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1 Introduction

México ranks twelfth worldwide in Greenhouse Gas (GHG) emissions, contributing
around 1.5% of the global GHG emissions (The World Bank, 2021). The country’s
environmental goals, as outlined in the Paris Agreement in 2015, require a 22% reduction
in GHG emissions by 2030 compared to a status quo scenario. This target corresponds to
a reduction of approximately 211 million tons of CO2 (Iniciativa Climatica de México,
2021). Itis estimated that the manufacturing industry is responsible for over 18% of the
total emissions, primarily due to energy consumption during production (INECC, 2018).

The manufacturing industry sector is tasked with achieving a 25% reduction goal,
despite accounting for 32% of the nation’s total energy consumption (Secretaria de
Energia, 2020; Iniciativa Climatica de México, 2021). This necessitates significantaccess
to renewable energies, distributed generation, and the implementation of measures to
enhance energy conservation and efficiency. The aim of this article is to assess the
regional progression of energy efficiency within the manufacturing sector, coupled with
the efficiency of emissions reductions. Consequently, companies could curtail their
energy costs without affecting their output, leading to a net reduction in pollution. As
highlighted by Wu et al. (2012), the conventional measurement of technical efficiency
primarily emphasizes producing desired goods without adequately accounting for the
environmental repercussions of these production processes.

The existing literature primarily investigates the technical efficiency of total
production through the incorporation of undesirable output, often involving cross-country
comparisons (e.g., Chiu etal., 2016; Zhouetal., 2012). However, a noticeable gap exists
at the country level within Latin America, including México. While prior studies have
predominantly centered around China, comparing regional technical efficiency and
environmental performance (e.g., Yao et al., 2015; Wang et al., 2013; Yan et al., 2020;
Wau et al., 2012), the attention in this regard for Latin American nations, particularly
México, has been limited.

While some research has explored the technical efficiency of México’smanufacturing
sector (e.g., Chavezand Lopez Ornelas,2014; Borrayo Lopez etal., 2019; Vazquez-Rojas
and Trejo-Nieto, 2014), these studieshave yetto consider undesirable outputs within their
regionalanalyses. Notably, a specific focus on regional assessments of the manufacturing

sector’s technical efficiency, particularly in relation to energy and environmental



efficiency involving undesirable products, stays absent. As depicted by INEGI (2020Db),
the regional dimension in México assumes paramount importance, given the country’s
distinct characterization of highly industrialized northern and central regions, contrasting
with the southern regions’ higher reliance on oil and tourism.

By incorporating undesirable outputs—namely, greenhouse gas emissions—into the
production framework, the main contribution of this study is to examine whether regions
previously recognized for high efficiency in the manufacturing sector can sustain their
performance when environmental impacts are considered. To achieve this goal, we
employ Data Envelopment Analysis (DEA), a non-parametric method used to evaluate
the relative efficienciesand inefficiencies of a group of Decision-Making Units (DMUs).
This technique sets up a production frontier that represents the best practices. DMUs that
align with this frontier are considered efficient, while those positioned below the frontier
are classified as inefficient. By comparing the efficiency values of DMUs below the best
practices frontier with those on the frontier, we can accurately evaluate their performance.
Moreover, as Yaoetal. (2015) pointout, by encompassingboth desirable and undesirable
outputs, it yields comprehensive efficiency metrics for energy and environmental
performance. Thus, our secondary goal revolves around assessing the energy and
environmental efficiencies within México’s regional manufacturing sector. We try to
gauge the extent of improvements over time in these aspects, alongside exploring the role
these efficiencies play in reducing energy expenses and aiding the realization of national
environmental targets.

Our findings show that there is significant potential for energy savings within the
national manufacturing sector, with a possible reduction of up to 20.3% of the sector’s
total energy consumption. Additionally, from an environmental perspective, the sector
could achieve a reduction in GHG emissions of up to 24.3% by implementing measures
aimed at enhancing environmental performance. If all states reached the production
frontier—maximizing efficiency in energy use and environmental impact—they could
collectively contribute about 3% of the national target, equivalent to 6.4 million tons of
CO2e. At the regional level, results show that the northern states exhibit a promising
capacity for energy savings, while the central-northern and southern states possess
untapped potential to focus their efforts on reducing pollution.

The rest of this paper is organized as follows. Section 2 provides a brief review of



earlier studies, including some applications for México. Section 3 provides some context
of the regional use of the energy and emission intensity of the manufacturing sector. In
section 4 the non-radial directional distance function model is explained. Section 5
describes the variables used for the analysis and presents some descriptive statistics for
selected variables. Section 6 reports the results of the directional, non-radial distance
function model and the efficiency indices. Finally, section 7 provides some discussion of

the results and concluding remarks.

2 Literature Review

Considering undesirable outputs, such as CO2 emissions from fossil fuel use, is crucial
for several reasons. First, neglecting these outputs leads to biased efficiency scores, as
analyses that ignore them underestimate the true environmental impact (Wu etal., 2012;
Yao et al., 2015). Several studies support this notion, demonstrating how excluding
undesirable outputs misrepresents performance (e.g., Yao etal., 2015; Wangetal., 2013;
Yan et al., 2020; Wu et al., 2012). For instance, models that do not account for these
emissions might incorrectly label practices or technologies as efficient despite their
negative environmental consequences. Therefore, incorporating undesirable outputs
provides a more comprehensive and realistic assessment of energy efficiency, aligning it
with broader environmental and sustainability goals.

