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Abstract

The received characterizations of feasible interim allocations are mostly in the spirit

of Border (1991): Fix a family of sets, each containing some player-types, and test the

interim allocation under consideration against all these sets. In the published literature,

such Border-like characterizations are known to be valid only in the paramodularity

framework, which rules out combinatorial complexities such as matchings. This paper

presents a necessity and su�ciency test for Border-like characterizations with or with-

out paramodularity. It implies that the validity of the characterizations requires that

any interim allocation about to become infeasible be locally greedy: that its domain be

covered by a family of subsets within each of which the underlying ex post allocation

follows some greedy algorithm. I prove impossibility of Border-like characterizations

in the knapsack model of sharing economies and prove Border-like characterizations in

a matching model that allows each player to have arbitrary numbers of types, and in

a ranked-item auction model with a group-specific quota constraint.
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1 Introduction

Characterizing the set of feasible interim allocations has long been a di�cult and often

unavoidable problem in the literature of mechanism design. The problem is to find necessary

and su�cient conditions for an interim allocation to be the reduced form of some feasible ex

post allocation, the former being a function of only individual players’ types, while the latter

a function of the profile of types across all players. The problem is often unavoidable because

in models with multiple objects or nonlinear preferences, the interim allocation, rather than

its ex post allocation counterpart, is the choice variable that could be tractable to the

mechanism designer. The importance of this problem was first recognized by Maskin and

Riley [22] and Matthews [23] in their studies of risk-averse bidders and continues to current

research such as the recent studies of Gershkov et al. [10] on auctions with endogenous

valuations and Haghpanah et al. [13] on procurements from a group of heterogeneous sellers.

The literature has located specific conditions about the primitives that guarantee for

this problem a relatively tractable solution, in the form of Border [3] or its generalization

such as Che et al. [7]. Such Border-like solutions are relatively tractable because they require

only linear inequalities, and the smallest set thereof, to test against any interim allocation

under consideration. However, it is unknown whether such solutions are still valid outside

the su�cient conditions that the literature has located. This issue is particularly salient

because these conditions are mostly confined to a paramodularity framework, which restricts

the environment to either a single item for sale or multiple items that have no nontrivial

combinatorial complication. Matching and assignments are outside the framework. The lack

of Border-like characterizations in combinatorially nontrivial multiple-object models causes

a bottleneck in research so that only single-agent cases are being considered in such models

(cf. Daskalakis et al. [9]). Gopalan et al. [12] cast a doubt on the possibility of Border-like

solutions outside the paramodularity framework, claiming that such solutions exist only if a

particular computational problem that is “widely believed” to be hard turns out to be easy.

This paper addresses the issue with a necessary and su�cient condition for Border-like

solutions to hold with or without the paramodularity assumption (Theorem 1). The condi-

tion brings about both negative and positive news. On the negative side, I prove impossibility

of Border-like solutions in the knapsack model, where a resource can be shared among mul-

tiple players provided that there is room for them to fit in subject to the integer constraint
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that each player is either all in or all out (Proposition 2). On the positive side, I prove that

the Border-like solution obtains in ranked-item matchings despite a group-specific quota

constraint (Proposition 3), and in a matching model between N objects and two bidders

such that each bidder can have any finite number of types, each possibly multidimensional

(Proposition 4). Proposition 2 is the first impossibility observation for a general model in the

literature.1 Proposition 3 di↵ers from the results in the matching literature recently unified

by the majorization method of Kleiner et al. [18] in allowing for asymmetric mechanisms,

driven by the group-specific quota, whereas the majorization method is based on symmet-

ric models. Proposition 4 is the first Border-like characterization outside the mainstream,

paramodularity framework without restricting each player to at most two types.

These findings are relevant to several active research areas. Knapsack problems are

deemed applicable to numerous industrial sectors including transportation, logistics, telecom-

munication, etc. (Fifi and M’Hallah’s [16]). Proposition 2’s impossibility observation about

exact characterizations makes it compelling to adopt approximation methods, such as what

is recently proposed by Akbarpour et al. [1], for the mechanism design of knapsack problems.

The group-specific quota constraint in Proposition 3 requires that at least a certain number

of the top-quality items be allocated to the members of a certain group. Incorporating such

group-specific preferential treatments in a matching model, the proposition provides a build-

ing block for future mechanism-design studies on the group-based policies in labor markets

and college admissions. Much of the matching literature beyond the aforementioned ranked-

item model is confined to the approach of finding a mechanism satisfying some properties

that are assumed good rather than designing an optimal mechanism subject to constraints.

According to Budish [5], part of the reason for this restriction is the lack of tools to charac-

terize the constraints in matching problems. Proposition 4 is a step toward the direction of

bringing the mechanism design approach into the matching literature.

In addition to the above implications, Theorem 1 also uncovers a deep connection

between Border-like solutions and the greedy algorithm in combinatorial optimization. A

well-known economic example of greedy algorithms is Myerson’s [25] optimal auction: Score

every bidder-type by its virtual utility; for every profile of realized types across bidders, rank

the bidders by their scores that the bidders with their associated realized types have; then

1Che et al. [7] have noted impossibility of Border-like characterizations for three examples based on

unpublished computations.
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one-by-one in descending order of the rank, allocate to each bidder the maximum expected

quantity down to either the last bit of resource or the last bidder who has a positive score.

Border [3] uses a similar greedy algorithm (with di↵erent scoring rules) to obtain his solution.

While the role of greedy algorithms is not explicit in Che et al. [7], they rely on Hassin’s [15]

theorem of network flows based on the paramodularity assumption, which Hassin relates

to greedy algorithms explicitly. Thus, there might be a sense that Border-like solutions

are somehow related to greedy algorithms, but the logical connection is unclear. Moreover,

outside the paramodularity framework, it is known that greedy solutions need not be optimal,

and hence the role that greedy algorithms could play in Border-like solutions is unknown.

Theorem 1 fills the void with a “local greediness” implication. The validity of Border-

like solutions requires that every boundary point of the set of feasible interim allocations

be locally greedy: that the domain of all interim allocations be covered by a family of

restricted domains within each of which the underlying ex post allocation for the boundary

point acts like a greedy solution with respect to some ranking among the elements within

(Proposition 1). The logical connection between paramodularity and Border-like solutions is

that paramodularity guarantees the existence of a total ranking on the domain of all interim

allocations that validates a single greedy algorithm globally. Without paramodularity, such

a total ranking need not exist, yet there is a family of partial orderings each of which

rationalizes the boundary point as a greedy solution locally if Border-like solutions are valid.

In addition to contributing an economic insight to a mostly mathematical topic, the local

greediness implication is instrumental in the search for the construction that validates the

Border-like solutions in the aforementioned applications.

The literature of characterizing feasible interim allocations is initiated by Border [3]

for a single-unit symmetric auction model, significantly extended by Border [4], Manelli and

Vincent [21], Mierendor↵ [24], Goeree and Kushnir [11],2 and further generalized to multiu-

nit models by Che et al. [7] and Cai et al. [6]. These works except Cai et al. [6] are all within

the paramodularity framework mentioned before. As pointed out by Che et al. [7, Sup-

plemental Appendix E.1], the (non-Border-like) characterization provided by Cai et al. [6],

though without the paramodularity assumption, requires a continuum of constraints (despite

finite type space) to test an interim allocation. A recent discovery in the literature is the

equivalence between Border-like solutions and a majorization condition within a framework

2Goeree and Kushnir also consider social choice models.
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that assumes paramodularity and restricts attention to symmetric monotone mechanisms,

such as Hart and Reny [14], Kleiner et al. [18] and Kolesnikov et al. [19]. Di↵erent from

the literature, Vohra et al. [28] provide a non-Border-like characterization for a Bayesian

persuasion problem through a direct meticulous calculation.

Contemporarily, Lang and Yang [20] provide a Border-like characterization in a total

unimodularity model, which is outside the paramodularity framework and applies generally

to matching models, though it is unknown whether the model applies to cases where a

player has more than two types. My Proposition 4 complements their work with a Border-

like characterization in a specific matching model that allows each player to have any number

of types. Furthermore, I show that Theorem 1 leads to a Border-like characterization in a

“decomposability” model that theirs belongs to (Proposition 5).

Recently, Valenzuela-Stookey [27] proposes a novel approach to approximate the set

of feasible interim allocations with a superset and a subset related to greedy solutions. My

impossibility Proposition 2 supports his approach by showing that there is a model where

exact characterizations are impossible. The local greediness implication of my main result

also complements the overall relevance of greedy algorithms.

The next section defines the primitives and motivates the Border-like characterization

for the general audience. Section 3 presents the necessary and su�cient condition for the

validity of the Border-like characterization and the local greediness implication of the nec-

essary condition. Section 4 presents the three applications described above. Appendix A

contains an application to a total unimodularity model and the extension of part of the paper

to infinite or continuum type spaces. Appendix B contains all the proofs.

2 The Characterization Problem

2.1 The Primitives

Let I be the set of players, and J the set of objects, both assumed finite. For any i 2 I,

let Ti be the set of the types of player i. Let T :=
Q

i2I Ti, and write its generic element in

the form of t := (ti)i2I , briefly called type profile, representing the profile of realized types

across all players, ti being the one for player i. Let µ be the probability measure on T that

has T as the support, and let µ(t) := µ({t}) for any singleton {t}. For each i 2 I, let µi
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be the marginal measure of µ onto Ti; let T�i :=
Q

k2I\{i} Tk and let µ�i(·|ti) denote the

conditional measure on T�i according to µ conditional on ti. Assume that T is a finite set.3

Let R denote either the set R of real numbers or a discrete subset of R (e.g., Z of

integers), and let R+ be the set of nonnegative elements of R. Let X ✓ RI be the set of

allocation outcomes that are feasible.4 An element of X is in the form of x := ((xj

i
)i2I)j2J

such that xj

i
is the quantity of object j allocated to player i. (Thus, quantities are divisible

if R = R, and indivisible if R is discrete.) Let cv(X) denote the convex hull of X. Assume

that X is nonempty and compact in RI⇥J .

As in any standard mechanism design model, by the revelation principle the designer

can restrict attention to direct revelation mechanisms, the chief component of which are

ex post allocations. An ex post allocation is a profile ((qj
i
)i2I)j2J of functions q

j

i
: T ! R

(8(i, j) 2 I⇥J) such that ((qj
i
(t))i2I)j2J 2 cv(X) for any t 2 T . Thus, an ex post allocation

can randomize on the feasible allocation outcomes, and its range can be a non-discrete subset

of RI⇥J even when X ✓ ZI⇥J .

Note that an ex post allocation is a function of the profile of types across all players,

while an individual player knows only his own type during the interim stage where he makes

decisions. From the perspective of player i of type ti, the ex post allocation q reduces to a

profile of interim probabilities

Q
j

i
(ti) =

X

t�i2T�i

q
j

i
(ti, t�i)µ�i(t�i|ti) (1)

across objects j 2 J . In general, an interim allocation is any profile Q := ((Qj

i
)i2I)j2J of

functions Qj

i
: Ti ! R (8(i, j) 2 I ⇥ J).

Since (Qj

i
)j2J is the chief instrument to incentivize player i, designing a mechanism

often amounts to designing an interim allocation. For an interim allocation to be a feasi-

ble choice variable, it needs to satisfy (1) always. In general, an interim allocation Q :=

((Qj

i
)i2I)j2J is said to be feasible,5 or the reduced form of some ex post allocation q :=

((qj
i
)i2I)j2J , if and only if Eq. (1) holds for all (i, j) 2 I ⇥ J and all ti 2 Ti (q referred to as

the underlying ex post allocation for Q). Let Q denote the set of feasible interim allocations.

3Appendix A.2 extends some results in this paper to infinite or continuum type spaces.
4Much of the paper can be extended trivially to the case where the set X depends on the type profile t.
5Often called “implementable” instead of “feasible” in the literature.
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2.2 Test Sets

Characterizing feasible interim allocations is to provide a necessity and su�ciency test for

((Qj

i
)i2I)j2J 2 Q by some condition about the functions Qj

i
. Since Q

j

i
is a function defined

only on Ti, any such a condition should be about the behavior of Qj

i
on various subsets of Ti,

with (i, j) ranging in I ⇥ J . That is, the test should be a condition of ((Qj

i
)i2I)j2J with

respect to various profiles ((Sj

i
)i2I)j2J of sets across player-object pairs such that S

j

i
✓ Ti

for every (i, j) 2 I ⇥ J .

It is often convenient to “unpack” the sets Sj

i
in any such a profile ((Sj

i
)i2I)j2J and put

the elements into the same “bag.” That is, for every such a profile ((Sj

i
)i2I)j2J , let

S :=
�
(j, i, ti) | (i, j) 2 I ⇥ J ; ti 2 S

j

i

 
. (2)

The intuition of this unpacking operation is illustrated below for a case with two players

(I = {1, 2}) and two objects (J = {a, b}):

S
a

1 = {t1, t01} S
b

1 = {t1, t001, t0001 } S
a

2 = {t2, t02} S
b

2 = ?
# # # #

{(a, 1, t1), (a, 1, t01)} {(b, 1, t1), (b, 1, t001), (b, 1, t0001 )} {(a, 2, t2), (a, 2, t02)} ?
#

S = {(a, 1, t1), (a, 1, t01), (b, 1, t1), (b, 1, t001), (b, 1, t0001 ), (a, 2, t2), (a, 2, t02)}.

Obviously the unpacking operation is reversible, so that any set S containing some object-

player-type triples corresponds to a unique profile ((Sj

i
)i2I)j2J . Thus, I will treat the profile

((Sj

i
)i2I)j2J and the mixed bag S interchangeably and will refer to both as a test set.

Note that any interim allocation ((Qj

i
)i2I)j2J is just a function of object-player-type

triples, with (j, i, ti) 7! Q
j

i
(ti) for all (i, j) 2 I ⇥ J and all ti 2 Ti. Thus,

Z :=
[

(i,j)2I⇥J

({(j, i)}⇥ Ti)

is the domain of interim allocations. A test set is simply a subset of the domain Z .

2.3 Heuristic Derivation of Border-Like Characterizations

How should the feasibility condition for an interim allocation ((Qj

i
)i2I)j2J look like with

respect to a test set S? Let us start with the simplest case where S is singleton, say
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S = {(a, 1, ⌧1)} for some object a, player 1 and his type ⌧1. Suppose that ((Q
j

i
)i2I)j2J is the

reduced form of some ex post allocation ((qj
i
)i2I)j2J . The allocation outcome ((qj

i
(t)i2I)j2J is

a random vector determined by the stochastic type profile t := (ti)i2I . From the perspective

of (a, 1, ⌧1), namely, the pairing of object a with player 1 of type ⌧1, the random vector

registers a projection q
a

1(⌧1, t�1) if the realized type profile (ti)i2I happens to have t1 = ⌧1,

and it registers nothing if t1 6= ⌧1. When the type profile t ranges randomly in T , the

projection (or lack thereof) that ((qj
i
((ti)i2I))i2I)j2J registers in the dimension of (a, 1, ⌧1) is

equal to Q
a

1(⌧1) in expectation due to (1). Meanwhile, since the random vector is bounded

within the convex hull cv(X) of the setX of feasible allocation outcomes, all these projections

in the dimension of (a, 1, ⌧1) are bounded between minx2X x
a

1 and maxx2X x
a

1. Since the

random vector registers a projection on (a, 1, ⌧1) i↵ t1 = ⌧1, it follows that

X

t2T

✓
min
x2X

x
a

1

◆
�{⌧1}(t1)µ(t)  Q

a

1(⌧1) 
X

t2T

✓
max
x2X

x
a

1

◆
�{⌧1}(t1)µ(t),

where �A denotes the characteristic function of set A.

Now consider the case where S has two elements, say S = {(a, 1, ⌧1), (b, 2, ⌧2)}. As

in the singleton case, we are to collect the projections that the random allocation outcome

((qj
i
((ti)i2I))i2I)j2J registers on (a, 1, ⌧1) or (b, 2, ⌧2). If we add all such projections up and

divide the sum by the total number of all instances of the type profile, then in average we

should get Q
a

1(⌧1) + Q
b

2(⌧2). Meanwhile, at every instance of the type profile (ti)i2I , the

random vector ((qj
i
((ti)i2I))i2I)j2J registers either (i) a single projection q

a

1(⌧1, t�1) when

t1 = ⌧1 and t2 6= ⌧2, or (ii) a single projection q
b

2(⌧2, t�2) when t1 6= ⌧1 and t2 = ⌧2, or (iii)

two projections simultaneously, qa1(⌧1, t�1) + q
b

2(⌧2, t�2), when t1 = ⌧1 and t2 = ⌧2, else (iv)

makes no projection at all. Since the random vector is bounded within cv(X), the projection

in Case (i), as in the previous singleton S case, is bounded within [minx2X x
a

1,maxx2X x
a

1].

Similarly, the projection in Case (ii) is in [minx2X x
b

2,maxx2X x
b

2]. In Case (iii), we get

the sum of the two projections that register simultaneously, and so analogously the sum

q
a

1(⌧1, t�1)+ q
b

2(⌧2, t�2) is within [minx2X(xa

1+x
b

2),maxx2X(xa

1+x
b

2)]. Consequently, Q
a

1(⌧1)+

Q
b

2(⌧2) is bounded between the expected values of these upper and lower bounds.

It would be cumbersome to write down the expected values of the upper and lower

bounds explicitly, which would require collecting all the instances of the cases listed above,

each corresponding to a particular expression of the upper or lower bound. For succinct

expressions of the expected values, I adopt a notation from Che et al [7]: For any test set
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S (a, 1, t1) (a, 1, t01) (b, 1, t1) (b, 1, t001) (b, 1, t0001 ) (a, 2, t2) (a, 2, t02)

t1 (a, 1, t1) (b, 1, t1)

t2 (a, 2, t2)

(a, 1) (b, 1) (a, 2)

I(S, (t1, t2)) (1, a) (1, b) (2, a)

Table 1: type profile (t1, t2) selects those (j, i, ⌧i) 2 S for which ⌧i = ti

S ✓ Z and any type profile t := (ti)i2I 2 T , define

I(S, t) := {(i, j) 2 I ⇥ J | (j, i, ti) 2 S} . (3)

The elements of I(S, t) correspond to those in S that simultaneously receive projections from

the random allocation outcome ((qj
i
(t))i2I)j2J at one single instance where the type profile

is t. For example, in the two-element S described previously, I(S, t) is {(1, a)} in Case (i),

{(2, b)} in Case (ii), {(1, a), (2, b)} in Case (iii), and empty in Case (iv). Put di↵erently, a

type profile t filters out the elements (j, i, t0
i
) of S whose types t

0
i
do not match t, thereby

producing the set I(S, t) of relevant player-object pairs under t. Table 1 illustrates that with

a two-player two-object example.

From the standpoint of I(S, t), the upper and lower bounds motivated previously are

defined for any test set S ✓ Z and any type profile t 2 T :

f(S, t) := max
x2X

X

(i,j)2I(S,t)

x
j

i
(4)

g(S, t) := min
x2X

X

(i,j)2I(S,t)

x
j

i
. (5)

For example, in the two-element case of S = {(a, 1, ⌧1), (b, 2, ⌧2)}, the lower bound in all cases

can all be expressed as g(S, t), and the upper bound in all cases, f(S, t), with t ranging in T

randomly. Then, as motivated previously, it is conceivable that a feasible interim allocation

((Qj

i
)i2I)j2J should satisfy

X

t2T

g(S, t)µ(t) 
X

(j,i,ti)2S

Q
j

i
(ti)µi(ti) 

X

t2T

f(S, t)µ(t) (6)

for every test set S ✓ Z .
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{z}

{z0}

{z, z0}

Figure 1: The projections with respect to test sets {z}, {z0} and {z, z0}

The intuition is roughly conveyed by Figure 1, where the beings confined to the flatland

see the shaded region as merely various segments from various perspectives. Their perspec-

tives correspond to our test sets. And their attempt to characterize the shaded region is

to try defining the region by the red dots that define the various segments. Each segment

corresponds to an instance of (6), based on a particular test set S, with the lower and upper

bounds of the inequality being the two endpoints of the segment.

The intuition explained above is substantially distinct from a perhaps better-known

idea of support functions, which is to characterize the shaded region by its supporting hy-

perplanes such as the blue solid line in Figure 1. The problem of the latter idea, albeit

natural, is that the family of supporting hyperplanes is often too large, and almost all its

members may turn out to be redundant. For example, the said blue line is a convex combi-

nation between, and hence can be replaced by, the two edges of the region that the blue line

intersects. According to the support function idea, every instance of (6) would be based on

a linear combination of test sets rather than a single test set. Even if we restrict attention to

a fixed collection of test sets, there is still a continuum of linear combinations among them.

In fact, in almost every endeavor to characterize feasible interim allocations, the support

function idea is the starting point, while the characterization by (6) is the final outcome,

which corresponds to only a basis of the supporting hyperplanes.

We have thus come across a necessary condition for any interim allocation ((Qj

i
)i2I)j2J
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to be feasible: that Ineq. (6) holds for all test sets S ✓ Z . This condition specializes to

Border’s [3] condition in the single-unit symmetric model, where J = {1}, Ti = T1, µi = µ1

and Q
j

i
= Q

1
1 for all i 2 I, and X = {(xi)i2I 2 [0, 1]I |

P
i2I xi  1} for all t 2 T : Apply (4)

and (5) to this X to see that for any type profile t 2 T and any test set S ✓ Z , or

equivalently (Si)i2I with Si ✓ Ti (8i), that g(S, t) = 0 and

f(S, t) = �I(S,t) 6=? = 1�
Y

i2I

�¬Si(ti).

Thus the right-hand side of (6) is equal to 1�
Q

i2I (1� µi(Si)), and the left-hand side, zero.

This coupled with the symmetry assumption reduces (6) to the well-known condition

0 
X

t12T1

Q
1
1(t1)�S1(t1)µ1(t1) 

1

|I|

⇣
1� (1� µ1(S1))

|I|
⌘

for all S1 ✓ T1 (|A| denotes the cardinality of set A). This condition in turn is known to be

equivalent to Kleiner et al.’s [18] majorization condition in the symmetric unidimensional-

type model (Ti = T1 ✓ R and Q
j

i
= Q

j

1 is monotone for all (i, j) 2 I⇥J). Condition (6) also

specializes to Che et al.’s [7] condition in the multiunit homogeneous object model (J = {1}).
Let us denote the set of interim allocations ((Qj

i
)i2I)j2J that satisfy (6) for all S 2 Z

by QB, B for Border. As is apparent from the above, it is easy to prove that the set Q of

feasible interim allocations is a subset of QB, namely, that satisfaction of (6) is necessary for

((Qj

i
)i2I)j2J 2 Q (Appendix B.1). The challenge is to figure out when Q ◆ QB is also true:

When is (6) also su�cient for ((Qj

i
)i2I)j2J 2 Q?

