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Abstract

The standard result in the literature states that balanced growth is only possi-
ble with labor-augmenting technological progress. If a more general form of techni-
cal progress is considered, the Cobb-Douglas production function is typically required
(Uzawa, 1961). However, we show that this result is not universally true. A broader
class of functions, known as Karamata functions or regularly varying functions, al-
lows for both labor- and capital-augmenting technical progress. This generalizes the
overlooked work of Sato and Beckmann (1970), who first challenged Uzawa’s conclu-
sion but in a more restrictive setting. Karamata functions, widely used in mathe-
matical statistics, describe functions with predictable long-term growth while allowing
for slow variations. Despite their suitability for scaling behavior in production, they
have never been applied in economics. Our approach also aligns with the Houthakker-
Jones framework and complements solutions to Uzawa’s paradox. We demonstrate that
factor-augmenting technical progress is fully compatible with balanced growth under
general conditions, challenging the conventional view that Cobb-Douglas is the only
valid form. We further provide some examples, as well as functions with controlled
oscillations, compatible with balanced growth.

JEL: 040, 041, C60
Keywords: factor-augmenting technical progress, balanced growth theorem, Karamata
functions.
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1 Introduction

The result that balanced growth is only possible in the presence of labor-augmenting tech-
nological progress, which is equivalent to Harrod neutrality, is well established in the liter-
ature. If one seeks a more general form of technological progress, one must resort to the
Cobb-Douglas production function, which is simultaneously Harrod-neutral, Solow-neutral,
and Hicks-neutral. This result dates back to Uzawa (1961).

I show that this result is not universally true, as there exists an entire class of functions,
known as Karamata functions or regularly varying functions, that are compatible with both
labor- and capital-augmenting technological progress. Quite surprisingly, I am not the first
to establish this result. Indeed, the overlooked article by Sato and Beckmann (1970)" already
indicated and demonstrated that the traditional result is incorrect. They constructed a class
of production functions that allow for capital-augmenting technical progress while still en-
suring the existence of a balanced growth path within the neoclassical framework. However,
the class of production functions they obtain is actually a subset of the more general class
that we propose. We thus introduce the Karamata class of production functions into the
economics literature.

The Karamata class of functions, introduced by Karamata (1933), provides a general
framework for studying the asymptotic behavior of functions that exhibit regular variation
at large scales. Intuitively, these functions describe phenomena whose growth or decay is
predictable over the long term, while still allowing for finer adjustments or slow variations.
A key feature of functions in this class is their asymptotic homogeneity: at sufficiently large
scales, they behave similarly to homogeneous functions, making them particularly useful for
modeling scaling properties and equilibrium dynamics in complex systems.

To the best of my knowledge, Karamata functions have never been used in economics,
despite their elegant fit with the properties of neoclassical production functions. However,
they are widely used in mathematical statistics, particularly in the analysis of heavy-tailed
distributions (such as Pareto distributions and, more generally, all distributions within the
Fréchet domain of attraction).

Following the seminal work of Houthakker (1955), Jones (2005) provides deeper micro-
foundations for the neoclassical aggregate production function. He considers a framework
in which firms have access to a finite number of complementary technologies, either Walras-
Leontief or CES with low elasticity of substitution, and producing more requires the discovery
of new ideas. These ideas are drawn from a Pareto distribution, as in Kortum (1997), and

the resulting aggregate production function is Cobb-Douglas. The Karamata class of pro-

IThis article has not been cited at alll



duction functions provides the ideal framework to formalize the Houthakker-Jones approach,
as we demonstrate. Our approach is also consistent with the recent contribution by Jones
(2023), who, using a theorem that connects extreme value maxima to the number of draws
and the shape of the upper tail of probability distributions, shows that exponential growth
can emerge without being tightly linked to any specific distribution, such as the Pareto dis-
tribution. In the same spirit, we show in a very general way that if the production function
belongs to the Karamata class, a balanced growth path remains feasible-even if technical
progress is not purely labor-augmenting.

Several alternative approaches have been proposed to explain balanced growth, despite
Uzawa’s theorem. For instance, Acemoglu (2003) uses endogenous growth models, where
profit-maximizing firms carry out innovations, to show that technical progress can ini-
tially be factor-augmenting along the transition path, but eventually becomes purely labor-
augmenting asymptotically. He generalizes and provides microfoundations for the induced-
innovation models proposed by Fellner (1961), Kennedy (1964), and Samuelson (1965), which
were criticized by Nordhaus (1973) for their lack of microfoundations. Under relatively
general conditions, factor-augmenting technological progress is possible at least during the
transition, and labor-augmenting technological progress emerges asymptotically along the
balanced growth path.

More recently, Grossman et al. (2017) extended Uzawa’s theorem by introducing hu-
man capital accumulation, where human capital is endogenously determined and capital
is more complementary with human capital than with raw labor. They obtained a class
of production functions for which the neoclassical growth model remains compatible with
capital-augmenting technological progress, while also allowing for endogenous human cap-
ital growth, ensuring the existence of a balanced growth path. Léon-Ledesma and Satchi
(2018) use the shape of the technological frontier and adjustment costs in firms’ technol-
ogy choices to distinguish between short-run and long-run elasticities of substitution. When
their technological frontier becomes log-linear, the long-run production function reduces to a
Cobb-Douglas form, even though the short-run elasticity of substitution remains below one.
Our approach is fully compatible with theirs, since our production function also exhibits an
elasticity of substitution different from one in the short run, while converging to one in the
long run. However, such a production function is not necessarily Cobb-Douglas.

However, we show that the literature has misinterpreted Uzawa’s Theorem: the presence
of factor-augmenting technological progress is fully compatible with the standard neoclassical
model, and the production function belongs to a very general class known as the Karamata
class. We therefore begin by presenting the neoclassical framework in Section 2, where we

restate the Balanced Growth Theorem, a well-known result. In particular, we prove it within



an asymptotic framework, highlighting subtle aspects emphasized by Acemoglu (2009).
Next, we discuss the structure of the production function: Y (t) = F(B(t)K(t), A(t)L(t))

which incorporates both capital- and labor-augmenting technical progress. We then establish

the first key result of this paper, which is well known: defining the ratio of effective capital

to effective labor as: z(t) = i((?)[g((:)) with the intensive production function given by: y(t) =

A(t)f(x(t)), then: x(t) grows at a constant rate and asymptotically tends to infinity, the
growth rate of GDP (and other aggregate variables) is asymptotically constant, the capital
share is determined by a combination of the growth rates of the variables.

The only assumption required to establish this result is that the labor share asymp-
totically converges to a non-degenerate constant, i.e., strictly between 0 and 1. Building
on this result, the literature typically assumes that balanced growth is only possible if the
production function is Cobb-Douglas, unless the growth of B(¢) is zero (meaning that techni-
cal progress is purely labor-augmenting and Harrod-neutral). Since the production function
must ultimately be Cobb-Douglas, it automatically implies Harrod neutrality because Cobb-
Douglas is simultaneously Harrod, Hicks, and Solow-neutral. We also note that our class
of production functions can also be applied in the presence of investment-specific technical
change, instead of a production function with factor-augmenting technology (Greenwood et
al., 1997).

However, in Section 3.1, we show that the class of production functions compatible with
balanced growth, even in the presence of capital-augmenting technical progress, is more
general than the Cobb-Douglas production function. Specifically, it belongs to the class of
Karamata functions. We provide a first direct proof, followed by a second proof leveraging
the Representation Theorem for this type of function. Additionally, we show that this class
of functions automatically satisfies the Inada conditions.

In Section 3.2, Karamata’s Theorem on the convergence of integrals allows for an ele-
gant generalization of the results presented in Acemoglu (2009) regarding the asymptotic
extension of Uzawa’s Theorem. Specifically, Acemoglu (2009) shows that if the growth rates
of capital and output converge to their steady-state values faster than 1/t (where ¢ denotes
times), then the relevant integrals converge to a constant value, and technical change becomes
Harrod-neutral in the long run. However, if this condition is not satisfied, we show that a
new time-dependent term appears in the production function. This term can be interpreted
as capital-biased technical change. Notably, this form of technical change does not necessar-
ily grow exponentially, but may take on various functional forms-still consistent, however,
with recent empirical estimates provided since Klump et al. (2007). Indeed, according to
the impossibility theorem of Diamond et al. (1978), it is not possible to jointly identify the

elasticity of substitution and the bias of technical change toward labor and capital. Klump



et al. (2007) suggest using suggest using a sufficiently flexible functional form for capturing
both types of technical progress, one that encompasses constant growth rates, as well as
logarithmic or hyperbolic growth, through the use of a Box-Cox transformation to estimate
the respective rates of technical change. Their results show that labor-augmenting techni-
cal progress is indeed exponential, whereas capital-augmenting technical progress follows a
hyperbolic or logarithmic pattern. Their empirical findings are consistent with the potential
forms that our production function can take. If one wishes to impose exponential growth for
both types of technical progress, then it is necessary to impose the axiomatic framework of
Phelps (1962) on the production function. We demonstrate that the Karamata’s production
function we propose satisfies this axiom and indeed constitutes the asymptotic production
function that emerges along a balanced growth path with both forms of technical change.

