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     Abstract: This study examines the energy efficiency and environmental performance of Mexico’s
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1 Introduction 

México ranks twelfth worldwide in Greenhouse Gas (GHG) emissions, contributing 

around 1.5% of the global GHG emissions (The World Bank, 2021). The country’s 

environmental goals, as outlined in the Paris Agreement in 2015, require a 22% reduction 

in GHG emissions by 2030 compared to a status quo scenario. This target corresponds to 

a reduction of approximately 211 million tons of CO2 (Iniciativa Climática de México, 

2021). It is estimated that the manufacturing industry is responsible for over 18% of the 

total emissions, primarily due to energy consumption during production (INECC, 2018). 

The manufacturing industry sector is tasked with achieving a 25% reduction goal, 

despite accounting for 32% of the nation’s total energy consumption (Secretaría de 

Energía, 2020; Iniciativa Climática de México, 2021). This necessitates significant access 

to renewable energies, distributed generation, and the implementation of measures to 

enhance energy conservation and efficiency. The aim of this article is to assess the 

regional progression of energy efficiency within the manufacturing sector, coupled with 

the efficiency of emissions reductions. Consequently, companies could curtail their 

energy costs without affecting their output, leading to a net reduction in pollution. As 

highlighted by Wu et al. (2012), the conventional measurement of technical efficiency 

primarily emphasizes producing desired goods without adequately accounting for the 

environmental repercussions of these production processes. 

The existing literature primarily investigates the technical efficiency of total 

production through the incorporation of undesirable output, often involving cross-country 

comparisons (e.g., Chiu et al., 2016; Zhou et al., 2012). However, a noticeable gap exists 

at the country level within Latin America, including México. While prior studies have 

predominantly centered around China, comparing regional technical efficiency and 

environmental performance (e.g., Yao et al., 2015; Wang et al., 2013; Yan et al., 2020; 

Wu et al., 2012), the attention in this regard for Latin American nations, particularly 

México, has been limited. 

While some research has explored the technical efficiency of México’s manufacturing 

sector (e.g., Chávez and López Ornelas, 2014; Borrayo López et al., 2019; Vazquez-Rojas 

and Trejo-Nieto, 2014), these studies have yet to consider undesirable outputs within their 

regional analyses. Notably, a specific focus on regional assessments of the manufacturing 

sector’s technical efficiency, particularly in relation to energy and environmental 
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efficiency involving undesirable products, stays absent. As depicted by INEGI (2020b), 

the regional dimension in México assumes paramount importance, given the country’s 

distinct characterization of highly industrialized northern and central regions, contrasting 

with the southern regions’ higher reliance on oil and tourism. 

By incorporating undesirable outputs—namely, greenhouse gas emissions—into the 

production framework, the main contribution of this study is to examine whether regions 

previously recognized for high efficiency in the manufacturing sector can sustain their 

performance when environmental impacts are considered. To achieve this goal, we 

employ Data Envelopment Analysis (DEA), a non-parametric method used to evaluate 

the relative efficiencies and inefficiencies of a group of Decision-Making Units (DMUs). 

This technique sets up a production frontier that represents the best practices. DMUs that 

align with this frontier are considered efficient, while those positioned below the frontier 

are classified as inefficient. By comparing the efficiency values of DMUs below the best 

practices frontier with those on the frontier, we can accurately evaluate their performance. 

Moreover, as Yao et al. (2015) point out, by encompassing both desirable and undesirable 

outputs, it yields comprehensive efficiency metrics for energy and environmental 

performance. Thus, our secondary goal revolves around assessing the energy and 

environmental efficiencies within México’s regional manufacturing sector. We try to 

gauge the extent of improvements over time in these aspects, alongside exploring the role 

these efficiencies play in reducing energy expenses and aiding the realization of national 

environmental targets. 

Our findings show that there is significant potential for energy savings within the 

national manufacturing sector, with a possible reduction of up to 20.3% of the sector’s 

total energy consumption. Additionally, from an environmental perspective, the sector 

could achieve a reduction in GHG emissions of up to 24.3% by implementing measures 

aimed at enhancing environmental performance. If all states reached the production 

frontier—maximizing efficiency in energy use and environmental impact—they could 

collectively contribute about 3% of the national target, equivalent to 6.4 million tons of 

CO2e. At the regional level, results show that the northern states exhibit a promising 

capacity for energy savings, while the central-northern and southern states possess 

untapped potential to focus their efforts on reducing pollution. 

The rest of this paper is organized as follows. Section 2 provides a brief review of 
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earlier studies, including some applications for México. Section 3 provides some context 

of the regional use of the energy and emission intensity of the manufacturing sector. In 

section 4 the non-radial directional distance function model is explained. Section 5 

describes the variables used for the analysis and presents some descriptive statistics for 

selected variables. Section 6 reports the results of the directional, non-radial distance 

function model and the efficiency indices. Finally, section 7 provides some discussion of 

the results and concluding remarks. 

 

2 Literature Review 

Considering undesirable outputs, such as CO2 emissions from fossil fuel use, is crucial 

for several reasons. First, neglecting these outputs leads to biased efficiency scores, as 

analyses that ignore them underestimate the true environmental impact (Wu et al., 2012; 

Yao et al., 2015). Several studies support this notion, demonstrating how excluding 

undesirable outputs misrepresents performance (e.g., Yao et al., 2015; Wang et al., 2013; 

Yan et al., 2020; Wu et al., 2012). For instance, models that do not account for these 

emissions might incorrectly label practices or technologies as efficient despite their 

negative environmental consequences. Therefore, incorporating undesirable outputs 

provides a more comprehensive and realistic assessment of energy efficiency, aligning it 

with broader environmental and sustainability goals. 

Cross-country studies are abundant due to the availability of data at the national level. 

Analyzing undesirable outputs across countries reveals significant performance 

differences. Zhou et al. (2012) employed a dynamic efficiency analysis to evaluate energy 

use, carbon emissions, and integrated energy-carbon performance in OECD and non-

OECD countries. They found countries like Switzerland, Lithuania, and Ukraine on the 

efficiency frontier, indicating their ability to manage both energy use and CO2e emissions 

effectively. Conversely, nations with lower efficiency scores often relied heavily on coal 

and had lower generation efficiency, leading to higher undesirable outputs. Overall, the 

study suggests a gap between OECD and non-OECD countries, with the former generally 

showing better energy and carbon performance. Additionally, their analysis shows a link 

between generation efficiency and overall energy performance, and between lower carbon  

intensity and better CO2 emission performance. Chiu et al. (2016) explored efficiency in 

G20 countries, highlighting variations in performance while considering undesirable 
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outputs. While some countries like Turkey and México showed significant improvements, 

others like Argentina and Germany experienced declines. Interestingly, the United States 

consistently ranked highest in efficiency, while China and Saudi Arabia remained lower. 

This comparison underscores the importance of including undesirable outputs  in 

efficiency analyses. It highlights that efficiency gains in some countries might come at 

the expense of increased undesirable outputs, while others have managed to improve both. 

Prior research has focused on both specific sectors and entire economies. Studies like 

those by Zhou et al. (2012) and Wu et al. (2012) examine the electricity and industrial 

sectors, respectively, incorporating undesirable outputs into their analyses. Conversely, 

Chiu et al. (2016) consider the entire economy of G20 countries using GDP as an output 

variable. Notably, a significant portion of research has centered on China, comparing 

regional technical efficiency and environmental performance while considering 

undesirable outputs (e.g., Yao et al., 2015; Wang et al., 2013; Yan et al., 2020; Wu et al., 

2012). For instance, Yao et al. (2015) conducted a detailed regional analysis for GDP and 

carbon emissions using data from China’s provinces. Their findings suggest substantial 

potential for carbon emission reductions by improving efficiency in lagging provinces.  

While research on the manufacturing sector exists at lower levels, such as provinces 

or regions within a country, a gap persists at the national and regional levels in Latin 

America, including México. Studies such as Avile´s-Sacoto et al. (2021) evaluate 

environmental performance across states by incorporating environmental outputs (e.g., 

water consumption, energy consumption, and pollution) within a DEA variable return to 

scale output-oriented framework for the entire economy. However, they do not account 

for both desirable and undesirable outputs simultaneously, and their study is  not 

exclusively for the manufacturing sector. For the manufacturing sector in other countries, 

some studies have incorporated both desirable and undesirable outputs simultaneously. 

For instance, Zaim (2004) analyzed the manufacturing sector in U.S. states, employing a 

DEA distance function to assess efficiency while considering both output directions. 

Similarly, Wu et al. (2012) examined China’s industrial sector using province-level data 

to estimate a meta-frontier non-radial directional distance function. Studies have explored 

the technical efficiency of México’s manufacturing sector but haven’t yet considered 

undesirable outputs (e.g., Bannister and Stolp, 1995; Borrayo López et al., 2019; 

Vazquez-Rojas and Trejo-Nieto, 2014). For instance, Chávez and López Ornelas (2014) 
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examined the contributions of factors like technical efficiency and technological change 

to labor productivity variations across Mexican states. However, their analysis did not 

include undesirable outputs. They used non-parametric techniques such as Kumar and 

Russell (2002)’s decomposition and Farrell (1957)’s index to measure the technical 

efficiency of the manufacturing industry in each state. Their findings show that labor 

productivity growth was primarily fueled by enhancements in technical efficiency in the 

northern and southern regions, whereas technological advancements were the main 

contributors to productivity increases in the central regions. Different methods have also 

been employed; for instance, studies by Borrayo López et al. (2019) and Alvarez et al. 