Cross-country studies are abundant due to the availability of data at the national level.
Analyzing undesirable outputs across countries reveals significant performance
differences. Zhouetal. (2012) employed adynamic efficiency analysis to evaluate energy
use, carbon emissions, and integrated energy-carbon performance in OECD and non-
OECD countries. They found countries like Switzerland, Lithuania, and Ukraine on the
efficiency frontier, indicating their ability to manage both energy use and CO2e emissions
effectively. Conversely, nations with lower efficiency scores often relied heavily on coal
and had lower generation efficiency, leading to higher undesirable outputs. Overall, the
study suggests a gap between OECD and non-OECD countries, with the former generally
showing better energy and carbon performance. Additionally, their analysis shows a link
between generation efficiency and overall energy performance, and between lower carbon
intensity and better CO2 emission performance. Chiu etal. (2016) explored efficiency in

G20 countries, highlighting variations in performance while considering undesirable



outputs. While some countries like Turkeyand Méxicoshowedsignificantimprovements,
others like Argentina and Germany experienced declines. Interestingly, the United States
consistently ranked highest in efficiency, while China and Saudi Arabia remained lower.
This comparison underscores the importance of including undesirable outputs in
efficiency analyses. It highlights that efficiency gains in some countries might come at
the expense of increased undesirable outputs, while others have managed to improveboth.
Prior research has focused on both specific sectors and entire economies. Studies like
those by Zhou et al. (2012) and Wu et al. (2012) examine the electricity and industrial
sectors, respectively, incorporating undesirable outputs into their analyses. Conversely,
Chiu et al. (2016) consider the entire economy of G20 countries using GDP as an output
variable. Notably, a significant portion of research has centered on China, comparing
regional technical efficiency and environmental performance while considering
undesirable outputs (e.g., Yao etal., 2015; Wangetal., 2013; Yan etal., 2020; Wu et al,
2012). For instance, Yao etal. (2015) conducted a detailed regional analysis for GDP and
carbon emissions using data from China’s provinces. Their findings suggest substantial
potential for carbon emission reductions by improving efficiency in lagging provinces.
While research on the manufacturing sector exists at lower levels, such as provinces
or regions within a country, a gap persists at the national and regional levels in Latin
America, including México. Studies such as Avile’s-Sacoto et al. (2021) evaluate
environmental performance across states by incorporating environmental outputs (e.g.,
water consumption, energy consumption, and pollution) within a DEA variable retum to
scale output-oriented framework for the entire economy. However, they do not account
for both desirable and undesirable outputs simultaneously, and their study is not
exclusively for the manufacturing sector. For the manufacturing sector in other countries,
some studies have incorporated both desirable and undesirable outputs simultaneously.
For instance, Zaim (2004) analyzed the manufacturing sector in U.S. states, employing a
DEA distance function to assess efficiency while considering both output directions.
Similarly, Wu et al. (2012) examined China’s industrial sector using province-level data
to estimate a meta-frontier non-radial directional distance function. Studies haveexplored
the technical efficiency of México’s manufacturing sector but haven’t yet considered
undesirable outputs (e.g., Bannister and Stolp, 1995; Borrayo Lopez et al., 2019;
Vazquez-Rojas and Trejo-Nieto, 2014). For instance, Chavez and Lopez Ornelas (2014)



examined the contributions of factors like technical efficiency and technological change
to labor productivity variations across Mexican states. However, their analysis did not
include undesirable outputs. They used non-parametric techniques such as Kumar and
Russell (2002)’s decomposition and Farrell (1957)’s index to measure the technical
efficiency of the manufacturing industry in each state. Their findings show that labor
productivity growth was primarily fueled by enhancements in technical efficiency in the
northern and southern regions, whereas technological advancements were the main
contributors to productivity increases in the central regions. Different methods have also
been employed; for instance, studies by Borrayo Lopez et al. (2019) and Alvarez et al.
(2017) used stochastic frontier methods to evaluate efficiency in México but also
neglected undesirable outputs. By integrating the undesirable output, specifically
greenhouse gas emissions, into the production framework, this research aims to
investigate whether regions with high efficiency previously identified in the
manufacturingsector (e.g., Chavez and Lopez Ornelas, 2014; Borrayo Lopez etal., 2019)
can maintain their position when environmental considerations, specifically undesirable
outputs, are taken into account. This approach will provide a more exact and
comprehensive assessment of regional efficiency, aligning such evaluations with

environmental sustainability goals.

3 Context

The manufacturing sector across Meéxico’s regions showcases considerable

heterogeneity, with energy consumption showingastrongcorrelation with activity levels.

The country’s thirty-two states are grouped into four major regions?: the Northern region,

encompassing those bordering the U.S.; the North-Central region, forming states below

the northern region; the Central region, encompassing central states; and the Southern.
Of these, the Northern region’s manufacturing industry commands the highest

consumption of electricity and natural gas nationwide, being a substantial 46.3%.

The Northern region includes Baja California (BC), Chihuahua (Chih), Coahuila (Coah), Nuevo Ledn
(NL), Sonora (Son) and Tamaulipas (Tamps); the North-Central region considers Aguascalientes (Ags),
Baja California Sur (BCS), Colima (Col), Durango (Dgo), Jalisco (Jal), Michoacan (Mich), Nayarit (Nay),
San Luis Potosi (SLP), Sinaloa (Sin) and Zacatecas (Zac); the Central region includes México City
(CDMX), Estado de México (Mex), Guanajuato (Gto), Hidalgo (Hgo), Morelos (Mor), Puebla (Pue),
Querétaro (Qro)and Tlaxcala (Tlax); andthe Southernregion includes Campeche (Camp), Chiapas(Chis),
Guerrero (Gro), Oaxaca (Oax), Quintana Roo (QRoo0), Tabasco (Tab), Veracruz (Ver) and Yucatan (Yuc).

5



Following closely are the North-Central and Central regions, accounting for 26.3% and
15.0%, respectively. The Southern region registers the lowest consumption at 12.4%
(with information by Secretaria de Energia, 2020; INEGI, 2020b).

In terms of greenhouse gas (GHG) emissions, the Northern states appear as the
foremost contributors, responsible for 29.8% of total emissions within the manufacturing
sector in 2018. The North-Central, Central, and Southern regions follow suit with 24.6%,
24.2%, and 21.4% contributions, respectively (with information by National Institute of
Ecology and Climate Change (INECC in Spanish), 2018). These disparities highlight the
importance of analyzing regional variations, which is precisely the focus of this research.