We then discuss, in Section 3.3, the overlooked article by Sato and Beckmann (1970),
which also constructs a class of production functions that allow for capital-augmenting tech-
nical progress. While the Cobb-Douglas function is a member of this class, it is merely
a special case. Their construction is based on the elasticity of substitution between capi-
tal and labor. It is well known (see Grossman et al. (2017), for example) that balanced
growth is only possible if the following relationship holds: (1 — o(K,L))gg = 0. This im-
plies that either the elasticity of substitution o(K, L) is equal to 1, or capital-augmenting
technical progress is absent (¢gg = 0). The literature concludes that if gg > 0, then the
production function must be Cobb-Douglas. However, both Sato and Beckmann (1970)’s
class of production functions and our class of Karamata functions demonstrate that even if
the elasticity of substitution asymptotically equals 1, this does not necessarily imply that
the production function is Cobb-Douglas. In this paper, we show that it belongs instead
to the class of Karamata functions. Thus, we revive and generalize the results of Sato and
Beckmann (1970).

In Section 4, we also generalize the results of Jones (2005). We demonstrate that if the
production functions of firms belong to a specific class that includes, as special cases, the
Walras-Leontieff production function and the CES production function with low elasticity
of substitution, and if ideas are drawn from a heavy-tailed distribution (of which the Pareto
distribution is a special case), then the aggregate production function belongs to the Kara-
mata class. Indeed, Karamata functions are widely used in mathematical statistics to study
extreme value distributions. Thus, our approach constitutes a natural generalization of this
framework.

Moreover, in Jones’s approach, the direction of technical progress implies that the pro-
duction function becomes asymptotically Cobb-Douglas. We show that if the production

function belongs to the Karamata class, then technical progress becomes asymptotically



neutral in both the Harrodian and Hicksian senses, because the elasticity of substitution
asymptotically converges to 1. For this to occur, it is not necessary for the production
function to be Cobb-Douglas, but rather for it to belong to the Karamata class.

In Section 5, we show that there exist production functions that belong to the Karamata
class, and we provide some examples: CEDD (Constant Elasticity of Derived Demand)
production functions or certain mixed CES-Cobb-Douglas functions belong to the Karamata
class. We also provide an example with infinite oscillations, since Karamata-type functions
are compatible with controlled forms of oscillations, in our case concerning the capital share

and the elasticity of substitution, even along the balanced growth path.

2 Neoclassical Economics and Balanced Growth

Consider a neoclassical economy starting at time ¢, where time ¢ € [ty, o) is assumed to be
continuous. A single good, referred to as the output, is produced using physical capital K (t)
and labor L(t). In each period, the labor market clears, and the entire available workforce,
which grows at an exogenous rate n > 0, is employed, such that L(t) = L(t)e™? %) with
L(ty) > 0 given. Physical capital accumulates as follows: K(t) = I(t) — 0K (t), where I(t)
denotes gross investment and 0 < § < 1 represents the depreciation rate of physical capital.
There is a given initial level of capital K(ty) > 0. Output is allocated either to consumption
C(t) or to investment I(¢). The resource constraint is written as Y (¢t) = C(t) + I(t).

Given this standard neoclassical framework, we are ready to state the asymptotic version
of Uzawa’s Theorem (Uzawa, 1961), adapted from Schlicht (2006), Jones and Scrimgeour
(2008), and Acemoglu (2009, Chapter 2).

Proposition 1 (Steady-State Growth).

Consider an economy starting at date to, where output, physical capital, consumption

and gross investment grow at asymptotically constant rates, given respectively by:

. Y@ . K@) c@t)
tl}Hloom_gY >O7 tk-ﬁrpoom_gl(>07 thgloom gC>0
L(t)

o L 1)

=g >0

under the following conditions: (i) I(t) > 0, or 0 < C(t) < Y (¢), for all t € [ty, 00) and
I(t t
(ii) tlggo% = s € (0,1), or hm 58 =1—s € (0,1). Then, all growth rates are

identical: gy = gx = gc = g1.




Proof See Appendix A.
[ |

As often noted in the literature, this theorem can be stated and proven without any
prior reference to the production function or the presence of equilibrium conditions. In
this article, we aim to demonstrate that balanced growth is achievable for a neoclassical
production technology featuring both labor-augmenting and capital-augmenting technical
progress, without restricting this technology to the Cobb-Douglas production function.

First, we will properly define this production function and then characterize the neoclassi-
cal economy in the presence of both types of technological progress. Let F : (0,00)% — (0, 00)

be a constant returns to scale production function, defined as:
Y{(t) = F(B)K(1), A()L(1))
where B(t) and A(t) are technology parameters scaling capital K (¢) and labor L(t), respec-

tively. These are known as capital-augmenting and labor-augmenting technological progress.
These parameters evolve over time as follows:
A(t) = A(tg)e2®t) and  B(t) = B(ty)ez10),

where A(tg), B(ty) > 0 are given initial values, and g4 > 0 and gp > 0 denote, respectively,
labor-augmenting and capital-augmenting technological progress. As is well-known, if gg =
0, the technological progress is purely labor-augmenting and purely Harrod-neutral, and
the production function becomes Y (t) = F(K(t), A(t)L(t)). Conversely, if gg # 0, the
technological progress is referred to as factor-augmenting technological change.

We assume that F' exhibits strictly positive marginal productivities (Fx > 0 and Fy, > 0)
and strictly decreasing marginal productivities (Fxx < 0 and Fr; < 0).? From the property
of constant returns to scale, the cross-derivatives can be shown to be strictly positive (Fyp =
Frg >0)°

We are now ready to state the central assumption on the production function F. We
will demonstrate that there exists a class of production functions, which includes the Cobb-
Douglas production function, that leads to a balanced growth path even if technological
progress is not purely labor-augmenting. Specifically, we finally assume that the factor shares
never degenerate to 0 or 1, even asymptotically. This assumption is central to rigorously
defining a strongly neoclassical technology and to avoiding situations where the production

function asymptotically behaves like an AK-type technology. Such behavior would result

2To simplify the text, we will sometimes use the following abbreviations:
or O*F
Fy = a—j(B(t)K(t),A(t)L(t)) and  Fj; = @(B(t)K(t),A(t)L(t)%

for j € {K(t),L(t)}.
3These results are the well-known Wicksell’s Laws (see Appendix A).



in growth driven not by technological progress but by the lower-boundedness of marginal
productivities. We will revisit below the Inada conditions, which are commonly assumed
to prevent such behavior. However, these conditions are inherently satisfied by the class of

production functions we consider, as we will demonstrate below.

Hypothesis (Asymptotically Constant and Strictly Positive Factor Shares).

Under the assumption of the neoclassical growth model with perfect markets, the capital

share ax and the labor share 1 — aj are given by:

Fr - K
g = KY € (0,1)
Fr- L
1— g = ——=¢€(0,1)

and we assume that the capital share (respectively the labor share) converges asymp-
totically to a constant value o € (0,1) (respectively 1 — a € (0,1)), strictly bounded

between 0 and 1.

We now wish to work with the intensive production function. As is standard in the
literature, we define y(t) := % as the per-worker output, k(t) := % as the per-worker
physical capital, and x(t) := %k(t) as the effective per-worker physical capital. Using the

constant returns to scale property of the production function, we can easily show that there
exists a function f : (0,00) — (0,00) such that the per-worker output is written as y(t) =
A(t)F(x(t),1) := A(t)f(x(t)). The marginal productivity of capital is expressed as Fx =
B(t)f'(x), the marginal productivity of labor is given by F, = A(t) (f(x(t)) — z(t) f'(z)),

and the output-capital ratio (i.e., the average productivity of capital) is written as

10

0 (strictly increasing) and f”(z(t)) < 0 (strictly concave).