3 The Locally Greedy Characterization

The following theorem provides a necessity and su�ciency test for Q ◆ QB.

Theorem 1 The following three statements are equivalent:

a. Q ◆ QB.

b. For any w := (w(j, i, ti))(j,i,ti)2Z 2 RZ there exist a function (p+, p�) : 2Z ! R2
+ and

an ex post allocation ((q̄j
i
)i2I)j2J such that ((q̄j

i
(t))i2I)j2J is an optimum of

max
(xj

i )(i,j)2I⇥J2cv(X)

X

(i,j)2I⇥J

x
j

i
w(j, i, ti) (7)

11



for all t := (ti)i2I 2 T ,

w(z) =
X

S✓Z

p+(S)�S(z)�
X

S✓Z

p�(S)�S(z) (8)

for all z 2 Z , and

p+(S) > 0 ) 8t 2 T

h
f(S, t) =

P
(i,j)2I⇥J

q̄
j

i
(t)�S(j, i, ti)

i

p�(S) > 0 ) 8t 2 T

h
g(S, t) =

P
(i,j)2I⇥J

q̄
j

i
(t)�S(j, i, ti)

i (9)

for all S ✓ Z .

c. For any w 2 RZ and any q̄ such that q̄(t) solves (7) for all t 2 T there exists (p+, p�) :

2Z ! R2
+ that satisfies (8) for all z 2 Z and (9) for all S ✓ Z .

To understand what the theorem says, let us recall from Section 2.3 that characterizing

the set Q of feasible interim allocations amounts to finding a family of unidimensional

subspaces—each corresponding to a test set—and then characterizing the set Q by the

endpoints of its projections onto these subspaces. As illustrated by the Figure 1 there, the

task is analogous to a flatlander’s attempt to characterize a higher-dimension shaded region

from their unidimensional perspectives: to try defining the region by the small red dots that

define the various segments, each being a projection of the shaded region.

If the task is achievable, it must be true that for any boundary point of the shaded

region such as the big red dot in Figure 2, its projections onto some unidimensional sub-

spaces are also boundary points of the corresponding segments, such as the small red dots in

Figure 2. That is, the binding constraints at any original boundary point (the two thick blue

lines in Figure 2) can be replaced by the binding constraints conditional on some subspaces

(the small red dots in Figure 2).

That is the first layer of meaning in the theorem: For any interim allocation on the

boundary of the feasibility set Q, there is a test set S with respect to which the shadow

price for either the ceiling or the floor in (6) is positive, with the shadow price for the

ceiling constraint denoted by p+(S), and that for the floor constraint, p�(S). These binding

constraints correspond to the small red dots in Figure 2. The vector w in the theorem is

the gradient of a supporting hyperplane for the feasibility set at the said boundary interim

allocation. Eq. (8) is the relation between the gradient w and the shadow prices.

However, there is a second, deeper layer of meaning in the theorem. From Figure 2 it

might appear as though the existence of the small red dots were guaranteed. What the figure

12



{z0}

{z, z0}

Figure 2: An extreme point of the shaded region and its projections

Q
j

i
(ti)

t�i

q̄(ti, t0�i
)

q̄(ti, t00�i
)

X

X

Figure 3: The projection fails to preserve the extremity of ((q̄j
i
)i2I)j2J

misses to convey is the fact that an ex post allocation is stochastic, varying with the random

type profile. That is, the location of the underlying big red dot is stochastic, as illustrated

in the next Figure 3 with two type profiles, (ti, t0�i
) and (ti, t00�i

). Then the expected value

of its location projected onto a subspace may be an interior point such as the blue dot in

Figure 3, rather than a boundary point of the projection such as the small red dot there.

That is, this subspace fails to provide a binding constraint when a constraint in the higher

13



dimension is binding. Thus, to guarantee that the projection of the big red dot is a small

red dot, we need to choose a certain kind of subspaces onto which the projection preserves

the extremity of the big red dot. For a subspace to qualify this, the location of the big red

dot needs to either always maximize, or always minimize, the quantity in the dimension that

represents the subspace. Then the expected value of the projection of the big red dot onto

that dimension is a boundary point of the feasible set within the subspace.

That is essentially what condition (9) in the theorem is saying. For a test set S to

support the shadow price of the ceiling constraint in (6), the underlying ex post allocation q̄

for any boundary point of Q needs to maximize the total quantity that can be feasibly

assigned to the elements of S for every type profile that is consistent with some element of S

(e.g., every type profile (ti, t�i) for all t�i 2 T�i if S = {(j, i, ti)}). That is, p+(S) > 0 only

if S is upward binding for q̄: f(S, t) =
P

(i,j)2I⇥J
q̄
j

i
(t)�S(j, i, ti) for all type profiles t 2 T .

Symmetrically, for S to support the shadow price of the floor constraint in (6), q̄ needs to

minimize the total quantity that can be feasibly assigned to the elements of S for every type

profile that is consistent with some member of S. That is, p�(S) > 0 only if the test set S

is downward binding for q̄: g(S, t) =
P

(i,j)2I⇥J
q̄
j

i
(t)�S(j, i, ti) for all type profiles t 2 T .

Thus, the theorem says that the characterization (6) of feasible interim allocations

is valid if and only if for any interim allocation that is about to violate some feasibility

constraint, the gradient w of its supporting hyperplane can be decomposed into a set of

shadow prices p+(S) and p�(S) of (6) conditional on some test sets S each of which is either

upward or downward binding for the underlying ex post allocation.

3.1 Greedy Solutions: The Easy Case

For any nonempty test set S ✓ Z and any preference relation ⌫ on S, arrange all the

upper contour sets wrt (with respect to) ⌫ within S into a nested sequence (Uk)m
k=1 for some

natural number m: Uk = {z 2 S | z ⌫ z
0} for some z

0 2 S and

? =: U0 ( U
1 ( U

2 ( · · · ( U
m := S. (10)

Symmetrically, arrange all the lower contour sets wrt ⌫ within S into a nested sequence

(Lk)m
k=1 for some m so that Lk = {z 2 S | z0 ⌫ z} for some z

0 2 S, and

? =: L0 ( L
1 ( L

2 ( · · · ( L
m := S. (11)
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For any type profile t 2 T , a vector y := (yz)z2Z 2 RZ is said to be a greedy solution

wrt ⌫ within S given t i↵

X

z2Un\Un�1

yz = f(Un
, t)� f(Un�1

, t) (12)

for all n 2 {1, . . . ,m}, and said to be a generous solution wrt ⌫ within S given t i↵

X

z2Ln\Ln�1

yz = g(Ln
, t)� g(Ln�1

, t) (13)

for all n 2 {1, . . . ,m}.
I formulate the above definitions based on the fact that (12) is satisfied by any solution

produced by the greedy algorithm applied to the problem

max
(yz)z2S2RS

X

z2S

yz↵(z) s.t. 8S 0 ✓ S :
X

z2S0

yz  f(S 0
, t)

for any nonnegative utility function ↵ : S ! R+ of ⌫, and (12) defines the unique greedy

solution if ⌫ is strict (no indi↵erence between distinct members) on S, though whether the

solution is optimal (or even feasible) for the above problem depends on the property of f

(as well as the property of the choice set if it is only a proper subset of RS). By the same

token as well as the same caveat, (13) is satisfied by any solution produced by the generous

algorithm applied to

max
(yz)z2S2RS

X

z2S

yz�(z) s.t. 8S 0 ✓ S :
X

z2S0

yz � g(S 0
, t)

for any nonpositive utility function � : S ! �R+ of ⌫, and (13) defines the unique generous

solution if ⌫ is strict on S.6

The (Border-like) characterization Q ◆ QB can be proved easily if the underlying ex

post allocation for every boundary point of Q is a greedy or generous solution on the entire

domain Z of interim allocations. More precisely, for any ex post allocation q := ((qj
i
)i2I)j2J ,

any type profile t := (ti)i2I 2 T and any (j, k, t0
k
) 2 Z , define

q(j, k, t0
k
| t) :=

8
<

:
q
j

k
(tk, t�k) if t0

k
= tk

0 else.
(14)

6Schrijver [26, Ch. 40] has extensive coverage of greedy algorithms. The hierarchical allocation familiar

in the optimal auction literature is a special case thereof, with the said preference relation being the ranking

of virtual utilities. See Hassin [15] for the term generous solutions, the mirror image of greedy solutions.
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Then for any type profile t 2 T an ex post allocation q induces an element q(·|t) of RZ .

Through this definition, the ex post allocation q̄ that solves (7) in Theorem 1 becomes a

stochastic choice among object-player-type triples (elements of Z ), stochastic in the sense

that the choice may depend on the random type profile t. In the special case where this

dependency is null, the choice q̄(·|t) coincides with the solution produced by the greedy-

generous algorithm that follows a ranking on Z independent of t. The next lemma highlights

this easy case.

Lemma 1 Q ◆ QB if for any w 2 RZ there exists an ex post allocation q̄ such that q̄(t)

solves (7) for all t 2 T and, with ⌫ being the preference relation on Z represented by

z 7! w(z), q̄(·|t) is a greedy solution wrt ⌫ within U := {z 2 Z | w(z) � 0}, and a generous

solution wrt ⌫ within Z \ U , for each type profile t 2 T .

The hypothesis in this lemma implies existence of the shadow price function (p+, p�)

that Theorem 1 requires for Q ◆ QB. First, every upper contour set in U is upward binding

for q̄. That is because, according to the greedy algorithm, q̄ allocates to the top indi↵erence

class U1 (= U
1\U0) in U the largest feasible quantity f(U1

, t) (= f(U1
, t)�f(U0

, t) as U0 =

?) and then allocates to the second highest indi↵erence class U
2 \ U1 the largest quantity

f(U2
, t) � f(U1

, t) among what remains, and so forth. Within any upper contour set U
m,

these quantities add up to be equal to the maximum quantity f(Um
, t). By the same token,

every lower contour set in Z \U is downward binding for q̄. Second, plug the upper contour

sets in U into (8) for p+(S), and the lower ones in Z \U into (8) for p�(S). The equation (8)

for each z 2 Z is either w(z) =
P

k
p+(Uk)�Uk(z) or w(z) = �

P
k
p�(Lk)�Lk(z). Since

these contour sets are nested, a nonnegative solution for (p+, p�) can be easily obtained.

The major result in the mainstream framework becomes a corollary of Lemma 1. The

framework is based on an assumption that the set X of feasible allocation outcomes is

determined by a paramodular pair of ceiling and floor functions.

Recall that R denotes either R or a discrete subset of R. A subset Y of RI⇥J is said

to be determined by a pair (', �) of functions ' : F ! R+ and � : G ! R+ (F ,G ✓ 2I⇥J)

i↵ Y is equal to the set of ((yj
i
)i2I)j2J 2 RI⇥J (i.e., any vector in the euclidean space RI⇥J)

such that
P

(i,j)2E y
j

i
 '(E) for all E 2 F , and

P
(i,j)2E y

j

i
� �(E) for all E 2 G .

A pair (', �) of nonnegative functions defined on 2I⇥J is said to be paramodular i↵

16



(i) ' and �� are each submodular on 2I⇥J , namely,

'(E)� '(E \ E
0) � '(E [ E

0)� '(E 0)

�(E)� �(E \ E
0)  �(E [ E

0)� �(E 0)

for all E,E
0 ✓ I ⇥ J ; and (ii) (', �) is compliant on 2I⇥J , namely, for all E,E

0 ✓ I ⇥ J ,

'(E 0)� '(E 0 \ E) � �(E)� �(E \ E 0).

Paramodularity regulates the total quantities that can be allocated to various sets of

slots in a way that causes no complication from various combinations among the slots. Under

the assumption, when we include a new slot to any set of slots, or remove an element from

the set, the only binding feasibility constraint is the ceiling or floor of the marginal quantity

of this element with respect to the set. That validates the greedy-generous algorithm because

the algorithm is precisely to fill each positively valued slot up to its ceiling marginal quantity

with respect to the set of higher-valued slots, and unload each negatively valued slot down

to its floor marginal quantity with respect to the set of lower-valued slots. Consequently,

for any w 2 RZ , the greedy-generous algorithm that follows the ordinal ranking of the w-

values maximizes the total w-value among all feasible allocation outcomes, namely, solves

problem (7) for every type profile t 2 T . Then the Border-like characterization in the

mainstream framework follows from Lemma 1.7

Corollary 1 If the set X of feasible allocation outcomes is determined by some paramodular

pair (', �) such that ', � : 2I⇥J ! R+, then Q ◆ QB.

In the assumption of this corollary, the part that requires X be determined by (', �),

albeit not explicit in the literature, is indispensable. Without it, the greedy algorithm need

not be optimal despite (', �) being paramodular. Section 4.1 has an example.

3.2 Local Greediness: The General Case

Without the pamodularity assumption, it is known that neither greedy nor generous solutions

are necessarily optimal solutions to their corresponding problems. For example, Table 2 lists

7Corollary 1 is a trivial extension of Che et al. [7, Theorem 3] by allowing for multiple heterogeneous

objects. The corollary can be further extended (trivially) to the case where X, as well as the pair (', �) that

determines X, depends on the type profile t.
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(1, t1) (2, t2)

a 1.05 1

b 0.8 0.7

c 0.5 0

Table 2: Suboptimality of the greedy solution

the values of w on a test set {(j, i, ti) | i = 1, 2; j 2 {a, b, c}} in a matching model between

three objects (a, b and c) and two players (1 and 2). The feasibility constraint in this model

is that matchings between players and objects be one-to-one. The greedy algorithm starts

with the triple (a, 1, t1) since its w-value 1.05 is the largest. Then it goes to the triple whose

w-value is the largest among the rest, which is (b, 1, t1) with w-value 0.8. But it is infeasible

to allocate any quantity to (b, 1, t1) because it demands object b for player 1 while player 1

has been matched with object a entirely at the first step. Thus the algorithm moves on

to (b, 2, t2), whose w-value 0.7 is the next largest, and raises its quantity up to the full,

feasible amount. The matching so produced is (a 7! 1, b 7! 2), with total w-value 1.75.

By contrast, the optimal matching is to assign object a to player 2 and object b to

player 1, producing a total w-value 1.8. The reason why the greedy algorithm fails is known

in combinatorial optimization: The set of feasible matchings is not a matroid, while the

validity of greedy algorithms relies on matroid structures.8 Put intuitively, among the three

triples (a, 1, t1), (a, 2, t2) and (b, 1, t1), once the matching (a 7! 1) is made then the other two

triples (a, 2, t2) and (b, 1, t1) become infeasible and so we can extract only one match from

the three. Whereas, if the matching (b 7! 1) is made first, one of the other triples, (a, 2, t2), is

still feasible, and so we can extract out of the three two matches, which combine to produce

a larger total value. In other words, the greedy algorithm misses some combinations.

Thus, the underlying ex post allocation q̄ for any boundary point of the feasible set Q

in Theorem 1 is not necessarily a greedy or generous solution on the domain Z of interim

allocations. However, according to our theorem, if the characterization (6) is valid then q̄

does have a greedy or generous property locally, restricted to su�ciently small subsets of Z :

The validity of the characterization implies that there are test sets that are upward (resp.

downward) binding for q̄, namely, always getting a maximal (resp. minimal) quantity from q̄

8See Schrijver [26, Vol. B] or Vohra [29] on matroid.
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regardless of the random type profile t. Thus, the revealed preference of q̄ should favor the

elements in an upward binding set against those outside if it has to choose between them.

Symmetrically, between elements inside a downward binding set and those outside, q̄ should

choose the latter over the former. While such revealed preferences of q̄ need not constitute a

single preference relation on the entire domain Z (otherwise we are back to the easy case),

among those elements of Z that are mutually exclusive (such as the (a, 1, t1) and (b, 1, t1)

in Table 2) there should be a consistent preference relation for q̄.

More precisely, for any nested sequence S := (Sk)m
k=1 of test sets (for somem = 1, 2, . . .)

? =: S0 ( S
1 ( S

2 ( · · · ( S
m =

m[

k=1

S
k =:

[
S, (15)

define a preference relation ⌫S on
S

S by its strict part �S and symmetric part ⇠S:

z �S z
0 ()

h
k < k

0
, z 2 S

k
, z

0 2 S
k
0 \ Sk

i

z ⇠S z
0 () 9k

⇥
z, z

0 2 S
k \ Sk�1

⇤
.

Thus, every S
k is an upper contour set wrt ⌫S within

S
S. Analogously, define a preference

relation DS on
S

S by the same symmetric part as the above ⇠S and a strict part BS opposite

to the above:

z BS z
0 () z

0 �S z.

Thus, every S
k is a lower contour set wrt DS within

S
S.

Lemma 2 For any ex post allocation q and any nested sequence S := (Sk)m
k=1 of test sets

(for some m = 1, 2, . . .) in the form of (15), Sk is upward (resp. downward) binding for q

for all k 2 {1, . . . ,m} if and only if q(·|t) is a greedy (resp. generous) solution wrt ⌫S (resp.

DS) within
S

S for every type profile t 2 T .

Thus, although paramodularity is unavailable to validate a single greedy-generous so-

lution on the entire Z , the ex post allocation q̄ that we need to verify the characterization

Q ◆ QB is nonetheless greedy or generous locally, though according to a ranking that may

be di↵erent from that of the w-values aimed by the boundary point. Every member of Z

with a nonzero w-value is contained in some su�ciently small subset
S
S of Z within which q̄

acts as if it were following a greedy or generous algorithm according to some ranking. Within

every such a subset, the upper or lower contour sets with respect to this ranking are binding
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test sets and hence are part of the support for the shadow price function. These upper or

lower contour sets, across the various restricted domains within each of which q̄ behaves

greedily or generously, constitute a covering of the entire domain Z of interim allocations

(except the elements that are assigned zero w-value). That is, the validity of the character-

ization requires that the domain Z of interim allocations be covered by a family of subsets

within each of which the boundary point is greedy or generous:9

Proposition 1 If Q ◆ QB then, for any w 2 RZ and any q̄ such that q̄(t) solves (7) for

all t 2 T , {z 2 Z | w(z) 6= 0} ✓
S

S2S+[S�
S for some subsets S+ and S� of 2Z such that

S+ =
[

k2K+

{Sn | n = 1, . . . ,mk}

S� =
[

k2K�

{Sn | n = 1, . . . ,mk}

for some index sets K+ and K� such that for every k 2 K+ (resp., every k 2 K�), mk 2
{1, 2, . . .}, (Sn)mk

n=1 is an increasing nested sequence of subsets of Z in the form of (15), and

q̄(·|t) is a greedy (resp., generous) solution wrt ⌫S (resp., DS) within
S
S.

3.3 How to Verify the Existence of the Shadow Prices

Part of the condition required in Theorem 1 to verify the characterization Q ◆ QB is that

the linear system (8) has a nonnegative solution for the shadow price function (p+, p�). In

simple cases, this can be done through directly solving the equation system. For general

cases, the following lemma provides a method based on the hyper-rectangle cover theory.

Let S+ be a collection of upward binding test sets, and S� a collection of downward

binding test sets. Let M+ be a |Z |-by-|S+| matrix whose rows are indexed by Z and

columns by S+, and whose entry at the intersection between row z and column S is equal

to �S(z) (8z 2 Z 8S 2 S+). Analogously, let M� be a |Z |-by-|S�| matrix whose rows are

9If the sets
S
S in the next Proposition 1 are all singleton, then its local greediness implication would have

no bite. But that is a nonissue, because
S
S by Lemma 2 is upward or downward binding for q̄ and one can

easily prove that if a singleton {(j, i, ti)} is upward binding then q̄ji (ti, t�i) = maxx2X xj
i for all type profiles

t�i 2 T�i across the other players, and if {(j, i, ti)} is downward binding then q̄ji (ti, t�i) = minx2X xj
i for all

t�i 2 T�i. This occurs only for those w 2 RZ given which the choice of q̄ is to either always favor the match

j 7! (i, ti) between object j and player i of type ti against all other matches, or always choose against the

match. Thus, since the w in the proposition is arbitrary, the
S

S cannot always be singleton.

20



indexed by Z and columns by S�, and whose entry at the intersection between row z and

column S is equal to ��S(z) (8z 2 Z 8S 2 S�). Thus [M+,M�] is a matrix with |Z | rows
and |S+|+ |S�| columns. Let p denote the column vector

p :=
⇥
(p+(S))S2S+ , (p�(S))S2S�

⇤|
,

and w the column vector

w := [(w(z))z2Z ]| .

Then (8) is equivalent to [M+,M�]p = w.

Lemma 3 For any w 2 RZ , and any S+,S� ✓ 2Z , let M+ and M� be the associated

matrices defined above; if no Gaussian elimination on the matrix [M+,M�,�w] can produce

a nonnegative row whose entry at the �w position is (strictly) positive, then there exist

p+ : S+ ! R+ and p� : S� ! R+ that satisfy (8).10

To understand the intuition behind Lemma 3, consider two instances of (8) for some

z
0
, z

00 2 Z such that w(z0) < w(z00). Subtract the instance of (8) when z = z
0 by the

instance of (8) when z = z
00, so the left-hand side is a negative number. Then a con-

tradiction occurs if the right-hand side is nonnegative, which occurs if �S(z0) � �S(z00)

whenever p+(S) > 0 (S 2 S+), and ��S(z0) � ��S(z00) whenever p�(S) > 0 (S 2 S�).

That is, the subtraction between the two instances of (8) produces a nonnegative row
⇥
(�S(z0)� �S(z00))S2S+ , (��S(z0) + �S(z00))S2S� ,�w(z0)� (�w(z00))

⇤
, with the last positive

component signifying the contradictorily negative left-hand side w(z0) � w(z00). This con-

tradictory case is ruled out by the hypothesis in the lemma, which also rules out any linear

combination of similar subtractions that produces a contradiction to (8).