Energy consumption within each state is largely driven by manufacturing activities,
which require substantial energy input. A key metric for understanding current energy
usage compared to economic activity isenergy intensity. This metric quantifies the energy
consumed per unit of economic output and is calculated as the ratio of energy
consumption to the gross value added by the manufacturing sector.

It is important to note that energy intensity is a macro-level indicator shaped by both
the economic structure and energy efficiency. While energy intensity reflects overall
energy usage patterns, energy efficiency specifically addresses the effectiveness of energy
use by minimizing waste. Both factors are essential for comprehensive evaluation and
improvement of energy performance across states.

Figure 1(a) presents the energy intensity values for each Mexican state across regions
for the years 1998 and 2018. Energy intensity refers to the amount of energy used to
produce a unit of economic output, measured here in megajoules per Mexican peso
(MJ/MXN). The data for gross value added comes from INEGI (2020b), while energy
consumption data—expressed in petajoules—combines electricity use from INEGI

(2020b) and natural gas consumption from the Secretaria de Energia (2020).
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Figure 1: Energy and Emission Intensity of the Manufacturing Sector
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Notes: 1) Energy intensity refers to the amount of energy used to produce a given level of output, while
emissions intensity refers to the CO2 emissions generated to producea given level of output. 2) The black
and gray lines stand for the national average in 1998 and 2018, respectively. Source: Own elaboration with
the data sourcesareas follows: Gross value added is from INEGI (2020b). Energy consumption, expressed
in petajoules, isthe sum of electricity (INEGI, 2020b) and natural gas consumption (Secretaria de Energia,
2020). CO2e emissions arebased on state-level data from SEMARNAT (2019) and the national emissions

inventory from INECC (2018).
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Figure 2: Value added participation in the manufacturing sector

Source: Own elaboration with the Gross valueadded from INEGI (2020b).

Among the states, Michoacan (Mich) stands out for having notably high energy
intensities in both years, with values of 2.34 MJ/MXN in 1998 and 1.60 MJ/MXN in
2018. Veracruz (Ver) also exhibits a significant increase in energy intensity, rising from
1.18 MJ/MXN in 1998 to 1.88 MJ/MXN in 2018. Notably, Tabasco (Tab) records the
highest energy intensity in 2018, reaching 3.10 MJ/MXN, despite not showing a
comparable figure in 1998.

Other states such as Nuevo Ledn (NL), Hidalgo (Hgo), and Tlaxcala (Tlax) also
display elevated energy intensities, with notable increases over the 20-year period. These
trends suggest rising energy use relative to output in these regions, which may reflect
changes in industrial composition or energy efficiency.

Itis importantto contextualize these values with the scale of economic activity. Figure
2 illustrates each state’s share in the national gross value added of the manufacturing
sector. In some cases, high energy intensity may partly result from a low gross value
added, ratherthan exceptionally high energy use. States with smaller industrial output can
appear disproportionately energy-intensive when energy consumption is not matched by
corresponding economic production.

Figure 1(b) illustrates emission intensity for each Mexican state in 1998 and 2018,
where emission intensity is defined as the kilograms of CO: equivalent emitted per

Mexican peso of gross value added in the manufacturing sector (Kg CO2e/MXN).
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Greenhouse gas emissions data at the state level are sourced from SEMARNAT (2019)
and the national inventory from INECC (2018), while gross value-added figures come
from INEGI (2020b).

Among the states, Michoacan (Mich), Campeche (Camp), and Guerrero (Gro)
consistently exhibit the highest emission intensities in both years, each exceeding 0.20
Kg CO2e/MXN. In 1998, Zacatecas (Zac), Veracruz (Ver), and Oaxaca (Oax) also
registered relatively high values. Notably, Hidalgo (Hgo), Nayarit (Nay), and Chiapas
(Chis) began around or below the national average in 1998 butexperienced clear increases
in their emission intensities by 2018. These states typically concentrate their
manufacturingoutputin subsectors with energy - and emission-intensive processes—such
as oil and coal product refining, basic metal production, and chemicals manufacturing—
explaining their above-average intensities. Figure 2 shows that between 1998 and 2018,
many of the high—emission-intensity states (Mich, Camp, Gro, Zac, Ver, Oax, Hgo, Nay,
Chis) sawdeclinesin their manufacturingvalue-added participation. In otherwords, even
though their emission intensity rose or remained elevated, their overall contribution to the
country’s manufacturing output diminished. By contrast, Tabasco (Tab) in 2018 presents
a case of high energy intensity butrelatively low emission intensity. Overall, while energy
intensity and emission intensity often move in tandem, factors such as fuel mix, industry
structure, technology adoption, regulatory frameworks, and data quality can create
significantdeviations. Also, when interpreting Figure 1(b) alongside Figure 2, it is crucial
to recognize that a high emission intensity may reflect both a state’s industrial profile and
shifts in its contribution to national manufacturing output.

Building on the previous discussion of energy and emission intensities, the savings
computed in this study underscore each state’s potential to reduce energy intensity. These
improvements can be achieved through measures that enhance energy and environmental

efficiency without adversely affecting their economic activity.

4 Methods

Data Envelopment Analysis (DEA) is a non-parametric method used to evaluate the
relative efficiencies and inefficiencies of a group of Decision-Making Units (DMUs)
based on their inputs and outputs. This technique constructs a production frontier that is

the best practices observed among the DMUs. DMUs located on this frontier are



considered efficient, while those positioned below it are classified as inefficient. The
efficiency of DMUs below the frontier is evaluated relative to the efficient DMUs, using
measures that compare their performance to those positioned on the frontier.