K(t)
. The function f inherits the following properties from the function F: f’(z(t)) >

Furthermore, we define the following four quantities.

L. a(z(t)) = %

capital share under perfect markets. The assumption we made on the capital share implies
that a(x(t)) € (0,1) for all z(t) € R%. and Jim a(z(t)) =a € (0,1).
—00

is the elasticity of output with respect to capital and equals the

t
2. 0(x(t)) == % is the ratio of factors shares.
—afx
" t t
3. Blx(t)) = % is the elasticity of marginal productivity of capital with respect

to capital.
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(@(®)
%w»

production, capital and labor.

4. Finally, o(z(t)) := is the elasticity of substitution between the factors of

We now combine the production function we have constructed with the insights from
the Balanced Growth Theorem to show that balanced growth is possible in the presence of
factor-augmenting technological progress. Of course, the proof remains incomplete, as we
must still characterize the production functions compatible with this result. The remainder
of this article will be devoted to that task.

Proposition 2.

In a neoclassical economy, where asymptotically gy = gx = gc = g7, and characterized

by the intensive production function y(t) = A(t)f(x(t)), where x(t) := %k(t} is the

ratio of effective capital to effective labor, we have:

()hm:v()

.Yt
(1i1)gy = tlgglo _YEt; =n-+ga+

Q
1_0693

(i) lim a(z) = a = ki
t=e0 gy =N+ gp —ga

€(0,1)

Proof. See Appendix A.
|

It is immediately evident that in the absence of capital-augmenting technological progress

(i.e., gg = 0), output (and capital, consumption, and investment) grows at the rate n + g4,
x(t

tlim % = 0, and thus effective capital per worker, defined in our notation as z(t) =

—00 I

4The elasticity of substitution can be written as follows:
oty = T LEuTic _ AW U)o 0D PO el
FFgr  KFFgx AL () 2 (t) £ (x(t)

(f(z(t) = 2() [ (x(@))) ['(x(t))
fa(®)z(t) f"(x(t)) '

The first equality is the definition of the elasticity of substitution under constant returns to scale. The
second equality uses Wicksell’s Laws. The third equality employs the quantities defined in the text. The
last equality demonstrates that the elasticity of substitution can also be expressed solely as a function of x.
Simplifying the fraction by f(z)f'(x) yields the result.




At) K(t)

B(0) L(t)’
under a production technology with purely labor-augmenting technological progress.

converges to a steady-state constant. This corresponds to the classical result

To complete the proof, we must ensure the existence of a production function that si-
multaneously generates balanced growth, constant factor shares, a constant output-capital
ratio, and a constant marginal productivity of capital (equal to the rate of return on capital

in equilibrium in a competitive economy).

3 The implied asymptotic production function

3.1 The Karamata production function

From the result that the capital share must be asymptotically constant, we are inclined
to show that the asymptotic production function compatible with this result is the Cobb-
Douglas production function. This is because, with a constant capital share, it suffices to

solve the following differential equation:®

fz) o
flx) =
This leads to In f(x) = alnz + InC, where C' is an integration constant. Naturally,

this implies f(z) = Cz® and thus, the production function must be Cobb-Douglas: Y =
C (BK)® (AL)'™®. This is how the literature often concludes.’

However, production functions where the capital share asymptotically converges to a
constant are not limited to the Cobb-Douglas form. Instead, they belong to a broader class
of functions that satisfy the properties of neoclassical production and whose capital share
converges to a constant strictly between 0 and 1. Before proving that neoclassical technology

belongs to the Karamata class, we introduce the concept of regularly varying functions.

5From now on, throughout the remainder of this paper, we omit the time index unless ambiguity might
arise.

6Barro and Sala-i-Martin (2003) consider the output-capital ratio [i((?) = B(t)f(x(g))

T
constant in the steady state. If we differentiate with respect to time, we obtain 0 = gg + (a(z(t)) — 1)(gB +
gr(t) —n —ga). If on a balanced growth path gx(t) — gy, the differential equation from Barro and Sala-i-

!
Martin (2003) is written, in our notation, as: Ja®) 1 _gron—ga _ o which is equivalent to
f(t)  xt)gy —n+gp—ga x(t)

, which must be

the direct approach using the capital share.



Definition 1 (Regularly Varying Function, First Definition, Bingham et al.,
1987).

A positive measurable function f defined on some neighborhood [z, 00) of infinity is
called regularly varying at infinity with index « if, for each A > 0 and some o € R,
A
lim f(\z)
z—o0 f(x)

The real number « is called the index of regular variation.

=\ VA>0.

Of course, the Cobb-Douglas production function is a regularly varying function, as:
C(Az)

lim — )\

T—00 T

where the parameter « is the index of regular variation. However, it is not the only one. The

main result of this paper is that the asymptotic production function is not exclusively Cobb-
Douglas, as often claimed, but part of the more general Karamata class. While the Cobb-
Douglas function is a special case, this class includes many other forms capable of supporting

balanced growth asymptotically, even with capital-augmenting technical progress.

Proposition 3 (Karamata Production Function).

Let f : (0,00) — (0,00) be a production function such that f'(x) > 0 (strictly in-
MCIE:

f(z)
with a(z) € (0,1) for all x € Ry and lim a(z) = « € (0,1). Then, f belongs to the
T—r00

Karamata class of regularly varying functions.

creasing) and f”(z) < 0 (strictly concave), where «(z) :

is the capital share,

We begin by providing an initial proof, echoing the classic argument that a production
function with an asymptotically constant capital share must be Cobb-Douglas. However, we
demonstrate (heuristically using a “J — €” approach) that such a function is asymptotically
equivalent to a more general class of functions. Later, we will present a more constructive

proof of this proposition, offering deeper insight into the properties of these functions.

First Proof. See Appendix B.
[

A more useful approach for our purposes is to establish a more explicit connection between
the neoclassical production function, the capital share, and to more precisely characterize
regularly varying neoclassical production functions. To achieve this, we need to define the

concept of slow variation:

10



Definition 2 (Slowly Varying Function, Bingham et al., 1987, p.6).

Let L be a positive measurable function, defined on some neighborhood [z, 00) of in-
finity, and satisfying:

lim L)

=1 VA
T VA>0

Then L is said to be slowly varying (in Karamata’s sense).

Let us note that the neighbourhood [z, c0) in both definitions is of little importance and
we may suppose L defined on [0, 00) without lost of generality.” The concept of a slowly
varying function allows us to provide an alternative definition of a regularly varying function.
Definition 3 (Regularly Varying Function, Second Definition), Bingham et
al., 1987.

A positive measurable function f defined on some neighborhood [xg,c0) of infinity is

called regularly varying at infinity with index « if it can be represented in the form:

f(x) = 2 L(z)

where L(x) is a slowly varying function.

With this definition, it is still possible to see why the Cobb-Douglas production function
is a candidate for an asymptotic production function. If we take a constant function L(z) = ¢
for all x, the limit of ¢/c approaches 1, confirming that the Cobb-Douglas production func-
tion is regularly varying. Thus, it represents a potential asymptotic neoclassical technology
compatible with a steady state. However, it is a very particular case.

The following Representation Theorem will provide deeper insight into the structure of

slowly varying production functions and explicitly link them to the capital share:®

"The notation L is customarily used for such functions because of the first letter of the French word
“lentement” which means “slowly”. These functions were introduced and studied by Karamata (1933) in a
pioneering paper, written in French, with continuity in place of measurability.

8The second definition of a regularly varying function makes it clear that a slowly varying function L is
regularly varying with index a = 0. Therefore, the set of slowly varying functions forms a subset of the set
of regularly varying ones. However, as the following discussion will make clear, we will work with a set of
production functions with indexes « € (0,1).

11



Representation Theorem (Bingham et al., 1987).

The function L is slowly varying if and only if it can be written in the form:

" e(u) ’
L(zx) = c($)e/ffo u !

for x > xy > 0, where c(x) is measurable and satisfies lim, ., ¢c(z) = ¢ > 0, and (z) is
a measurable function such that lim, ., e(z) = 0.
Moreover, when c¢(z) = ¢ > 0 is a constant function, L is called normalized slowly

varying.