4 Applications

This section features three applications of Theorem 1. One is the impossibility of the Border-

like characterization in the knapsack model, thanks to the necessity part of Theorem 1.

The second is a positive result in a ranked-item auction model with a group-specific quota

constraint. It still belongs to the easy case where a single greedy algorithm is valid globally,

10Extend (p+, p�) to 2Z trivially by setting p+(S) := 0 and p�(S0) := 0 for all S 62 S+ and S0 62 S�.
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although the paramodularity framework is not directly applicable. The third application is

a matching model that departs from the paramodularity framework completely, with greedy

algorithms valid only locally. The positive result has the novel feature that each player can

have any number of types despite the lack of paramodularity. Appendix A applies Theorem 1

to another model outside the paramodularity framework, thanks to a main implication of

total unimodularity. The appendix also extends part of the paper to infinite type spaces.

4.1 Impossibility in the Knapsack Model

Consider a knapsack model where a fixed capacity C > 0 is to be allocated among n players.

For each i 2 I := {1, . . . , n}, the capacity that player i occupies is equal to ci > 0 if he gets

to be included in the allocation. Players can share the total capacity c provided that there

is room. More precisely, this is a multiunit homogeneous-good model (J being singleton and

I ⇥ J identified with I) where the set X of feasible allocation outcomes is

X :=

(
((xi)i2I 2

Y

i2I

{0, ci}

�����
X

i2I

xi  C

)
.

Assume that there is a nonempty subset I⇤ of I \ {1} for which

c1 <

X

i2I⇤

ci  C �
X

i2I\(I⇤[{1})

ci < c1 + ck 8k 2 I⇤. (16)

This assumption implies that the model is outside the paramodularity framework. To

see that, consider the simplest case with only two players, I = {1, 2}, such that I⇤ = {2}.
Then (16) becomes c1 < c2  C < c1 + c2. With I⇤ singleton, one can show that the

ceiling and floor functions ' and �, defined by '(E) := maxx2X
P

i2E xi and �(E) :=

minx2X
P

i2E xi for all E ✓ I, constitute a paramodular pair.11 However, the pair does not

determine the set X of feasible allocation outcomes. For example, the allocation outcome

(x1, x2) = (c1, C � c1) satisfies all the bounds implied by (', �), yet it is infeasible because

0 < C � c1 < c2 and hence C � c1 62 {0, c2}. Thus, the requirement in Corollary 1 that X

be determined by the pair is not satisfied, and hence the corollary does not apply. In

fact, the greedy algorithm fails to be optimal despite the pair being paramodular: Since

c2 > c1, there exist w1 > w2 > 0 for which w1 is so close to w2 that the optimum for

11When the set I⇤ has at least two players, one can show that the ceiling function ' is not submodular,

and so the paramodularity assumption does not hold.
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max(x1,x2)2X(w1x1+w2x2) is (0, c2). Whereas, the greedy algorithm produces the suboptimal

(c1, 0) because w1 > w2.

Consequently, the main characterization result in the paramodularity framework is

inapplicable. Furthermore, the literature provides no method to check whether the charac-

terization Q ◆ QB is valid or not in knapsack models. With the necessity part of Theorem 1,

by contrast, we can prove impossibility of the characterization:

Proposition 2 In this knapsack model, if (16) holds and |T1| � 2, then Q 6◆ QB.

The impossibility result is driven by the integer constraint that one player needs a

smaller quantity than some other players do and yet if the former’s demand is satisfied then

there is not enough room left to fit in the latter. In the two-player case described above,

player 1 is the former, and player 2 the latter. Because c1 < c2, if the two players are equally

weighed from the planner’s viewpoint, player 2 gets the resource exclusively. If player 1 is

weighed su�ciently more than player 2, whereas, player 1 gets the resource, leaving some

capacity unused since c1 < C, and yet not enough to fit in player 2, since C < c1 + c2.

Thus, let ✓1 be a type of player 1, and ✓2 a type of player 2. Pick any w 2 RZ

for which w(1, ✓1) = w, w(2, ✓2) = w, w > w > 0, and w is so much larger than w that

wc1 > wc2. Consider any ex post allocation q̄ that maximizes the total w-value among all

feasible allocation outcomes for every type profile. Since w(2, ✓2) > 0, the player-type (2, ✓2)

should be contained in some upward binding set. Otherwise, p+(S) = 0 for any test set S

that contains (2, ✓2), so (8) is impossible for the instance of z = (2, ✓2), and then the Border-

like characterization cannot hold. Thus, suppose that (2, ✓2) is contained in some upward

binding set S and consider the type profile t := (✓1, ✓2). Then I(S, t) contains player 2 (by

the definition (3) of I(S, t)) and so the maximum total quantity f(S, t) that S can have is

equal to c2, as c1 < c2  C < c1+ c2. Meanwhile, under the type profile t = (✓1, ✓2), player 1

has the much larger weight w than player 2 does and hence q̄(t) allocates c1 to player 1 and

zero to player 2. It follows that
P

i2I(S,t) q̄i(t) < f(S, t), contradicting the premise that S is

upward binding. Consequently, the Border-like characterization cannot hold. The proof is

just slightly more complicated than the above to handle the general case where there may

be more than two players and multiple individuals may be in the role of player 2.
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4.2 Ranked-Item Matchings with Group-Specific Quotas

Consider a one-to-one matching model between n objects and n players such that all players

have the same ordinal ranking on the objects and there is a group-specific quota constraint.

The n objects are listed as 1, . . . , n. Object j has quality ⇢i 2 R+ so that

1 = ⇢1 � ⇢2 � · · · � ⇢n > 0.

The payo↵ for any player i 2 I of any type ti 2 Ti is equal to v(ti, a)
P

j2J x
j

i
⇢j � c(a) � pi

if xj

i
is the probability with which i gets object j, a is his value-enhancing action before

the allocation, v(ti, a) his payo↵ per unit of quality he receives, c(a) his cost from the

action a, and pi his money payment. As explained in Gershkov et al. [10], the constructs v

and c together imply that characterizing the feasible interim allocations is a necessary step

in designing the optimal mechanism in any of such endogenous valuation models. As the

former step is our focus, v and c will not concern us in the rest of this paper.

The set I of players is partitioned into two subsets of equal size, I1 and I2 with |I1| =
|I2| = n/2 (n an even number). There are parametric integers ⇠ and ⇣ for which

n

2
� ⇠ � ⇣

such that the objects are allocated to the players through one-to-one matchings subject

to a quota constraint that at least ⇣ items among the objects of the top-⇠ qualities (ob-

jects 1, . . . , ⇠) are allocated to the members of I1.

By the assumption of a player’s payo↵, we see that any allocation outcome ((xj

i
)i2I)nj=1 2�

{0, 1}I
�n

is equivalent to an allocation of qualities (yi)i2I 2 [0, 1]I such that yi = ⇢j if x
j

i
= 1,

namely, it allocates to each player i an amount ⇢j of quality. Thus, this model is equivalent

to a multiunit homogeneous-good model where the total amount of quality available is equal

to
P

j2J ⇢j, to which object j contributes an amount equal to ⇢j. That is, the set X of

feasible allocation outcomes is equal to the set of (yi)i2I 2 [0, 1]n for each of which there

exists a bijection i 7! j(i) such that yi = ⇢j(i) for each i 2 I and

|{i 2 I1 | j(i)  ⇠}| � ⇣. (17)

Correspondingly, an interim allocation is a profile (Qi)i2I of functions such that each Qi

maps i’s type ti to an interim expected quality Qi(ti) that player i receives.
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Due to the group-specific quota constraint (17), it is not suitable to assume that an

allocation is symmetric across all players regardless which group (I1 or I2) they belong to.

That means the majorization approach in Kleiner et al. [18] is not applicable.12

The paramodularity framework is not applicable either. That is because it assumes

that the set X is determined by the ceiling and floor functions that regulate only the total

quantities of various sets of players (cf. Che et al. [7], or Corollary 1 here). The problem

is that the same total quantity may correspond to multiple allocation outcomes, and so

the ceilings and floors of total quantities are insu�cient to determine whether an allocation

outcome is feasible or not.

For example, consider the case where n = 4, ⇢1 > ⇢2 > ⇢3 > ⇢4, ⇢1 + ⇢3 = 2⇢2, I1

contains player a but not player b, and ⇠ = ⇣ = 1. Thus, the quota constraint is that the

top-quality object 1 is set aside for I1-members. The feasible range of the total quantities is

[⇢4, ⇢1] for player a alone, [⇢4, ⇢2] for player b alone, and [⇢3 + ⇢4, ⇢1 + ⇢2] for both players a

and b: Since player a belongs to I1, she can get object 1 thereby receiving the highest

quality ⇢1; but since the object can be allocated to another member of I1, player a can

also be matched with the worst object thereby receiving quality ⇢4. The case for player b

is similar except that he does not belong to I1 and hence the best quality he can get is ⇢2

(object 2). Together, the two players can get the best object ⇢1 (as one of them is in I1) and

the second best ⇢2; alternatively they can get the worst and second worst objects (⇢4 + ⇢3).

Now consider an allocation outcome (yi)i2I 2 [0, 1]4 such that ya = yb = ⇢2. It satisfies all

the bounds on total quantities mentioned before, because ⇢1 > ⇢2 > ⇢4 and ⇢1 + ⇢3 = 2⇢2.

However, this (yi)i2I is infeasible because ya = yb whereas the qualities allocated to di↵erent

players have to be distinct because di↵erent objects have distinct qualities in this example.

Theorem 1, by contrast, does not rely on X being determined by any pair of func-

tions. Our analog to such a pair, (f(·, t), g(·, t)), is defined in (4) and (5) merely due to

the compactness of X and is not assumed to determine X. To establish the Border-like

characterization for this model, pick any w := (w(i, ti))(i,ti)2Z 2 RZ , where the domain Z

of interim allocations in this model consists of all player-types (i, ti) for which i 2 I and

12Gershkov et al. [10, Thrm. 2] analyze a possibly asymmetric mechanism of two symmetric players in

terms of majorization. But their majorization observations in that particular analysis is derived from a

Border-like characterization (Maskin and Riley [22]) that belongs to the paramodularity framework rather

than from the majorization characterization in Kleiner et al. [18].
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ti 2 Ti. For any type profile t := (ti)i2I 2 T , consider a solution to problem (7), namely,

max
(yi)i2I2cv(X)

X

i2I

w(i, ti)yi. (18)

The only complication in this otherwise simple linear programming is that a player i

with a high w-value w(i, ti) may get a low-quality object just because he does not belong

to I1 and the high-quality object is reserved for members of I1. Nonetheless, problem (18)

can be solved by a greedy algorithm that follows the ordinal ranking of the w-values except

when the quota constraint is binding. Moreover, regardless of the particular type profile t

that problem (18) takes parametrically, the order in which the greedy algorithm follows is

derived from a common ranking on the entire domain Z of interim allocations. Thus, this

model still belongs to the easy case, where Lemma 1 delivers the Border-like characterization:

Proposition 3 In the above-defined model of ranked items with quota constraints, Q ◆ QB.

The aforementioned greedy algorithm that solves problem (18) is:

1. Initiate ⇣ 0 := ⇣, j1 := 1, j2 := ⇠ + 1 and I
0 := I.

2. Do while I
0 6= ?:

a. Let i⇤ := min (argmaxi2I0 w(i, ti)).

b. If j1 + ⇣
0  ⇠, then let q̄i⇤(t) := ⇢j1 ; then update I 0 := I

0 \ {i⇤} and j1 := j1 + 1; if

i⇤ 2 I1 then update ⇣ 0 := max{0, ⇣ 0 � 1}; then go to Step 2a.

c. Else (j1 + ⇣
0
> ⇠):

i. If i⇤ 2 I1 and ⇣
0
> 0, then let q̄i⇤(t) := ⇢j1 ; then update I

0 := I
0 \ {i⇤},

j1 := j1 + 1 and ⇣ 0 := ⇣
0 � 1; then go to Step 2a.

ii. Else (i⇤ 62 I1 or ⇣ 0 = 0), let q̄i⇤(t) := ⇢j2 ; then update I
0 := I

0 \ {i⇤} and

j2 := j2 + 1; then go to Step 2a.

3. Output (q̄i(t))i2I .

In other words, the algorithm makes the assignment player-by-player in descending

order of their w-values under the type profile t. The variable j1 keeps track of the best

unassigned object in the top-⇠-quality category, and the variable ⇣ 0 keeps track of the unful-

filled quota, the di↵erence between the minimally required number of top-⇠ objects assigned
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to I1-members and the actual number of top-⇠ objects assigned to I1 so far. If there is

still an unassigned object available in the top-⇠ category after ⇣ 0 of them are reserved for

future I1-members (j1 + ⇣
0  ⇠), assign the best available top-⇠ object to the current player

(Step 2b.). Otherwise, if the current player belongs to I1 and if the unfulfilled quota ⇣ 0 is

not yet zero, then there are still top-⇠ objects available to him, as ⇣ 0 of them are reserved

for I1 members. The algorithm thus assigns to him the best unassigned object in the top-⇠

category and reduces the unfulfilled quota by one (Step 2(c.)i). In any other case, either

the current player belongs to I1 while all the top-⇠ objects have been assigned (i⇤ 2 I1,

⇣
0 = 0 and j1 + ⇣

0
> ⇠), or the current player belongs to the other group, and in the top-⇠

category there is no unassigned object except those reserved for I1-members (i⇤ 62 I1 and

j1 + ⇣
0
> ⇠). Thus, in either subcase, the best object available to the current player is the

best unassigned one among those below the top-⇠ category, which is what the algorithm

assigns to him (Step 2(c.)ii). Then the algorithm moves on to the next player in the list and

repeats until all players are matched with objects.

The order in which the algorithm follows is derived from the ordinal ranking of the

w-values, with ties broken in favor of the lower-indexed player:

(i, ti) � (k, tk) () [w(i, ti) > w(k, tk) or [w(i, ti) = w(k, tk) and i < k]] .

For any m 2 {1, . . . , |Z |}, let U
m denote the upper contour set that consists of the top-

m elements (player-types) of Z according to �. For each type profile t := (ti)i2I , the

strict order � generates a listing of the players in I, (i1, i2, . . . , in), so that h < k ()
(ih, tih) � (ik, tik). The algorithm makes assignments player-by-player in the order of this

list. Importantly, I(Um
, t) = {i1, . . . , i|I(Um,t)|} for every U

m: If ik 2 I(Um
, t) and h < k then

(ik, tik) 2 U
m (by (3)) and (ih, tih) � (ik, tik), and then by the definition of upper contour set

we have (ih, tih) 2 U
m and hence ih 2 I(Um

, t). Consequently, in the first |I(Um
, t)| iterations

of the algorithm, only the player-types that belong to U
m may possibly get assigned objects,

and these objects are the best ones unless the quota constraint is binding. That is the main

reason why the algorithm is greedy on the entire domain Z so that Lemma 1 applies.

For example, consider four players such that I1 = {1, 2} and I2 = {3, 4} and each

player has at least two types, ✓ and ✓0. Let the quota constraint be ⇠ = ⇣ = 1, namely, to

set aside object 1 for player 1 or 2. Let the top four elements of Z be

(2, ✓0) � (3, ✓) � (1, ✓) � (4, ✓) � · · · ,
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so U
1 = {(2, ✓0)}, U2 = {(2, ✓0), (3, ✓)} and so forth. Consider any type profile say t :=

(✓, ✓, ✓, ✓). Note from the definition (3) that I(U1
, t) = ? and so the maximum quantity

f(U1
, t) that U

1 can have is zero. Apply (3) to U
2 to see that I(U2

, t) = {3} and so the

maximum quantity f(U2
, t) that U2 can have is equal to ⇢2, because player 3 can have up

to the second-best object ⇢2 but not the best object ⇢1, as 3 62 I1. Note that the allocation

outcome q̄(t) outputted by the algorithm does allocate ⇢2 to player 3 (in Step 2(c.)ii of its

first iteration), and hence

X

i2I(U2,t)

q̄i(t)�
X

i2I(U1,t)

q̄i(t) = q̄3(t) = ⇢2 = f(U2
, t)� f(U1

, t).

Move on to U
3. Note I(U3

, t) = {3, 1}. Since player 1 belongs to I1, players 1 and 3 together

can get up to the total quantity ⇢1 + ⇢2; and the algorithm does allocate ⇢1 to player 1

because he ranks highest among all I1 members at this t (while (2, ✓0) � (1, ✓) and player 2

belongs to I1 as well, the type ✓0 is not consistent with the current type profile t). Thus

X

i2I(U3,t)

q̄i(t)�
X

i2I(U2,t)

q̄i(t) = (q̄1(t) + q̄3(t))�q̄3(t) = q̄1(t) = ⇢1 = (⇢1+⇢2)�⇢2 = f(U3
, t)�f(U2

, t).

For U4, analogously, I(U4
, t) = {3, 1, 4} and hence f(U4

, t) = ⇢1 + ⇢2 + ⇢3 because among

the three players someone is in I1. And the q̄(t) produced by the algorithm allocates the

third-best object ⇢3 to player 4 because he ranks third given t, and the best object available

now is object 3, with objects 1 and 2 already assigned. Thus,

X

i2I(U4,t)

q̄i(t)�
X

i2I(U3,t)

q̄i(t) = q̄4(t) = ⇢3 = (⇢1 + ⇢2 + ⇢3)� (⇢1 + ⇢2) = f(U4
, t)� f(U3

, t).

Thus, q̄(·|U4
, t) is a greedy solution wrt � within U

4 given t.

To compare Proposition 3 with the result in the majorization literature (e.g., Kleiner

et al. [18, Theorem 3]), which considers symmetric mechanisms, let us restrict attention

to mechanisms that are group-wise symmetric in the sense that all members within each

group Ik are treated identically. Correspondingly, for each k 2 {1, 2} assume that all players

in group Ik independently draw their types from an identical distribution. Relabel the

players if necessary so that 1 2 I1 and 2 2 I2, and hence Ti = Tk and µi = µk for all

i 2 Ik (k = 1, 2). Consider only interim allocations in the form of (Q1, Q2) such that for

each k 2 {1, 2}, Qk : Tk ! R is the interim allocation for any member of Ik. Then the

characterization condition (6) is required only for the test sets that treat members of the
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same group identically. That is, we need only to consider test sets in the form of (S1, S2)

such that Sk ✓ Tk for each k = 1, 2. Consequently, since |I1| = |I2| = n/2, Ineq. (6) becomes

2

n

X

t2T

g(S, t)µ(t) 
2X

k=1

X

tk2Tk

Qk(tk)�Sk
(tk)µk(tk) 

2

n

X

t2T

f(S, t)µ(t) (19)

for all such test sets (S1, S2).

Furthermore, as in the majorization literature, let us assume that types are unidimen-

tional so that there is no loss to consider only monotone interim allocations. Then we need

only to consider test sets (S1, S2) such that for every k 2 {1, 2}, Sk = {tk 2 Tk | Fk(tk) >

1�↵k} for some ↵k 2 (0, 1]. For simplicity, consider only the special case of quota constraints

that ⇠ = ⇣ = 1, namely, that only the top-quality object 1 is set aside for I1-members.

Then f(S, t) and g(S, t) can be calculated easily for each type profile t 2 T . Plug them

into (19) to obtain a more explicit condition. The interim expected qualities defined below

are just the shorthands for the long expressions in that condition.

A1(s1 | s2) := The interim expected quality received by a member of I1 whose type belongs

to the s1 upper quantile of F1 (i.e., F1(ti) > 1 � s1) given the following allocation:13

Object 1 goes to the member say i⇤ of I1 whose type is the highest in I1; the members

of I2 whose types belong to the s2 upper quantile of F2 get the highest-quality objects

among objects {2, . . . , n}; the members of I1\{i⇤} are matched with the objects among

the remaining ones in the assortative manner (higher qualities with higher types).

A2(s2 | s1) := The interim expected quality received by a member of I2 whose type belongs to

the s2 upper quantile of F2 given the following allocation: The highest-quality objects

are assigned, in the assortative manner, to the members of I1 whose types belong to

the s1 upper quantile of F1; the members of I2 are matched with the objects among

the remaining ones in the assortative manner.

Z1(s1 | s2) := The interim expected quality received by a member of I1 whose type belongs to

the s1 upper quantile of F1 given the following allocation: Object 1 goes to the member

say i0 of I1 whose type is the lowest in I1; the members of I2 whose types belong to

the s2 upper quantile of F2 get the lowest-quality objects among objects {2, . . . , n}; the
13This allocation, albeit well-defined, is not necessarily feasible, as not all objects are necessarily assigned.

Same comment for the other allocations defined in this list.
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remaining objects are assigned to I1 \ {i0} in the anti-assortative manner: the higher

the type, the lower the quality of the object assigned.

Z2(s2 | s1) := The interim expected quality received by a member of I2 whose type belongs to

the s2 upper quantile of F2 given the following allocation: The highest-quality objects

are assigned, in the anti-assortative manner, to the members of I1 whose types belong

to the s1 upper quantile of F1; the remaining objects are then assigned to members

of I2 in the anti-assortative manner.

Corollary 2 In the model of ranked items with the set-aside rule ⇠ = ⇣ = 1, a group-wise

symmetric weakly increasing interim allocation (Q1, Q2) belongs to Q if and only if
Z

↵1

0

Z1(s1, 0)ds1 +

Z
↵2

0

Z2(↵1, s2)ds2 
Z

↵1

0

Q1(F
�1
1 (1� s1))ds1 +

Z
↵2

0

Q2(F
�1
2 (1� s2))ds2


Z

↵1

0

A1(s1, 0)ds1 +

Z
↵2

0

A2(↵1, s2)ds2 (20)

for all (↵1,↵2) 2 [0, 1]2 (where F
�1
k

denotes the generalized inverse of the cdf Fk for Ik).

Condition (20) di↵ers from the majorization characterization in Kleiner et al. [18,

Th. 3.1, Prop. 4] in that both the left- and right-hand sides involve the sum of two integrals

rather than a single integral. The di↵erence is mainly driven by the group-specific quota,

without which their symmetry restriction could be applied to both groups (if players are

iid), and then the upper bound inequality in (20) would reduce to that in Kleiner et al.

4.3 Matchings with Arbitrary Numbers of Types

Consider a matching model between N � 2 objects and two players such that the matching

from players to objects has to be one-to-one, and each player can have any finite number

of types. The set of players is I := {1, 2}, and the set of objects J := {1, . . . , N}, N � 2.