There are two main approaches for constructing the frontier in data envelopment
analysis: constant returns to scale (CRS) and variable returns to scale (VRS). CRS
assumes that any linear combination of observed Decision Making Units (DMUSs) is
feasible, implying that proportionally scaling inputs and outputs of efficient DMUs could
create even more efficient units. In contrast, VRS acknowledges heterogeneity within the
data by considering only convex combinations of the observed DMUs as feasible. This
approach ensuresthat efficient units cannot be surpassed simply by scaling up or down
others. When dealingwith a sample containing heterogeneous units over a lengthy period,
VRS is generally more appropriate. This is because the assumption of constant returns to
scale might not hold over extended periods, where technological advancements or
resource limitations can affect efficiency. VRS provides a more realistic assessment of
efficiency under these circumstances by allowing for potential variations in scale
economies.

DEA models can be categorized into two orientation types. On the one hand, we have
input-oriented, which seeks to minimize input usage while keeping the same output. On
the other hand, we have output-oriented, which aims to maximize output yield while
keeping input levels constant. For these two orientations, we also have two measurement
types. Firstly, the radial approach, which seeks a proportional way to optimize any
orientation mentioned above. Secondly, the non-radial approach, which combines both
orientations, with the objective of enhancingoutputs while concurrently minimizing input
consumption (Zhou etal., 2012).

Traditional DEA models focus mainly on desirable outputs or inputs. However, in the
actual production process, undesirable byproducts can appear in the conversion of input
to output. The key assumption in DEA is that a Decision-Making Unit (DMU) is
considered efficient if it can increase the production of certain desirable outputs (goods)
without sacrificing the production of others, while also avoiding an increase in
undesirable outputs (bads) or the need for additional inputs. Similarly, if a unit can
maintain the same outputs while using fewer inputs, it also indicates that it is operating
efficiently and aligned with the frontier. (Charnes etal., 1981; Seiford and Zhu, 2002).
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Since the main contribution of this study is to examine whether regions previously
recognized for high efficiency in the manufacturing sector can sustain their performance
when environmental impacts are considered, the Directional Distance Function (DDF)
model, within the DEA models, is the optimal one to facilitate the simultaneous increase
of desirable and reduction of undesirable outputs. Furthermore, the non-radial DDF
method permits the non-proportional adjustment of input and output weights (Wang et
al., 2013). Lastly, for our study, since we evaluate all the states of México over a 20-year
period, we cannotassume that the sample is quite homogeneous and all states operate
under similar conditions during each period, so it is more appropriate to assume variable
returns to scale and with this obtain a convex combination.

To define the DEA model, we adopted the approach of Zhouetal. (2012) and Zhang
et al. (2013), who proposed a non-radial directional distance function (non-radial DDF)
to measure energy efficiency and environmental performance considering undesirable
outputs. While Zhang et al. (2013) originally applied this framework to compare coal-
and oil-fired power plants in Korea, we adapt it to assess regional manufacturing
efficiency in México, where technological heterogeneity across states is equally critical
for understanding energy and environmental performance disparities. Following their
formulation, letusassume thattherearei=1, 2, ..., K DMUs (in our case DMUs are states)
and foreach DMU there is a production inputvector x € RY, to jointly produce desirable
outputs y € RY and undesirable outputs ¢ € IR{L. We use these vectors to create the

multi-output production technology, namely T, as defined in equation (1).

T = {(x,y,¢): x can produce y and ¢} c R} *™*/ 1)

Set T represents all possible combinations of inputs and outputs for all DMU;, feasible
under the available technology, and the production frontier corresponds to the upper limit
of T, where no further improvements can be made without moving outside the feasible
set. The efficient production frontier is directly constructed from the constraints of the
model, which ensures that T includes all combinations of inputs and outputs derived from
the observed DMUs and their convex combinations. That is, it is made up of units that
cannot improve their efficiency without compromising other dimensions of performance

(units that demonstrate the best practices using production factors efficiently). Following
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Zhanget al. (2013), the non-radial DDF adapted to include CO2 emissions is defined as

follows:
ﬁ(x,y, c;9) = suplw'B:{(x,y,c) + g x diag(B)} € T] )

!
where w = (wi‘l, w),, w]c) denotes the set of vectors that group non-negative normalized
weight vectors, that is, %= (o}, 0},..,0%), ), = (wf, w32/, ...,wIJ\’,I), wj =
(0], w3, ..., w}). g = (—=g*,g”,—g°) represents the set of vectors that group directional

vectors, i.e., denote the desired reductions or expansionsin the inputs and outputs. That
is,  gx=05.95 9%, In=(91.90 9w 95=09595.99. B=
(51’1"513:1’ Bjc) is a vector of scaling factors with respect to inputs, desirable outputs, and

undesirable outputs, i.e., itindicates the non-proportional adjustment of how much should

be reduced or increased to project the assessed DMU towards the efficient frontier, that

it B = (BB BR)s B = (BY By s Biag)s B = (BEBS - B

In technical terms, the model assumes that inputs and desirable outputs are strongly
disposable for production technology, while undesirable output is weakly disposable. As
Hua and Bian (2007) pointed out, this means that reducing undesirable output may not

always be possible without incurring certain costs. Then, this DEA model is equivalent

to solve the following linear programming problem for 5(x,y, cg):

D(x,y,c;9) = max (w'B)

s.t.
K
Zli Xin<xn—Ppgys n=1,..,N
i=1

S y v 3)
Zliyimz.’ym_ﬁmgm m=1,.,M
i=1

K
Z/L‘ Cij= Cj— ]-ngc-‘ j= 1, ,]
i=1
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z/li - 1
i=1