(2017) used stochastic frontier methods to evaluate efficiency in México but also 

neglected undesirable outputs. By integrating the undesirable output, specifically 

greenhouse gas emissions, into the production framework, this research aims to 

investigate whether regions with high efficiency previously identified in the 

manufacturing sector (e.g., Chávez and López Ornelas, 2014; Borrayo López et al., 2019) 

can maintain their position when environmental considerations, specifically undesirable 

outputs, are taken into account. This approach will provide a more exact and 

comprehensive assessment of regional efficiency, aligning such evaluations with 

environmental sustainability goals. 

 

3 Context 

The manufacturing sector across México’s regions showcases considerable 

heterogeneity, with energy consumption showing a strong correlation with activity levels. 

The country’s thirty-two states are grouped into four major regions1: the Northern region, 

encompassing those bordering the U.S.; the North-Central region, forming states below 

the northern region; the Central region, encompassing central states; and the Southern.  

Of these, the Northern region’s manufacturing industry commands the highest 

consumption of electricity and natural gas nationwide, being a substantial 46.3%. 

 
1The Northern region includes Baja California (BC), Chihuahua (Chih), Coahuila (Coah), Nuevo León 
(NL), Sonora (Son) and Tamaulipas (Tamps); the North-Central region considers Aguascalientes (Ags), 
Baja California Sur (BCS), Colima (Col), Durango (Dgo), Jalisco (Jal), Michoacán (Mich), Nayarit (Nay), 

San Luis Potosí (SLP), Sinaloa (Sin) and Zacatecas (Zac); the Central region includes México City 
(CDMX), Estado de México (Mex), Guanajuato (Gto), Hidalgo (Hgo), Morelos (Mor), Puebla (Pue), 
Querétaro (Qro) and Tlaxcala (Tlax); and the Southern region includes Campeche (Camp), Chiapas (Chis), 

Guerrero (Gro), Oaxaca (Oax), Quintana Roo (QRoo), Tabasco (Tab), Veracruz (Ver) and Yucatán (Yuc). 
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Following closely are the North-Central and Central regions, accounting for 26.3% and 

15.0%, respectively. The Southern region registers the lowest consumption at 12.4% 

(with information by Secretaría de Energía, 2020; INEGI, 2020b). 

In terms of greenhouse gas (GHG) emissions, the Northern states appear as the 

foremost contributors, responsible for 29.8% of total emissions within the manufacturing 

sector in 2018. The North-Central, Central, and Southern regions follow suit with 24.6%, 

24.2%, and 21.4% contributions, respectively (with information by National Institute of 

Ecology and Climate Change (INECC in Spanish), 2018). These disparities highlight the 

importance of analyzing regional variations, which is precisely the focus of this research. 

Energy consumption within each state is largely driven by manufacturing activities, 

which require substantial energy input. A key metric for understanding current energy 

usage compared to economic activity is energy intensity. This metric quantifies the energy 

consumed per unit of economic output and is calculated as the ratio of energy 

consumption to the gross value added by the manufacturing sector. 

It is important to note that energy intensity is a macro-level indicator shaped by both 

the economic structure and energy efficiency. While energy intensity reflects overall 

energy usage patterns, energy efficiency specifically addresses the effectiveness of energy 

use by minimizing waste. Both factors are essential for comprehensive evaluation and 

improvement of energy performance across states. 

Figure 1(a) presents the energy intensity values for each Mexican state across regions 

for the years 1998 and 2018. Energy intensity refers to the amount of energy used to 

produce a unit of economic output, measured here in megajoules per Mexican peso 

(MJ/MXN). The data for gross value added comes from INEGI (2020b), while energy 

consumption data—expressed in petajoules—combines electricity use from INEGI 

(2020b) and natural gas consumption from the Secretaría de Energía (2020).  
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(a) Energy Intensity 

 

 
(b ) Emission Intensity 

 

Figure 1: Energy and Emission Intensity of the Manufacturing Sector 
 

Notes: 1) Energy intensity refers to the amount of energy used to produce a given level of output, while 

emissions intensity refers to the CO2 emissions generated to produce a given level of output. 2) The black 
and gray lines stand for the national average in 1998 and 2018, respectively. Source: Own elaboration with 

the data sources are as follows: Gross value added is from INEGI (2020b). Energy consumption, expressed 
in petajoules, is the sum of electricity (INEGI, 2020b) and natural gas consumption (Secretaría de Energía, 
2020). CO2e emissions are based on state-level data from SEMARNAT (2019) and the national emissions 

inventory from INECC (2018).  
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Figure 2: Value added participation in the manufacturing sector 

 

Source: Own elaboration with the Gross value added from INEGI (2020b).  

 

Among the states, Michoacán (Mich) stands out for having notably high energy 

intensities in both years, with values of 2.34 MJ/MXN in 1998 and 1.60 MJ/MXN in 

2018. Veracruz (Ver) also exhibits a significant increase in energy intensity, rising from 

1.18 MJ/MXN in 1998 to 1.88 MJ/MXN in 2018. Notably, Tabasco (Tab) records the 

highest energy intensity in 2018, reaching 3.10 MJ/MXN, despite not showing a 

comparable figure in 1998. 

Other states such as Nuevo León (NL), Hidalgo (Hgo), and Tlaxcala (Tlax) also 

display elevated energy intensities, with notable increases over the 20-year period. These 

trends suggest rising energy use relative to output in these regions, which may reflect 

changes in industrial composition or energy efficiency. 

It is important to contextualize these values with the scale of economic activity. Figure 

2 illustrates each state’s share in the national gross value added of the manufacturing 

sector. In some cases, high energy intensity may partly result from a low gross value 

added, rather than exceptionally high energy use. States with smaller industrial output can 

appear disproportionately energy-intensive when energy consumption is not matched by 

corresponding economic production. 

Figure 1(b) illustrates emission intensity for each Mexican state in 1998 and 2018, 

where emission intensity is defined as the kilograms of CO₂ equivalent emitted per 

Mexican peso of gross value added in the manufacturing sector (Kg CO₂e/MXN). 
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Greenhouse gas emissions data at the state level are sourced from SEMARNAT (2019) 

and the national inventory from INECC (2018), while gross value-added figures come 

from INEGI (2020b). 

Among the states, Michoacán (Mich), Campeche (Camp), and Guerrero (Gro) 

consistently exhibit the highest emission intensities in both years, each exceeding 0.20 

Kg CO₂e/MXN. In 1998, Zacatecas (Zac), Veracruz (Ver), and Oaxaca (Oax) also 

registered relatively high values. Notably, Hidalgo (Hgo), Nayarit (Nay), and Chiapas 

(Chis) began around or below the national average in 1998 but experienced clear increases 

in their emission intensities by 2018. These states typically concentrate their 

manufacturing output in subsectors with energy- and emission-intensive processes—such 

as oil and coal product refining, basic metal production, and chemicals manufacturing—

explaining their above-average intensities. Figure 2 shows that between 1998 and 2018, 

many of the high–emission-intensity states (Mich, Camp, Gro, Zac, Ver, Oax, Hgo, Nay, 

Chis) saw declines in their manufacturing value-added participation. In other words, even 

though their emission intensity rose or remained elevated, their overall contribution to the 

country’s manufacturing output diminished. By contrast, Tabasco (Tab) in 2018 presents 

a case of high energy intensity but relatively low emission intensity. Overall, while energy 

intensity and emission intensity often move in tandem, factors such as fuel mix, industry 

structure, technology adoption, regulatory frameworks, and data quality can create 

significant deviations. Also, when interpreting Figure 1(b) alongside Figure 2, it is crucial 

to recognize that a high emission intensity may reflect both a state’s industrial profile and 

shifts in its contribution to national manufacturing output. 

Building on the previous discussion of energy and emission intensities, the savings 

computed in this study underscore each state’s potential to reduce energy intensity. These 

improvements can be achieved through measures that enhance energy and environmental 

efficiency without adversely affecting their economic activity. 

 

4 Methods 

Data Envelopment Analysis (DEA) is a non-parametric method used to evaluate the 

relative efficiencies and inefficiencies of a group of Decision-Making Units (DMUs) 

based on their inputs and outputs. This technique constructs a production frontier that is 

the best practices observed among the DMUs. DMUs located on this frontier are 
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considered efficient, while those positioned below it are classified as inefficient. The 

efficiency of DMUs below the frontier is evaluated relative to the efficient DMUs, using 

measures that compare their performance to those positioned on the frontier.  

There are two main approaches for constructing the frontier in data envelopment 

analysis: constant returns to scale (CRS) and variable returns to scale (VRS). CRS 

assumes that any linear combination of observed Decision Making Units (DMUs) is 

feasible, implying that proportionally scaling inputs and outputs of efficient DMUs could 

create even more efficient units. In contrast, VRS acknowledges heterogeneity within the 

data by considering only convex combinations of the observed DMUs as feasible. This 

approach ensures that efficient units cannot be surpassed simply by scaling up or down 

others. When dealing with a sample containing heterogeneous units over a lengthy period, 

VRS is generally more appropriate. This is because the assumption of constant returns to 

scale might not hold over extended periods, where technological advancements or 

resource limitations can affect efficiency. VRS provides a more realistic assessment of 

efficiency under these circumstances by allowing for potential variations in scale 

economies. 

DEA models can be categorized into two orientation types. On the one hand, we have 

input-oriented, which seeks to minimize input usage while keeping the same output. On 

the other hand, we have output-oriented, which aims to maximize output yield while 

keeping input levels constant. For these two orientations, we also have two measurement 

types. Firstly, the radial approach, which seeks a proportional way to optimize any 

orientation mentioned above. Secondly, the non-radial approach, which combines both 

orientations, with the objective of enhancing outputs while concurrently minimizing input 

consumption (Zhou et al., 2012). 