Normalized slowly varying functions were introduced by Kohlbecker (1958). As claimed
by Bingham et al. (1987, p.15), and as can be easily shown, when using a normalized slowly

varying function, the elasticity of L is given by the function e(z) (almost everywhere). More

formally:
xL(x)
e(z) = T)
Conversely, given a function L with ¢(x) := “”f('f)c) continuous and of order o(1) at infinity,

we may integrate it to obtain the representation:

L(z) = ce/ﬂ: #du

thereby showing that L is a normalized slowly varying function.

Y

Using this elegant and intuitive property of normalized slowly varying functions, we
can now provide the second proof of our Proposition and establishes that the neoclassical
production function compatible with a steady state, where the capital share is constant and
non-degenerate, belongs to the Karamata class. Indeed, from the previous calculations, we

have:
a(u)

o) = ofaw) + [ W

o U
where ¢(x) = In f(z). Taking the exponential of both sides, we obtain:
/ o 4,
f(x) = f(zo)edoo

Now, since by assumption lim,_,, a(z) = «, we can write a(u) = a+e(u), where lim,_, o, e(u) =

0. Thus, the integral in the exponent can be rewritten as follows:

/:#du:ozln (xﬁo) +/j¥du.

12



Let us define L(x), a slowly varying function, as:
/ ’ @du
L(w) = x5 f(wo)eo0 Y
Thus, we can express f(x) as: f(z) = x®L(x), which provides the representation of the
function f. This confirms that f is indeed a regularly varying function.

We can further characterize regularly varying production functions and understand why
they enable the characterization of a steady-state path. To do so, let us show that if the
production function f is regularly varying with index o € (0, 1), then its first derivative f’
and second derivative f” are also regularly varying functions, with indices o — 1 and o — 2,

respectively.” More formally:

Proposition 4.

Let f be a positive measurable function defined on some neighborhood [z, 00) of infinity
and regularly varying at infinity with index o € (0,1). Then, its first derivative f” and
its second derivative f” are also regularly varying at infinity with indices « —1 and a—2,

respectively.

Proof. See Appendix B
[

We can also establish the following corollary, which shows that the elasticity of output per
worker with respect to x (i.e., the capital share, a(x)), the elasticity of marginal productivity

of capital with respect to x (i.e., 5(z)), and the elasticity of substitution (i.e., o(z)) are slowly

varying functions.

Corollary 1.

a(x), B(x) and o(x) are slowly varying functions.

Proof. See Appendix B.
[

Until now, we have not yet addressed the Inada conditions. A production function is truly
neoclassical (let’s say strongly neoclassical) only if it satisfies the Inada conditions. Inter-
estingly, regularly varying functions imply that the Inada conditions are satisfied. However,

the converse is not necessarily true.

9Note that this result holds when « € (0, 1), i.e., when the asymptotic capital share is not degenerate.
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Proposition 5 (Inada Conditions).

Let f be a regularly varying function with index o > 0. Then, the following limits
hold:

lim f(z) = oo, QIEILI(I) f(x)=0, lim f'(z)=0, lim f'(z)= cc.

T—00 T—00 x—0

Proof. See Appendix B.
[

3.2 The Phelps’ axiomatic

We now analyze what could be the asymptotic production function, drawing inspiration
from the axiomatic framework of production functions with factor-augmenting technological
change proposed by Phelps (1965) in an unpublished paper.'’ In this section, we adopt the
modern approach developed by Schlicht (2006) and further refined by Jones and Scrimgeour
(2008) and by Acemoglu (2009) in the asymptotic case.

Let us now assume that, at date T, the production function takes the form:
Y(T) = G(K(T), L(T),T)

The production function G' can be rewritten as follows:
t t
— | gv(s)ds —/ gk (s)ds
e /T Y(t)=G |e JT K(t),e "1, T

t
/ gy (s)ds
That is, by multiplying both sides by e/T and using the property of constant returns

to scale:
t

S / () =l / () =mds

We rewrite the function G as follows:

y(t) = A(t)G [%k(t), 1,T} = At)g [%k(n, T}

10Parallel to Phelps (1965), Sato and Beckmann (1968), as well as Sato (1970), proposed an alternative ax-
iomatic framework to justify the presence of factor-augmenting technological progress, based on the elasticity
of substitution.
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t t
(g (1) ~ m) ds | ot~ wyds
where we define: A(t) := A(O)e/T and % — %e T _

To understand the asymptotic behavior of the production function, we need to study the
asymptotic behavior of the following integrals:

t

[t -m=[o-mas+ [ )= gds=g-mT -1+ [ torts) ~g)ds

/Tt(gK(S)—n):/Tt(g—n)ds+/Tt(gK(5)—g)ds:(g—n)(T—t)Jr/Tt(gK(s)_g)dS

or, the integrals:

[ovtr=aas [ o) - g)as

To develop our intuition, let us assume that the deviations between the growth rates gy (¢)

and gk (t) and their common asymptotic values g behave asymptotically as follows:

gy(t) =g~ Ly(t) and g (t) — g ~ 7% Li(t)
where Ly (t) and Lk (t) are slowly varying functions. Consequently, the asymptotic behavior

of the integrals is given by:

/t (gy(s) —g)ds ~ /t s7 Ly (s)ds and /t (9K (s) —g)ds ~ /t sP% Ly (s)ds

T T T T
This behavior strongly depends on the parameters Sy and (g, as well as on the fact

that Ly(t) and Lg(t) are slowly varying functions. Thus, it is straightforward to see

that if By, Bk < —1, then gy(f) and gx(t) converge to g at a rate faster than % and

therefore the above integrals converge to a constant. The production function can then

t
/ (g—n)ds
be written as Y(t) = F(K(t), A(t)L(t)), with A(t) = A(0)e/T and % =
t
B(0 / (g —n)ds B(0
ﬁe T = ﬁ which implies that B(t) = B(0) is constant, and technical

progress is purely labor-augmenting. This result is also demonstrated in Acemoglu (2009).
However, we adopt an approach, which also allows us to consider the case where gy (s)

and gk (s) converge to g at a rate slower than %, a case not addressed in the literature. For

that, the theorem of Karamata provides a rigorous framework for analyzing the convergence

of integrals involving slowly varying functions. It can be stated as follows:

15



Karamata’s Theorem (Bingham et al., 1987, p.26).

Let L be a slowly varying and locally bounded function in [zg,00) for some xy > 0.
Then

T .I‘OH_l
t*L(t)dt ~ L
| s~ )

for « > —1 and when z — oo.

If —1 < By, Bx < 0, then gy(t) and gk (t) converge to g at a rate slower than % The
integral grows slowly (or diverges sub-exponentially), as shown by the theorem of Karamata,

and we I?ave: s
[ (ov(5) = gty ds ~ S0
T j
where j = min{fy, Sk }. This integral is dominated by the sloxlver rate of convergence.

If By,Bx = —1, the integral grows logarithmically as / s% Lj(s)ds ~ L;(t)Int, for

j =A{Y, K} and we have: '
t
| (o (s) = aw(s)) s ~ (L (0) = L) e

Thus, in cases where —1 < By, Bx < 0, the production function can be written as
Y(t) = F(B(t)K(t), A(t)L(t)) with factor-augmenting technical progress. However, the
growth rate of B(t) is not constant, as B(t) is an arbitrary function of time. This does not
guarantee a balanced growth path with a constant capital share. Here, I propose to identify
the specific condition that aligns with the axiomatic framework proposed by Phelps (1965) in
an unpublished paper, which has been overlooked in the literature. His goal was to establish
the necessary and sufficient conditions, in the same spirit as the result by Uzawa (1961),
under which a production function exhibits factor-augmenting technical progress compatible
with a constant capital share (and thus a constant labor share as well).

According to Phelps (1965), if there exists a function B(t) that depends only on time,
such that the average productivity of capital Y (t)/K(t) increases proportionally to B(t), and
the marginal productivity of capital also increases proportionally to B(t), then there exists a
balanced growth path along which the shares of the factors of production remain constant.

In our approach, this implies that Sy, 5x = 0, and, gy (t) — g ~ Ly (t) and gk (t) — g ~
Lk (t). Consequently, the asymptotic behavior of the integral is linear, given respectively
by

[ o) - gyds~ [ ivsiaset [ (ats) - 9yds [ Lutyas

T T T T
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Assuming, Ly (t) and Lk (t) converge asymptotically to constants Ly and Ly, the integral
becomes asymptotically linear:

/ (9(5) — grc(5)) ds ~ (Ly — Lic) (£ = T) = gu(t — T)

T
where we denote: gg := Ly — L.