>0 i=1,..,K

X, B BG =0

The programming model in equation (3) —based on the formulation of Zhang et al.
(2013)—, provides the general form of non-radial DDF with variable return to scale,
whose objective function seeks to maximize the total weighted adjustment required by
the evaluated DMU to achieve its technical efficiency. Specifically, in the first three
restrictions, x,,ym, ¢; represent the nt input, mth desirable output and j™ undesirable
output of the evaluated DMU. Whereas x ;,,yim, ¢;j denote the nth input, the mth desirable

output and the jth undesirable output, respectively, of the it DMU, with i= 1, ..., K. This

implies that when B(x,y, ¢; 9) = 0 the evaluated pointis already located at the frontier
of best practice and it is efficient in the g direction. For our case, we denote x = (K, L, E)
as inputs (Capital, Labor, and Energy), y =Y as desirable output and ¢ = C as the
undesirable output (Greenhouse gas emissions). Assuming both inputs and undesirable
outputs decrease and desirable outputs increase, the non-negative normalized weight
vector is = (wg,w,,wg wy,wc)' and the directional vector is g=
(=K,—-L,—E,Y,—=C) following Yao et al. (2015). Thus, the left-hand side of the three
first constraints uses the observed information for all DMUs, while the right-hand side
allows the evaluated DMU to adjust inputs and outputs along the direction of g =
(=K, —L,—E,Y,—C) in the proportion of 8 = (Bx, B, Be, By, Bc)' as Wang et al. (2013),
.e., each B, represents the amount by which inputs or outputs are adjusted. In the case of
the third constraint, the equal sign is due to the weak disposability of undesirable output.
The fourth constraint is for the variable return to scale, which is the frontier results in a
convex set that allows that DMUs with different productivity to be considered efficient.2

2 In traditional DEA models, equation (3) has always a solution, but since optimal solutions for A} are
multiple, then the solution cannot be unique. In addition, in the DDF model, the existence of multiple
solutions for the lineal programming model in equation (3) will depend on the values assigned to w. An
example of this can be seenin the special casesprovided by Zhouetal. (2012).
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Figure 3: Graphical example of non-radial directional distance function.

Notes: Points A, B, C and D are DMUs that form the frontier of best production practices, while point E
represents an inefficient DMU below the frontier that could improve by moving along the frontier FBG,
that is reducing C/E, increasing Y/E, or a combination of both. When using a non-radial DDF model, the
directional vector g causes E to move tothe optimal point E’ since is the best combination ofreducing C/E,
increasing Y/E, in a non-proportional way, which is determined by Scand v. Source: Own elaboration.

Following the example proposed by Zhou et al. (2012) and Wang et al. (2022), we
illustrate the non-radial directional distance function defined in equation (3) using Figure
3 that depicts the amount of desirable and undesirable outputs by unit of energy
consumed. Points A, B, C and D are DMUs that form the frontier of best production
practices, while point E represents an inefficient DMU below the frontier that could
improve by moving along the frontier FBG, that is reducing C/E, increasing Y/E, or a
combination of both.When usinganon-radial DDF model, if vector g is assigned to these
directions (called “directional vector”), E would move to the optimal point E’ since is the
best combination of reducing C/E, increasing Y/E, in a non-proportional way, which is
determined by B, and By . Thisisthe main contrastbetween radial and non-radial distance
function, where in radial measure our reference pointwould be fixed in F or G, which
implies that the non-radial measure is more flexible.

After solving the non-radial DDF problem in equation (3), we can use the resulting
scaling factors and weight vector to calculate the energy and environmental potentials of
each state in the country, as proposed by Zhou et al. (2012). Following Zhou et al. (2012)

and assuming Sz , By , and B as the optimal scaling factors for energy, output, and GHG
14



emissions (undesirable output), respectively to equation (3), four types of indices are
proposed for energy efficiency and GHG emissions.

Energy Potential Savings (EPS) represent the amount of energy that can be reduced
while maintaining the same production level. In other words, EPS indicates that the
Decision Making Unit (DMU) is using more energy than necessary to produce the same
amount of product. Therefore, EPS quantifies the reduction of this unnecessary energy

consumption. Formally, itis defined as in equation (4).
EPS = BLE (4)
Energy Efficiency Performance (EEP), as defined in equation (5), quantifies the

potential energy consumption savings per additional unit of output. Zhou et al. (2012)

define it as the ratio of actual energy efficiency (Y/E) to potential energy efficiency.

(Y + ﬁy*y> 1+6; (5)
E — B;E

Similarly, the GHG Emissions Potential Savings (GEPS) represents the extent to

which pollution should be reduced without affecting production as defined in equation

(6).
GEPS = B;C (6)
Finally, we follow Zhou et al. (2012) to define the GHG Emissions Performance

(GEP) as the ratio of potential target emission intensity to actual emission intensity (C/Y)

as in equation (7).

(51?5) 1-p¢
GEP = (%)Y =7 +B§ @)

Both EEP and GEP lie between zero and one. Zhou et al. (2012) states that, a larger
15



GEP represents better reduction GHG emission performance. If GEP is equal to unity, it
means that the DMU has the best reduction in GHG emission performance for the level

of gross value added.

5 Data

This paper assesses the energy and environmental performance in the manufacturing
sector across all thirty-two states of México for different years between 1998 and 2018.
The economic activity data was sourced from the 31-32-33 NAICS sectors of economic
censuses by the National Institute of Statistics and Geography (INEGI, by its Spanish
acronym) conducts economic censuses every five years, using data from the previous
year. For example, the most recent census referenced in this document is the 2019
Economic Census, which contains information from 2018. Consequently, the years
included in our analysis are 1998, 2003, 2008, 2013, and 2018. For clarity, the results
section concentrates on a comparison between 1998 and 2018. Additionally, the analysis
excludes the 3241 and 3251 industry groups—which encompass the oil refining sector—
due to their substantial contributions to greenhouse gas emissions (16%) and energy
consumption (9%) in 2018 according to the National Commission for the Efficient Use
of Energy (CONUEE in Spanish) (CONUEE, 2018). While undergoing stringent
environmental regulations, this sector has experienced heightened energy utilization. For
this reason, we have excluded them from our analysis to avoid bias towards states
including these industry groups.