Traditional DEA models focus mainly on desirable outputs or inputs. However, in the 

actual production process, undesirable byproducts can appear in the conversion of input 

to output. The key assumption in DEA is that a Decision-Making Unit (DMU) is 

considered efficient if it can increase the production of certain desirable outputs (goods) 

without sacrificing the production of others, while also avoiding an increase in 

undesirable outputs (bads) or the need for additional inputs. Similarly, if a unit can 

maintain the same outputs while using fewer inputs, it also indicates that it is operating 

efficiently and aligned with the frontier. (Charnes et al., 1981; Seiford and Zhu, 2002). 



11 

 

Since the main contribution of this study is to examine whether regions previously 

recognized for high efficiency in the manufacturing sector can sustain their performance 

when environmental impacts are considered, the Directional Distance Function (DDF) 

model, within the DEA models, is the optimal one to facilitate the simultaneous increase 

of desirable and reduction of undesirable outputs. Furthermore, the non -radial DDF 

method permits the non-proportional adjustment of input and output weights (Wang et 

al., 2013). Lastly, for our study, since we evaluate all the states of México over a 20-year 

period, we cannot assume that the sample is quite homogeneous and all states operate 

under similar conditions during each period, so it is more appropriate to assume variable 

returns to scale and with this obtain a convex combination. 

To define the DEA model, we adopted the approach of Zhou et al. (2012) and Zhang 

et al. (2013), who proposed a non-radial directional distance function (non-radial DDF) 

to measure energy efficiency and environmental performance considering undesirable 

outputs. While Zhang et al. (2013) originally applied this framework to compare coal- 

and oil-fired power plants in Korea, we adapt it to assess regional manufacturing 

efficiency in México, where technological heterogeneity across states is equally critical 

for understanding energy and environmental performance disparities. Following their 

formulation, let us assume that there are i =1, 2, ..., K DMUs (in our case DMUs are states) 

and for each DMU there is a production input vector 𝑥 ∈  ℝ+
N, to jointly produce desirable 

outputs 𝑦 ∈  ℝ+
𝑀  and undesirable outputs 𝑐 ∈  ℝ+

𝐽
. We use these vectors to create the 

multi-output production technology, namely T, as defined in equation (1). 

 

𝑇 =  {(𝑥, 𝑦, 𝑐): 𝑥 can produce 𝑦 and 𝑐} ⊂ ℝ+
𝑁+𝑀+𝐽

 (1) 

 

Set T represents all possible combinations of inputs and outputs for all DMUi, feasible 

under the available technology, and the production frontier corresponds to the upper limit 

of T, where no further improvements can be made without moving outside the feasible 

set. The efficient production frontier is directly constructed from the constraints of the 

model, which ensures that T includes all combinations of inputs and outputs derived from 

the observed DMUs and their convex combinations. That is, it is made up of units that 

cannot improve their efficiency without compromising other dimensions of performance 

(units that demonstrate the best practices using production factors efficiently). Following 
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Zhang et al. (2013), the non-radial DDF adapted to include CO2 emissions is defined as 

follows: 

 

𝐷⃗⃗ (𝑥,𝑦, 𝑐;𝑔) = 𝑠𝑢𝑝[ω′β: {(𝑥,𝑦, 𝑐) + 𝑔 × 𝑑𝑖𝑎𝑔(β)} ∈ 𝑇] (2) 

 

where 𝜔 = (𝜔𝑛
𝑥 ,𝜔𝑚

𝑦
,𝜔𝑗

𝑐)
′
 denotes the set of vectors that group non-negative normalized 

weight vectors, that is, 𝜔𝑛
𝑥 = (𝜔1

𝑥, 𝜔2
𝑥 ,… , 𝜔𝑁

𝑥 ), 𝜔𝑚
𝑦

= (𝜔1
𝑦
, 𝜔2

𝑦
,… , 𝜔𝑀

𝑦
), 𝜔𝑗

𝑐 =

(𝜔1
𝑐 ,𝜔2

𝑐 , … , 𝜔𝐽
𝑐). 𝑔 = (−𝑔𝑥 , 𝑔𝑦 ,−𝑔𝑐) represents the set of vectors that group directional 

vectors, i.e., denote the desired reductions or expansions in the inputs and  outputs. That 

is, 𝑔𝑛
𝑥 = (𝑔1

𝑥 , 𝑔2
𝑥 ,… , 𝑔𝑁

𝑥 ), 𝑔𝑚
𝑦

= (𝑔1
𝑦
, 𝑔2

𝑦
, … ,𝑔𝑀

𝑦
), 𝑔𝑗

𝑐 = (𝑔1
𝑐 , 𝑔2

𝑐 ,… , 𝑔𝐽
𝑐). 𝛽 =

(𝛽𝑛
𝑥, 𝛽𝑚

𝑦
, 𝛽𝑗

𝑐) is a vector of scaling factors with respect to inputs, desirable outputs,  and 

undesirable outputs, i.e., it indicates the non-proportional adjustment of how much should 

be reduced or increased to project the assessed DMU towards the efficient frontier, that 

it, 𝛽𝑛
𝑥 = (𝛽1

𝑥, 𝛽2
𝑥, … ,𝛽𝑁

𝑥), 𝛽𝑚
𝑦

= (𝛽1
𝑦
, 𝛽2

𝑦
,… ,𝛽𝑀

𝑦
), 𝛽𝑗

𝑐 = (𝛽1
𝑐 ,𝛽2

𝑐 ,… ,𝛽𝐽
𝑐). 

In technical terms, the model assumes that inputs and desirable outputs are strongly 

disposable for production technology, while undesirable output is weakly disposable. As 

Hua and Bian (2007) pointed out, this means that reducing undesirable output may not 

always be possible without incurring certain costs. Then, this DEA model is equivalent 

to solve the following linear programming problem for 𝐷⃗⃗ (𝑥,𝑦, 𝑐;𝑔): 

 

𝐷⃗⃗ (𝑥,𝑦, 𝑐;𝑔) = max
β,λ

 (𝜔′𝛽) 

s.t. 

∑𝜆𝑖  𝑥𝑖𝑛 ≤ 𝑥𝑛 − 𝛽𝑛
𝑥𝑔𝑛

𝑥

𝐾

𝑖=1

  𝑛 = 1, …, 𝑁  

∑ 𝜆𝑖  𝑦𝑖𝑚 ≥ 𝑦𝑚 − 𝛽𝑚
𝑦
𝑔𝑚

𝑦

𝐾

𝑖=1

 𝑚 = 1,… , 𝑀 

∑𝜆𝑖  𝑐𝑖𝑗 = 𝑐𝑗 − 𝛽𝑗
𝑐𝑔𝑗

𝑐

𝐾

𝑖=1

   𝑗 = 1, … , 𝐽      

(3) 
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∑𝜆𝑖   = 1

𝐾

𝑖=1

  

𝜆𝑖 > 0   𝑖 = 1, … ,𝐾 

β𝑛
𝑥 , β𝑚

𝑦
, β𝑗

𝑐 ≥ 0 

 

The programming model in equation (3) —based on the formulation of Zhang et al. 

(2013)—, provides the general form of non-radial DDF with variable return to scale, 

whose objective function seeks to maximize the total weighted adjustment required by  

the evaluated DMU to achieve its technical efficiency. Specifically , in the first three 

restrictions, 𝑥𝑛,𝑦𝑚, 𝑐𝑗 represent the nth input, mth desirable output and jth undesirable 

output of the evaluated DMU. Whereas 𝑥𝑖𝑛,𝑦𝑖𝑚, 𝑐𝑖𝑗 denote the nth input, the mth desirable 

output and the jth undesirable output, respectively, of the ith DMU, with i= 1,… , 𝐾. This 

implies that when 𝐷⃗⃗ (𝑥,𝑦, 𝑐; 𝑔) = 0 the evaluated point is already located at the frontier 

of best practice and it is efficient in the g direction. For our case, we denote 𝑥 = (𝐾,𝐿, 𝐸) 

as inputs (Capital, Labor, and Energy), 𝑦 = 𝑌 as desirable output and 𝑐 = 𝐶 as the 

undesirable output (Greenhouse gas emissions). Assuming both inputs and undesirable 

outputs decrease and desirable outputs increase, the non-negative normalized weight 

vector is 𝜔 = (𝜔𝐾 ,𝜔𝐿 ,𝜔𝐸 ,𝜔𝑌 ,𝜔𝐶)′ and the directional vector is 𝑔 =

(−𝐾, −𝐿, −𝐸, 𝑌, −𝐶) following Yao et al. (2015). Thus, the left-hand side of the three 

first constraints uses the observed information for all DMUs, while the right-hand side 

allows the evaluated DMU to adjust inputs and outputs along the direction of 𝑔 =

(−𝐾, −𝐿, −𝐸, 𝑌, −𝐶) in the proportion of 𝛽 = (𝛽𝐾 , 𝛽𝐿 , 𝛽𝐸 , 𝛽𝑌 , 𝛽𝐶)′ as Wang et al. (2013), 

i.e., each 𝛽𝑔 represents the amount by which inputs or outputs are adjusted. In the case of 

the third constraint, the equal sign is due to the weak disposability of undesirable output. 

The fourth constraint is for the variable return to scale, which is the frontier results in a 

convex set that allows that DMUs with different productivity to be considered efficient.2  

 
2 In traditional DEA models, equation (3) has always a solution, but since optimal solutions for 𝜆𝑖

∗ are 
multiple, then the solution cannot be unique. In addition, in the DDF model, the existence of multiple 

solutions for the lineal programming model in equation (3) will depend on the values assigned to 𝜔. An 
example of this can be seen in the special cases provided by Zhou et al. (2012).  
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Figure 3: Graphical example of non-radial directional distance function. 