Thus, although this result aligns with the axiomatic framework of Phelps (1965) and
generates a path on which the factor shares are asymptotically constant, the condition leads
to a contradiction with the result established in Proposition 1, namely that the average
productivity is asymptotically constant, and thus gy = gx. This apparent contradiction can
once again be resolved if we assume that the production function belongs to the Karamata
class.

B(t

Indeed, if g is regularly varying, recalling that z(t) := Tk(t)’ then we can write (using

N2 N2

the Representation Theorem )

"0 e(a(s))

ds
Y (t) = A(t)L(t)g [%k(t), T} = cA(t)L(t):v(t)ae/wo s
t t " e(a(s))
11—« Ly (t —n)ds + « Ly (t) — Li(t))ds ds
Y(t)= ce( )/T e /T = B +/avo S K@) L)'

In this case, the asymptotic production function can be written as: Y (t) = F(B(t)K(t), A(t)L(t))

(Ly(t) + g —n)ds (Lx(t) — Ly (t)) ds

where A(t) = A(T)e/T and B(t) = B(T)e/T . The
integrals respectively converge to ga(t — T') and gg(t — T') where, g4 := Ly + g — n and
gp = Ly — L.

Finally, we require that, along the balanced growth path, both the average and marginal
productivity of capital remain constant. Indeed, as we have already shown, since the produc-
tion function can be written in intensive form as y(t) = A(t) f(x(t)), the average productivity

Y(t) f(z())

of capital is given by: @) = B(t) (1)

. For its growth rate to be zero, the following

condition must hold:

gB+(a—1)%:0

Similarly, the marginal productivity of capital is given by Fx = B(t) f'(z(t)), and its growth

rate is zero if the following condition is satisfied:

a5 + f”<x<t>>% _gnt (o 1>% o
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C(t
Now, since we have shown that asymptotically lim f”(x(t)) =1 — « and lim () =
9B

1 —«
function belongs to the Karamata class, it is possible to reconcile the existence of a balanced

, these two growth rates are asymptotically zero. Thus, once again, if the production

growth path with the presence of factor-augmenting technical progress, and a constant av-
erage and marginal productivity of capital.

Note that up to this point, we have worked with a production function where technical
progress is factor-augmenting. However, we could have considered the case of an investment-
specific technological change, such that Y (t) = C(t) + I(t)/B(t), where gp represents an
embodied technical change that allows for less forgone consumption (see Greenwood et al.

(1997) or Solow (1960)). If the production function is written as Y (t) = F(K(t), A(t)L(t)),

K(t
then, by defining z(t) := ﬁ, such that y(t) = A(t)f(z(t)), if g5 > 0, we would have
gk =n—+gp+ gg and gy =n+gp+ a g, with a = Jy — R~ 94 . Note then
1 -« 11—« gy —n —ga+ 9B

that we have gy = gx — gp (see also Grossmann et al. (2017)). In this case, the average
productivity of capital is no longer asymptotically constant since gy — gx = —¢gg. For the
capital (and labor) share to remain constant, it then becomes necessary, and even sufficient,
that the marginal productivity of capital also grows asymptotically at the rate —gp. This
is precisely the axiomatic framework proposed by the unpublished and overlooked paper of
Phelps (1965) to show the conditions under which factor-augmenting technical progress is
possible. With K (t) growing at the rate gy + gp, x(t) — oo and our framework can be used

with investment-specific technological change.

3.3 The elasticity of substitution

We now demonstrate how the work of Sato and Beckmann (1970) aligns with our approach.
Sato and Beckmann (1970) also highlight a common misconception in the literature, namely
that the Cobb-Douglas production function is the only production function compatible with
balanced growth and the presence of factor-augmenting technical change that is not exclu-
sively labor-augmenting. They point out that even if the elasticity of substitution asymp-
totically converges to a unitary value, this does not imply that the asymptotic production
function must be Cobb-Douglas. Based on this observation, they construct a family of
production functions that asymptotically behave like a Cobb-Douglas function but can ex-
hibit very different functional forms. We extend their approach by further generalizing and
precisely characterizing the class of production functions that encompasses the family they
proposed.

First, they show that if the capital share a(x) asymptotically converges to a constant value
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strictly between 0 and 1, then the elasticity of substitution also asymptotically converges
to 1. Thus, this convergence of the elasticity of substitution is a necessary condition for
the existence of balanced growth in the presence of factor-augmenting technical change that
is not exclusively labor-augmenting. Interestingly, this necessary condition directly follows
from the properties of the class of production functions we proposed, as demonstrated by

the following proposition:

Proposition 6 (Asymptotic Elasticity of Substitution).

If the capital share converges to a non-degenerate value, ie., lim a(z) = a € (0,1),
T—r00

then the elasticity of substitution asymptotically tends to 1, i.e., lim o(z) = 1.
T—00
Proof.
1-— 1-—
lim o(z)= lim a(r) = ¢
z(t)—o0 z(t)—»oo — (ZL‘) —(Oé - 1)
|

We have used the results regarding the slow variations of the capital share a(z) and
the elasticity of the marginal productivity of capital (z). However, this result is already
well-known. For example, Grossman et al. (2017) show that a steady-state equilibrium is
achieved if the following condition is satisfied: [1 — o(z)]gs = 0. They conclude that this
holds if gg = 0 or if o(z) = 1, which corresponds to the Cobb-Douglas production function.
However, we refine this result by noting that lim [1 — o(x)]gs = 0. Assuming gp > 0, this
relation is satisfied if the production function ;g;riits an asymptotically unitary elasticity of
substitution.

We have previously discussed how to characterize Karamata-type production functions
based on the capital share. Now, we will explore an alternative approach based on the elas-
ticity of substitution. To do so, we present the following necessary and sufficient condition,
derived from Sato and Beckmann (1970):

Proposition 7 (Asymptotic Elasticity of Substitution).

A necessary and sufficient condition for the capital share to converge to a non-degenerate

value, i.e., lim, ,,, a(z) = a € (0,1), is that the following relation holds:
lim o) = 1du =C,
z—oo [, o(u) wu

where C' € R is a finite real constant.

Proof. See Appendix C.

19



|
As Sato and Beckmann (1970) rightly pointed out, such a condition is too general to fully

understand the role of the elasticity of substitution within the class of production functions
we are investigating. Ideally, we would identify the set of elasticity functions (as a function of
x) that can satisfy this necessary and sufficient condition. This ideal set can be approximated

using the following sufficient condition provided by Sato and Beckmann (1970):
Proposition 8 (Sufficient Condition).

If there exists a constant N such that

7(@) = 1) g 4y =

with 0 < N < oo and k > 1, then lim, ,,, a(xz) = a € (0,1).

lim
T—00

Proof. See Appendix C.
|

Using this sufficient condition, we can construct an entire family of production functions

that satisfy it. Specifically, it is enough for their elasticity of substitution to asymptotically

satisfy:
( 1]\7 =0a(x), ifo(x)>1,
1+ -
o@)y={ o)
N o(x), ifo(x) <1
\ L (Inax)k

Sato and Beckmann (1970) claimed that the most general form of this class of production

functions, that they can found was (their equation 20, page 396, in our notations)

( /‘T 1 du
Celro 14+ Blemtm0'™ w e gy L
— (In )k
f(x) /w 1 du
Celuo 14 Bl ™ w ey 1
\ (lnx)k

with B > 0, defined as

0(1‘0)6 R, if 5'(37) = 1+ 1N )
— (lnx)k
B - _(lnmo)1 k . 1
O(zo)e” *1 | ifo(r) = —F—.
(Inz)k

However, the family of production functions they propose is a subset of the family of
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production functions we have constructed. Indeed, note that lim, ,., 0(xz) = B € R, and

therefore:
: . 0(z) B
e = e e O
Moreover, by the Representation Theorem, we can write:
0(x) B

e(z) =alr) —a=

1+0(x) 1+B
and therefore, their family of production functions belongs to the Karamata class.

4 The direction of technical progress

At this point, we can ask is the following: does our class of production functions have a
microeconomic foundation? More specifically, generalizing the work of Houthakker (1955),
Jones (2005) demonstrates that if we consider a local Leontief technology or a local CES
technology with an elasticity of substitution less than 1, it is possible to show that the
aggregated production function becomes Cobb-Douglas if firms develop new ideas randomly
drawn from a Pareto distribution. We leverage the class of Karamata functions, which are
used in mathematics to study heavy-tailed probability distributions (extreme values), of
which the Pareto distribution is a special case.