An allocation outcome is in the form of x := ((xj

i
)2
i=1)

N

j=1 2 {0, 1}2N , with x
i

j
= 1 signifying

player i getting object j. The set X of feasible allocation outcomes is defined to be the set

of all ((xj

i
)2
i=1)

N

j=1 2 {0, 1}2N subject to two constraints:

8i 2 I :
X

j2J

x
j

i
= 1

8j 2 J :
X

i2I

x
j

i
 1,
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(1, t1) (2, t2) (2, t02)

a �1 3 1/2

b 4 0 3

c 2 1/2 0

Table 3: The objects: a, b and c; the player-types: (1, t1), (2, t2) and (2, t02)

the former being the unit-demand constraint,14 and the latter, resource-feasibility constraint.

It is known that paramodularity does not hold in such models. Given the set X

defined above, paramodularity requires that the ceiling and floor functions (', �) defined

by '(E) := maxx2X
P

(i,j)2E x
j

i
and �(E) := minx2X

P
(i,j)2E x

j

i
(8E ✓ I ⇥ J) satisfy the

submodularity and compliance conditions (Section 3.1). It is easy to show that neither

conditions are satisfied (Appendix B.9).

Thus, no method in the received, paramodularity framework applies. The new method

introduced by Lang and Yang [20] does not apply either, because their applications so far

are limited to at most two types per player. Theorem 1, by contrast, applies:

Proposition 4 In the matching model defined above, Q ◆ QB.

The proof proceeds in three steps. First, for any w := (w(j, i, ti))(j,i,ti)2Z 2 RZ ,

consider a relatively simple (say integral) ex post allocation q̄ such that q̄(t) solves problem (7)

for every type profile t 2 T given w. Second, find a family of subsets of Z within each of

which q̄ is greedy wrt some linear ordering such that the family covers Z . Third, prove that

this family is the support of a nonnegative shadow price function (p+, p�) that satisfies (8).

Then the proposition follows from Theorem 1.

Let me illustrate these steps with an example of two players (1 and 2), three objects (a,

b and c), one type t1 for player 1, and two types (t2 and t
0
2) for player 2. The domain Z of

interim allocations thus consists of nine object-player-type triples such as (a, 1, t1), (a, 2, t2),

(b, 2, t02), etc. Table 3 displays one w 2 RZ , with the entry at row j and column (i, ⌧i) being

the w-value w(j, i, ⌧i) of object j matched with player i of type ⌧i (e.g., w(a, 1, t1) = �1).

Step 1 is easy. When the type profile is (t1, t2), the solution q̄(t1, t2) to problem (7)

is to allocate object a to player 2, and object b to player 1. That is because, under the

14The Border-like characterization can be extended to the case where the unit-demand equation constraint

is weakened to
P

j2J xj
i  1 for each i 2 I.
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(1, t1) (2, t2)

a �1 3

b 4 0

c 2 1/2

Table 4: The optimal match, colored red, under type profile (t1, t2)

(1, t1) (2, t02)

a �1 1/2

b 4 3

c 2 0

Table 5: The optimal match, colored red, under type profile (t1, t02)

type profile (t1, t2), player 1 (of type t1) gets larger w-value from object b than from any

other object, and player 2 (of type t2) gets larger w-value from object a than from any other

object (Table 4). That is, in Table 4, the top contender (b, 1, t1) in column (1, t1) and the

top contender (a, 2, t2) in column (2, t2) are compatible as they refer to di↵erent objects,

and hence they constitute the maximum of the total w-value among all feasible allocation

outcomes under type profile (t1, t2). By contrast, consider the other type profile, (t1, t02).

With player 2’s realized type changed to t
0
2, the column (2, t2) in the previous table is

replaced by the column (2, t02) in Table 5. The top contender (b, 2, t02) in the new column

is incompatible with the top contender (b, 1, t1) in column (1, t1), as they are after the

same object b. Thus, one of the top contenders needs to be replaced by the second-highest

contender in the corresponding column, either the (c, 1, t1) in column (1, t1), or the (a, 2, t02)

in column (2, t02). The former in pairing with the top contender (b, 2, t02) yields 2 + 3 = 5,

whereas the latter in pairing with the top contender (b, 1, t1) yields 1/2+ 4 = 9/2. Thus the

solution q̄(t1, t02) to problem (7) is to allocate object b to player 2, and object c to player 1.

Step 2: The idea is to find the revealed preference of q̄ among the object-player-type

triples that are mutually exclusive (such as the (b, 1, t1) and (b, 2, t02) noted before). There

are two kinds of mutual exclusivity due to the feasibility constraint of one-to-one matching.

One kind is that both triples refer to the same player-type, namely, both belong to the same

column in Table 3. The other is that both triples refer to the same object, belonging to the
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same row in Table 3. Let us inspect the behavior of q̄ within each kind.

Among the object-player-type triples that belong to the same column, the behavior of q̄

is largely consistent with the ordinal ranking of their w-values: The top or second-highest

contender is chosen by q̄, while any contender below them is never chosen. Specifically, the

choice of q̄ is consistent with the following linear orderings in the three columns:

column (1, t1) : (b, 1, t1) ⇠ (c, 1, t1) � (a, 1, t1)

column (2, t2) : (a, 2, t2) � (c, 2, t2) � (b, 2, t2)

column (2, t02) : (b, 2, t02) � (a, 2, t02) � (c, 2, t02),

where (b, 1, t1) ⇠ (c, 1, t1) in column (1, t1) because q̄ chooses (b, 1, t1) over (c, 1, t1) when

the realized type ⌧2 of player 2 is t2 (so (b, 1, t1) ⌫ (c, 1, t1)) as in Table 4, and chooses the

reverse when ⌧2 = t
0
2 (so (c, 1, t1) ⌫ (b, 1, t1)) as in Table 5. It is easy to verify that within

each column, q̄ is a greedy solution wrt the ⌫ listed above for each type profile (⌧1, ⌧2).

Among the object-player-type triples that belong to the same row, the choice of q̄ is

inconsistent with the ordinal ranking of the w-values. For example, in the row b of Table 3,

(b, 2, t02) is chosen over (b, 1, t1) given type profile (t1, t02), and given no type profile does the

reverse hold. Thus, (b, 2, t02) � (b, 1, t1) despite w(b, 2, t02) < w(b, 1, t1). To derive from the

w-values the revealed preference of q̄ within a row, define

�(j, i, ⌧i) := w(j, i, ⌧i)� max
j02J\{j}

w(j0, i, ⌧i)

for each object-player-type triple (j, i, ⌧i). For example, in row b of Table 3,

�(b, 1, t1) = 4� 2 = 2, �(b, 2, t2) = 0� 3 = �3, �(b, 2, t02) = 3� 1/2 = 5/2.

The ordinal ranking according to the �-values in this row is

row b : (b, 2, t02) � (b, 1, t1) � (b, 2, t2).

It is easy to verify that q̄ is greedy wrt this � within row b. Intuitively, q̄ has to choose

between (b, 1, ⌧1) and (b, 2, ⌧2) only when both are the top contenders in their own columns.

In that case, q̄ chooses (b, 1, ⌧1) if the total w-value of (b, 1, ⌧1) coupled with the second-

highest contender in column (2, ⌧2) is larger than the total w-value of (b, 2, ⌧2) coupled with

the second-highest contender in column (1, ⌧1), and q̄ chooses (b, 2, ⌧2) if the opposite is true.

In other words, the choice of q̄ between (b, 1, ⌧1) and (b, 2, ⌧2) hinges on whether

w(b, 1, ⌧1) + max
j 6=b

w(j, 2, ⌧2) > w(b, 2, ⌧2) + max
j 6=b

w(j, 1, ⌧1)
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holds or not, namely, whether �(b, 1, ⌧1) > �(a, 2, ⌧) holds or not.

The choice of q̄ within the other two rows in Table 3 is trivial. Neither row contains

more than one top contenders, and hence q̄ never has to choose one over the other to resolve

the conflict between two player-types going after the same object. Thus, we do not bother

to find the revealed preference of q̄ within either row.

Within each column and row b in Table 3, the upper contour sets wrt the revealed

preference of q̄ are then defined. And they constitute increasing nested sequences:

row b : Ub(2t
0
2) = {b2t02} ( Ub(1t1) = {b2t02, b1t1} ( Ub(2t2) = {b2t02, b1t1, b2t2}

column (1, t1) : V1t1(b) = V1t1(c) = {b1t1, c1t1} ( V1t1(a) = {b1t1, c1t1, a1t1}

column (2, t2) : V2t2(a) = {a2t2} ( V2t2(c) = {a2t2, c2t2} ( V2t2(b) = {a2t2, c2t2, b2t2}

column (2, t02) : V2t02
(b) = {b2t02} ( V2t02

(a) = {b2t02, a2t02} ( V2t02
(c) = {b2t02, a2t02, c2t02}.

In the above-displayed, an object-player-type triple (j, i, ⌧i) is condensed to ji⌧i, and the

upper contour set in which (j, i, ⌧i) is a minimum wrt the revealed preference is denoted by

either Uj(i⌧i) if the set is within row j, or Vi⌧i(j) if the set is within column (i, ⌧i).

We have thus obtained a family of upper contour sets that covers the domain Z :

S+ :=
�
Ub(2t

0
2), Ub(1t1), Ub(2t2), V1t1(b), V1t1(a), V2t2(a), V2t2(c), V2t2(b), V2t02

(b), V2t02
(a), V2t02

(c)
 
.

With an eye on the next step, to be sure that the negative w-values can be accommodated,

let us append to the covering some lower contour sets:

S� := {{b1t1, c1t1, a1t1}, {a2t2, c2t2, b2t2}, {b2t02, a2t02, c2t02}} .

Denote the three sets in this S� by L1t1 , L2t2 and L2t02
, which are just the columns in Table 3.

Step 3 is to prove existence of a pair (p+, p�) of shadow price functions, p+ : S+ ! R+

and p� : S� ! R+, that satisfies both (7) and (9), namely,

w(j, i, ⌧i) =
X

S✓S+

p+(S)�S(j, i, ⌧i)�
X

S✓S�

p�(S)�S(j, i, ⌧i) (21)

for all object-player-types (j, i, ⌧i). This equation system is the same as

[M+,M�]p = w

with the notations M+, M�, p and w defined around Lemma 3. Here M+ is the 9-by-11

matrix (|Z | = 9, |S+| = 11) whose entries are �S(j, i, ⌧i), M� the 9-by-3 matrix (|S�| =
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3) whose entries are ��S(j, i, ⌧i), p := [p+,p�]
| the 14-by-1 column vector with entries

being p+(S) or p�(S), and w the 9-by-1 column vector with entries w(j, i, ⌧i).

By Lemma 3, it su�ces Step 3 to prove that no sequence of row operations on the

matrix [M+,M�,�w] can produce a nonnegative row whose entry at the �w position is

positive, namely, to show that no linear combination among the instances of (21) can lead to a

contradictory case where the left-hand side is negative and the right-hand side is nonnegative.

To see the intuition why such contradictory cases cannot occur, let us try to produce

one. For every object-player-type triple (j, i, ⌧i), let [ji⌧i] denote the row of the matrix

[M+,M�,�w] corresponding to (j, i, ⌧i):

[ji⌧i] :=
⇥
(�S(j, i, ⌧i))S2S+ , (��S(j, i, ⌧i))S2S� ,�w(j, i, ⌧i)

⇤
.

Note that a contradictory case cannot be produced by an addition or subtraction between

two object-player-types that refer to di↵erent player-types. That is, if (i, ⌧i) 6= (k, ⌧ 0
k
) then

neither [ji⌧i] + [j0k⌧ 0
k
] nor [ji⌧i] � [j0k⌧ 0

k
] can produce a nonnegative row, because at the

position for Liti , [ji⌧i] has a negative entry �1 while [j0k⌧ 0
k
] has a zero entry, and at the

position for Lk⌧
0
k
the situation is symmetric. Thus, the operation leaves at least one of the

two entries negative thereby failing to produce a nonnegative row.

It follows that a contradictory case has to result from an operation between two object-

player-types that refer to the same player-type say (i, ⌧i), and the operation has to be a

subtraction in order to eliminate the negative entry at the position for Li⌧i . Furthermore,

in order to produce a positive entry at the position for �w, the subtraction has to be from

a low-w-value object-player-type to a high-w-value one. That is, the operation has to be

[ji⌧i] � [j0i⌧i] for some player-type (i, ⌧i) and some objects j 6= j
0 such that w(j, i, ⌧i) <

w(j0, i, ⌧i). Meanwhile, for [ji⌧i] � [j0i⌧i] to be nonnegative in every entry, the �1 entry

in �[j0i⌧i] at the position of Vi⌧i(j
0) needs to be canceled out by a positive 1 entry in [ji⌧i]

at the same position. That requires, by the definition of the matrix M+, (j, i, ⌧i) 2 Vi⌧i(j
0),

namely, (j, i, ⌧i) ⌫ (j0, i, ⌧i). In sum, a contradictory case has to result from a subtraction

[ji⌧i] � [j0i⌧i] for which w(j, i, ⌧i) < w(j0, i, ⌧i) and (j, i, ⌧i) ⌫ (j0, i, ⌧i). In our example,

there is only one such possibility: [c1t1]� [b1t1], namely, the second-highest contender in the

column (1, t1) of Table 3 subtracted by the top contender in the same column of the table,

as the two are indi↵erent according to the revealed preference of q̄.

Table 6 displays [c1t1] � [b1t1]. The ellipses there stand for the omitted, less relevant
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Ub(1t1) Ub(2t02) Ub(2t2) V1t1(b) V1t1(a) V2t02
(b) L1t1 L2t02

· · · �w

[c1t1] 0 0 0 1 1 0 �1 0 · · · �2

[b1t1] 1 0 1 1 1 0 �1 0 · · · �4

[c1t1]� [b1t1] �1 0 �1 0 0 0 0 0 · · · 2

Table 6: A row subtraction

entries, which are zero for both vectors. Right away we see that there are negative entries in

[c1t1] � [b1t1]: At the position for Ub(1t1), for example, the entry is �1, because (b, 1, t1) 2
Ub(1t1) while (c, 1, t1) 62 Ub(1t1) (namely, �Ub(1t1)(c, 1, t1) � �Ub(1t1)(b, 1, t1) = 0 � 1). Thus,

the operation has yet to produce a nonnegative vector.

Consequently, to produce a contradictory case the operation has to involve another

object-player-type (j0, k, ⌧ 0
k
) such that the vector [j0k⌧ 0

k
] has a positive entry at the position

for Ub(1t1) to cancel out the negative entry in [c1t1]� [b1t1] at that position. This (j0, k, ⌧ 0k)

is (b, 2, t02), because (b, 2, t
0
2) is the only element of Ub(1t1) (other than (b, 1, t1)), as (b, 2, t02) �

(b, 1, t1) by the revealed preference of q̄ within row b of Table 3. Hence the operation requires

an addition of [b2t02]. Since [b2t
0
2] has a �1 entry at the position for L2t02

, the addition of [b2t02]

in turn requires the subtraction of either [a2t02] or [c2t
0
2] to cancel out the �1. Say it is [a2t02],

so the operation aimed at producing a contradictory case entails a quadruple

[c1t1]� [b1t1] + [b2t02]� [a2t02].

Table 7 displays this quadruple operation. Note that as a result of the quadruple

operation the entry at the �w position becomes nonpositive, �1/2. In other words,

w(c, 1, t1)� w(b, 1, t1) + w(b, 2, t02)� w(a, 2, t02) � 0.

That is no coincidence, because (b, 2, t02) � (b, 1, t1) implies, by the revealed preference of q̄

within the row b in Table 3, that �(b, 2, t02) � �(b, 1, t1). This inequality in turn implies the

inequality displayed above by the definition of �. The displayed inequality remains intact

if we replace the [a2t02] in the quadruple by the other possible element, [c2t02], because the

w-value-added w(b, 2, t02)� w(c, 2, t02) > �(b, 2, t02), with w(c, 2, t02) < w(a, 2, t02).

Now that we have exhausted the last resort to produce a nonnegative row whose entry

at the �w position is positive, we see heuristically that the equation system (21) has no

contradiction and hence admits a solution for the shadow price functions.
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Ub(1t1) Ub(2t02) Ub(2t2) V1t1(b) V1t1(a) V2t02
(b) V2t02

(a) L1t1 L2t02
· · · �w

[c1t1] 0 0 0 1 1 0 0 �1 0 · · · �2

[b1t1] 1 0 1 1 1 0 0 �1 0 · · · �4

[c1t1]� [b1t1] �1 0 �1 0 0 0 0 0 0 · · · 2

[b2t02] 1 1 1 0 0 1 1 0 �1 · · · �3

[a2t02] 0 0 0 0 0 0 1 0 �1 · · · �1/2

[b2t02]� [a2t02] 1 1 1 0 0 1 0 0 0 · · · �5/2

net total 0 1 0 0 0 1 0 0 0 · �1/2

Table 7: A quadruple operation [c1t1]� [b1t1] + [b2t02]� [a2t02]

The proof, deferred to Appendix B.10, is more involving than the above to handle

two complications. One is that in an arbitrary sequence of row operations on the matrix

[M+,M�,�w], a row operation such as [c1t1]� [b1t1] may be more generally ↵[c1t1]��[b1t1]
for some positive real numbers ↵ and �. The other complication is that there may be multiple

quadruples like the one shown above. The first complication is handled by dissecting the row

with the larger coe�cient, say ��[b1t1] with � > ↵, into two portions, one being �↵[b1t1]
to be paired with ↵[c1t1] so that the pair becomes [c1t1] � [b1t1] multiplied by ↵, and the

other being �(� � ↵)[b1t1], treated as a separate row in the sequence of operations (which

in turn can be paired with another row due to the nonnegative-row condition). The second

complication is handled by an induction argument that recursively removes such quadruples

from the sequence of row operations until the sequence is reduced to null. At each step of

the induction, a quadruple is selected so that both the nonnegative-row condition and the

positivity of the �w entry are unchanged by its removal, and hence the inductive step on

the remaining sequence follows. The sequence is eventually exhausted without occurrence of

any contradictory cases. Thus by Lemma 3 a solution for the equation system (21) exists.

5 Conclusion

Characterizing feasible interim allocations is often an unavoidable step in the design of

optimal mechanisms, and Border-like solutions have been the prototype of such characteri-

zations. The literature has located only su�cient conditions to obtain Border-like solutions,
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and those su�cient conditions are mostly confined to the paramodularity framework that

rules out nontrivial combinatorial complications such as matchings. This paper adds to the

literature a necessary and su�cient condition to obtain Border-like solutions without the

confine of paramodularity. The main message is that the condition crucial to Border-like

solutions is not paramodularity, but rather the local greediness of the interim allocations

that are about to violate some feasibility constraints. Paramodularity merely guarantees

the easy case where the greediness property is global. This connection between Border-like

solutions and greedy algorithms is instrumental in the search for Border-like solutions such

as those presented above.

The three applications presented above have various potentials for further develop-

ment. The characterization result in the n-player ranked-item model with a group-specific

quota constraint is comparable to its counterpart in the majorization literature. Thus an

immediate question is how the implications of the characterization di↵er from those of the

majorization characterization. The characterization result, coupled with the tractability

due to the unidimensional-type assumption that the model allows, may facilitate an opti-

mal mechanism study on a planner’s group-specific preferential mandate versus the possible

moral hazard problem of those who benefit from the preferential treatment.

The characterization result in the two-player matching model with arbitrary numbers

of types is a step toward the direction of bringing the mechanism design approach into the

study of matchings. Extension of the characterization beyond the two-player assumption has

yet to be explored. The possibility that the ranking between two player-types may depend

on the realized type of a third player brings out new challenges to the construction of the

restricted domains for local greediness.

The impossibility observation is quite general in the knapsack model, which is relevant

to sharing economies with integer constraints. Shattering the hope for an exact optimal

mechanism study therein except the special case where maximization over interim allocations

can reduce to pointwise maximization over ex post allocations, the impossibility observation

makes approximate methods for the optimal mechanisms in such models compelling.
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A Other Applications

This appendix applies Theorem 1 to another model outside the paramodularity framework

and extends part of the paper to the case of infinite or continuum type spaces.

A.1 Total Unimodularity

Assume that the set X of feasible allocation outcomes is determined by a pair (f̂ , ĝ) of

functions such that f̂ : F ! Z+ and ĝ : G ! Z+ for some F ,G ✓ 2I⇥J , with the properties

f̂ = ĝ on F \G , ? 2 F ) f̂(?) = 0, ? 2 G ) ĝ(?) = 0 and X is nonempty and compact.

Let P be the set of vectors (w,', �) 2 RZ ⇥ RF⇥T

+ ⇥ RG⇥T

+ such that

8(i, j) 2 I ⇥ J 8t 2 T : w(j, i, ti)�
X

F2F

'(F, t)�F (i, j) +
X

G2G

�(G, t)�G(i, j) = 0. (22)

We can think of '(F, t) as the Lagrange multiplier for the ceiling constraint
P

(i,j)2F x
j

i


f̂(F ), and �(G, t) the Lagrange multiplier for the floor constraint
P

(i,j)2G x
j

i
� ĝ(G), in

the problem (7) given type profile t 2 T . Note that these Lagrange multipliers are tailored

individually for each specific type profile t. By contrast, the shadow prices p+(S) and p�(S)

in Theorem 1 are each uniform across all type profiles t 2 T .