 

Notes: Points A, B, C and D are DMUs that form the frontier of best production practices, while point E 
represents an inefficient DMU below the frontier that could improve by moving along the frontier FBG, 
that is reducing C/E, increasing Y/E, or a combination of both. When using a non-radial DDF model, the 

directional vector g causes E to move to the optimal point E’ since is the best combination of reducing C/E, 
increasing Y/E, in a non-proportional way, which is determined by βC and βY. Source: Own elaboration. 

 

Following the example proposed by Zhou et al. (2012) and Wang et al. (2022), we 

illustrate the non-radial directional distance function defined in equation (3) using Figure 

3 that depicts the amount of desirable and undesirable outputs by unit of energy 

consumed. Points A, B, C and D are DMUs that form the frontier of best production 

practices, while point E represents an inefficient DMU below the frontier that could 

improve by moving along the frontier FBG, that is reducing C/E, increasing Y/E, or a 

combination of both. When using a non-radial DDF model, if vector g is assigned to these 

directions (called “directional vector”), E would move to the optimal point E’ since is the 

best combination of reducing C/E, increasing Y/E, in a non-proportional way, which is 

determined by 𝛽𝐶  and 𝛽𝑌  . This is the main contrast between radial and non-radial distance 

function, where in radial measure our reference point would be fixed in F or G, which 

implies that the non-radial measure is more flexible. 

After solving the non-radial DDF problem in equation (3), we can use the resulting 

scaling factors and weight vector to calculate the energy and environmental potentials of 

each state in the country, as proposed by Zhou et al. (2012). Following Zhou et al. (2012) 

and assuming 𝛽𝐸
∗ , 𝛽𝑌

∗ , and 𝛽𝐶
∗ as the optimal scaling factors for energy, output, and GHG 
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emissions (undesirable output), respectively to equation (3), four types of indices are 

proposed for energy efficiency and GHG emissions. 

Energy Potential Savings (EPS) represent the amount of energy that can be reduced 

while maintaining the same production level. In other words, EPS indicates that the 

Decision Making Unit (DMU) is using more energy than necessary to produce the same 

amount of product. Therefore, EPS quantifies the reduction of this unnecessary energy 

consumption. Formally, it is defined as in equation (4). 

 

𝐸𝑃𝑆 = 𝛽𝐸
∗𝐸 (4) 

 

Energy Efficiency Performance (EEP), as defined in equation (5), quantifies the 

potential energy consumption savings per additional unit of output. Zhou et al. (2012) 

define it as the ratio of actual energy efficiency (Y/E) to potential energy efficiency.  

 

𝐸𝐸𝑃 =
(
𝑌
𝐸
)

(
𝑌 + 𝛽𝑌

∗𝑌
𝐸 − 𝛽𝐸

∗𝐸
)
=

1− 𝛽𝐸
∗

1+ 𝛽𝑌
∗ (5) 

 

Similarly, the GHG Emissions Potential Savings (GEPS) represents the extent to 

which pollution should be reduced without affecting production as defined in equation 

(6). 

 

𝐺𝐸𝑃𝑆 = 𝛽𝐶
∗𝐶 (6) 

 

Finally, we follow Zhou et al. (2012) to define the GHG Emissions Performance 

(GEP) as the ratio of potential target emission intensity to actual emission intensity (C/Y) 

as in equation (7). 

 

𝐺𝐸𝑃 =

(
𝐶 − 𝛽𝐶

∗𝐶
𝑌 + 𝛽𝑌

∗𝑌
)

(
𝐶
𝑌
)

=
1 − 𝛽𝐶

∗

1 + 𝛽𝑌
∗ (7) 

 

Both EEP and GEP lie between zero and one. Zhou et al. (2012) states that, a larger 
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GEP represents better reduction GHG emission performance. If GEP is equal to unity, it 

means that the DMU has the best reduction in GHG emission performance for the level 

of gross value added. 

 

5 Data 

This paper assesses the energy and environmental performance in the manufacturing 

sector across all thirty-two states of México for different years between 1998 and 2018. 

The economic activity data was sourced from the 31-32-33 NAICS sectors of economic 

censuses by the National Institute of Statistics and Geography (INEGI, by its Spanish 

acronym) conducts economic censuses every five years, using data from the previous 

year. For example, the most recent census referenced in this document is the 2019 

Economic Census, which contains information from 2018. Consequently, the years 

included in our analysis are 1998, 2003, 2008, 2013, and  2018. For clarity, the results 

section concentrates on a comparison between 1998 and 2018. Additionally, the analysis 

excludes the 3241 and 3251 industry groups—which encompass the oil refining sector—

due to their substantial contributions to greenhouse gas emissions (16%) and energy 

consumption (9%) in 2018 according to the National Commission for the Efficient Use 

of Energy (CONUEE in Spanish) (CONUEE, 2018). While undergoing stringent 

environmental regulations, this sector has experienced heightened energy utilization. For 

this reason, we have excluded them from our analysis to avoid bias towards states 

including these industry groups. 

The input variables, including capital (K) and labor (L), alongside the desirable output 

(Y), were derived from INEGI (2020b). The desirable output (Y ), representing gross value 

added (measured in million MXN 2018=100), reflects the value generated during 

production. It was then adjusted using the corresponding manufacturing producer price 

index PPI (2013). Capital (K), measured in million MXN (2018=100), represents the total 

stock of fixed assets, encompassing both movable and immovable property or as well as 

improvements that enhance productivity and extend the useful life of assets. It was 

adjusted using the appropriate producer capital formation price index. Labor (L), 

quantified in thousands of hours worked, includes both regular hours and overtime 

dedicated to productive activities. 

To determine the energy consumption input variable (E), we used electricity 
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consumption data from INEGI (2020b) and supplemented it with natural gas consumption 

data from Secretaría de Energía (2020). Both data sets were converted to energy 

equivalents using a constant transformation to ensure consistency in units.3  

 

Table 1: Descriptive Statistics 

Variable (Unit) 1998   2018 % change 

  mean sd   mean sd 1998-2018 

Value added (Y) 51,943 63,989  96,554 105,195 85.8 
(1 × 106 MXN (2018))       

CO2e emissions (C) 2,872 2,503  3,676 3,395 27.9 
(1 × 103 ton CO2e)       

Energy (E) 19.8 26.9  42.6 55.6 114.6 
(1 × 1015 Joules)       

Capital (K) 71,132 81,548  86,010 89,863 20.9 
(1 × 106 MXN (2018))       

Labor (L) 302,823 316,557  469,327 433,529 55.0 
(1 × 103 hours worked)             
Note: Descriptive Statistics for the years 1998 and 2018. The dataset comprised 32 

observations for each of these years. 

 

As a proxy for the undesirable output (C), we used state-level CO2e emissions data 

from the National Inventory of Emissions of Greenhouse Gases and Compounds 

(INEGyCEI) published by SEMARNAT (2019), where each state reports emissions by 

activity type across various periods. This inventory includes emissions from fixed sources 

(such as industrial plants and electricity generators), mobile sources (land, air, and 

maritime transport), and diffuse sources (fertilizer use, biomass burning, and fugitive 

emissions). However, not all states report their data in sufficient detail to allow for the 

selection of specific subsectors, which, in turn, these state-level emissions differed from 

national emissions inventory published by INECC (2018), likely due to methodological 

variations. To reconcile these discrepancies and align with the sectors studied in this 

document, we employed a two-step approach. First, we calculated the proportion of each 

state’s emissions relative to the national total. Second, we applied these proportions to the 

national emissions data for the manufacturing sector. This approach ensures consistency 

between our state-level and national-level emissions data for the manufacturing sector. 

 
3 Petajoules (PJ) were used as the unit of measurement for equivalent energy. To provide context, here are 
some conversion factors: 1 million kWh is equivalent to 0.0036 PJ and 1 million cubic feet is equivalent to 

approximately 0.0011 PJ (or 1.084597 x 10−3 PJ). 
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Table 1 reports some descriptive statistics of the five variables for 1998 and 2018, 

which allows to illustrate clearer the change over the time.4 As we can observe, all 

variables increased significantly during our sample period, highligh ting how energy 

consumption increased by 114%, while GHG emissions were only 28%. 

 

6 Results 

 

6.1  Technical efficiency with and without undesirable output 

Upon applying the non-radial DDF model with a variable return to scale to the 

manufacturing sector of México’s states, we aimed to obtain the optimal values of 

𝐷⃗⃗ (𝑥, 𝑦, 𝑐;𝑔). To achieve this, we solved Equation (3) for five different years between 

1998 and 2018 (1998, 2003, 2018, 2013 and 2018) to analyze changes over time.  

Subsequently, to model energy and environmental performance simultaneously, we 

defined the directional vector 𝑔 = (−𝑔𝑥 , 𝑔𝑦 , −𝑔𝑐) = (−𝐾, −𝐿, −𝐸, 𝑌, −𝐶), where 

negative values for inputs K, L, E represent the reduction of resources, while positive 

values for outputs Y and negative for undesirable outputs C aim to minimize emissions.  