Thus, we generalize the approach of Jones (2005) by providing the same microeconomic
foundations for our regularly varying production functions. To do so, we construct the ag-
gregate function defined as the upper envelope F'(z; N) of production functions using local
technologies given by y; = a;f <Z—’k> = a;f(z;). Jones (2005) obtains an analytical result
by assuming that f; takes a Walras-Leontief form (i.e., with complementary factors corre-
sponding to an elasticity of substitution approaching 0), and he provides numerical results
by assuming that the local production function is CES with an elasticity of substitution less
than 1.1

Interestingly, these production functions are slowly varying functions. Indeed, it is
straightforward to verify that:

lim mi%q{)\xi, 1} _
zi—oo min{x;, 1}

G O0)7 (1= 5)7)°
e (B(x)” + (1= B))7

The first generalization we propose is to assume that f(z;) is an arbitrary slowly varying

1

Y

= 1.

Tt is worth noting a contradiction in Jones’s assumptions, as his local function is assumed to satisfy the
Inada conditions, whereas neither the Walras-Leontief function nor the CES function satisfy them everywhere.
However, this does not affect the validity of his results.
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function, which encompasses the functions proposed by Jones (2005). Note that f(z;) could
also be regularly varying, i.e., f(x;) ~ x¢L(x;), where L(x;) is slowly varying, but this is not
required for the following argument.

The second generalization we propose is that the terms a; and b; are drawn from arbitrary
heavy-tailed distributions, not just Pareto distributions, where heavy-tailed distributions are
probability distributions whose tails decay more slowly than those of exponential distribu-
tions, meaning their tails remain significant even for large values (e.g., Pareto or Cauchy
distributions). The essence of Jones’s (2005) demonstration is to show that the resulting
aggregate production function lies in the basin of attraction of the Fréchet distribution.

In general, a non-negative random variable X and its distribution are said to be regularly
varying with index a > 0 if the survival function G(z) := 1 — G(2) is regularly varying with
index —v (see Bingham et al., 1987) for instance. Indeed, all distributions belonging to the
domain of attraction of the Fréchet distribution can be rewritten as

G(z)=1—a""Y7L(x)
where L(z) is a slowly varying function. The parameter «y directly controls the tail behavior
of the survival function, and thus that of extreme values. The survival function G(z) :=
1 — G(x) = 27/7L(x) is a regularly varying function with index —1/7.
Specifically, the variables a; and b; are drawn from heavy-tailed distributions and with

survival functions:

P(a; > a) ~ Lo(a)a™, P(b; > b) ~ Ly(b)b~",
where L,(a) and Ly(b) are slowly varying functions, and «, 8 > 0. These distributions have
heavy tails, characterized by a power-law decay modulated by the slowly varying functions
L, and L,. As in Jones (2005), we assume that a single technique is used at each point in
time.

The function F'(z; N) is defined as the maximum of N terms:
F(z;N) = max a;f ()

=1,...,

Each term y; = a; f (Z—/{:) depends on the distributions of a; and b; as well as the properties
of f. To show that F(x;N) is regularly varying, we analyze its asymptotic behavior as
N — oo. Since f(z;) is slowly varying, for large z;:

Yi ~ az‘L(%)xf,
where p = 0 for slowly varying f(z;), and L(z;) is the slowly varying component of f(z;).
The heavy tails of a; and b; dominate the behavior of the maximum. For large N, the largest

a; and b; satisfy:

P(maxa; > a) ~ NL,(a)a™®, P(maxb; > b) ~ NLy(b)b~".
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The term a;f (Z—k) inherits its asymptotics primarily from the largest a; and b;. There-

fore:
F(z;N) ~ enal L(z;),
where cy is an appropriate scaling factor dependent on N, o and 3.'? For large x;:
F(Az; N) ~ cy(Az)?L(Ax), and F(x;N) ~ cya’L(z).
Using the slowly varying property of L(x):
F(A\z; N)
F(z;N)
This shows that F'(z; N) is regularly varying with index p. Therefore, even if f(z) is only

SN YA > 0.

slowly varying, the function F'(x; N) becomes regularly varying due to the dominance of
the heavy-tailed distributions of a; and b;. The asymptotic behavior of F'(x; V) reflects the
power-law decay of the underlying distributions, ensuring regular variation with index p.

Thus, as we have just shown by generalizing the results of Jones (2005), the global
production function is not solely Cobb-Douglas but belongs to the class of regularly varying
functions, further justifying our approach. However, instead of delivers a Cobb-Douglas
production function at any point in time, we provide a more general production of the
Kamarata class. Consequently, if the production function belongs to the Karamata class, we
have shown that ¢ — 1, and thus technical progress will be asymptotically neutral in both
the Hicksian and Harrodian senses. We can thus propose a form of neutrality based on these
results:

Proposition (Karamata’s neutrality).

Inventions are neutral in Karamata’s sense if the production function is regularly varying

with an index a € (0, 1).

5 Examples

5.1 CEDD production functions

The first natural example is the CEDD (Constant Elasticity of Derived Demand) production
function proposed by Sato (1970)."* The CEDD, denoted E}, is the elasticity of derived

demand for capital per unit of labor (i.e., for a given number of labor units) and is defined

12 Jones chooses a specific ¢y for the Pareto distribution, which is common in this literature.
13Bruno (1968) also presented a special case of this function, calling it the Constant-marginal-shares
production function, as it generates constant shares of production factors.
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as:

Fe  Bfffe) _ filx) 1
- KFgx  KBf'(0)Z — zf'(z)  Bla)
Thus, the elasticity of substitution is expressed as:

o(z) = (1 - a(z))Ex(z)
The elasticity of substitution equals the product of the labor share and the elasticity of

Ly, =

derived demand for capital per unit of labor. Asymptotically, this elasticity is constant since
it is a regularly varying function with an index of ﬁ It is therefore natural to construct a
specific production function within this class, called the CEDD, where Ej, := —% = lfgﬁ()x)

is constant for all x. In this case, if the elasticity of the marginal productivity of capital is

constant, we have:

f'(z) [ 5
—_ — - é p—
i@ g W
with a > 0. Integrating this function again gives:
o) = T 4

where ¢ € R is the integration constant. The capital share can then be expressed as a(z) =

(1-— 6)% and the elasticity of substitution becomes o(x) = 1+ %f&).

This function belongs to the Karamata class, as it is regularly varying with an index of

1— 5 =ae€(0,1) and the elasticity of substitution converges to 1 as x — 0o. Consequently,
the CEDD production function can be written (normalizing the first integration constant
a:= «) as:
Y(t) = (BIt)K(t))*(At)L(t))"* + c(A()L(t))
This is essentially a Cobb-Douglas production function with a linear term depending solely
on effective labor.
It is worth noting that this type of CEDD function can take other forms, which may not
be regularly varying. For instance, one can symmetrically define the elasticity of derived
Fr,

demand for labor per unit of capital as E; := IF Following a similar reasoning, the

resulting production function takes the form:

Y(t) = (BIOK )" (A) L)~ + c(B(t) K (1))
This function was used by Kurz (1968), and later by Jones and Manuelli (1990) (with A(t)
and B(t) constant) to generate transitional dynamics in the AK endogenous growth model.
However, the intensive form of this function, f(x) = x®+ cx is regularly varying but with an
index of @ = 1 which means it does not belong to our class of production functions (which,
moreover, implies Inada conditions are not satisfied by this type of production function).