Lang and Yang’s [20] total unimodular assumption stipulates that the matrix [M1,M2]
|

for which P = {v | M1v = 0;M2v = 0} is totally unimodular, namely, the determinant of

every square submatrix of every order is 0, 1, or �1. The main implication of this assumption

is that every (w,', �) 2 P is a conic combination of some (wk,'k, �k)Kk=1 for which each wk

is {�1, 0, 1}-valued, and all 'k and �k are {0, 1}-valued.
From the perspective of Theorem 1, the essence of total unimodularity is that for

every supporting hyperplane of the set of feasible interim allocations, the gradient w can be

decomposed into a conic combination of {�1, 0, 1}-valued extreme rays such that the dual

variable of problem (7), which determines the underlying ex post allocation outcome q̄(t)

given type profile t 2 T , can be decomposed by the same coe�cients for all type profiles

t 2 T . This, coupled with two other conditions in Lang and Yang, turns out to imply

that the ex post allocation q̄ follows the greedy-generous algorithm globally on the entire

domain Z of interim allocations according to any of the extreme rays that the gradient w is

decomposed into. The corresponding upper or lower contour sets then constitute the support

for the shadow prices sought after in Theorem 1.
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I thus formulate the essential implication described above into a decomposability as-

sumption. It requires only the elements of a subset of P to be conic combinations of some

(wk,'k, �k)Kk=1 for which only every wk is required to be {�1, 0, 1}-valued.
A constraint structure (F ,G , f̂ , ĝ) is said to be decomposable i↵ for any w 2 RZ there

exists a solution ('⇤
, �

⇤) to the problem

min
(',�)2RF⇥T

+ ⇥RG⇥T
+

P
t2T µ(t)

⇣P
F2F f̂(F )'(F, t)�

P
G2G ĝ(G)�(G, t)

⌘
(23)

subject to (22)

such that (wk,'k, �k)Kk=1 is a conic combination among some (w1,'1, �1), . . . , (wK ,'K , �K) 2
P (for some integer K) and

8k 2 {1, . . . , K} 8(i, j) 2 I ⇥ J 8ti 2 Ti : wk(j, i, ti) 2 {0, 1,�1}. (24)

Remark 1 If (F ,G , f̂ , ĝ) satisfies total unimodularity then it is decomposable.15

I also assume another implication of total unimodularity noted by Lang and Yang, that

the convex hull cv(X) of the set X of feasible allocation outcomes is determined by (f̂ , ĝ).

The other assumption I adopt from Lang and Yang is linearity of a function defined by

h(F,G) := max
x2cvX

 
X

i2F

xi �
X

i2G

xi

!
(25)

for any F,G ✓ I such that F \G = ?. The function h is said to be linear i↵

h(F,G) = h(F,?) + h(?, G)

for all F,G ✓ I such that F \G = ?.16

15One can further prove that paramodularity implies decomposability. Thus, decomposability allows

for arbitrary numbers of types per player, as paramodularity does. Di↵erent from decomposability, total

unimdolarity has not been known to include paramodularity, and it remains an open question whether total

unimodularity in matching models allows a player to have more than two types.
16The linearity assumption is introduced by Lang and Yang [20]. Without the assumption, their main

result is a necessity and su�ciency test against any pair (S+, S�) 2
�
2Z
�2

of disjoint subsets. By contrast,

the Border condition (6) in my paper is a necessity and su�ciency test against only any set S 2 2Z . As

noted in their Corollary 1, their test reduces to mine if the linearity is assumed. Thus the next Proposition 5

corresponds to a slight generalization of their Corollary 1, which also assumes linearity.
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Proposition 5 If (F ,G , f̂ , ĝ) is decomposable, (f̂ , ĝ) determines cv(X), and h is linear,

then Q ◆ QB.

To prove the proposition, pick any w 2 RZ . By the decomposability assumption,

there exist ('⇤
, �

⇤) 2 RF⇥T

+ ⇥ RG⇥T

+ , (wk,'k, �k)Kk=1 and (�k)Kk=1 2 RK

++ for some integer K

such that ('⇤
, �

⇤) is a solution to problem (23), (wk,'k, �k) 2 P and satisfies (24) for any

k = 1, . . . , K, and w =
P

K

k=1 �kwk, '⇤ =
P

K

k=1 �k'k, and �⇤ =
P

K

k=1 �k�k. Now that (23)

has a solution, its dual has a solution q̄ = (q̄j
i
)(i,j)2I⇥J . Since cv(X) is determined by (f̂ , ĝ)

and µ(t) > 0 for all t 2 T (the finite set T being the support of µ), the dual is equivalent to

the problem (7) for each t 2 T , and hence q̄(t) is a solution thereof.

For any k = 1, . . . , K, define

S
k,+ := {z 2 Z | wk(z) = 1},

S
k,� := {z 2 Z | wk(z) = �1}.

Due to the decomposability and linearity assumptions, one can prove (Appendix B.11):

Lemma 4 For every k 2 {1, . . . , K} and every t := (ti)i2I 2 T ,

X

(i,j)2I⇥J

q̄
j

i
(t)�Sk,+(j, i, ti) = f

�
S
k,+

, t
�
,

X

(i,j)2I⇥J

q̄
j

i
(t)�Sk,�(j, i, ti) = g

�
S
k,�

, t
�
.

The lemma implies immediately that S
k,+ is upward binding for q̄, and S

k,� downward

binding for q̄, for all k = 1, . . . , K.

Finally, use the conic combination condition

8(i, j) 2 I ⇥ J 8ti 2 Ti : w(j, i, ti) =
KX

k=1

�k (�Sk,+(j, i, ti)� �Sk,�(j, i, ti))

to obtain a solution for (8): p+(Sk,+) = p�(Sk,�) = �k for all k and p+(S) = p�(S) = 0 for

all other subsets S of Z . Thus, Theorem 1 implies Q ◆ QB and hence the proposition.

A.2 Infinite Type Spaces

This section removes the assumption |T | < 1 in the main text.
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Lemma 5 Let T be any (possibly infinite) type space and X ✓ RI⇥J

+ be any set of feasible

allocation outcomes such that the pair (f, g) of functions is defined in (4) and (5). Suppose:

a. there exists a sequence (Xm)1
m=M

that satisfies the following for each m:

i. X
m ✓ RI⇥J

+ and the pair (fm
, g

m) defined in (4) and (5) given (T,Xm) satisfies

f
m = f and

8S ✓ Z 8t 2 T : gm(E, t) = max{0, g(E, t)� 1/m}; (26)

ii. if |Tm| < 1 then QB = Q in the model (Tm
, X

m);

b. X
m converges to X (in Hausdor↵ metric) as m ! 1.

Then QB = Q in the original model (T,X).

The proof of Lemma 5 is an extension of Che et al.’s [7, Supplemental Appendix B.2]

passing-to-limit argument. The assumption (26) is to ensure that, when any given interim

allocation is being approximated from below by the nearest nonnegative grid points, the floor

constraints in the Border condition within the discretized model is satisfied. This assumption

rules out models where a floor constraint has to be positive-integer-valued. For example,

in the matching model of Section 4.3 and Lang and Yang’s [20] total unimodular model,

the floor constraint involves positive integers and hence cannot be perturbed downward. By

contrast, the assumption is satisfied in both the paramodularity model (Section 3.1) and the

ranked-item model (Section 4.2), as the next two corollaries observe.

Corollary 3 If the set X ✓ RI⇥J

+ of feasible allocation outcomes is determined by a paramod-

ular pair (', �) of functions 2I⇥J ! R+, then QB = Q whether |T | is finite or not.

Corollary 4 In the ranked-item auction model with quota constraints (Section 4.2), QB =

Q whether |T | is finite or not.

B Proofs

B.1 Necessity of Condition (6) (Q ✓ QB)

For any Q := (Qj

i
(ti))(j,i,ti)2Z 2 RZ and w := (w(j, i, ti))(j,i,ti)2Z 2 RZ , denote

hQ,wi :=
X

(i,j)2I⇥J

X

ti2Ti

Q
j

i
(ti)w(j, i, ti)µi(ti). (27)
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Then hQ,wi  sup
Q02QhQ0

, wi for anyQ 2 Q. To proveQ 2 QB, namely, thatQ satisfies (6),

pick any S ✓ Z and apply hQ,wi  sup
Q02QhQ0

,'i to the case where w = �S. For any

Q
0 2 Q, Q0 satisfies (1) with respect to some ex post allocation q. Thus

sup
Q02Q

hQ0
,�Si = sup

(q(t))t2T2
Q

t2T cv(X)

X

(i,j)2I⇥J

X

ti2Ti

X

t�i2T�i

q
j

i
(ti, t�i)�S(j, i, ti)µ�i(t�i|ti)µi(ti)

=
X

t2T

sup
q(t)2cv(X)

X

(i,j)2I⇥J

q
j

i
(t)�S(j, i, ti)µ(t)

=
X

t2T

sup
q(t)2X

X

(i,j)2I⇥J

q
j

i
(t)�S(j, i, ti)µ(t)


X

t2T

f(S, t)µ(t),

with the third line due to the fact that X contains all extremal points of its convex hull, and

the last line due to (4). Thus the second inequality in (6) follows. The first inequality in (6)

is analogous via w := ��S. Thus Q 2 QB. ⌅

B.2 Theorem 1

Since T is assumed finite, the domain Z of any interim allocation (in the form of (j, i, ti) 7!
Q

j

i
(ti)) is a finite set. Thus, the set of interim allocations is RZ , and hence any continuous

linear operator on Q corresponds to a vector w := (w(z))z2Z 2 RZ .

Lemma 6 QB ✓ Q if and only if, for any w 2 RZ ,

max
Q2QB

X

(i,j)2I⇥J

X

ti2Ti

w(j, i, ti)Q
j

i
(ti)µi(ti) 

X

t2T

µ(t) max
q(t)2cv(X)

X

(i,j)2I⇥J

q
j

i
(t)w(j, i, ti). (28)

Proof By the definition of Q and (1), the right-hand side of (28) is equal to

max
Q2Q

X

(i,j)2I⇥J

X

ti2Ti

w(j, i, ti)Q
j

i
(ti)µi(ti).

Then, with the notation defined in (27), (28) is equivalent to

max
Q2QB

hQ,wi  max
Q2Q

hQ,wi.

Note that the set Q of feasible interim allocations is convex and compact, since the set of

ex post allocation is convex and compact (each assigning to every t 2 T an element of the

convex hull of the compact X) and the mapping from ex post allocations to their reduced
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forms, Eq. (1), is linear and continuous. It then follows from a finite-dimensional application

of the separating hyperplane theorem (Theorem 7.51 of Aliprantis and Border [2, p288]) that

Q =

⇢
Q̄ 2 RZ

���� 8w 2 RZ

⌦
Q̄, w

↵
 max

Q2Q
hQ,wi

��
.

Claim: QB ✓ Q if and only if (28) holds for all w 2 RZ . Clearly QB ✓ Q implies (28) for

all w 2 RZ . To prove the converse, suppose that (28) is true for all w 2 RZ . If Q̄ 62 Q then,

by the equation displayed above, there exists w given which
⌦
Q̄, w

↵
> maxQ2QhQ,wi. Then

⌦
Q̄, w

↵
> maxQ2QBhQ,wi by (28). Thus Q̄ 62 QB.

Proof of Theorem 1 First, we prove (a) () (c). As QB is defined by the system of

inequalities (6), the left-hand side of (28) is equal to

max
((Qj

i )i2I)j2J2RZ

X

(i,j)2I⇥J

X

ti2Ti

µi(ti)Q
j

i
(ti)w(j, i, ti)

8S ✓ Z :
X

(i,j)2I⇥J

X

ti2Ti

µi(ti)Q
j

i
(ti)�S(j, i, ti) 

X

t2T

µ(t)f(S, t)

X

(i,j)2I⇥J

X

ti2Ti

µi(ti)Q
j

i
(ti)�S(j, i, ti) �

X

t2T

µ(t)g(S, t).

The dual of this problem is

min
(p+,p�):2Z !R2

+

P
t2T µ(t)

P
S✓Z (p+(S)f(S, t)� p�(S)g(S, t))

8z 2 Z : w(z) =
P

S✓Z (p+(S)� p�(S))�S(z).

Thus, it follows from Lemma 6 that QB ✓ Q if and only if for any w 2 RZ there exists

(p+, p�) : 2Z ! R2
+ that satisfies (8)—the constraint in the dual—for all z 2 Z and

X

t2T

µ(t)
X

S✓Z

(p+(S)f(S, t)� p�(S)g(S, t)) 
X

t2T

µ(t) max
q(t)2cv(X)

X

(i,j)2I⇥J

q
j

i
(t)w(j, i, ti). (29)

For any q̄ such that q̄(t) solves (7) for all t 2 T , the right-hand side of the above inequality

is equal to
P

t2T µ(t)
P

(i,j)2I⇥J
q̄
j

i
(t)w(j, i, ti) and hence the inequality is the same as

X

t2T

µ(t)
X

S✓Z

(p+(S)f(S, t)� p�(S)g(S, t)) 
X

t2T

µ(t)
X

(i,j)2I⇥J

q̄
j

i
(t)w(j, i, ti).

Plug (8) into the right-hand side to rewrite this inequality as
X

t2T

µ(t)
X

S✓Z

(p+(S)f(S, t)� p�(S)g(S, t))


X

t2T

µ(t)
X

(i,j)2I⇥J

q̄
j

i
(t)

 
X

S✓Z

p+(S)�S(j, i, ti)�
X

S✓Z

p�(S)�S(j, i, ti)

!
.
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Rearrange terms to rewrite this inequality as
P

S✓Z p+(S)
P

t2T µ(t)
⇣
f(S, t)�

P
(i,j)2I⇥J

q̄
j

i
(t)�S(j, i, ti)

⌘

+
P

S✓Z p�(S)
P

t2T µ(t)
⇣
�g(S, t) +

P
(i,j)2I⇥J

q̄
j

i
(t)�S(j, i, ti)

⌘  0. (30)

Thus, QB ✓ Q if and only if for any w 2 RZ there exists (p+, p�) : 2Z ! R2
+ that

satisfies (8) and (30) for any q̄ such that q̄(t) solves (7) for all t 2 T . For any S ✓ Z and

t 2 T ,

f(S, t) = max
x2X

X

(i,j)2I(S,t)

x
j

i
= max

x2cv(X)

X

(i,j)2I(S,t)

x
j

i
�

X

(i,j)2IS,t)

q̄
j

i
(t) =

X

(i,j)2I⇥J

q̄
j

i
(t)�S(j, i, ti),

with the first “=” due to (4), the second “=” due to X containing all extremal points

of cv(X), the inequality due to q̄
j

i
(t) 2 cv(X), and the last “=” due to the definition

of I(S, t). By the same token,

�g(S, t) +
X

(i,j)2I⇥J

q̄
j

i
(t)�S(j, i, ti) � 0

for all S ✓ Z and all t 2 T . This, coupled with the fact that µ(t) > 0 for all t 2 T (T

being finite and the support of µ), implies that (30) holds if and only if (9) holds for all

S ✓ Z . In sum, QB ✓ Q if and only if for any w 2 RZ there exists (p+, p�) : 2Z ! R2
+

that satisfies (8) and (9) for any q̄ such that q̄(t) solves (7). In other words, (a) () (c).

To prove (b) ) (a), pick any w 2 RZ . If there exists (p+, p�) : 2Z ! R2
+ that

satisfies (8) and (9) for some q̄ such that q̄(t) solves (7) for all t, Ineq. (29) holds by the

previous reasoning below (29). Then the reasoning in the previous paragraph preceding (29)

implies Q ◆ QB. Thus, (b) ) (a). Finally, note that (c) ) (b) follows directly from the

fact that a solution to (7) exists. Thus, (b) () (a) () (c), as asserted. ⌅

B.3 Lemma 1 and Corollary 1

Proof of Lemma 1 Let N be the cardinality of {w(z) | z 2 Z } and list its elements in

descending order so that

w
1
> · · · > w

m � 0 > w
m+1

> · · · > w
N
. (31)

Define U
n := {z 2 Z | w(z) � w

n} for each n 2 {1, . . . ,m}, and L
n := {z 2 Z | w(z) 

w
N�n+1} for each n 2 {1, . . . , N �m}. Thus,

? =: U0 ( U
1 ( · · · ( U

m = U

? =: L0 ( L
1 ( · · · ( L

N�m = Z \ U.
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Since ⌫ is represented by w, {Un}m
n=1 is the family of all the upper contour sets wrt ⌫

within U , and {Ln}N�m

n=1 the family of all the lower contour sets wrt ⌫ within Z \ U .

By the hypothesis of the lemma, q̄ given any t 2 T is a greedy solution within U ,

and a generous solution within Z \ U , with respect to the ordinal ranking ⌫ of w. It then

follows from Lemma 2 (proved in Appendix B.4) that U
n is upward binding for q̄ for all

n 2 {1, . . . ,m}, and L
n downward binding for q̄ for all n 2 {1, . . . , N �m}.

Thus, by Theorem 1, it su�ces to show existence of a nonnegative solution for the p+

and p� in (8) that are defined respectively on {Un}m
n=1 and {Ln}N�m

n=1 . To show that, note

from the definition of Un and L
n that (8) is equivalent to

8n  m : w
n = p+(U

n) + p+(U
n+1) + · · ·+ p+(U

m)

8n > m : w
n = �p�(L

N�n+1)� p�(L
N�n+2)� · · ·� p�(L

N�m)

(Note on the second line that N�n+1  N�m because n � m+1). A solution is p+(Un) =

w
n�w

n+1 for all n < m, p+(Um) = w
m, p�(LN�m) = �w

m+1, and p�(LN�n+1) = w
n�1�w

n

for all n > m+ 1 (namely, p�(Lk) = w
N�k � w

N�k+1 for all N � n+ 1  k < N �m). ⌅

Proof of Corollary 1 Pick any type profile t := (ti)i2I 2 T . There is a one-to-one funciton

 t : RI⇥J ! RZ defined by  t (((xi)i2I)j2J) := (x(z))z2Z such that for any (j, i, t0
i
) 2 Z ,

x(j, i, t0
i
) =

8
<

:
x
j

i
if t0

i
= ti

0 else.

Consequently, for any w 2 RZ and any t := (ti)i2I 2 T , problem (7) is equivalent to

max
(x(z))z2Z 2cv( t(X))

X

z2Z

x(z)w(z). (32)

Claim:  t(X) (= { t(x) | x 2 X}) is determined by the pair (f(·, t), g(·, t)) of functions
defined on 2Z by (4) and (5). To prove that, note from the definition of  t that (x(z))z2Z 2
 t(X) is equivalent to both

9((xj

i
)i2I)j2J 2 X 8(i, j) 2 I ⇥ J

⇥
x(j, i, ti) = x

j

i

⇤
(33)

and

ti 6= t
0
i
) x(j, i, t0

i
) = 0
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hold. By (4) and (5), f(S, t) = '(I(S, t)) and g(S, t) = �(I(S, t)) for any S ✓ Z . Thus,

((xj

i
)i2I)j2J 2 X ()

2

48S ✓ Z : � (I(S, t)) 
X

(i,j)2I(S,t)

x
j

i
 ' (I(S, t))

3

5

()

2

48S ✓ Z : g(S, t) 
X

(j,i,ti)2S

x
j

i
 f(S, t)

3

5 ,

with the first line due to the hypothesis of the corollary that X is determined by (', �) and

the fact that every subset E of I corresponds to some S ✓ Z for which I(S, t) = E. It

follows that (33) is equivalent to

8S ✓ Z : g(S, t) 
X

z2S

x(z)  f(S, t). (34)

This in turn implies x(j, i, t0
i
) = 0 for all t0

i
6= ti, because

ti 6= t
0
i
) I({(j, i, t0

i
)}, t) = ? ) f({z}, t) = g({z}, t) = 0

(34)) x(j, i, t0
i
) = 0.

In sum, (x(z))z2Z 2  t(X) if and only if (34) holds. This proves the claim.

By the definition of I(S, t), it is easy to prove that I(S [ S
0
, t) = I(S, t) [ I(S 0

, t) and

I(S\S
0
, t) = I(S, t)\I(S 0

, t) for all S, S 0 ✓ Z and all t 2 T . Thus, the pair (f(·, t), g(·, t)) is
paramodular on 2Z . This coupled with the claim above implies that problem (32) is solved

by the greedy-generous solution according to the ordinal ranking of w on Z (Hassin [15,

Theorems 4 & 5]):17 List the elements of {w(z) | z 2 Z } in descending order as in (31).

Define U
n := {z 2 Z | w(z) � w

n} for each n 2 {1, . . . ,m}, Ln := {z 2 Z | w(z) 
w

N�n+1} for each n 2 {1, . . . , N �m}, and U
0 := L

0 := ?. Then a solution to problem (32)

is x̄(·|t) 2  t(X) defined by

x̄(j, i, t0
i
| t) :=

8
<

:

1
|Un\Un�1| (f(U

n
, t)� f(Un�1

, t)) if (j, i, t0
i
) 2 U

n

1
|Ln\Ln�1| (g(L

n
, t)� g(Ln�1

, t)) if (j, i, t0
i
) 2 L

n
.

(This x̄(j, i, t0
i
| t) is well-defined because if z 2 U

n then w(z) � w
n for some n  m and hence

z 62 L
k for all k  N �m. And x̄(·|t) 2  t(X) because if t0

i
6= ti then f(Un

, t)� f(Un�1
, t) =

g(Ln
, t)� g(Ln�1

, t) = 0 and hence x̄(j, i, t0
i
) = 0.)

Apply the above reasoning to all t 2 T and let q̄(t) :=  
�1
t (x̄(·|t)). Then q̄ is a solution

for (7) and is a greedy-generous solution that su�ces Q ◆ QB according to Lemma 1. ⌅

17The compliance condition in Hassin’s Theorem 4 is meant to be assumed for all subsets rather than only

those related by set inclusion.
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B.4 Lemma 2 and Proposition 1

Proof of Lemma 2 For any ex post allocation q, any type profile t := (ti)i2I 2 T and any

S ✓ Z , by (14) we have

X

(i,j)2I⇥J

q
j

i
(t)�S(j, i, ti) =

X

(j,i,t0i)2S

q
j

i
(t)�{t0i}(ti)

(14)
=

X

(j,i,t0i)2S

q(j, i, t0
i
| t) =

X

z2S

q(z | t).

Thus, for any nested sequence (Sn)m
n=0 in the form of (15), every S

n (8n) is upward upward

binding for q if and only if

8n = 1, . . . ,m :
X

z2Sn

q(z | t) = f(Sn
, t). (35)

By our definition of greedy solutions within
S
S given t, to prove the equivalence between

upward bindingness and greediness, it su�ces to prove that (35) is equivalent to

8k = 1, . . . ,m :
X

z2Sk\Sk�1

q(z | t) = f(Sk
, t)� f(Sk�1

, t). (36)

(35) ) (36): Just apply (35) to the cases of n = k and n = k � 1 to obtain

X

z2Sk\Sk�1

q(z | t) =
X

z2Sk

q(z | t)�
X

z2Sk�1

q(z | t) = f(Sk
, t)� f(Sk�1

, t).