Two scenarios were considered to evaluate technical efficiency. In the first scenario, 

only desirable outputs were taken into account, with the normalized weight vector 𝜔 =

(𝜔𝑥 , 𝜔𝑦 ,𝜔𝑐) = (𝜔𝐾 ,𝜔𝐿 ,𝜔𝐸 , 𝜔𝑌 , 0) = (1/9, 1/9, 1/9, 2/3, 0), and the directional vector 

for the undesirable output C set to gC = 0. In contrast, the second scenario incorporated 

both desirable and undesirable outputs, using the weight vector ω = (1/9, 1/9, 1/9, 1/3, 

1/3).5 The technical efficiency indexes (𝐷⃗⃗ ) obtained under both scenarios are illustrated 

in Figure 4.6  

Our results demonstrate that, in general, technical efficiency is consistently higher or 

 
4 Descriptive statistics and results for all years can be found in the appendices A.1, A.2, and A.3. 
Information at state level is available upon request. 
5 Following Zhang et al. (2013), we aim to improve economic efficiency by minimizing capital a nd labor 

inputs while maximizing desirable output and minimizing undesirable output. This approach suggests 
assigning equal weights to all inputs and outputs. However, since the inputs encompass three variables 

(capital, labor, and energy), the weight for inputs is divided equally among them, resulting in the vector ω 
= (1/9, 1/9, 1/9, 1/3, 1/3). Alternatively, we calculate results using a weight vector of (0, 0, 1/3, 1/3, 1/3). 
This approach focuses solely on energy, desirable and undesirable outputs, isolating their impact without 

altering capital and labor inputs. This analysis is further explored in Section 6.3. 
6 For clarity of presentation, we use a figure that represents 1 minus the efficiency score, meaning that  
values closer to 1 indicate higher efficiency. The technical efficiency indexes for the rest of the years are 

reported in Appendix A.2. 
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equal when focusing solely on the desired output rather than considering both outputs. 

Furthermore, in most of the instances where a state demonstrated inefficiency in the 

former scenario (depicted by the blue line in Figure 4(b) falling within the inner portion 

with values below 1.0) experienced an even further decline in efficiency under the latter 

scenario (illustrated by the red line).  

The results for Chiapas ("Chis") and Michoacán ("Mich") warrant specific 

commentary. The issue with Chiapas primarily stems from the value-added data reported 

by INEGI, which highlights significant economic challenges within the state.  For 

instance, in 1998, Chiapas reported a value-added of $6,670, emissions of 289, and inputs 

of 0.5 for energy, 70,449 for labor, and $8,248 for capital. By 2018, these values had 

changed dramatically: value-added dropped by 86% to $894, emissions increased by 25% 

to 362, and inputs rose significantly—energy doubled to 1.0, labor increased to 152,463, 

and capital rose to $20,620. Without needing DEA, it is evident that such a drastic decline 

in value-added alongside increases in emissions and inputs signals a severe inefficiency 

in economic and environmental performance. For Michoacán, a similar pattern emerges 

but with important differences. Between 1998 and 2018, value-added and emissions 

increased by 38% and 17%, respectively, while labor and capital inputs more than 

doubled. However, energy input showed only a minimal increase of 1%. In the model 

without undesirable outputs (blue line), this balance allowed Michoacán to achieve an 

efficiency score of 1, as the proportional changes in desirable outputs relative to inputs 

indicated full efficiency under that scenario. 

Our analysis reveals a significant disparity in the number of efficient states based on 

whether only the desirable output is considered. Specifically, in 1998, 23 states were 

identified as efficient when focusing solely on the desirable output, but this number 

dropped to 15 when both outputs were considered (refer to Figure 4(a)). Similarly, in 

2018, 20 states were classified as efficient under the scenario of considering only the 

desirable output, compared to 17 states when incorporating both outputs (refer to Figure 

4(b)). 

Nonetheless, we contend that the evaluation of technical efficiency should encompass 

both desirable and undesirable outputs. This approach allows efficient strategies to 

account for the potential detrimental effects stemming from environmental factors. 

Recognizing the negative impact of emissions and energy consumption can help create 
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more comprehensive and effective initiatives to promote sustainability within the 

manufacturing sector. 

 

 
(a) 1998 

 
(b) 2018 

 

Figure 4: Technical Efficiency with only desirable output (Y) and with both 

desirable and undesirable outputs (Y & C) 
 

Notes: 1) Blue line represents total technical efficiency when only the desirable output is considered, while 
red line shows it when both desirable and undesirable outputs are considered. 2) The outer circle marked 
with 1.0 represents the production frontier, inner circles mean to locate below the frontier. 3) Average 

technical efficiencies in 1998 were 0.95 (Y ) and 0.81 (Y &C), while in 2018 were 0.90 (Y ) and 0.81 (Y 
&C). 4) Mann–Whitney–Wilcoxon test for 1998 shows a statistic z = 2.556 with p value = 0.0106 and for 

2018: z = 1.226 and p value = 0.22. Source: Own elaboration. 
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Moreover, we compared the average technical efficiency between 1998 and 2018 

under two scenarios: one considering only desirable outputs and the other including both 

desirable and undesirable outputs. For each year, we calculated the average technical 

efficiency across the 32 states for both scenarios and conducted separate Mann–Whitney–

Wilcoxon tests to evaluate the differences.7 The results revealed significant differences at 

the 5% level in 1998, highlighting a notable disparity between the two scenarios that year. 

However, no significant differences were found in 2018, suggesting similar levels of 

efficiency under both scenarios in the later year. 

Interestingly, our findings also showed that, although the number of inefficient states 

decreased from 1998 to 2018, the overall efficiency of the manufacturing sector did not 

demonstrate improvement over this period. This surprising outcome underscores that, 

despite efficiency gains in some states, others experienced notable declines. For example, 

states such as Michoacan and Chiapas recorded substantial reductions in their efficiency 

scores. This dynamic suggests that while certain regions have made progress, the 

overarching efficiency landscape in the manufacturing sector of México still requires 

substantial attention and improvement. 

 

6.2  Explaining technical efficiency with undesirable output 

In this section, our objective was to discern the factors intricately linked with the technical 

efficiency index derived from both desirable and undesirable outputs. To achieve this, we 

construct a pseudo-panel utilizing the outcomes for obtained in Section 6.1, constituting 

a framework encompassing 32 states (N = 32) across a five-year span (specifically, T = 

1998, 2003, 2008, 2013, 2018). Delving into the analysis, we examined an array of 

variables (as detailed in Table 2) that could potentially drive improvements in energy and 

environmental efficiency. 

These variables include educational attainment, investments, and a green tax for states 

that have already implemented it.8 However, we must acknowledge that other factors 

 
7 The Mann-Whitney U Test, also known as the Wilcoxon Rank-Sum Test, is a  non-parametric test used to 

compare differences between two independent groups under the null hypothesis that they come from 
populations with the same distribution (Mann and Whitney, 1947; Wilcoxon, 1992). 
8 These taxes have been established by each state to target firms responsible for environmental damage. As 

of 2018, only five states have set such taxes: Estado de México, Querétaro, Oaxaca, Campeche, and 
Quintana Roo. For example, Estado de México introduced an environmental tax for the emission of 
pollutants into the atmosphere in 2018. More information by state and tax category can be found in the 

Mexican Environmental Taxes Guideline (https://explore.pwc.com/impuestosverdes2022). 
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might lead to outcomes of uncertain significance. For instance, variables such as whether 

states are natural gas producers and whether they have air quality systems in place can 

have different implications. This uncertainty arises from the fact that states lack 

ownership over local gas resources, and the enforcement of environmental regulations is 

relatively weak nationwide. To further ensure comprehensive analysis, we also 

incorporated population density as a control variable. 

Given the bounded nature of the dependent variable, which ranges between zero and 

one, as well as the efficiency scores generated in the previous stage can be biased due to  

the nature of non-parametric frontier methods, we employ two techniques: 1) the Simar 

and Wilson (2000) estimator and 2) a two-part fractional probit response model. Both of 

which are well-suited for second-stage DEA analysis, as highlighted by Ramalho et al. 

(2010). 

The approach proposed by Simar and Wilson (2000) employs a two-stage truncated 

regression to model the relationship between efficiency scores and explanatory variables, 

while accounting for the bounded nature of the dependent variable. It then applies 

bootstrapping to generate confidence intervals and assess the statistical significance of 

the regression parameters. This method addresses the issue of statistical dependence 

between the estimated DEA scores from the first stage and the explanatory variables.  

On the other hand, the two-part fractional probit response model offers a 

complementary approach. First, it employs a probit model for the efficiency scores to 

identify factors that drive DMUs to reach the efficient frontier. For observations with 

efficiency scores strictly between 0 and 1, a fractional probit regression is applied to 

further analyze the relationship. This two-part structure effectively captures the dynamics 

of both boundary and interior efficiency scores. Let 𝑧𝑖𝑡 be the set of independent variables, 

equation (8) displays the model we aim to estimate under this method. 

 

Pr(𝐷⃗⃗ 𝑖𝑡|𝑧𝑖1, 𝑧𝑖2,… , 𝑧𝑖𝑇) = Φ(𝛾𝑡 + 𝑧𝑖𝑡𝛿 + 𝑧̅𝑖𝜓) (8) 

 

where 𝐷⃗⃗ 𝑖𝑡 is the optimal technical efficient coefficient for state i in year t, Φ() is the 

standard normal cumulative distribution function, 𝛾𝑡  is for a different intercept in each 

year, and 𝑧𝑖̅  is the average of 𝑧𝑖𝑡 over time. 