Additionally, as pointed out by Sato (1970), if both types of elasticities are constant and
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such that 0 = (1 — a)Ej, = aE; is a constant, the function belongs to the CES production
function class. These functions, however, are not regularly varying with a paramer a € (0, 1).
Therefore, the CEDD-type functions that belong to our class of Karamata-type production

functions are those where Ej is constant but not Ej.'*

5.2 Mixed CES-Cobb Douglas production function

Another production function proposed in the literature, which belongs to the Karamata
class, is a hybrid between the Cobb-Douglas and CES production functions. This type of
production function originates from the unpublished work of Bruno (1962) and has been
used in the empirical studies of Liu and Hildebrand (1965) and Nerlove (1967). It was
also derived by Sato and Beckman (1970) as a special case within their class of production
functions, which is compatible with the existence of balanced growth despite the presence
of factor-augmenting technology. There are three ways to express this production function
such that the capital share converges to a non-degenerate value. We begin by considering

the following function:

f(@) = [B20- 1+ (1— B)]”

where 0 < o < 1 and p > 0. The capital share is then given by:

(1 _ —p(l—a)p _ (1 _ &U(lia)p — 1—a
O[(J]) = (]_ Of)/Bf(fE) X = (]. Oé) 6:L,(1—a)p + (]_ — B) - 1+ %xf(lfa)p

Thus, as * — oo the capital share converges to 1 — a € (0,1). We note that if p < 0, the

capital share converges to 0 and the function becomes only slowly varying. Finally, if p =1
this production function corresponds to the CEDD function. Therefore, this production
function naturally generalizes the CEDD function. The elasticity of substitution is given
by:

(@) : :
o\r) = al(z)—(1—a = 11—«
1 + P- (1)_05(1x) ) 1 - p1+a%x(1_a)p

If p > 0 the elasticity of substitution converges to 1 which is consistent with the character-
istics of our class of production functions. Note that p can be greater than p(1 — a) < 1

ensuring that ¢(0) = y > 0. In this case, the elasticity of substitution starts above

1
Thi=a)
1. This property may be undesirable if one seeks a production function where the elasticity

of substitution remains below 1, at least along the transition path. To address this, we can

147t should also be noted that Ej # 1, otherwise, the production function is of the “Bernoulli” type (as
named by A. Marshall), and it is expressed in this case (see Sato, 1970) as:
A(t)K(t)
Y(it)=(At)L(t)) In | == A(t)L(t
(0 = (AL (G ) + A L)

This Bernoulli-type production function is only slowly varying, i.e., with an index o = 0.
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consider the following symmetric production function:

f(x) = [B+ (1= B)a*]s

where 0 < a < 1 and p < 0. The capital share in this case becomes:
1-a)
a(z)

and it converges to the constant o € (0,1) as © — oco. The elasticity of substitution is then

a+ %xp(
Tt i)

given by:
1
R

If p < 0, the elasticity of substitution also converges to 1. It starts at a value below 1, given

by 0(0) = = s
This type of production function also supports the approach proposed by Jones (2003,

< 1 and increases monotonically toward its limit of 1.

2005). Indeed, we can propose combining the CES and Cobb-Douglas production functions in

the following manner, by factoring out the Cobb-Douglas function from the CES function:
1) =8 (%) +1-4]" a0

where p < 0. Here, x represents the long-term quantities of factors used, while xy epresents

the short-term quantities of factors. This approach is fully compatible with the Karamata

production function that we propose in this paper, which clearly distinguishes short-term

production functions (in the context of transitional dynamics) from their asymptotic behav-

ior.

5.3 Infinite oscillations

In Karamata’s theory, infinite oscillations is possible. Indeed, the definition of a slowly
varying function remains valid even when L(z) exhibits infinite oscillations, including cases

where:

xh_)rgo inf L(xz) =0 xh_)rgo sup L(x) = oo
Such behavior arises in functions which exhibit oscillations between 0 and oo while still
satisfying the slow variation condition. The key requirement is the asymptotic stability under
scaling, meaning that the relative growth between L(tx) and L(z) tends to 1, regardless of
the absolute amplitude of oscillations. In contrast, when dealing with functions that exhibit
more complex oscillations, we define generalized regular variation as:

0< zh_}rgo inf L(z) < mh_)rgo sup L(z) < oo

The strict inequalities here are crucial. They ensure that the function’s growth is controlled:

f(tz)

the ratio e

does not collapse to zero or diverge to infinity, preserving the regularity of
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the asymptotic behavior. Regular variation requires a more rigid structure, maintaining
bounded oscillations to reflect predictable scaling behavior. Thus, while slowly varying
functions can exhibit extreme oscillations, regularly varying functions demand controlled
asymptotic behavior to ensure consistent growth across scales.

This property implies that the existence of a regular growth path is compatible not only
with the presence of factor-augmenting technical progress but also with oscillations in both
the factor shares and the elasticity of substitution. To illustrate this possibility, consider the

capital share given by the following function:
1

cos(z)

1+e 2
which is a function bounded between 0 and 1, as the capital share fluctuates approximately

a(r) =

between 0.38 and 0.62. Using the ratio of the capital share to the labor share, we obtain:

— cos(x)

O(r) =€ 2
which we can (log-)integrate to obtain:
o(r) —1  sin(z)
o(x) 2

Thus, the elasticity of substitution varies within the range [%, 2], which is consistent with

empirically estimated values in the literature. The corresponding production function is then

given by the Representation Theorem:

f(x) = a®L(x)

where e(z) = —& — a.

cos(z)

14+e 2

15

6 Conclusion

Do two functions with the same asymptotic limits necessarily coincide? The literature has
traditionally answered yes to this fundamental question. However, a production function
whose capital share is asymptotically constant and whose elasticity of substitution asymp-
totically equals 1 is not necessarily a Cobb-Douglas production function. This implies that
it is possible to introduce a more general form of technical progress than labor-augmenting
technological progress into a neoclassical growth model without jeopardizing the existence
of a balanced growth path, as previously demonstrated by Acemoglu (2003) in the context
of endogenous growth models. However, we establish this result within a much broader and

more abstract neoclassical framework.

5However, one important point to note is that the derivative of f is always strictly positive, but its second
derivative can change sign because of fluctuations, meaning that it is not always concave along the balanced
growth path.
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Nonetheless, while the Karamata production function we propose clarifies this important
point, it does not prevent the elasticity of substitution from asymptotically converging to 1.
Thus, if an economy follows a balanced growth path and empirical evidence suggests that
the elasticity of substitution is different from 1, the standard neoclassical model is indeed
insufficient to account for this fact, as well as for the declining labor share. However, if the
variability of the elasticity of substitution and the declining labor share result from busi-
ness cycle fluctuations, then the Karamata production function would not be theoretically

incompatible with these observations.

Appendix

Appendix A.

Proof (Proposition 1). The condition lim;_,, % = s € (0,1) represents the idea that, even
asymptotically, the economy does not invest (and therefore does not consume) the entirety
of the income generated by output Y (¢). This condition naturally implies that g; = go =
gy. Without this condition, it is possible to construct counterexamples that invalidate the
balanced growth result (see Acemoglu (2005), Exercise 2.14 for a counterexample, and the
proof below).

Let x(t) := % denote the capital-output ratio. Its growth rate is written as:

ORI SO (DRSNS (R 4 ) SN
x(t)  K(1) K(t) Y (t) K(t)
We have:
_ox() oI 1 T
Am S T o Ty = im S lim s — O+ gv) = s lim s = (0 4+ 9v)
Thus, finally:
; — 1 K(to) (9x—gv)t _ 5
Jm x(t) = fim -5e = 5tor
which is satisfied if g = gy. Therefore, we have shown that gy = gx = gc = g;.
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Proposition (Wicksell’s Laws).

Given that the production function F : (0,00)? — (0,00) is homogeneous of degree 1,
and that marginal productivities are strictly decreasing, the cross-partial derivatives are
positive. Furthermore, the following relationships hold:

L K K\?
Frp=——F Frp = ——F, d Frp=|—| F
LK K LL, KL I KK all LL (L) KK

Proof. Since the production function F' exhibits constant returns to scale and is therefore

homogeneous of degree 1, its partial derivatives, which define the marginal productivities,

are homogeneous of degree 0. By applying Euler’s theorem to the marginal productivities,

we obtain the desired results:
L
O0=LF;;+KFry = FLK:_EFLL>O
K
0=LFkg,+ KFrxg = FKL:_EFKK>O

Since FKL = FLK; it follows directly that: FLL = (%)2 FKK
|

Proof (Proposition 2). The growth rate of x(¢) is given by:

%ZQB—QA—n—%IgB—gA—(n+5)—%-
Asymptotically, this growth rate becomes:
tllglo%—gg—gf;—(n—i-é)—l— hm%tt))
Using the Balanced Growth Theorem, we know:
I(t) . I(t) Y(b) 0+ gy
I Te ~ i ye R =S =0ty
Thus, we obtain:
_ x(t)
lim =gp—ga—(n+0)+d+gr =9v —n—ga+ys
t—o0 ;L’(t)
From the production function Y (t) = F(B(t)K(t), A(t)L(t)), we derive:

(
T = aleto) < §§>+ (1 a(e() (g4 + )

=n+ ga + a(z(t)) (%—H—QA-FQB).
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Taking the limit on both sides of the equation, we have:
- Y(t) . - K(1)
tliglom =n+ga +t11>1£1004(95(75)) (tliglom —n—gatgs|-
Recalling that gy = gk, we establish point (iv):
gy — N —ga
gy —n—ga+gp
This allows us to derive the asymptotic growth rate of output (iii):

tlgélo alz(t) =a=

a
gy =n+gatT——9s
-«
From this, we deduce the growth rate of z(t) (ii):
r(t 1
& = g > 0.

twoo z(t) 11—«

Thus, z(t) = %eﬁgst7 and therefore (i):

Alto)
tlim z(t) = oo.