(36) ) (35): For any n 2 {1, . . . ,m}, by (15) we have S
n =

F
n

k=1

�
S
k \ Sk�1

�
and hence

X

z2Sn

q(z | t) =
nX

k=1

X

z2Sk\Sk�1

q(z | t) (36)
=

nX

k=1

�
f(Sk

, t)� f(Sk�1
, t)
�
= f(Sn

, t),

with the last “=” due to telescoping and f(?, t) = 0. Thus, upward bindingness is equivalent

to greediness. The part for downward bindingness and generosity is symmetric. ⌅

Proof of Proposition 1 Let Q ◆ QB and pick any w 2 RZ and any q̄ that solves (7). By

Statement (c) of Theorem 1, let S+ := {S ✓ Z | p+(S) > 0}, and S� := {S ✓ Z | p�(S) >
0}. For any z 2 Z such that w(z) 6= 0, Eq. (8) requires that z 2 S for some S 2 S+ [ S�.

Thus {z 2 Z | w(z) 6= 0} ✓
S

S2S+[S�
S. Every S 2 S+ belongs to a collection of elements

of S+ such that the set inclusion relation ✓ is total on the collection. Extend the collection

to maximal to obtain a maximal nested sequence S := (Sk)m
k=1 for some m 2 {1, 2, . . . , |S+|}

within S+. By (9), every S
k (8k) is upward binding for q̄, then it follows from Lemma 2
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that q̄(·|t) is a greedy solution within
S

S wrt ⌫S for every type profile t 2 T . Obviously

S+ is the union of all these maximal nested sequences. By the same token, S� is the union

of all the maximal nested sequences among its elements, and q̄(·|t) is generous within
S
S

wrt DS for every such nested sequence S. ⌅

B.5 Lemma 3

By the definitions of M+, M�, w and p in the text preceding the statement of the lemma,

the equation system (8) is equivalent to [M+,M�]p = w. By Theorem 2 of Chu et al. [8], a

nonnegative solution for p exists if the cover order of [M+,M�,�w] is less than or equal to

the cover order of [M+,M�]. According to the procedure in their Section 4, the cover order

of any matrix say A is equal to the maximum number of (strictly) positive entries among

all the nonnegative rows that any Gaussian elimination on A can produce. Since the only

di↵erence between [M+,M�,�w] and [M+,M�] is the �w column, any nonnegative row

produced by a Gaussian elimination on [M+,M�,�w] that has zero at the entry for �w can

be produced by the same Gaussian elimination on [M+,M�]. Thus, the desired inequality

between their cover orders follows from the hypothesis in the lemma. ⌅

B.6 Proposition 2

Since |T1| � 2 by assumption, pick any ✓, ✓ 2 T1 such that ✓ 6= ✓. Let me start by assuming

{1} [ I⇤ = I and hence (16) becomes

c1 <

X

i2I⇤

ci  C < c1 + ck 8k 2 I⇤. (37)

When this case is done, I will extend the proof to the other case.

By the necessity assertion in Theorem 1, it su�ces Q 6◆ QB to find a w 2 RZ for

which there exists no (p+, p�) : 2Z ! R2
+ that satisfies both (8) and (9) given any q̄ that

solves (7). To that end, pick any w > w > 0 for which

wc1 > w

X

i2I⇤

ci. (38)

For each i 2 I (= I⇤ [ {1}) and any ti 2 Ti, let

w(i, ti) :=

8
<

:
w if (i, ti) = (1, ✓)

w else.
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Then, for every t := (ti)i2I 2 T the solution to problem (7) is

q̄(t) =

8
><

>:

(c1, 0, . . . , 0| {z }
I⇤

) if t1 = ✓

(0, (ci)i2I⇤) else.

(39)

To verify that, note from the positivity of w that any solution is to max out the total

usage of the capacity as long as there is still room to fit in one more player. Thus, (37)

implies that there are only two contenders for the allocation outcome, either (0, (ci)i2I⇤) or

(c1, 0, . . . , 0). When t1 = ✓, all the players in I⇤ gets the low weight w while player 1 gets the

high weight w; then the total w-value of (0, (ci)i2I⇤) is equal to w
P

i2I⇤ ci, while the total

w-value of (c1, 0, . . . , 0) is wc1. By (38), w
P

i2I⇤ ci < wc1 and hence q̄(t) = (c1, 0, . . . , 0).

When t1 6= ✓, every player gets the same weight w. Then the w-value of (c1, 0, . . . , 0) is equal

to wc1, while that of (0, (ci)i2I⇤) is w
P

i2I⇤ ci. Since c1 <
P

i2I⇤ ci by (16), (c1, 0, . . . , 0) has

less w-value than (0, (ci)i2I⇤) does. Thus q̄(t) = (0, (ci)i2I⇤), and hence (39) holds.

Next, let us observe that no S ✓ Z that contains (1, ✓) can be upward binding for q̄.

First, apply (3), (4) and (5) to the definition of X to obtain

f(S, t) =

8
>><

>>:

P
i2I⇤ ci if I⇤ ✓ I(S, t)

c1 if 1 2 I(S, t) 6= {1} [ I⇤
P

i2I(S,t) ci if 1 62 I(S, t)

(40)

because
P

i2K ci < c1 <
P

i2I⇤ ci  C for all K ( I⇤ by (37). Second, note that

[(1, ✓) 2 S, t1 = ✓, S is upward binding for q̄] ) I(S, t) = {1} [ I⇤. (41)

That is because t1 = ✓ implies q̄(t) = (0, (ci)i2I⇤) by (39). Meanwhile, (1, ✓) 2 S implies

1 2 I(S, t). If I(S, t) 6= {1} [ I⇤ then f(S, t) = c1 by (40). But then S is not upward

binding, because
P

i2I(S,t) q̄i(t) is equal to either 0 if I(S, t) = {1}, or
P

i2K q̄i(t) =
P

i2K ci

if I(S, t) = {1} [K for some K ( I⇤. In the former case, clearly
P

i2I(S,t) q̄i(t) < f(S, t). In

the latter case, since
P

i2I(S,t) q̄i(t) =
P

i2K ci < c1 = f(S, t) due to (37). Thus (41) is true.

Third, note

[(1, ✓) 2 S, S is upward binding for q̄] ) 8i 2 I⇤ 8ti 2 Ti [(i, ti) 2 S] . (42)

Otherwise, say (i0, si0) is missing for some i
0 2 I⇤ and si0 2 Ti0 , then take t such that t1 = ✓

and ti0 = si0 to see that I(S, t) 6= {1} [ I⇤, which contradicts (41), as t1 = ✓.

50



Fourth, consider any type profile t for which t1 = ✓. Then q̄(t) = (c1, 0, . . . , 0) by (39).

Given this t, if S is upward binding then I(S, t) ◆ I⇤ by (42); consequently, f(S, t) =
P

i2I⇤ ci

(by (40)) on one hand, and
P

i2I(S,t) q̄i(t) 
P

i2{1}[I⇤ q̄i(t) = c1 on the other hand. Thus
P

i2I(S,t) q̄i(t) < f(S, t), which contradicts the premise that S is upward binding for q̄.

In sum, any S ✓ Z that contains (1, ✓) is not upward binding for q̄. Then (8) in the

case of z = (1, ✓)) becomes

w(1, ✓) = �
X

S✓Z

p�(S)�S(1, ✓)  0,

contradicting the fact that w(1, ✓) = w > 0. Thus, there exists no (p+, p�) : 2Z ! R2
+ that

satisfies both (8) and (9) given any q̄, as asserted.

Finally, consider the other case, where I0 := I \ ({1} [ I⇤) 6= ?. Since ci > 0 for all

i 2 I, we can pick any w > 0 for which

8i 2 I0 : wci > w

X

i2{1}[I⇤

ci.

Extend the previously chosen w to the player-types in
S

i2I0({i}⇥ Ti) by

8i 2 I08ti 2 Ti : w(i, ti) := w.

Given the extended w, for every type profile t the solution q̄(t) to problem (7) satisfies

q̄i(t) = ci for all i 2 I0 since every such i weighs more than the highest possible total weight

of I \ I0 (= {1}[ I⇤). Let C 0 = C �
P

i2I0 ci. By (16), C 0
> 0 and C

0 plays the role of the C

in the proof of the previous case. Thus, for all i 2 {1} [ I⇤, the solution q̄i(t) is the same as

what is given in (39). Consequently, the proof follows as in the previous case. ⌅

B.7 Proposition 3

Given any w := (w(i, ti))(i,ti)2Z 2 RZ , define a binary relation � on Z by

(i, ti) � (k, tk) () [w(i, ti) > w(k, tk) or [w(i, ti) = w(k, tk) and i < k]] .

List the elements of Z as (zk)|Z |
k=1 in descending order of � so that

z
1 � z

2 � · · · � z
n⇤ � z

n⇤+1 � · · · � z
|Z |

,
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with w(zn⇤) � 0 > w(zn⇤+1). For any m 2 {1, . . . , |Z |}, let

U
m := {zk | 1  k  m}

L
|Z |�m+1 := {zk | m  k  |Z |}.

Thus, each U
m is an upper contour set, and each L

|Z |�m+1 a lower contour set, wrt �.

Denote the output of the algorithm defined in Section 4.2 given type profile t 2 T

by q̄(t). The proof of the proposition proceeds with the following lemmas.

Lemma 7 For any t 2 T and any m 2 {1, . . . , |Z |},
P

i2I(Um,t) q̄i(t) = f(Um
, t).

Proof By the definition (4) of f , the claim is the same as q̄(t) maximizing the total quality
P

i2I(Um,t) yi received by the members of I(Um
, t) among all feasible allocation outcomes

(yi)i2I 2 X. Given type profile t := (ti)i2I , list all the players in I as

i1, i2, . . . , i|I(Um,t)|, . . . , in�1, in,

so that h < k () (ih, tih) � (ik, tik). The algorithm proceeds player-by-player in the order

of this list. Note I(Um
, t) = {i1, . . . , i|I(Um,t)|}: If ik 2 I(Um

, t) and h < k, then (ik, tik) 2 U
m

and (ih, tih) � (ik, tik); since U
m is an upper contour set wrt �, (ih, tih) 2 U

m and hence

ih 2 I(Um
, t). Thus, objects are allocated only to the members of I(Um

, t) in the first

|I(Um
, t)| iterations. Since objects are allocated in descending order of their qualities (from

low indices j1 and j2 to high ones), the players in I(Um
, t) get higher-quality objects than

those outside I(Um
, t) do except when there are not enough I1-members in I(Um

, t) to fulfill

the quota (|I(Um
, t)\ I1| < ⇣) and so exactly ⇣ � |I(Um

, t)\ I1| of the top-⇠ quality objects

are reserved for the I1-members outside I(Um
, t). In that case, the algorithm reserves only

the lowest-quality ones in the top-⇠ category, and assigns to the non-I1-members in I(Um
, t)

the highest-quality objects below the top-⇠ category only if no more top-⇠ unreserved object

is available. Thus, the quota constraint is binding in this case, and hence these non-I1

members cannot switch their below-top-⇠ objects to the reserved top-⇠ one. Thus, the total

quality assigned to I(Um
, t) is maximized among all feasible allocation outcomes.

Lemma 8 For any t 2 T and any m 2 {1, . . . , |Z |},
P

i2I(L|Z�m+1,t) q̄i(t) = g(L|Z �m+1
, t).

Proof First observe, for any test set S ✓ Z and any type profile t 2 T , that

g(S, t) =
nX

j=1

⇢j � f(Z \ S, t). (43)
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This follows from the feasibility requirement in this model that all objects be assigned, which

implies that minimizing the total quality assigned to I(S, t) is the same as maximizing the

total quality assigned to I \I(S, t) (= I(Z \S, t)).18 Then (43) follows from the definition (5)

of g. Second, note L
|Z |�m+1 = Z \ Um�1 by the definition of Um and L

|Z |�m+1. Thus,

X

i2I(L|Z |�m+1,t)

q̄
j

i
(t) =

nX

j=1

⇢j �
X

i2I(Um�1,t)

q̄
j

i
(t)

=
nX

j=1

⇢j � f
�
U

m�1
, t
�

= g
�
L
|Z |�m+1

, t
�
,

where the first line is due to the feasibility of q̄, the second line due to the Lemma 7, and

the third line due to (43).

Lemma 9 For any type profile t 2 T , q̄(· | t) is a greedy solution wrt � within U
n⇤, and a

generous solution wrt � within Z \ Un⇤.

Proof By the definitions of Um and L
|Z �m+1, we have the nested sequence ? =: U0 (

U
1 ( · · · ( U

n⇤ of the upper contour sets wrt � in the subset of Z that are assigned

nonnegative w values, and the nested sequence ? =: L0 ( L
1 ( · · · ( L

|Z |�n⇤ = Z \ Un⇤

of the lower contour sets wrt � in the rest of Z . Then the previous two lemmas together

imply the greediness and generosity of q̄ due to Lemmas 2.

Lemma 10 For any t 2 T , the output q̄(t) of the algorithm solves problem (7), namely,

maximizes
P

i2I yiw(i, ti) among all (yi)i2I 2 cv(X).

proof Let t 2 T . The algorithm given t makes the allocation player-by-player in the

order of i1, i2, . . . , in, such that h < k () (ih, tih) � (ik, tik). For the maximization of
P

i2I yiw(i, ti), there is no loss to restrict the choice set cv(X) to X, because X is finite

and the objective linear. Thus, pick any (yi)i2I 2 X as an alternative to q̄(t). For any

m 2 {1, . . . , n}, there exists an upper contour set U wrt � for which I(U, t) = {i1, . . . , im}
(shown in the proof of Lemma 7). Lemma 7 applied to U implies that

mX

k=1

yik 
mX

k=1

q̄ik(t).

18I thank Yijia Ding for suggesting this symmetry to me.
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Thus, (q̄ik(t))
n

k=1 weakly majorizes (yik)
n

k=1. This, coupled with the fact that (w(ik, tik))
n

k=1

is a weakly decreasing sequence (by the definition of �), implies the desired inequality

nX

k=1

w(ik, tik)yik 
nX

k=1

w(ik, tik)q̄ik(t). ⌅

Due to the above lemmas, Proposition 3 follows from Lemma 1.

B.8 Corollary 2

Pick any (s1, s2) 2 (0, 1)2 and consider the test set (S1, S2) such that Sk = {tk 2 Tk |
Fk(tk) > 1 � s} for each k 2 {1, 2}. Thus, both the left- and right-hand sides of (19) are

functions of (s1, s2). Denote the left-hand side by �(s1, s2), and right-hand side by �(s1, s2).

Note from (43) that

�(s1, s2) =
2

n

nX

j=1

⇢j � �(1� s1, 1� s2). (44)

Since the corollary assumes the quota constraint to be ⇠ = ⇣ = 1, any allocation outcome

that maximizes the total quality for any set I(S, t) of players assigns object 1 to any I1-

member in I(S, t) and, for the other members of I(S, t), assign them the top-quality objects

below object 1. To ease the inspection on which group (I1 or I2) of players that an expression

refers to, let nk := |Ik| (= n/2) for each k 2 {1, 2}. Since types are iid within each I1 and I2,

�(s1, s2) =
n2X

k2=0

k2+1X

j=2

⇢j

0

@ n1

0

1

A

0

@ n2

k2

1

A (1� s1)
n1s

k2
2 (1� s2)

n2�k2

+
n1X

k1=1

n2X

k2=0

k1+k2X

j=1

⇢j

0

@ n1

k1

1

A

0

@ n2

k2

1

A s
k1
1 (1� s1)

n1�k1s
k2
2 (1� s2)

n2�k2 .

After a lengthy calculation (similar to Gershkov et al. [10, Appendix C]), one can obtain

@

@s1
�(s1, s2) = n1⇢1(1� s1)

n1�1

+n1

n1X

k1=2

n2X

k2=0

⇢k1+k2

0

@ n1 � 1

k1 � 1

1

A

0

@ n2

k2

1

A s
k1�1
1 (1� s1)

n1�k1 s
k2
2 (1� s2)

n2�k2

@

@s2
�(s1, s2) = n2

n1X

k1=0

n2X

k2=1

⇢max{k1,1}+k2

0

@ n1

k1

1

A

0

@ n2 � 1

k2 � 1

1

A s
k1
1 (1� s1)

n1�k1s
k2�1
2 (1� s2)

n2�k2 .
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Combining these two equation with (44), one can obtain the partial derivatives of �:

@

@s1
�(s1, s2) = n1⇢1s

n1�1
1

+n1

n1�1X

k1=1

n2X

k2=0

⇢n�k1�k2+1

0

@ n1 � 1

k1 � 1

1

A

0

@ n2

k2

1

A s
k1�1
1 (1� s1)

n1�k1s
k2
2 (1� s2)

n2�k2

@

@s2
�(s1, s2) = n2

n1X

k1=0

n2X

k2=1

⇢n�min{n1�1,k1}�k2+1

0

@ n2 � 1

k2 � 1

1

A

0

@ n1

k1

1

A s
k1
1 (1� s1)

n1�k1s
k2�1
2 (1� s2)

n2�k2 .

These expressions of the partial derivatives are equal to the interim expected qualities (as

functions of upper quantiles) defined in the text preceding the statement of the corollary:

@

@s1
�(s1, s2) = n1A1(s1 | s2)

@

@s2
�(s1, s2) = n2A2(s2 | s1)

@

@s1
�(s1, s2) = n1Z1(s1 | s2)

@

@s2
�(s1, s2) = n2Z2(s2 | s1).

Thus, for any (↵1,↵2) 2 (0, 1)2, �(↵1,↵2) and �(↵1,↵2) are equal to the left- and right-hand

sides of (20). Then the corollary follows from Proposition 3. ⌅

B.9 Non-Paramodularity of the Matching Model (Section 4.3)

By the definitions of X in Section 4.3 and the functions ' and � defined by '(E) :=

maxx2X
P

(i,j)2E x
j

i
and �(E) := minx2X

P
(i,j)2E x

j

i
(8E ✓ I ⇥ J), we have:

'{(1, j), (2, j)} = '{(i, j0) | j0 2 J
0} = �{(i, j0) | j0 2 J} = 1

[M ◆ {(1, j), (2, j0)}, j0 6= j] ) '(M) = 2

J
00 ( J ) � ({i}⇥ J

00) = 0

for any player i 2 I, any object j 2 J , and any nonempty subset J 0 ✓ J .

A counterexample to the submodularity of ' is: '{(1, 1), (2, 1)} + '{(2, 1), (2, 2)} =

1 + 1 = 2, whereas

' ({(1, 1), (2, 1)} [ {(2, 1), (2, 2)}) + ' ({(1, 1), (2, 1)} \ {(2, 1), (2, 2)})

= '{(1, 1), (2, 1), (2, 2)}+ '{(2, 1)} = 2 + 1 = 3.

55



A counterexample to compliance is:

'{(1, 1), (2, 1)}� ' ({(1, 1), (2, 1)} \ ({1}⇥ J)) = 1� '{(2, 1)} = 1� 1 = 0;

whereas

� ({1}⇥ J)� � (({1}⇥ J) \ {(1, 1), (2, 1)}) = 1� � ({1}⇥ (J \ {1})) = 1� 0 = 1. ⌅

B.10 Proposition 4

B.10.1 The Revealed Preferences of q̄

Pick any w 2 RZ . For any type profile t := (t1, t2) 2 T , the problem (7) is

max
x2cvX

X

(i,j)2I⇥J

x
j

i
w(j, i, ti) = max

x2X

X

(i,j)2I⇥J

x
j

i
w(j, i, ti),

with the equality due to linearity of the objective and finite cardinality of X. We can thus

choose q̄ such that q̄(t) is the (integral) solution to the problem on the right-hand side that

breaks ties by picking the player-object pair with the (lexicographically) lower index.

To express q̄ explicitly, define, for any i 2 {1, 2} and any ti 2 Ti, the top and second-

highest contenders for player-type (i, ti) by

j
1(i, ti) := min

✓
argmax

j2J
w(j, i, ti)

◆

j
2(i, ti) := min

�
argmax

j2J\{j1(i,ti)}w(j, i, ti)
�
.

For every object j and every player-type (i, ti), define

�(j, i, ti) := w(j, i, ti)� max
j02J\{j}

w(j0, i, ti). (45)

Claim: For every type profile t := (t1, t2) 2 T , q̄(t) chooses the allocation out-

come (1 7! j
1(1, t1), 2 7! j

1(2, t2)) (matching player 1 with object j
1(1, t1), and player 2

with object j
1(2, t2)) if j1(1, t1) 6= j

1(2, t2); if j1(1, t1) 6= j
1(2, t2) and �(j1(1, t1), 1, t1) �

�(j1(2, t2), 2, t2), q̄(t) chooses the outcome (1 7! j
1(1, t1), 2 7! j

2(2, t2)) (matching player 1

with the top contender for player-type (1, t1), and player 2 with the second-highest contender

for player-type (2, t2)); else it chooses (1 7! j
2(1, t1), 2 7! j

1(2, t2)).

The claim is obvious when j
1(1, t1) 6= j

1(2, t2). When j
1(1, t1) = j

1(2, t2) =: j⇤, both

players 1 and 2 rank object j⇤ the highest in terms of w-values, while q̄ can match only
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one of them with j⇤ due to the one-to-one matching constraint. That is, q̄(t) either couples

(j⇤, 1, t1) with the second-highest contender in the column for (2, t2), or couples (j⇤, 2, t2)

with the second-highest contender in the column for (1, t1), whichever generates the larger

total w-value (with ties broken in favor of player 1). In other words, if

w(j⇤, 1, t1) + w
�
j
2(2, t2), 2, t2

�
� w(j⇤, 2, t2) + w

�
j
2(1, t1), 1, t1

�
,

or equivalently, �(j⇤, 1, t1) � �(j⇤, 2, t2), then q̄(t1, t2) chooses (j⇤, 1, t1) over (j⇤, 2, t2); else

q̄(t1, t2) chooses (j⇤, 2, t2) over (j⇤, 1, t1). Thus, the claim follows. ⌅

Competition for the Same Player-Type For any player-type (i, ti) (i 2 I, ti 2 Ti), the

behavior of q̄ within the set J⇥{(i, ti)} is consistent with the ordinal ranking of the w-values

of its elements, as it chooses either the top or second-highest contender and never chooses

any other element in the set. More precisely, arrange the elements of J ⇥ {(i, ti)} into a list

(j1, i, ti) ⇠iti (j
2
, i, tii) �iti (j

3
, i, tii) �iti · · · �iti (j

N�1
, i, tii) (46)

(N = |J |) such that j
1 = j

1(i, ti), j2 = j
2(i, ti), and n < m ) w(jn, i, ti) � w(jm, i, ti).