To obtain proxies for the variables mentioned above, we use for education, the average 
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years of education of the employed population in the educational characteristics of the 

population section from INEGI (2021a). Air quality monitoring systems are a tool that 

some entities have that allows knowing the quality of the air with respect to certain 

pollutants, obtained by INECC (2018).9 The availability of a green tax was also 

considered, as obtained from each state’s reports. Natural gas production was also taken 

into account, as reported in Secretaría de Energía (2020). Population density was obtained 

from INEGI (2020a). Finally, we computed total public investments using information of 

“Public Domain Assets”, “Productive Projects”, and “Promotion Actions” sections from 

INEGI (2021b), along with information from the Economic Census published by INEGI 

(2020b).10 

Table 2 presents the descriptive statistics. It is worth noting that for several variables, 

a value of 0 is observed in certain years. Consequently, we opted to work with these 

variables in their original levels rather than employing logarithmic transformations. The 

outcomes of our estimation are presented in Table 3, along with the corresponding 

marginal effect for the two-part model in the final column. 

 

Table 2: Variable description and summary statistics 

Variable mean sd min max 

Technical efficiency with undesirable output 0.77 0.26 0 1 
Average years of education of the employed 
population 

8.58 1.18 5.4 11.48 

1 if state accounts with an air quality monitoring 

system 
0.64 0.48 0 1 

1 if state has a green tax 0.04 0.21 0 1 
Natural gas production (Million cf) 0.04 0.1 0 0.5 
Population density (inhabitants per km2) 295.9 1,025.4 2.2 6,160.5 

Public investments per manufacturing unit (million 
MXN) 

0.18 0.18 0 1.01 

Note: The dataset comprises 160 observations, representing data from 32 states over the years 1998, 2003, 
2008, 2013, and 2018, with descriptive statistics computed across all states and years. 

 

To verify the robustness of our findings, we also estimated a linear model with fixed 

effects on the panel data. However, this approach has limitations, as it does not guarantee 

 
9 The quality of the air is monitored for specific pollutants using a series of computer programs in each 
station to gather reliable information. There are currently 34 air quality monitoring systems set up across 
the country, strategically placed in cities and metropolitan areas. 
10 This calculation includes investments from the federal, state, and municipal governments. 



24 

 

that the predicted values will fall within the necessary range of zero to one,  which is 

necessary for our analysis. Despite this limitation, the results from the linear, Simar & 

Wilson and fractional probit models showed consistency in terms of the direction 

(positive or negative) for almost all coefficients. However, some coefficients that were 

statistically significant in either Simar & Wilson or the fractional probit model were not 

significant in the fixed effects model. 

 

Table 3: Effects on Technical Efficiency of the Manufacturing Sector 

  Linear 
fixed 

effects  

Simar & 
Wilson  

  Fractional Probit 

    
1st 
part 

2nd part 
Marginal 
effect 

Average years of education 
of the employed population 

0.164∗∗∗∗ 0.155∗∗∗∗  0.241 -0.399∗ 0.003 

(4.949) (3.843)  (1.255) (-1.746) (0.065) 
       
1 if state accounts with an 
air quality monitoring 
system 

-0.023 0.099∗  0.368∗∗ 0.660∗∗ 0.164∗∗∗ 

(-0.467) (1.826)  (2.009) (2.038) (2.663) 

       
1 if state has a green tax 0.091 0.228  0.399 -0.093 0.076 

(0.913) (1.274)  (1.342) (-0.138) (0.556) 
       

Natural gas production -0.002 0.368∗  1.472∗ 2.932∗∗ 0.692∗∗∗ 
(-0.011) (1.673)  (1.863) (1.969) (2.641) 

       
Population density -0.000 -0.000  -0.001 -0.004∗∗∗∗ -0.001∗∗∗ 

(-1.011) (-0.286)  (-1.14) (-4.041) (-3.116) 

       
Public investments per 
manufacturing unit 

0.099 -0.064  -0.656 -1.799∗∗ -0.370∗∗ 
(0.77) (-0.393)  (-1.06) (-2.146) (-2.117) 

       
Constant -0.317 -0.405  -1.507 3.405∗∗  

(-1.299) (-1.494)  (-1.33) (2.092)  

Observations 160 91   160 91 160 
t statistics in parentheses  

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01, ∗∗∗∗ p < 0.001 

 

Given the limitations of the fixed effects model and the greater interpretability of the 

marginal effect from the fractional probit model’s results, we will focus on the estimates 

obtained from this model for further analysis. The study’s outcomes offer compelling 

insights into the drivers of technical efficiency within México’s manufacturing sector. 

Our analysis not only confirms the relevance of certain variables but also reveals 
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intriguing nuances that are consistent with existing economic literature. 

States with air quality monitoring systems experience roughly a 16.4 percentage point 

increase in technical efficiency. This positive effect likely reflects enhanced 

environmental oversight and management practices that promote more efficient 

production, even when accounting for undesirable outputs such as greenhouse gas 

emissions. Although the coefficient for green taxes is positive, its lack of statistical 

significance suggests that simply having a green tax does not robustly impact technical 

efficiency. This may imply that variations in design, enforcement, or economic scale 

across states limit their overall effect. 

Natural gas production, on the other hand, shows a strong positive effect—with nearly 

a 70-percentage point improvement per unit change. This robust relationship likely stems 

from the benefits of a reliable, cleaner-burning energy source. Facilities such as natural 

gas wells and storage points ensure a stable supply, optimize distribution, reduce 

transportation emissions, balance supply and demand, and provide backup during peak 

periods. Together, these factors lower operational costs and enhance both energy use and 

environmental performance. 

Higher population density is associated with a modest yet significant decline in 

technical efficiency, likely reflecting challenges such as congestion, increased 

competition for resources, and infrastructural strain. Similarly, the negative marginal 

effect of public investments per manufacturing unit suggests that higher investments 

correlate with lower efficiency—potentially due to inefficiencies in fund allocation or 

because underperforming states receive more investments as remedial measures. 

The education coefficient is near zero and statistically insignificant, indicating that 

average years of education do not meaningfully influence technical efficiency after 

controlling for other factors. In other words, higher educational attainment alone does not 

drive efficiency improvements when undesirable outputs are considered. 

Overall, air quality monitoring systems and local natural gas production emerge as 

the most robust and policy-relevant determinants. Both factors enhance technical 

efficiency by fostering better environmental management and ensuring a stable, cleaner 

energy supply. In contrast, the anticipated benefits from higher education levels and green 

tax policies are not evident, challenging conventional expectations. For education, this 

contradicts the notion that a more educated workforce inherently boosts efficiency 
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(Mohan, 2020), and for green taxes, their limited impact may reflect their sparse 

implementation. A more widespread or effectively designed green tax might, however, 

play a crucial role in driving efficiency improvements (Böhmelt et al., 2018). 

Contrary to the findings of Auci et al. (2021), who report that investments in modern 

technologies and infrastructure foster productivity gains, our results indicate that higher 

population density and elevated public investments are linked to lower technical 

efficiency. In densely populated states, challenges such as congestion may impede 

production, and the negative association with public investments suggests that these funds 

might be deployed reactively in states already struggling with performance rather than 

serving as a proactive strategy for enhancing productivity. 

In summary, the analysis of Table 3 indicates that, when both desirable and 

undesirable outputs are considered, enhancing technical efficiency should center on 

improving environmental monitoring and leveraging local natural gas resources. 

Meanwhile, the expected benefits of higher education and green tax policies remain 

unproven, and the negative associations with population density and public investments 

warrant further investigation. These findings not only reinforce established determinants 

but also offer new insights into the factors influencing technical efficiency in México’s 

manufacturing sector. 

 

6.3  Energy and Environmental Performance 

Recognizing the significance of incorporating both desirable and undesirable outputs into 

our analysis, this section focuses on evaluating the energy and environmental potential 

while considering both output categories. When performing this analysis, we treat capital 

and labor as constant variables (i.e., ω = (0, 0, 1/3, 1/3, 1/3)). The outcomes related to the 

energy efficiency (EEP, vertical axis) and GHG emission performance (GEP, horizontal 

axis) for the years 1998 and 2018 are displayed in Figure 5. 

Our findings revealed a positive correlation between energy and environmental 

potential among inefficient states, comprising 17 in 1998 and 14 in 2018. This suggests 

that a higher energy efficiency potential corresponds to a greater ability to conserve 

energy, resulting in reduced pollution and enhanced environmental performance. 

In 1998, excluding the dots on the frontier (i.e., those equal to 1), performance ranged 

from the pair (7.0%, 8.8%), representing the energy and environmental performance of 
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Michoacán, to the 100% of EEP in Sonora and the 67.7% of GEP in Chihuahua (see 

Figure 5(a)). In 2018, we observed a slightly higher dispersion, with energy efficiency 

and environmental performance ranging from a minimum of 10.8% and 6.4% in Chiapas 

to a maximum of 100% EEP in Zacatecas and 89% in Puebla (see Figure 5 Notably, the 

black dot in the upper-right corner of the figure, located at coordinates (1,1), includes 

states on the production frontier. In 1998, there were 15 states in this dot, and by 2018, 

the number had increased to 18. These states had adopted optimal practices in terms of 

energy efficiency and environmental performance, achieving a balance between reducing 

energy consumption and pollution without compromising production. The states that 

moved to the frontier between 1998 and 2018 were mainly located in the Northern region 

(represented by yellow markers). In contrast, states that remained in the inefficient region 

or deviated from the frontier were mostly situated in the central-northern (green markers), 

southern (blue markers), and central (red markers) regions of the country. 

Regarding the average performance, there were no substantial changes in energy and 

environmental performance between 1998 and 2018. The average Energy Efficiency 

Performance (EEP) altered slightly from 0.73 to 0.75, and the Greenhouse Gas Emission 

Performance (GEP) from 0.66 to 0.72. However, Figures 4 and 5 revealed considerable 

variability (see Appendix A.3 for more information about EEP and GEP for the rest of 

the years). 

Among the 17 states positioned below the frontier in 1998, 12 demonstrated improved 

production practices, moving closer to the frontier in both dimensions from 1998 to 2018. 