]

Appendix B

First Proof of Proposition 3. Let ¢(x) :=In f(z), so that ¢'(z) = ];((;)). The capital share

in income can then be expressed as:

f'x)z

o(x) = ——— = z¢'(x).
@) = Lot =
Thus:
a(x
By integrating both sides between a constant xy > 0 and z, we obtain:
T a(u
o(x) = Pp(xg) +/ %du.

Zo

Given that lim, .. a(z) = «, for any € > 0, there exists z; such that for all z > xy,
la(x) — a| < e. Thus, for x > x4, the capital share satisfies: @ — e < a(z) < a+¢.

For x > x4, we can bound ¢(z) as follows:
“d “d
@=2) [ <o) -oa) <a+e) [

1 Ilu

After evaluating the integrals, we get:

(@ —e)ln (mﬁl) < ¢(x) — ¢(z1) < (@ +)In (£> .

T
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Taking the exponential of both sides yields:

a—¢e a+e
(ﬁ) /) < f(z) < <£> eS@)
T T

f(Az)
f(@)

() <t ()
x ~ flz) — \ =z

Simplifying gives:
f(Az)
f(z)

Finally, taking the limit as * — oo (with A fixed) and noting that & > 0 can be made

Now, consider the ratio . Using the above bounds, we can write:

ta—s S S ta+6.

arbitrarily small, we obtain:

tim L) _ e
e F(@)
which proves that f is a regularly varying function.

]
Proof (Proposition 4). Using the representation of the production function f(z) =
x*L(z), where L(z) is slowly varying, we compute the first derivative:
f'(x) = ax® ' L(z) + 2L (x).
The ratio of the first derivative to z* ! L(x) is:

P )
x> 1L(x) L(x) '

ol () _
L@ ¢

cally, the marginal productivity behaves as: f'(x) ~ ax® 'L(x). This implies that f’(x) is

Since L(z) is slowly varying, () = 0 as x — oo. Thus, a(r) — «, and asymptoti-

regularly varying with index a — 1.

Next, consider the second derivative:
() = ala — D2 2L(z) + 202 ' L' () + 2°L" (z).

The ratio of the second derivative to 2% 2L(x) is:

1 (x) xL'(x) 2*L"(x)
— = —1)+2
Py 2 B AR A P iy o P
Since L(x) is slowly varying, the last two terms Iﬁg) and $2LL(/;()I) converge to 0 as x — o0.

Thus, the second derivative asymptotically behaves as: f”(x) ~ a(a — 1)z 2L(x). This
implies that f”(x) is regularly varying with index a — 2.
|

Proof (Corrolary 1).  Since f, f’, and f” are regularly varying functions, we have
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f(z) ~2°L(x), f'(x) ~ ax® ' L(x), and f"(x) ~ a(a — 1)z* 2 L(x). Therefore:
o(z) = xf'(x) N rar® 'L(x)

f(z) z*L(x)

vf"(z) xa(a—1)z°2L(x)

B(x) = ) ~ 0z 1L () =a—1.

:Oé,

Thus, the coefficient S(x) asymptotically converges to the negative of the labor share,
—(1 — ). It is then straightforward to see that:

i C07) @
z—oo az) «@
—1

lim 202 =1 _

w0 B(z)  a—1

Therefore, a(x) and f(x) are slowly varying functions. Finally, o(x) is a slowly varying
function, since the ratio of two slowly varying functions is also a slowly varying function
(Bingham et al., 1987).
|

Proof (Proposition 5, Inada Conditions). 1. lim, . f(z) = co. Since f(z) is regularly

varying with index o > 0, it satisfies:

f(@) ~ 2% L(z),

where L(x) is a slowly varying function. The term z® grows unbounded as z — oo because
a > 0. The function L(x) is positive and slowly varying, meaning it does not grow faster
than any power of In(x). Therefore, L(z) remains positive and grows sufficiently slowly

compared to x®. Thus:

f(z) >0 as x— oo.

2. lim,_,o f(x) = 0. Again, using the asymptotic representation:

f(@) ~ 2" L(x),

where @ > 0 and L(x) is slowly varying. As z — 0%, % — 0 because @ > 0. The term L(z)
remains positive and slowly varying. Specifically, L(x) grows very slowly (e.g., logarithmic

growth) or remains constant as z — 07. Since ® dominates L(z) near zero, we conclude:

f(x) >0 as x— 0",
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3. lim, o f'(z) = 0. From the derivative of f(z) = 2*L(z), we have:
d
f(z) = . (z°L(z)) = ax® ' L(x) + 2*L'(z).
x
The term az® 'L(z): Since a« —1 < 0 (because o > 0), 2! — 0 as x — oo. L(z) is
slowly varying and remains positive, so this term tends to 0. The term 2*L'(x): For a slowly
varying function L(z), L'(z) satisfies lim,_,o, #L/'(z) = 0. Therefore, z*L'(x) — 0 as x — oo.

Combining these results:

f'(z) =0 as z— .

4. lim,_,o f'(x) = co. Using the same derivative expression:
d
f(z) = . (x*L(z)) = az® ' L(x) + 2*L'(z).
T
The term az®'L(x): Since @« — 1 > 0 (because a > 0), x> ' — oo as x — 07, L(x) is
slowly varying and remains positive, so this term dominates and grows unbounded. The
term z®L'(x): For a slowly varying function L(z), L'(x) remains bounded as # — 0". Thus,

x*L'(z) — 0 as x — 0. Since the first term dominates and grows unbounded:

f(x) > 00 as x— 0",
|

Appendix C

Proof (Proposition 7). Let #(z) denote the elasticity of output per worker y(¢) with respect

to the ratio of effective capital to effective labor x(t), which is equal to the ratio of the capital

and labor shares:

0(z) = 1f‘<—§2@

This measure has proven very useful in empirical studies as well as in the proof of Uzawa’s

theorem (see Uzawa (1961) or Jones and Scrimgeour (2004) for example). We can show

that:
0(z) lo(x)—1
0(z) z ofx)
This linear differential equation can be solved from xq > 0 to x as follows:
/ T o(u) —1du
0(x) = 0(zp)e’ o o(u) u
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o(u)—1

Furthermore, note that 6(x) is a slowly varying function since lim, o = 0, according

to the necessary condition. We now establish the following equivalence:
@

lim a(z) =a € (0,1) & lim §(z) =6 := e R%.
T—00 T—00 11—«
Next, since 6 > 0, we have:
lim In(f(z)) =Inf € R,
T—>00
where we substitute 6(x) as computed above:
v —1d
lim Inf(xp) + lim ofu) = 1 du =Inf e R.
T—500 e—oo [, o(u)  wu
This directly leads to the desired result:

lim ofu) — Ldu =C,
T—00 z0 O'( u

u)
where C' :=In % € R (a finite real constant).
]

Proof (Proposition 8). Let us perform the following change of variables: u = €', so that

t = Inwu. This implies n(t) = U(Ue(te); and du = e'dt. Updating the bounds, when u = z,

t =Inxzg :=tyg, and when u = z, t = Inx. We have:
t

lim [ n(u)du = C.

t—o00 to

This equation converges if there exists a number 0 < N < 400 such that:

tim 2O
t—oo 1B
with 8 < —1.

Indeed, the condition on the function n(t) implies that for sufficiently large ¢, |n(t)| ~ Nt*,
where N is a finite constant. This means that 7(t) decays as a power of ¢t as t — 0.

Consequently, the integral becomes asymptotically equivalent to:

oo 0o $8+1 1 B+1
/ n(u)|du N/ Nuldu = lim _ (neo)™
to to t—00 ﬁ + 1 /8 + ]'

For this integral to converge, we must have t°*! — 0 as ¢ — oo, which holds if 8 < —1.

Thus, we have:

tim 2O

tsoo P

o(z)—1

o(z)

Substituting t = Inz, k = — 3, and n(t) = , we recover the stated condition.
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