The inputvariables, includingcapital (K) and labor (L), alongside the desirable output
(Y), werederived from INEGI (2020b). The desirableoutput (Y), representinggross value
added (measured in million MXN 2018=100), reflects the value generated during
production. It was then adjusted using the corresponding manufacturing producer price
index PPI (2013). Capital (K), measured in million MXN (2018=100), represents the total
stock of fixed assets, encompassing both movable and immovable property or as well as
improvements that enhance productivity and extend the useful life of assets. It was
adjusted using the appropriate producer capital formation price index. Labor (L),
quantified in thousands of hours worked, includes both regular hours and overtime
dedicated to productive activities.

To determine the energy consumption input variable (E), we used electricity
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consumptiondatafrom INEGI (2020b) and supplemented it with natural gas consumption
data from Secretaria de Energia (2020). Both data sets were converted to energy

equivalents using a constant transformation to ensure consistency in units.3

Table 1: Descriptive Statistics

Variable (Unit) 1998 2018 % change
mean sd mean sd 1998-2018

Value added () 51,943 63,989 96,554 105,195 85.8

(1 x 106 MXN (2018))

CO2e emissions (C) 2,872 2,503 3,676 3,395 27.9

(1 x 103ton CO2e)

Energy (E) 19.8 26.9 42.6 55.6 114.6

(1 x 1015 Joules)

Capital (K) 71,132 81,548 86,010 89,863 20.9

(1 x 106 MXN (2018))

Labor (L) 302,823 316,557 469,327 433,529 55.0

(1 x 103 hours worked)
Note: Descriptive Statistics for the years 1998 and 2018. The dataset comprised 32
observations foreach of theseyears.

As a proxy for the undesirable output (C), we used state-level CO2e emissions data
from the National Inventory of Emissions of Greenhouse Gases and Compounds
(INEGyCEI) published by SEMARNAT (2019), where each state reports emissions by
activity type across various periods. Thisinventory includes emissions from fixed sources
(such as industrial plants and electricity generators), mobile sources (land, air, and
maritime transport), and diffuse sources (fertilizer use, biomass burning, and fugitive
emissions). However, not all states report their data in sufficient detail to allow for the
selection of specific subsectors, which, in turn, these state-level emissions differed from
national emissions inventory published by INECC (2018), likely due to methodological
variations. To reconcile these discrepancies and align with the sectors studied in this
document, we employed a two-step approach. First, we calculated the proportion of each
state’s emissions relative to the national total. Second, we applied these proportions to the
national emissions data for the manufacturing sector. This approach ensures consistency

between our state-level and national-level emissions data for the manufacturing sector.

% Petajoules (PJ) were used as the unit of measurement for equivalent energy. To provide context, here are
some conversionfactors: 1 million kWhis equivalent to 0.0036 PJand 1 million cubic feet is equivalentto
approximately 0.0011 PJ (or 1.084597x 10—3 PJ).
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Table 1 reports some descriptive statistics of the five variables for 1998 and 2018,
which allows to illustrate clearer the change over the time.4 As we can observe, all
variables increased significantly during our sample period, highlighting how energy

consumptionincreased by 114%, while GHG emissionswere only 28%.

6 Results

6.1 Technical efficiency with and without undesirable output
Upon applying the non-radial DDF model with a variable return to scale to the

manufacturing sector of México’s states, we aimed to obtain the optimal values of

D(x, y,c; g). To achieve this, we solved Equation (3) for five different years between
1998 and 2018 (1998, 2003, 2018, 2013 and 2018) to analyze changes over time.
Subsequently, to model energy and environmental performance simultaneously, we
defined the directional vector g = (—g*,9”,—g¢) = (—K,—L,—E,Y,—C), where
negative values for inputs K, L, E represent the reduction of resources, while positive
values for outputs Y and negative for undesirable outputs C aim to minimize emissions.

Two scenarios were considered to evaluate technical efficiency. In the first scenario,
only desirable outputs were taken into account, with the normalized weight vector w =
(w*, w?,w°) = (wg, w;, wg, wy,0) = (1/9, 1/9, 1/9, 2/3, 0), and the directional vector
for the undesirable output C set to gc = 0. In contrast, the second scenario incorporated
both desirable and undesirable outputs, using the weight vector w = (1/9, 1/9, 1/9, 1/3,
1/3).5 The technical efficiency indexes (5) obtained under both scenarios are illustrated
in Figure 4.5

Our results demonstrate that, in general, technical efficiency is consistently higher or

* Descriptive statistics and results for all years can be found in the appendices A.1, A.2, and A.3.
Information at state levelis available upon request.

®> Following Zhanget al. (2013), we aim to improve economic efficiency by minimizing capitala nd labor
inputs while maximizing desirable outputand minimizing undesirable output. This approach suggests
assigning equal weights to all inputs and outputs. However, since the inputs encompass three variables
(capital, labor, and energy), the weight for inputs is divided equally among them, resulting in the vector o
= (1/9,1/9,1/9,1/3,1/3). Alternatively, we calculate results using a weight vector of (0,0, 1/3,1/3, 1/3).
This approach focuses solely on energy, desirable and undesirable outputs, isolating their impact without
altering capitaland labor inputs. Thisanalysis is further explored in Section 6.3.

® For clarity of presentation, we use a figure that represents 1 minus the efficiency score, meaning that
values closerto 1 indicate higherefficiency. The technical efficiency indexes for the rest of the years are
reported in Appendix A.2.

18



equal when focusing solely on the desired output rather than considering both outputs.
Furthermore, in most of the instances where a state demonstrated inefficiency in the
former scenario (depicted by the blue line in Figure 4(b) falling within the inner portion
with values below 1.0) experienced an even further decline in efficiency under the latter
scenario (illustrated by the red line).