Two states made progress in only one direction, while the remaining three states moved 

farther away from the frontier in both dimensions, indicating a decline in efficiency. 

Figure 6 illustrates the map detailing the percentage change in performance measures for 

each state between 1998 and 2018. Concerning EEP (Figure 6(a)), Coahuila in the 

Norther region emerged as the most improved state during this period, reaching the 

production frontier by 2018. Likewise, the GEP map (Figure 6(b)) highlighted 

noteworthy enhancements in six states: Sonora, Sinaloa, San Luis Potosí, Coahuila, 

Michoacan, and Guerrero. Notably, Chiapas, Tabasco, and Yucatan, all in the Southern 

region experienced a substantial decline in both EEP and GEP (Figure 6). 

Utilizing a simple average for the analysis would result in an unfair representation. 

Instead, it is imperative to consider the productive orientation of each state situated below 
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the frontier. In Figure 5, the size of each marker corresponds to the sector’s contribution 

to the national value added in the manufacturing sector. Given the exclusion of the oil 

refining industry from the analysis, this simplification aids in evaluating efficiency, 

considering the fluctuations in environmental regulations (CONUEE, 2018). 

Nevertheless, it’s important to note that according to CONUEE (2018) other 

industries such as iron and steel, cement, and paper also play a significant role in these 

states. These sectors exhibit substantial potential for improving their energy efficiency, 

can be effectively intervened upon, and have access to advanced technologies that can  

have positive environmental impacts. As such, evaluating efficiency in these states 

requires a detailed understanding of the specific characteristics of each sector and the 

broader regulatory environment (CONUEE, 2018). 

 

Table 4: Energy Potential Savings in 2018 

State name State EPS (%) EPS share (%) 

Nuevo León 68.5 40.6 
Veracruz 76.2 20.2 

Tamaulipas 61.6 9.2 
Michoacán 51.9 6.8 
Querétaro 45.2 5.5 
Rest of states* 12.5 17.7 

Total** 20.3 100 
*In the second and third columns, EPS refers to the rest of 

states’ average. ** In the second column, EPS is for the 
country average, while in the third column, it represents the 
total sum. 

 

Furthermore, the insights from Figure 5 underscore another dimension of this 

analysis. For instance, while states like Chiapas and Michoacán exhibit a significant 

potential for enhancing energy efficiency, their limited share in the national 

manufacturing value-added would lead to comparatively minor contributions to the 

overall national energy savings. Conversely, states such as Tamaulipas, Veracruz, and 

Nuevo León, with higher proportions in the manufacturing value-added, hold the potential 

to make substantial contributions to national savings due to their greater influence.  

Turning to the energy aspect, Table 4 presents a comprehensive view of the Energy 

Potential Savings (EPS) within the national manufacturing sector for the year 2018.11 The 

 
11 EPS and GEPS are reported in Appendix A.3 for the entire sample. From 1998 to 2018, there have been 

fluctuations in both EPS and GEPS, with values both increasing and decreasing over the years. However, 
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EPS, amounting to 20.3% of total energy consumption, equivalent to 156 PJ of energy, 

highlights the considerable impact that energy efficiency enhancement measures could 

have. 

Interestingly, when comparing proportions, Wu et al. (2012) identifies a national 

energy potential savings of 19% for China’s industrial sector, calculated as an average for 

the period 1997–2008. This comparison highlights the substantial opportunities for 

energy efficiency in both countries. Notably, the table underscores the pivotal role of 

certain states in these potential energy savings. Among them, Nuevo León emerges as a 

significant contributor, accounting for 40.6% of the potential savings at national level, 

closely followed by Veracruz (20.2%) and Tamaulipas (9.2%). This reinforces the idea 

that targeted improvements in energy efficiency could substantially drive national energy 

conservation goals, with the contribution varying based on a state’s manufacturing 

prowess and energy consumption patterns. 

 

Table 5: GHG Emission Potential Savings in 2018 

State name State GEPS (%) GEPS share (%) 

Hidalgo 64.3 17.6 
Veracruz 52.4 17.2 
Michoacán 36.6 13 

Jalisco 35.1 11.3 
Nuevo León 23.1 9.5 
Rest of states* 20.8 31.4 

Total* 24.3 100 
*In the second and third columns, GEPS refers to the average. 
** In the second column, GEPS is for the country average, 

while in the third column, it represents the total. 

 

In terms of environmental considerations, the insights gleaned from the GHG 

Emission Potential Abatement for the year 2018 underscore that enhancements in the 

manufacturing sector’s environmental efficiency could potentially yield substantial 

reductions in GHG emissions. Nationally, a potential reduction of 24.3%, equivalent to 

around 6.4 Metric tons (Mt) of CO2e, could be achieved by implementing measures to 

improve the sector’s environmental performance. These details are outlined in Table 5, 

where the results emphasize that the influential role of specific states in shaping the 

country’s environmental savings. Hidalgo (17.6% with respect to the national level), 

 
no clear trend can be identified throughout this period. 
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Veracruz (17.2%), and Michoacán (13%) are identified as key contributors to the 

envisioned national environmental savings, due to their substantial manufacturing value-

added contributions. 

It is worth noting that the synergy between energy and environmental efficiency is 

vital. The virtuous cycle of improvements in one area reinforcing the other is evident. For 

instance, advancements in energy efficiency translate into substantial energy savings, 

resulting in reduced pollution levels and consequently, amplified environmental 

efficiency. This holistic approach underscores the interconnectedness of energy and 

environmental dynamics within the manufacturing sector’s performance landscape. 
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(a) 1998 

 
(b ) 2018 

Figure 5: Energy Efficiency Performance vs. GHG Emission Performance 

Notes: 1) The black dot at (1,1) in the lower left corner illustrates the states on the production frontier, 

which were 15 (Ags, BC, BCS, Camp, CDMX, Chis, Col, Gto, Mex, Mor, Nay, Qro, Qroo, Tlax, Zac) in 
1998 and 17 (Ags, BC, BCS, Camp, CDMX, Chih, Coah, Col, Gro, Gto, Mex, Mor, Qroo, Sin, SLP, Son, 

Tlax) in 2018. 2) States in the Northern region use yellow markers, in the Southern region blue markers, in 
the central-Northern region green markers, and in the central region red markers. 3) The size of each dot 
represents the participation of the state’s sector in the total domestic value added (VA). 4) Average EEP 

and GEP were 0.73 and 0.66, respectively, in 1998, and 0.75 and 0.72, respectively, in 2018. Source: Own 
elaboration. 
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(a) Energy Efficiency (EEP) 

 
(b ) GHG Emission (GEP) 

 
Figure 6: % Change Performances 1998-2018 

Notes: States in white remain in the frontier in both periods. States colored in green increased performance 

from 1998 to 2018, while in red means a reduction during the same period. Source: Own elaboration. 
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7 Discussion and concluding remarks 

México’s ambitious commitment to curbing GHG emissions by an impressive 22% before 

2030, equating to the substantial mitigation of over 211 million tons of CO2e, 

demonstrates an initiative-taking approach towards combating climate change. 

Interestingly, an overlooked aspect of this endeavor is the potential embedded with in the 

individual states of México to significantly improve energy practices and reduce 

emissions without compromising their manufacturing prowess, an aspect that warrants 

closer examination and strategic consideration. 

Currently, many states operate below their optimal efficiency levels, leaving room for 

substantial improvements. If all states were to improve their practices and move closer to 

the production frontier—the hypothetical boundary where energy use and environmental 

impact are minimized for a given level of output—the manufacturing sector could 

theoretically reduce energy consumption by 20.3% while maintaining the same 

production levels. This estimate highlights inefficiencies in current energy use that can 

be addressed through advancements in production technologies, process improvements, 

and better energy management strategies. 

The driving forces behind these findings are diverse. The analysis assumes that firms 

operating below the frontier can optimize their energy use without altering their 

production capacity. This does not imply a substitution of capital or labor for energy but 

rather a focus on improving energy efficiency within the current production framework. 

In addition, the sector could achieve a 24.3% reduction in GHG emissions. This 

reduction primarily arises from lower energy consumption, as using less energy directly 

translates into fewer emissions. Some of the emissions reductions may also stem from 

cleaner energy sources or process optimizations that decrease emissions intensity. While 

our study does not explicitly model a transition to renewable energy, it underscores that 

energy efficiency improvements alone could generate significant environmental benefits. 

If such an alignment were achieved, it could, in itself, contribute around three percentage 

points towards the nation’s overarching target, corresponding to a substantial 6.4 million 

tons of the total 211 million tons. This analysis highlights that each state’s position on the 

production frontier holds a latent power to create sizeable emissions reductions, 

irrespective of its current status. 

However, this potential is not uniform across all regions. The northern states exhibit 
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a promising capacity for energy savings, reflecting the industrial heft and innovation-

driven nature of these regions. Meanwhile, the central-northern and southern states 

possess untapped potential to focus their efforts on reducing pollution, aligning with their 

unique economic landscapes. These observations underscore the need f or tailored 

strategies that address each region’s specific strengths and opportunities.  

Furthermore, envisioning a nationwide shift towards more efficient production 

practices, similar to those already demonstrated in certain regions, holds the promise of 

generating even more substantial energy savings and GHG reductions. The ripple effect 

of such a transformation, cascading across the nation’s manufacturing landscape, could 

lead to a collective impact far greater than the sum of its parts. 

Nonetheless, it is important to acknowledge that these transformations do not come 

without their challenges. Under a scenario of steadily rising energy prices, the anticipated 

energy savings could potentially exert positive pressure on production costs. However, 

this hinges on the delicate balance between the savings realized and the necessary 

investments required to usher in these transformative changes. The feasibility of these 

investments would need to be carefully evaluated against the backdrop of broader 

economic considerations. 