Define

V
n

iti
:= {jk | 1  k  n+ 1} 8n = 1, . . . , N � 1,

Liti := J ⇥ {(i, ti)}.

Let ⌫iti denote “�iti or ⇠iti .” Then the (V n

iti
)N�1
n=1 is the set of the upper contour sets wrt ⌫iti

within J⇥{(i, ti)} and constitutes a nested sequence, and Liti is a lower contour set therein.

Competition for the Same Object For any j 2 J , let us inspect the behavior of q̄

within {(j, i, ti) | i 2 I; ti 2 Ti}, temporarily called “row” due to its position in Table 3.

First, as noted before, q̄ never picks a member (j, i, ti) in the row that is neither the top nor

the second-highest contender in its “column” J ⇥ {(i, ti)}. Second, a member (j, i, ti) of the

row that is not the top contender in its column is never chosen by q̄ over a member (j, k, t0
k
)

that is the top contender in its column J ⇥ {(k, t0
k
)}: The two members are both relevant

to q̄ only when the type profile is (ti, t0k). Now that (j, i, ti) is not the top contender in its

column, the top contender in that column gets to be chosen together with (j, k, t0
k
), and so
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(j, k, t0
k
) is not crowded out. Thus, the competition within a row is only among its members

that are the top contenders in their own columns, namely, the members of the set

Zj := {(j, i, ti) | i 2 I; ti 2 Ti; j = j
1(i, ti)}.

When the type profile is (t1, t2) and both (j, 1, t1) and (j, 2, t2) belong to Zj, the claim

just proved above says that q̄(t1, t2) chooses between (1, t1) and (2, t2) according to the ordinal

ranking between �(j, 1, t1) and �(j, 2, t2), with ties broken in favor of the lower-indexed one.

Thus, let �j denote this ranking on Zj, so

�(j, i, ti) > �(j, k, t0
k
) =) (j, i, ti) �j (j, k, t

0
k
)

and, in the case of �(j, i, ti) = �(j, k, t0
k
), (j, i, ti) �j (j, k, t0k) if i < k or “i = k and ti / t

0
k
” (/

a strict total order on Ti). Label the elements of Zj so that Zj = {zn | n = 1, . . . , |Zj|} and

z
1 �j z

2 �j�j · · · �j z
|Zj |. (47)

For any n = 1, . . . , |Zj|}, let
U

n

j
:= {zk | 1  k  n}.

Then the nested sequence (Un

j
)
|Zj |
n=1 consists of all the upper contour sets wrt �j within Zj.

B.10.2 The Bindingness of Test Sets U
n

j
, V n

iti
and Liti

By Lemma 2, to prove that U
n

j
and V

n

iti
are upward binding, it su�ces to prove that q̄ is

greedy within the corresponding restricted domains. The case for Liti is similar and simpler.

First, pick any j 2 J to show that q̄ is greedy wrt �j within Zj for all type profiles.

Let n 2 {1, . . . , |Zj|} and z
n = (j, k, tk) for some player-type (k, tk). We just need

X

(i,j)2I(Un
j \Un�1

j ,t0)

q̄
j

i
(t0) = f(Un

j
, t

0)� f(Un�1
j

, t
0) (48)

for any type profile t
0 := (t0

i
)i2I 2 T (let U

0
j
:= ?). If t0

k
6= tk then I(Un

j
, t

0) = I(Un�1
j

, t
0)

and I(Un

j
\ U

n�1
j

, t
0) = ?, and hence (48) holds, as both sides of are zero. Thus, suppose

t
0
k
= tk. Then I(Un

j
\Un�1

j
, t

0) = {k} and hence the left-hand side of (48) is equal to q̄k(t0). If

I(Un�1
j

, t
0) = ?, then the right-hand side is equal to f(Un

j
, t

0) = 1. Meanwhile, I(Un�1
j

, t
0) =

? implies that (j,�k, t
0
�k
) 62 U

n�1
j

; thus, either (j,�k, t
0
�k
) 2 Zj and hence (j, k, t0

k
) =

(j, k, tk) �j (j,�k, t
0
�k
) , or (j,�k, t

0
�k
) 62 Zj. In either case, (j, k, t0

k
) gets chosen, namely,
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q̄k(t0) = 1. Thus, (48) holds when I(Un�1
j

, t
0) = ?. When I(Un�1

j
, t

0) 6= ?, (j, i, t0
i
) 2 U

n�1
j

for

some i 2 I, which cannot be k, because t
0
k
= tk. That is, i = �k. Then (j, i, t0

i
) �j (j, k, t0k)

and hence q̄k(t0) = 0, so the left-hand side of (48) is zero. Meanwhile, I(Un�1
j

, t
0) 6= ? implies

f(Un�1
j

, t
0) = 1 and hence the right-hand side of (48) is equal to zero. Thus (48) holds again.

All cases considered, we have proved the greediness of q̄ wrt �j.

Second, pick any i 2 I and any ti 2 Ti to show that q̄ is greedy wrt ⌫iti within

J ⇥ {(i, ti)} for all type profiles. For any n = 1, . . . , N � 1 with (jn, i, ti) 2 V
n

iti
, we just need

X

(i,j)2I(V n
iti

\V n�1
iti

,t0)

q̄
j

i
(t0) = f(V n

iti
, t

0)� f(V n�1
iti

, t
0)

for any type profile t
0 := (t0

k
)k2I 2 T (let V

0
iti

:= ?). This is trivial if t0
i
6= ti. Suppose

t
0
i
= ti. Then I(V n�1

iti
, t

0) contains {(i, j1), (i, j2)} for all n = 2, . . . , N � 1. For all such n,

f(V n

iti
, t

0) � f(V n�1
iti

, t
0) = 1 � 1 = 0, and (jn, i, ti) is not a top-two contender and hence

q̄
j
n

i
(t0) = 0; thus, the displayed equation holds for all such n > 1. When n = 1, I(V n�1

iti
, t

0) =

? and V
n

iti
\ V n�1

iti
= V

n

iti
; hence f(V n

iti
, t

0)� f(V n�1
iti

, t
0) = 1� 0 = 1 and the left-hand side of

the displayed equation is equal to q̄
j
1

i
(t0) + q̄

j
2

i
(t0) = 1. Again the equation holds in all cases.

Third, by a symmetric argument to the previous paragraph, q̄ is generous wrt ⌫iti

within J ⇥ {(i, ti)} for all type profiles t0 2 T . In particular, if t0
i
= ti then

X

(i,j)2I(Liti ,t
0)

q̄
j

i
(t0) =

X

j2J

q̄
j

i
(t0) = 1 = g(Liti , t

0);

else I(Liti , t
0) = ? and hence

P
(i,j)2I(Liti ,t

0) q̄
j

i
(t0) = 0 = g(Liti , t

0). ⌅

B.10.3 Existence of the Shadow Price Function

We have therefore obtained collections of binding test sets:

S+ :=
�
U

n

j
| j 2 J ;n = 1, . . . , |Zj|

 [�
V

n

iti
| i 2 I; ti 2 Ti;n = 1, . . . , N � 1

 

S� := {Liti | i 2 I; ti 2 Ti} .

Note that S+[S� is a covering of the domain Z of interim allocations, as every (j, i, ti) 2 Z

belongs to Liti (= J ⇥ {(i, ti)}). Note also that L� does not include all lower contour sets,

as there is no need to do so.

To apply Theorem 1, the final step is to prove existence of the shadow price functions

p+ : S+ ! R+ and p� : S� ! R+. According to Lemma 3, let [M+,M�] be the matrix
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defined there with respect to the S+ and S� here. That is, for any (j, i, ti) 2 Z , let [jiti]

denote the row of [M+,M�,�w] corresponding to (j, i, ti), so that

[jiti] :=
⇣
([jiti](S))S2S+tS�

, [jiti](�w)
⌘

:=
�
(�S(j, i, ti))S2S+ , (��S(j, i, ti))S2S� ,�w(j, i, ti)

�
.

By Lemma 3, to verify the condition required in Theorem 1, it su�ces to prove that no

Gaussian elimination on the matrix [M+,M�,�w] can produce a nonnegative row whose

entry at the �w position is positive. Since any Gaussian elimination consists of a sequence

of row-wise operations, through addition or subtraction with each row multiplied by a co-

e�cient, the row that the elimination procedure produces is equal to
P

z2Z �z[z] for some

Z ✓ Z such that �z 2 R \ {0} is the coe�cient for the row [z] in the matrix [M+,M�,�w].

The nonnegative-row condition in Lemma 3 means
P

z2Z �z[z] = 0.

Thus, pick any Z ✓ Z and (�z)z2Z 2 (R \ {0})Z for which
P

z2Z �z[z] = 0. For any

i 2 I and any ti 2 Ti, define

Ziti := (J ⇥ {(i, ti)}) \ Z.

Note that Z = ti2I tti2Ti Ziti . Thus,

X

z2Z

�z[z] =
X

i2I

X

ti2Ti

X

z2Ziti

�z[z].

By the definition of Lkt
0
k
,

[jiti]
�
Lkt

0
k

�
=

8
<

:
�1 if (i, ti) = (k, t0

k
)

0 else.
(49)

Similarly, [jiti](V n

kt
0
k
) = 0 for all n whenever (k, t0

k
) 6= (i, ti). Thus,

⇥
S = V

n

iti
or S = Liti

⇤
=)

X

z2Z

�z[z](S) =
X

z2Ziti

�z[z](S).

By
P

z2Z �z[z] � 0,

⇥
S = V

n

iti
or S = Liti

⇤
=)

X

z2Ziti

�z[z](S) � 0. (50)
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Rearrangement for the Same Player-Type Let i 2 I and ti 2 Ti. Define

Z
�
iti

:= {z 2 Ziti | �z < 0}

Z
+
iti

:= Ziti \ Z� (= {z 2 Zk,tk
| �z > 0}).

Thus,
X

z2Ziti

�z[z] =
X

z2Z+
iti

|�z| [z]�
X

z2Z�
iti

|�z| [z].

Lemma 11 For each (i, ti) there exist a finite set K, functions ↵ : K ! Z
�
iti

and ⇣ : K !
Z

+
iti
, and a positive vector (�̃k)k2K 2 RK

++ such that ⇣(k) ⌫iti ↵(k) for each k 2 K and
X

z2Ziti

�z[z] =
X

k2K

�̃k ([⇣(k)]� [↵(k)]) .

Proof Let u : J⇥{(i, ti)} ! {1, . . . , N�1} be a utility function representing the preference

relation ⌫iti on J ⇥ {(i, ti)} (N � 1 = |J | � 1 is the number of ⇠iti-indi↵erence sets in

J ⇥ {(i, ti)}). By the definition of (V n

iti
)N�1
n=1 , for any m 2 {1, . . . , N � 1},

{z 2 J ⇥ {(i, ti)} | u(z) � m} = V
N�m

iti
. (51)

Let us construct the set K recursively. Start with any element of Z�
iti

that minimizes u

on Z
�
iti
, and denote this element by ↵(1). Initiate K by K := {1}. There exists z

0 2 Z
+
iti

for which z
0 ⌫iti ↵(1). That is because [↵(1)](V N�u(↵(1))

iti
) = 1 and hence ↵(1) contributes

a negative entry to
P

z2Ziti
�z[z](V

N�u(↵(1))
iti

) since ↵(1) 2 Z
�
iti
; the nonnegativity of this

sum then requires that there be z
0 2 Z

+
iti

for which [z0](V N�u(↵(1))
iti

) = 1 to cancel out the

negative entry. That means z0 2 V
N�u(↵(1))
iti

and hence u(z0) � u(↵(1)). Let ⇣(1) denote the

u(z0)-minimum among all the z
0 ⌫iti ↵(1) in Z

+
iti
. Let

�̃1 := min
�
|�↵(1)|, |�⇣(1)|

 
(= min

�
��↵(1), �⇣(1)

 
). (52)

For any z 2 Ziti , let

�
0
z

:=

8
>><

>>:

�↵(1) + �̃1 if z = ↵(1)

�⇣(1) � �̃1 if z = ⇣(1)

�z else

(53)

eZ�
iti

:=

8
<

:
Z

�
iti

\ {↵(1)} if �0
↵(1) = 0

Z
�
iti

else

eZ+
iti

:=

8
<

:
Z

+
iti

\ {⇣(1)} if �0
⇣(1) = 0

Z
+
iti

else.
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Then
X

z2Ziti

�z[z] =
X

k2K

�̃k ([⇣(k)]� [↵(k)]) +
X

z2 eZ�
iti

t eZ+
iti

�
0
z
[z]. (54)

Claim: (50) is preserved when Ziti is replaced by eZ+
iti
t eZ�

iti
, and �z replaced by �0

z
. The

case for S = Liti follows directly from (49). For the other case, we need to show

X

z2 eZ�
iti

t eZ+
iti

�
0
z
[z](V N�m

iti
) � 0 (55)

for all m = 1, . . . , N � 1. To that end, plug (53) into the left-hand side of (55) to have

X

z2 eZ�
iti

t eZ+
iti

�
0
z
[z](V N�m

iti
) =

X

z2 eZ+
iti

�
0
z
[z](V N�m

iti
)�

X

z2 eZ�
iti

|�0
z
[z]| (V N�m

iti
)

=
X

z2Z+
iti

�z[z](V
N�m

iti
)� �̃1[⇣(1)](V

N�m

iti
)

�
X

z2Z�
iti

|�z[z]| (V N�m

iti
) + �̃1[↵(1)](V

N�m

iti
).

The right-hand side of the equation displayed above reduces to

X

z2Z+
iti

�z[z](V
N�m

iti
)�

X

z2Z�
iti

|�z[z]| (V N�m

iti
)

when m  u(↵(1)) or m > u(⇣(1)). That is because m  u(↵(1)) implies that both ⇣(1)

and ↵(1) belong to V
N�m

iti
by (51) and so [⇣(k)](V N�m

iti
) = [↵(k)](V N�m

iti
), and m > u(⇣(1))

implies that neither ⇣(1) nor ↵(1) belong to such V
N�m

iti
and hence again [⇣(k)](V N�m

iti
) =

[↵(k)](V N�m

iti
). Thus, by the (50) for the original Ziti , (55) holds for all such m. For any

other m, namely, u(⇣(1)) � m > u(↵(1)), recall that ⇣(1) is a minimum of u(z0) among all

z
0 2 Z

+
iti

such that z0 ⌫iti ↵(1). Thus, decreasing m from u(⇣(1)) to u(↵(1)) cannot enlarge
P

z2Z+
iti

�z[z](V
N�m

iti
). Hence

X

z2Z+
iti

�z[z](V
N�m

iti
)� �̃1[⇣(1)](V

N�m

iti
)�

X

z2Z�
iti

|�z[z]| (V N�m

iti
) + �̃1[↵(1)](V

N�m

iti
)

�
X

z2Z+
iti

�z[z](V
N�u(↵(1))
iti

)� �̃1[⇣(1)](V
N�m

iti
)�

X

z2Z�
iti

|�z[z]| (V N�m

iti
) + �̃1[↵(1)](V

N�m

iti
)

=
X

z2Z+
iti

�z[z](V
N�u(↵(1))
iti

)� �̃1 �
X

z2Z�
iti

\{↵(1)}

|�z[z]| (V N�m

iti
),
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with the last line due to u(⇣(1)) � m > u(↵(1)) and hence ↵(1) 62 V
N�m

iti
3 ⇣(1), namely,

[↵(1)](V N�m

iti
) = 0 and ⇣(1)](V N�m

iti
) = 1. Since (V n

iti
)N�1
n=1 is a nested increasing sequence and

m > u(↵(1)), z 2 V
N�m

iti
) z 2 V

N�u(↵(1))
iti

. Thus,

X

z2Z�
iti

\{↵(1)}

|�z[z]| (V N�m

iti
) 

X

z2Z�
iti

\{↵(1)}

|�z[z]| (V N�u(↵(1))
iti

).

Plug this into the multiline formulas displayed above to obtain

X

z2 eZ�
iti

t eZ+
iti

�
0
z
[z](V N�m

iti
) �

X

z2Z+
iti

�z[z](V
N�u(↵(1))
iti

)� �̃1 �
X

z2Z�
iti

\{↵(1)}

|�z[z]| (V N�u(↵(1))
iti

).

By the definition (Eq. (52)) of �̃1, �̃1 
���↵(1)

�� =
���↵(1)

�� [↵(1)](V N�u(↵(1))
iti

) and hence

��̃1 �
X

z2Z�
iti

\{↵(1)}

|�z[z]| (V N�u(↵(1))
iti

) � �
X

z2Z�
iti

|�z[z]| (V N�u(↵(1))
iti

).

Plug this back into the previous inequality to obtain

X

z2 eZ�
iti

t eZ+
iti

�
0
z
[z](V N�m

iti
) �

X

z2Z+
iti

�z[z](V
N�u(↵(1))
iti

)�
X

z2Z�
iti

|�z[z]| (V N�u(↵(1))
iti

) =
X

z2Ziti

�z[z](V
N�u(↵(1))
iti

),

which is nonnegative by the (50) for the original Ziti . Thus (55) follows.

Now let Z̃+
iti
, Z̃�

iti
and �0

z
take the roles of Z+

iti
, Z�

iti
and �z. This preserves (50) by the

above reasoning and reduces the cardinality of Z+
iti

or Z�
iti

by one.

Repeat the above procedure on the updated Z
+
iti
, Z�

iti
and �z. Let ↵(2) be an element

of Z�
iti

that minimizes u(·) on Z
�
iti
, and ⇣(2) an element of Z+

iti
that minimizes u(z0) among

all z0 2 Z
+
iti

for which z
0 ⌫iti ↵(2). Update K := K t {2} and define �̃2 as in (52). Then

update Z+
iti
, Z�

iti
and �z again accordingly. As before, this update preserves (50) and further

reduces the cardinality of Z+
iti

or Z�
iti

by one.

Continue this procedure until Z+
iti

or Z�
iti

becomes empty. In the end, Z�
iti

6= ? = Z
+
iti

is

impossible, otherwise the nonnegativity condition in (50) is violated. Neither is Z�
iti

= ? 6=
Z

+
iti

possible, otherwise the elements of Z+
iti
, by (49), have negative entries at the position

for Liti that are not canceled out, again violating the nonnegativity condition. Both sets

empty, (54) turns into the equation that the lemma claims.

Apply the lemma to all player-types to obtain

X

z2Z

�z[z] =
X

i2I

X

ti2Ti

X

k2Kiti

�̃k ([⇣itk(k)]� [↵itk
(k)])
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such that for every player-type (i, ti), ↵itk
and ⇣itk are functions Kiti ! Z

�
iti

and Kiti ! Z
+
iti
,

and for each k 2 Kiti , ⇣iti(k) is a ⌫iti-minimum among z 2 Z
+
iti

for which z ⌫iti ↵(k). Let

K := ti2I tti2Ti Kiti

and extend ↵ and ⇣ to K by k 2 Kiti ) [↵(k) := ↵iti(k) and ⇣(k) := ⇣iti(k)]. Then the above

equation is more succinctly rewritten as

X

z2Z

�z[z] =
X

k2K

�̃k ([⇣(k)]� [↵(k)]) . (56)

Rearrangement for the Same Object Recall that for every j 2 J , Zj is the set of

(j, i, ti) across player-types (i, ti) such that (j, i, ti) is the top contender in J ⇥ {(i, ti)}. Let

Kj := {k 2 K | 9i 2 I 9ti 2 Ti [(j, i, ti) 2 Zj \ {↵(k), ⇣(k)}]}

for each j 2 J . Note that j 6= j
0 ) Kj \ Kj0 = ?. That is because for each player-type

(i, ti) there is a unique top contender j1(i, ti) in J ⇥ {(i, ti)} by the definition of j1(i, ti) in

Section 4.3. Thus, if one of ↵(k) and ⇣(k) is a top contender then the other is not.

By the definition of [M+,M�] and that of the sets (Un

j
)
|Zj |
n=1, [j

0
iti](Un

j
) = 0 for all n

unless j0 = j. Thus, for all j 2 J and all n 2 {1, . . . , |Zj|},

X

z2Z

�z[z](U
n

j
) =

X

k2Kj

�̃k

�
[⇣(k)](Un

j
)� [↵(k)](Un

j
)
�
.

For all such j and n, by the nonnegative-row condition,

X

k2Kj

�̃k

�
[⇣(k)](Un

j
)� [↵(k)](Un

j
)
�
� 0. (57)

For any j 2 J such that Kj 6= ?, define

K�
j

:= {k 2 Kj | ↵(k) 2 Zj}

K+
j

:= {k 2 Kj | ⇣(k) 2 Zj}.

Thus, if k 2 K�
j

then [↵(k)] enters the Gaussian elimination through subtraction (nega-

tive �↵(k)) and, since ↵(k) 2 Zj, the subtraction �[↵(k)] contributes a negative entry at the

position for some U
n

j
. Analogously, if k 2 K+

j
then [⇣(k)] enters the Gaussian elimination

through addition and contributes a positive entry at the position for some U
n

j
.
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Since ↵(k) and ⇣(k) cannot be both top contenders, K�
j
\K+

j
= ?. Thus, (57) becomes

X

k2K+
j

�̃k

�
[⇣(k)](Un

j
)� [↵(k)](Un

j
)
�
�
X

k2K�
j

�̃k

�
[↵(k)](Un

j
)� [⇣(k)](Un

j
)
�

for all n. Since neither the ↵(k) on the left-hand side nor the ⇣(k) on the right-hand side

are top contenders, their values at Un

j
are both zero. Thus, for any n = 1, . . . , |Zj|,

X

k2K+
j

�̃k[⇣(k)](U
n

j
) �

X

k2K�
j

�̃k[↵(k)](U
n

j
). (58)

Lemma 12 For each j 2 J such that Kj 6= ?, there exist a finite set H, functions ✓ :

H ! K�
j

and � : H ! K+
j
, a positive vector (�⇤

h
)h2H 2 RH

++ and a K⇤
j
✓ K+

j
such that

⇣(�(h)) ⌫j ↵(✓(h)) for each h 2 H and

X

k2Kj

�̃k ([⇣(k)]� [↵(k)]) =
X

h2H

�
⇤
h
([⇣(�(h))]� [↵(�(h))] + [⇣(✓(h))]� [↵(✓(h))])

+
X

k2K⇤
j

�̃k ([⇣(k)]� [↵(k)]) .