The results for Chiapas ("Chis") and Michoacan ("Mich™) warrant specific
commentary. The issue with Chiapas primarily stems from the value-added data reported
by INEGI, which highlights significant economic challenges within the state. For
instance, in 1998, Chiapas reported avalue-added of $6,670, emissions of 289, and inputs
of 0.5 for energy, 70,449 for labor, and $8,248 for capital. By 2018, these values had
changed dramatically: value-added dropped by 86% to $894, emissionsincreased by 25%
to 362, and inputs rose significantly—energy doubled to 1.0, labor increased to 152,463,
and capital rose to $20,620. WithoutneedingDEA,, it is evidentthat such a drastic decline
in value-added alongside increases in emissions and inputs signals a severe inefficiency
in economic and environmental performance. For Michoacan, a similar pattern emerges
but with important differences. Between 1998 and 2018, value-added and emissions
increased by 38% and 17%, respectively, while labor and capital inputs more than
doubled. However, energy input showed only a minimal increase of 1%. In the model
without undesirable outputs (blue line), this balance allowed Michoacén to achieve an
efficiency score of 1, as the proportional changes in desirable outputs relative to inputs
indicated full efficiency under that scenario.

Our analysis reveals a significant disparity in the number of efficient states based on
whether only the desirable output is considered. Specifically, in 1998, 23 states were
identified as efficient when focusing solely on the desirable output, but this number
dropped to 15 when both outputs were considered (refer to Figure 4(a)). Similarly, in
2018, 20 states were classified as efficient under the scenario of considering only the
desirable output, compared to 17 states when incorporating both outputs (refer to Figure
4(b)).

Nonetheless, we contend thatthe evaluation of technical efficiency should encompass
both desirable and undesirable outputs. This approach allows efficient strategies to
account for the potential detrimental effects stemming from environmental factors.

Recognizing the negative impact of emissions and energy consumption can help create
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more comprehensive and effective initiatives to promote sustainability within the

manufacturing sector.
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Figure 4: Technical Efficiency with only desirable output (YY) and with both
desirable and undesirable outputs (Y & C)

Notes: 1) Blue line represents total technical efficiency when only the desirable output is considered, while
red line shows it when both desirable and undesirable outputs are considered. 2) The outer circle marked
with 1.0 represents the production frontier, inner circles mean to locate below the frontier. 3) Average
technical efficiencies in 1998 were 0.95 (Y ) and 0.81 (Y &C), while in 2018 were 0.90 (Y ) and 0.81 (Y
&C). 4) Mann-Whitney-Wilcoxon test for 1998 shows a statistic z=2.556 with p value =0.0106 and for
2018:z=1.226 andp value =0.22. Source: Own elaboration.
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Moreover, we compared the average technical efficiency between 1998 and 2018
under two scenarios: one considering only desirable outputs and the other including both
desirable and undesirable outputs. For each year, we calculated the average technical
efficiency acrossthe 32 states for both scenarios and conducted separate Mann—Whitney—
Wilcoxon tests to evaluate the differences.” The results revealed significant differences at
the 5% levelin 1998, highlightinga notable disparity between the two scenarios thatyear.
However, no significant differences were found in 2018, suggesting similar levels of
efficiency under both scenarios in the later year.

Interestingly, our findings also showed that, although the number of inefficient states
decreased from 1998 to 2018, the overall efficiency of the manufacturing sector did not
demonstrate improvement over this period. This surprising outcome underscores that,
despite efficiency gains in some states, others experienced notable declines. Forexample,
states such as Michoacan and Chiapas recorded substantial reductions in their efficiency
scores. This dynamic suggests that while certain regions have made progress, the
overarching efficiency landscape in the manufacturing sector of México still requires
substantial attention and improvement.

6.2 Explaining technical efficiency with undesirable output
Inthis section, our objective wasto discern the factors intricately linked with the technical
efficiency index derived from both desirable and undesirable outputs. To achieve this, we
construct a pseudo-panel utilizing the outcomes for obtained in Section 6.1, constituting
a framework encompassing 32 states (N = 32) across a five-year span (specifically, T =
1998, 2003, 2008, 2013, 2018). Delving into the analysis, we examined an array of
variables (as detailed in Table 2) that could potentially drive improvements in energy and
environmental efficiency.

These variablesinclude educational attainment, investments, and a green tax for states

that have already implemented it.8 However, we must acknowledge that other factors

" The Mann-Whitney U Test, also known as the Wilcoxon Rank-Sum Test, isa non-parametric test used to
compare differences between two independent groups under the null hypothesis that they come from
populations with the same distribution (Mannand Whitney, 1947; Wilcoxon, 1992).

8 These taxeshave beenestablished by eachstateto target firmsresponsible for environmental damage. As
of 2018, only five states have set such taxes: Estado de México, Querétaro, Oaxaca, Campeche, and
Quintana Roo. For example, Estado de México introduced an environmental tax for the emission of
pollutants into the atmosphere in 2018. More information by state and tax category can be found in the
Mexican Environmental Taxes Guideline (https://explore.pwc.com/impuestosverdes2022).
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might lead to outcomes of uncertain significance. For instance, variables such as whether
states are natural gas producers and whether they have air quality systems in place can
have different implications. This uncertainty arises from the fact that states lack
ownership over local gas resources, and the enforcement of environmental regulations is
relatively weak nationwide. To further ensure comprehensive analysis, we also
incorporated population density as a control variable.

Given the bounded nature of the dependent variable, which ranges between zero and
one, as well as the efficiency scores generated in the previous stage can be biased due to
the nature of non-parametric frontier methods, we employ two techniques: 1) the Simar
and Wilson (2000) estimator and 2) a two-part fractional probit response model. Both of
which are well-suited for second-stage DEA analysis, as highlighted by Ramalho et al.
(2010).

