index is not driven by the higher volatility of a particu-
lar newspaper. We then average these standardized series across all newspapers within
each year. Lastly, we normalize the yearly series to a mean of 100 over the entire time
interval to develop our main salience index. This procedure allows us to explicitly cap-
ture variation over time in the salience of the topic of environmental taxation while
accounting for newspaper-specific overall publishing trends.
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