Proof Mimic the proof of Lemma 11. Let v : Z ! {1, . . . , |Zj|} be a utility function

representing the preference relation ⌫j on Zj. By the definition of (Un

j
)
|Zj |
n=1, for any m 2

{1, . . . , |Zj|},
{z 2 Zj | v(z) � m} = U

|Zj |�m+1
j

.

To construct the set H, start with any element of K�
j

that minimizes v(↵(k)) among all

k 2 K�
j
and denote it by ✓(1). Initiate H by H := {1}. By (58), let �(1) be any k

0 2 K+
j

that minimizes v(⇣(k0)) among all k0 2 K+
j
for which ⇣(k0) ⌫j ↵(✓(1)). Let

�
⇤
1 := min

n
�̃✓(1), �̃�(1)

o
.

Just as in (53) for Lemma 11, dissect the larger one between �̃✓(1) and �̃�(1) into two portions,

one equal to �⇤
1 , and the other equal to the remaining portion. Extract the �⇤

1 portions of ✓(1)

and �(1) from K�
j
and K+

j
and put them into the set indexed by H. Then, analogous to (54),

X

k2Kj

�̃k ([⇣(k)]� [↵(k)]) =
X

h2H

�
⇤
h
([⇣(�(h))]� [↵(�(h))] + [⇣(✓(h))]� [↵(✓(h))]) (59)

+
X

k2eK�
j teK+

j

�̃
0
k
([⇣(k)]� [↵(k)]) ,
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with eK�
j
, eK+

j
and �̃0

k
analogously defined. Just like (55), for all n 2 {1, . . . , |Zj|},

X

k2eK�
j teK+

j

�̃
0
k

�
[⇣(k)](Un

j
)� [↵(k)](Un

j

�
� 0

due to (58), (Un

j
)
|Zj |
n=1 being an increasing nested sequence, and �(1) minimizes v(⇣(k)) among

the k 2 K+
j
such that ⇣(k) ⌫j ↵(✓(1)).

Now let eK�
j
, eK+

j
and �̃

0
k
take the roles of K�

j
, K+

j
and �̃k. This preserves (58) and

reduces the cardinality of K�
j

or K+
j

by one. Repeat until at least one of the two sets

becomes empty. By (58), K�
j
6= ? = K+

j
is impossible. Thus, in the end, K�

j
= ? and thus

the last sum in (59) becomes
X

k2eK+
j

�̃
0
k
([⇣(k)]� [↵(k)])

with the updated eK+
j
in the end. Assign this eK+

j
to K⇤

j
and the desired equation obtains.

B.10.4 Proof of Proposition 4

By Lemma 3, the proposition follows from Theorem 1 if
P

z2Z �z[z](�w)  0. Suppose, to

the contrary, that the inequality does not hold. Then by (56),

X

k2K

�̃k (w(⇣(k))� w(↵(k))) < 0.

This inequality implies that w(⇣(k))� w(↵(k) < 0 for some k 2 K, because �̃k > 0 for all k

(Lemma 11). Recall that for every k 2 K, both ⇣(k) and ↵(k) belong to some J⇥{(i, ti)} and
⇣(k) ⌫iti ↵(k). Thus, if w(⇣(k))�w(↵(k) < 0 then ↵(k) ⌫iti ⇣(k) and so ↵(k) ⇠iti ⇣(k), which

coupled with w(⇣(k)) � w(↵(k) < 0 implies that ↵(k) is the top contender in J ⇥ {(i, ti)}.
Consequently, ↵(k) 2 Zj for some j 2 J . In other words, w(⇣(k)) � w(↵(k) < 0 ) k 2 Kj

for some j 2 J , and hence the strict inequality displayed above implies

X

j2J

X

k2Kj

�̃k (w(⇣(k))� w(↵(k))) < 0.

Since �̃k > 0 for all k 2 K, the above inequality in turn implies that for some j 2 J ,

X

k2Kj

�̃k (w(⇣(k))� w(↵(k))) < 0.
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Meanwhile, apply the equation asserted by Lemma 12 to the entry for �w and multiply

both sides of the equation by �1 to obtain

X

k2Kj

�̃k (w(⇣(k))� w(↵(k))) =
X

h2H

�
⇤
h
(w (⇣(�(h)))� w (↵(�(h))) + w (⇣(✓(h)))� w (↵(✓(h))))

+
X

k2K⇤
j

�̃k (w (⇣(k))� w (↵(k))) .

To derive a contradiction, I claim that the right-hand side is nonnegative. First,
P

k2K⇤
j
�̃k (w (⇣(k))� w (↵(k))) � 0. That follows from the definition of K⇤

j
in Lemma 12:

For any k 2 K⇤
j
, with K⇤

j
✓ K+

j
, ↵(k) is not a top contender and hence, by the construction

of ⇣, w(⇣(k)) � w(↵(k)). Thus, the sum is nonnegative (�̃k � 0 for all k). Second,

w (⇣(�(h)))� w (↵(�(h))) + w (⇣(✓(h)))� w (↵(✓(h))) � 0 (60)

for all h 2 H due to the property of (✓,�): By Lemma 12, ⇣(�(h)) ⌫j ↵(✓(h)). Thus,

�(⇣(�(h))) � �(↵(✓(h))) by the definition of ⌫j. Consequently, by the definition of �,

w (⇣(�(h)))� w (↵(�(h))) � �(⇣(�(h))) � �(↵(✓(h))),

with the first inequality due to the fact that ⇣(�(h)) is a top contender (the fact that

⇣(�(h)) ⌫j ↵(✓(h)) requires ⇣(�(h)) 2 Zj). Furthermore, by Lemma 12, ✓(h) 2 K�
j

and

hence ↵(✓(h)) 2 Zj, namely, ↵(✓(h)) is a top contender. This coupled with the fact

⇣(✓(h)) ⌫iti ↵(✓(h)) (Lemma 11) implies that ⇣(✓(h)) is the second-highest contender in

the J ⇥ {(i, ti)} where ↵(✓(h)) is the top contender. Thus, by the definition of �,

�(↵(✓(h))) = w (↵(✓(h)))� w (⇣(✓(h))) .

This combined with the inequality displayed above gives (60), as desired. ⌅

B.11 Lemma 4 and Remark 1

Proof of Lemma 4 Since ('⇤
, �

⇤) is a solution to (23) and q̄ a solution to the dual thereof,

(q̄,'⇤
, �

⇤) is a saddle point of the Lagrangian

L(q,', �) :=
X

(i,j)2I⇥J

X

t2T

w(j, i, ti)q
j

i
(t)µ(t) +

X

F2F

X

t2T

'(F, t)

 
f̂(F )�

X

i2F

q
j

i
(t)

!
µ(t)

+
X

G2G

X

t2T

�(G, t)

 
X

i2F

q
j

i
(t)� ĝ(G)

!
µ(t).
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For any t 2 T , k 2 {1, . . . , K}, q(t) 2 cvX, 'k(·, t) 2 RF
+ and �(·, t) 2 RG

+, define

L
t

k
(q(t),'(·, t), �(·, t)) :=

X

(i,j)2I⇥J

wk(j, i, ti)q
j

i
(t)µ(t) +

X

F2F

'k(F, t)

 
f̂(F )�

X

i2F

q
j

i
(t)

!
µ(t)

+
X

G2G

�k(G, t)

 
X

i2G

q
j

i
(t)� ĝ(G)

!
µ(t).

Claim: For any k = 1, . . . , K and any t 2 T , (q̄(t),'⇤
k
(·, t), �⇤

k
(·, t)) is a saddle point

of Lt

k
(q(t),'(·, t), �(·, t)). First, since (wk,'

⇤
k
, �

⇤
k
) belongs to P and hence satisfies (22), q̄(t)

maximizes Lk(q(t),'⇤
k
(·, t), �⇤

k
(·, t)) over all q(t) 2 RI . Second, note that

L

 
q,

X

k

�k'k,

X

k

�k�k

!
=

KX

k=1

�k

X

t2T

L
t

k
(q(t),'k(·, t), �k(·, t)).

Since (q̄,'⇤
, �

⇤) is a saddle point of L, L is minimized by (
P

k
�k'

⇤
k
,
P

k
�k�

⇤
k
) given q = q̄, as

'
⇤ =

P
k
�k'

⇤
k
and �⇤ =

P
k
�k�

⇤
k
. Consequently, since �k > 0 for all k and ('k(·, t), �k(·, t))

does not enter Lt
0
k0 for any (k0

, t
0) 6= (k, t), ('⇤

k
(·, t), �⇤

k
(·, t)) minimizes Lt

k
given q(t) = q̄(t),

for any k and any t. Thus, (q̄(t),'⇤
k
(·, t), �⇤

k
(·, t)) is a saddle point of Lt

k
, as claimed.

By the claim proved above, for any k = 1, . . . , K and any t 2 T , q̄(t) solves

max
(qji (t))(i,j)2I⇥J2RI

X

(i,j)2I⇥J

wk(j, i, ti)q
j

i
(t)µ(t)

s.t.

 
f̂(F )�

X

i2F

q
j

i
(t)

!
µ(t) � 0 (8F 2 F )

 
X

i2G

q
j

i
(t)� ĝ(G)

!
µ(t) � 0 (8G 2 G ),

because Lt

k
is the Lagrangian associated to this problem. This, combined with µ(t) > 0 and

the assumption that (f̂ , ĝ) determines cv(X), implies that for any k = 1, . . . , K and any

t 2 T , q̄(t) solves maxx2cvX
P

(i,j)2I⇥J
wk(j, i, ti)xi.

For any k = 1, . . . , K and any t := (ti)i2I 2 T , since wk is {0, 1,�1}-valued by (24),

max
x2cv(X)

X

(i,j)2I⇥J

wk(j, i, ti)xi = max
x2cv(X)

0

@
X

i:wk(j,i,ti)=1

xi �
X

i:wk(j,i,ti)=�1

xi

1

A = h
�
I(Sk,+

, t), I(Sk,�
, t)
�
,

where the last “=” uses (25), which applies because I(Sk,+
, t) \ I(Sk,�

, t) = ? by the
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definitions of Sk,+ and S
k,�. Since h is assumed linear,

h
�
I(Sk,+

, t), I(Sk,�
, t)
�

= max
x2cvX

X

(i,j)2I(Sk,+,t)

x
j

i
� min

x2cvX

X

(i,j)2I(Sk,�,t)

x
j

i

= max
x2X

X

(i,j)2I(Sk,+,t)

x
j

i
�min

x2X

X

(i,j)2I(Sk,�,t)

x
j

i
,

where the first line is due to linearity of h and (25), and the second line due to the fact

that X contains all extremal points of its convex hull. Let (bj
i
)(i,j)2I⇥J be a solution

to maxx2X
P

(i,j)2I(Sk,+,t) x
j

i
, and (aj

i
)(i,j)2I⇥J a solution to minx2X

P
(i,j)2I(Sk,�,t) x

j

i
. Since

(q̄j
i
(t))(i,j)2I⇥J is a solution to maxx2cv(X)

P
(i,j)2I⇥J

wk(j, i, ti)x
j

i
, the two formulas displayed

above together yield
X

(i,j)2I(Sk,+,t)

q̄
j

i
(t)�

X

(i,j)2I(Sk,�,t)

q̄
j

i
(t) =

X

(i,j)2I(Sk,+,t)

b
j

i
�

X

(i,j)2I(Sk,�,t)

a
j

i
.

Since I(Sk,+
, t) \ I(Sk,�

, t) = ?, the above equation implies that q̄j
i
(t) = b

j

i
for all (i, j) 2

I(Sk,+
, t), and q̄

j

i
(t) = a

j

i
for all (i, j) 2 I(Sk,�

, t). Thus,
X

(i,j)2I⇥J

q̄
j

i
(t)�Sk,+(j, i, ti) = maxx2X

P
(i,j)2I(Sk,+,t) x

j

i
= f

�
S
k,+

, t
�
,

X

(i,j)2I⇥J

q̄
j

i
(t)�Sk,�(j, i, ti) = minx2X

P
(i,j)2I(Sk,�,t) x

j

i
= g

�
S
k,�

, t
�
,

where the last “=” on each line uses the notation defined in (4) and (5). ⌅

Proof of Remark 1 Let w 2 RZ . Since X is assumed nonempty and compact, so

is cvX. Thus, problem (7) has a finite optimum, and hence its dual, problem (23), has a

solution ('⇤
, �

⇤). It follows that (w,'⇤
, �

⇤) 2 P . By total unimodularity, every element

of P is a conic combination of some {(wk,'k, �k) | k = 1, . . . , K} ⇢ P for some integer K

such that (24) is true and the ranges of both 'k and �k are {0, 1} (Lang and Yang’s [20]

Lemma 13, or Ho↵man’s [17] Lemma 3.1). Thus, (w,'⇤
, �

⇤) is the conic combination of

{(wk,'k, �k) | k = 1, . . . , K} ⇢ P satisfying (24), and hence decomposability is satisfied. ⌅

B.12 Lemma 5 and Corollaries 3 and 4

Proof of Lemma 5 It is easy to adapt Appendix B.1 to obtain Q ✓ QB for infinite type

spaces.19 Following is the proof of QB ✓ Q by a passing-to-limit argument.

19SinceX is assumed compact, every element of Q is µ-essentially bounded due to (1). Thus, following Bor-

der [3], treat both Q and QB as subsets of the L1(µ)-space of functions Z ! R. For any L1-function Q :=
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LetQ := (Qj

i
)(i,j)2I⇥J 2 QB in the original model (T,X) such that (f, g) is defined in (4)

and (5). Write Q as (Qi)i2I such that Qi := (Qj

i
)j2J for each i 2 I. For any m = 1, 2, 3, . . .,

partition RJ into a collection Cm of cells each of which has diameter at most 1/m.20 For

each player i 2 I and each cell C 2 Cm that has nonempty intersection with the range of Qi,

denote ([minC]j)j2J for the coordinate-wise minimum among all elements of C, with [minC]j

being its coordinate in the jth dimension, and define

(Qj

i
)m(ti) := max {0, [minC]j}

for all j 2 J and all ti in the inverse image Q
�1
i
(C) of C. Thus,

max
�
0, Qj

i
(ti)� 1/m

 
 (Qj

i
)m(ti)

for each m, each (i, j)⇥J and each ti 2 Ti. Since Q 2 QB in the model (T,X), Q satisfies (6)

with respect to the (f, g) defined in (4) and (5) with respect to (T,X). Since all elements

of X are assumed nonnegative in the lemma, both f and g are nonnegative-valued. Then (6)

implies that the range of Qi is contained in RJ

+. This coupled with the definition of (Qj

i
)m(ti)

implies that (Qj

i
)m(ti)  Q

j

i
(ti). Thus we have

max
�
0, Qj

i
(ti)� 1/m

 
 (Qj

i
)m(ti)  Q

j

i
(ti).

Combine this inequality with the fact that Q satisfies (6) with respect to (f, g) to see that

Q
m := ((Qj

i
)m)(i,j)2I⇥J satisfies the (6) with respect to (f, gm) because g

m satisfies (26) by

the hypothesis of the lemma.

Since there is no loss to restrict the range of Qi to a bounded set (as f and g are each

finite-valued), for each m there are only finitely many cells in Cm that intersect with the

range of Qi. Thus, (Qi)m is equivalent to a function defined on the finite type space

T
m

i
:=
�
Q

�1
i
(C) | Q�1

i
(C) 6= ?;C 2 Cm

 
.

This, coupled with the fact thatQm satisfies (6) with respect to (f, gm), means that Qm 2 QB

with respect to (f, gm) given type space Tm :=
Q

i2I T
m

i
. Since Tm is finite, Assumption (a.ii)

in the lemma implies that Q
m 2 Q in the model (Tm

, X
m). Consequently, in the model

(Qj
i )(i,j)2I⇥J 2 RZ and any L1(µ)-function w 2 RZ , define hQ,wi :=

R
T

P
(i,j)2I⇥J Qj

i (ti)w(j, i, ti)dµ(t).

Then h·, wi is a continuous linear functional on the L1-space of interim allocations.
20A cell in RJ is any set

Q
j2J [yj , y

0
j) for some real numbers yj < y0j (8j 2 J).
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(Tm
, X

m) there exists an ex post allocation q
m of which Q

m is the reduced form. Since T
m

by definition is the collection of partition cells of the original type space T , we can ex-

tend q
m and Q

m to the entire T so that qm is an ex post allocation in the model (T,Xm),

and Q
m its reduced form in the same model. This being true for all m, we can extract a

subsequence (qmk)1
k=1 converging to some ex post allocation q. Since X

m converges to X

by Assumption (b) in the lemma, q is an ex post allocation in the original model (T,X).

Then follow the reasoning in Border [3] to see that limk!1 Q
mk is the reduced form of q,

and Q = limk!1 Q
mk . Thus, Q 2 Q in the original model (T,X), as desired. ⌅

Proof of Corollary 3 Since X is determined by a paramodular pair (', �), each being

defined on 2I⇥J , we can identify X
m with �m such that

�
m(E) := max{0, g(E)� 1/m}

for every E ✓ I ⇥ J and every m 2 {1, 2, . . .}. Thus, by Eqs. (4) and (5), the pair (f, g) is

defined for the original (T,X), (f, gm) is defined for each (T,Xm), and g
m satisfies (26). By

the definition of �m and the assumption that X ✓ R+, �m converges to � in sup-norm as

m ! 1. Consequently, Xm !m X in Hausdor↵ metric and g
m !m g in sup-norm.

Thus, by Lemma 5 and Corollary 1, it su�ces to prove that, for any su�ciently large

integer m, ��m is submodular and (', �m) is compliant. Submodularity of ��m means

�
m(E) + �

m(E 0)  �
m(E [ E

0) + �
m(E \ E

0) (61)

for all E,E
0 ✓ I. Since 2I is finite, it su�ces to show, given any E,E

0 ✓ I, that (61) holds

for all su�ciently large m. If �(E) > 0 and �(E 0) > 0, then (26) implies that, for any large

enough m, �m(E) = �(E)�1/m and �m(E 0) = �(E 0)�1/m; meanwhile, the right-hand side

of (61) is never less than �(E [ E
0) + �(E \ E

0) � 2/m (by (26)). Thus (61) follows from

�(E) + �(E 0)  �(E [ E
0) + �(E \ E

0) (submodularity of ��) for all large m. If �(E) = 0

and �(E 0) = 0, then �m(E) = �
m(E 0) = 0 by the definition of �m, and (61) follows trivially

because its right-hand side is always nonnegative (by the definition of �m). Else, one of �(E)

and �(E 0) is zero, and the other positive. Then �(E[E 0) > 0 and �(E\E 0) = 0 (monotonicity

of �, due to submodularity of ��). Without loss of generality, say �(E) > 0 = �(E 0). Then

for any m su�ciently large, (61) becomes �(E)� 1/m  �(E [E
0)� 1/m, which is true by

�(E 0)  �(E [ E
0) (submodularity of ��). Thus, (61) is true for any su�ciently large m.
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Compliance of (', �m) means

'(E 0)� '(E 0 \ E) � �
m(E)� �

m(E \ E 0) (62)

for all E,E
0 ✓ I. Suppose that (62) does not hold no matter how large m is. Then, it

follows from the fact '(E 0) � '(E 0 \ E) � �(E) � �(E \ E
0) (compliance of (', �)) that

�
m(E \ E 0) = �(E \ E 0)� 1/m and �m(E) = 0 for any m. Then by the definition of �m we

have �(E) = 0 < �(E \ E
0), contradicting the monotonicity of � noted previously. Thus,

(62) holds for all su�ciently large m. Since there are only finitely many subsets of I, (62)

holds for all subsets of I when m is su�ciently large. Thus, for any su�ciently large m,

(', �m) is paramodular. Then the conclusion follows from Corollary 1 and Lemma 5. ⌅

Proof of Corollary 4 Since ⇢n > 0 by assumption in the ranked-item model, there exists

⌘ > 0 for which ⇢n � ⌘ > 0. For any positive integer r such that 1/r 2 (0, ⌘], let Xr be the

set of all (yi)i2I 2 [0, 1]n for which there exists a bijection j : I ! J such that j�1(1) 2 I1

and, for all i 2 I,

j(i) 6= n ) yi = ⇢j(i) and

j(i) = n ) ⇢n � 1/r  yi  ⇢n. (63)

That is, Xr is the same as X except that the condition yj�1(n) = ⇢n in X is replaced by (63).

Obviously, Xr converges to the original X when r ! 1. It is also clear that, for any S ✓ Z

and any t 2 T , the ceiling f(S, t) defined by (4) remains the same when X is replaced by X
r,

as there is no di↵erence regarding upper bounds between the definitions of X and X
r. Since

the only di↵erence between the two sets is the lower bound change in (63), the g(S, t) defined

by (43) when X is replaced by X
r becomes

g
r(S, t) =

nX

j=1

⇢j � f(Z \ S, t)� 1

r
. (64)

It su�ces to extend Proposition 3 to the case where X is replaced by X
r for any

su�ciently large r, for then the extended Proposition 3 implies Q = QB with respect to X
r

and any finite type space, and then Lemma 5 implies the desired conclusion.

To that end, pick any w 2 RZ . For any type profile t 2 T , modify the algorithm in

Section 4.2 by replacing the assignment q̄i⇤(t) := ⇢jk (k = 1, 2) therein with

q̄i⇤(t) :=

8
<

:
⇢jk if jk 6= n or w(i⇤, ti⇤) � 0

⇢n � 1/r if jk = n and w(i⇤, ti⇤) < 0.
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Then Lemma 7 remains true when its statement is modified by replacing the phrase “any

m 2 {1, . . . , |Z |}” with “any m 2 {1, . . . , |Z |} for which w(zm) � 0.” Lemma 8 remains

true when its statement is modified into “for any t 2 T and any m 2 {1, . . . , |Z |} for

which w(zm) < 0,
P

I(L|Z |�m+1,t) q̄i(t) = g
r(L|Z �m+1

, t).” Lemma 9 remains true without

any change. Lemma 10 remains true with the X in its statement replaced by X
r. Thus,

Proposition 3 is extended, as desired. ⌅
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