In conclusion, México’s journey towards a greener future entail multifaceted 

implication. The potential for emissions reduction within each state offers a compelling 

pathway towards meeting national goals. By leveraging regional strengths, fostering 

innovation, and adopting efficiency-enhancing practices, México could indeed turn the 

tide on emissions while simultaneously redefining its manufacturing landscape. This dual 

benefit – a substantial environmental contribution and a potential economic advantage – 

underscores the critical intersection between sustainable practices and a resilient, 

forward-looking economy. 
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A  Appendix 

A.1  Descriptive Statistics 

Variable Unit 1998   2003   2008   2013   2018 

    mean sd   mean sd   mean sd   mean sd   mean sd 
Value added 

(Y) 

[1 × 106 MXN 

(2018)] 
51,943 63,989  61,965 681,132  68,782 76,252  65,760 71,398  96,554 105,195 

CO2e 
emissions (C) 

[1 × 103 ton 
CO2e] 

2,872 2,503  2,659 2,125  3,320 2,615  3,546 2,831  3,676 3,395 

Energy (E) [1 × 1015 Joules] 19.8 26.9  19.4 28.7  21.9 32.0  25.6 36.0  42.6 55.6 

Capital (K) 
[1 × 106 MXN 
(2018)] 

71,132 81,548  75,564 81,380  70,495 68,650  78,128 82,402  86,010 89,863 

Labor (L) 
[1 × 103 hours 
worked)] 

302,823 316,557  306,172 304,121  324,316 310,070  359,963 337,214  469,327 433,529 

Observations 32     32     32     32     32   
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A.2  Technical Efficiency 

Region State 
1998   2003   2008   2013   2018 

Y YC   Y YC   Y YC   Y YC   Y YC 

Central CDMX 1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00 

Central Gto 1.00 1.00  0.92 0.75  0.84 0.70  0.84 0.78  1.00 1.00 

Central Hgo 0.68 0.48  0.87 0.45  1.00 0.56  1.00 0.07  1.00 0.40 

Central Mor 1.00 1.00  1.00 1.00  1.00 1.00  0.71 0.51  1.00 1.00 

Central Mex 1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00 

Central Pue 0.63 0.72  0.88 0.81  0.79 0.69  1.00 1.00  0.92 0.91 

Central Qro 1.00 1.00  0.77 0.56  1.00 1.00  0.66 0.64  0.91 0.89 

Central Tlax 1.00 1.00   0.65 0.69   1.00 1.00   1.00 1.00   1.00 1.00 

NCentral Ags 1.00 1.00  0.67 0.53  0.96 0.95  0.37 0.47  1.00 1.00 

NCentral BCS 1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00 

NCentral Col 1.00 1.00  1.00 1.00  1.00 1.00  1.00 0.49  1.00 1.00 

NCentral Dgo 0.87 0.72  0.00 0.34  0.91 0.63  0.34 0.33  0.84 0.69 

NCentral Jal 0.96 0.78  1.00 0.71  1.00 0.69  1.00 1.00  0.94 0.85 

NCentral Mich 1.00 0.37  1.00 0.06  1.00 0.45  1.00 0.00  1.00 0.04 

NCentral Nay 1.00 1.00  1.00 1.00  1.00 1.00  1.00 0.54  0.79 0.60 

NCentral SLP 1.00 0.65  1.00 0.47  1.00 0.65  0.82 0.61  1.00 1.00 

NCentral Sin 1.00 0.68  0.85 0.57  1.00 0.67  0.85 0.24  1.00 1.00 

NCentral Zac 1.00 1.00   1.00 1.00   1.00 1.00   0.81 0.48   1.00 0.76 

Northern BC 1.00 1.00  0.92 0.89  1.00 1.00  0.87 0.86  1.00 1.00 

Northern Chih 0.84 0.81  1.00 1.00  1.00 0.70  0.78 0.77  1.00 1.00 

Northern Coah 1.00 0.70  0.87 0.68  1.00 1.00  1.00 1.00  1.00 1.00 

Northern NL 0.81 0.70  1.00 0.69  1.00 0.87  1.00 0.81  0.91 0.83 

Northern Son 0.99 0.81  0.77 0.56  1.00 0.74  1.00 1.00  1.00 1.00 

Northern Tamps 1.00 0.72   0.69 0.65   1.00 1.00   0.48 0.57   0.83 0.75 

Southern Camp 1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00 

Southern Chis 1.00 1.00  0.84 0.77  0.83 0.64  1.00 1.00  0.00 0.00 

Southern Gro 1.00 0.60  0.81 0.54  0.88 0.48  1.00 1.00  1.00 1.00 

Southern Oax 1.00 0.54  1.00 0.31  1.00 0.49  1.00 0.00  0.78 0.58 

Southern QRoo 1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00 

Southern Tab 0.82 0.70  1.00 1.00  0.80 0.78  0.77 0.81  0.72 0.60 

Southern Ver 1.00 0.34  0.89 0.44  1.00 0.69  1.00 0.65  0.63 0.41 

Southern Yuc 0.77 0.67   0.52 0.54   0.61 0.56   0.41 0.38   0.49 0.59 

National 0.95 0.81   0.87 0.72   0.96 0.81   0.87 0.69   0.90 0.81 
Note: 1) The showed values represent total technical efficiency. The Y variable describes total 

technical efficiency when only the desirable output is considered. The YC variable shows it when 
both desirable and undesirable outputs are considered. 2) The value 1.00 stands for the production 
frontier. Hence, the closer to this value more efficient could be. 3) National variable is the average 

technical efficiencies in each year. NCentral is for the North-Central region.
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A.3  Energy Efficiency and GHG Emission Performance 

Region State 

1998   2003   2008   2013   2018 

EE
P 

GE
P 

  
EE
P 

GE
P 

  
EE
P 

GE
P 

  
EE
P 

GE
P 

  
EE
P 

GE
P 

Central 
CDM

X 
1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00 

Central Gto 1.00 1.00  0.76 0.36  0.49 0.42  0.52 0.57  1.00 1.00 

Central Mex 1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00 

Central Mor 1.00 1.00  1.00 1.00  1.00 1.00  0.11 0.18  1.00 1.00 

Central Tlax 1.00 1.00  0.23 0.61  1.00 1.00  1.00 1.00  1.00 1.00 

Central Pue 0.50 0.57  0.77 0.66  0.33 0.49  1.00 1.00  0.56 0.89 

Central Qro 1.00 1.00  0.30 0.17  1.00 1.00  0.22 0.39  0.55 0.85 

Central Hgo 0.18 0.18   0.30 0.06   0.28 0.09   0.08 0.10   0.21 0.18 

NCentral BCS 1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00 

NCentral Ags 1.00 1.00  0.74 0.04  0.94 1.00  0.07 0.18  1.00 1.00 

NCentral Sin 0.76 0.23  0.77 0.25  1.00 0.21  0.28 0.06  1.00 1.00 

NCentral Col 1.00 1.00  1.00 1.00  1.00 1.00  0.58 0.01  1.00 1.00 

NCentral SLP 0.45 0.25  0.35 0.07  0.41 0.31  0.25 0.18  1.00 1.00 

NCentral Zac 1.00 1.00  1.00 1.00  1.00 1.00  0.35 0.07  1.00 0.35 

NCentral Nay 1.00 1.00  1.00 1.00  1.00 1.00  0.49 0.01  0.90 0.06 

NCentral Jal 0.70 0.53  0.70 0.34  0.55 0.37  1.00 1.00  0.83 0.65 

NCentral Dur 0.74 0.50  0.44 0.02  0.46 0.15  0.05 0.09  0.38 0.33 

NCentral Mich 0.07 0.09   0.06 0.05   0.07 0.08   0.03 0.09   0.15 0.19 

Northern Coah 0.28 0.39  0.39 0.37  1.00 1.00  1.00 1.00  1.00 1.00 

Northern Chih 0.62 0.68  1.00 1.00  0.54 0.39  0.37 0.70  1.00 1.00 

Northern Son 1.00 0.45  0.61 0.10  0.73 0.34  1.00 1.00  1.00 1.00 

Northern BC 1.00 1.00  0.93 0.81  1.00 1.00  0.39 0.96  1.00 1.00 

Northern Tamps 0.24 0.44  0.26 0.34  1.00 1.00  0.12 0.25  0.38 0.57 

Northern NL 0.23 0.54   0.26 0.46   0.37 0.84   0.37 0.66   0.31 0.77 

Southern Qroo 1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00 

Southern Camp 1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00 

Southern Gro 0.71 0.09  0.81 0.15  0.56 0.01  1.00 1.00  1.00 1.00 

Southern Oax 0.53 0.14  0.45 0.15  0.60 0.08  0.20 0.08  0.95 0.16 

Southern Yuc 0.54 0.54  0.75 0.03  0.65 0.22  0.13 0.13  0.35 0.35 

Southern Tab 0.68 0.28  1.00 1.00  0.48 0.72  0.25 0.87  0.16 0.23 

Southern Ver 0.13 0.15  0.17 0.08  0.34 0.41  0.14 0.35  0.13 0.25 

Southern Chis 1.00 1.00   1.00 0.64   0.90 0.21   1.00 1.00   0.11 0.07 
Notes: 1) The shown values stand for Energy Efficiency (EEP) and GHG Emission Performance (GEP). 2) 
We can see México City, México, Baja California Sur, Quintana Roo and Campeche keep through five 
periods the optimal energy efficiency and GHG emissions performance. NCentral is for the North-Central 

region. 
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