The approach proposed by Simar and Wilson (2000) employs a two-stage truncated
regression to model the relationship between efficiency scores and explanatory variables,
while accounting for the bounded nature of the dependent variable. It then applies
bootstrapping to generate confidence intervals and assess the statistical significance of
the regression parameters. This method addresses the issue of statistical dependence
between the estimated DEA scores from the first stage and the explanatory variables.

On the other hand, the two-part fractional probit response model offers a
complementary approach. First, it employs a probit model for the efficiency scores to
identify factors that drive DMUs to reach the efficient frontier. For observations with
efficiency scores strictly between 0 and 1, a fractional probit regression is applied to
furtheranalyze the relationship. This two-partstructure effectively captures the dynamics
of both boundary andinterior efficiency scores. Let z;; be the setof independent variables,

equation (8) displays the model we aim to estimate under this method.
Pr(Didzi1, 2iz, s 2i7) = @ (e + 268 + Z3h) (8)

where Bit is the optimal technical efficient coefficient for state i in year t, ®() is the
standard normal cumulative distribution function, y, is for a different intercept in each
year, and z; is the average of z;; over time.

To obtain proxies for the variablesmentioned above, we use for education, the average
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years of education of the employed populationin the educational characteristics of the
population section from INEGI (2021a). Air quality monitoring systems are a tool that
some entities have that allows knowing the quality of the air with respect to certain
pollutants, obtained by INECC (2018).° The availability of a green tax was also
considered, as obtained from each state’s reports. Natural gas production was also taken
into account, asreported in Secretariade Energia (2020). Populationdensity was obtained
from INEGI (2020a). Finally, we computed total public investments using information of
“Public Domain Assets”, “Productive Projects”, and “Promotion Actions” sections from
INEGI (2021Db), along with information from the Economic Census published by INEGI
(2020b).10

Table 2 presents the descriptive statistics. It is worth noting that for several variables,
a value of 0 is observed in certain years. Consequently, we opted to work with these
variables in their original levels rather than employing logarithmic transformations. The
outcomes of our estimation are presented in Table 3, along with the corresponding

marginal effect for the two-part model in the final column.

Table 2: Variable description and summary statistics

Variable mean sd  min max

Technical efficiency with undesirable output 077 026 O 1
Average years of education of the employed

population 858 118 54 11.48
1 if state accounts with an air quality monitoring 064 048 0 1
system

1 if state has a green tax 004 021 O 1
Natural gas production (Million cf) 0.04 01 O 0.5
Population density (inhabitants per km?) 2959 1,0254 2.2 6,1605
Il?/llj)t()llll(; investments per manufacturing unit (million 018 018 O 101

Note: The dataset comprises 160 observations, representing data from 32 states over the years 1998, 2003,
2008,2013,and 2018, with descriptive statistics computed across all states and years.

To verify the robustness of our findings, we also estimated a linear model with fixed

effects onthe panel data. However, this approach has limitations, as it does not guarantee

® The quality of the air is monitored for specific pollutants using a series of computer programs in each
station to gather reliable information. There are currently 34 air quality monitoring systems set up across
the country, strategically placed in citiesand metropolitan areas.

9 This calculationincludes investments from the federal, state, and municipal governments.
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that the predicted values will fall within the necessary range of zero to one, which is
necessary for our analysis. Despite this limitation, the results from the linear, Simar &
Wilson and fractional probit models showed consistency in terms of the direction
(positive or negative) for almost all coefficients. However, some coefficients that were
statistically significant in either Simar & Wilson or the fractional probit model were not

significant in the fixed effects model.

Table 3: Effects on Technical Efficiency of the Manufacturing Sector

Linear . Fractional Probit
fixed S\;\rl?lzrof 1st ond part Marginal
effects part P effect

Average years of education  0.164**  (0.155*** 0.241  -0.399* 0.003
of the employed population (4.949) (3.843) (1.255) (-1.746)  (0.065)

1 if state accounts with an -0.023 0.099~ 0.368~ 0.660*  0.164**~
air quality monitoring i
system (-0.467) (1.826) (2.009) (2.038) (2.663)
1 if state has a green tax 0.091 0.228 0.399  -0.093 0.076
(0.913) (1.274) (1.342) (-0.138) (0.556)
Natural gas production -0.002 0.368* 1472+ 2932  0.692*
(-0.011) (1.673) (1.863) (1.969) (2.641)
Population density -0.000 -0.000 -0.001 -0.004*= -0.001*~
(-1.011) (-0.286) (-1.14) (-4.041) (-3.116)
Public investments per 0.099 -0.064 -0.656 -1.799**  -0.370*
manufacturing unit (0.77) (-0.393) (-1.06) (-2.146) (-2.117)
Constant -0.317 -0.405 -1.507  3.405*
(-1.299) (-1.494) (-1.33) (2.092)
Observations 160 91 160 91 160

t statistics in parentheses
* P <0.10, **p <0.05, *xx p< 0.01, *+*+xp < 0.001

Given the limitations of the fixed effects model and the greater interpretability of the
marginal effect from the fractional probit model’s results, we will focus on the estimates
obtained from this model for further analysis. The study’s outcomes offer compelling
insights into the drivers of technical efficiency within México’s manufacturing sector.

Our analysis not only confirms the relevance of certain variables but also reveals
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intriguing nuances that are consistent with existing economic literature.

States with air quality monitoringsystems experience roughlya 16.4 percentage point
increase in technical efficiency. This positive effect likely reflects enhanced
environmental oversight and management practices that promote more efficient
production, even when accounting for undesirable outputs such as greenhouse gas
emissions. Although the coefficient for green taxes is positive, its lack of statistical
significance suggests that simply having a green tax does not robustly impact technical
efficiency. This may imply that variations in design, enforcement, or economic scale
across states limit their overall effect.

Natural gas production, on the other hand, shows a strong positive effect—with nearly
a 70-percentage point improvement per unit change. This robust relationship likely stems
from the benefits of a reliable, cleaner-burning energy source. Facilities such as natural
gas wells and storage points ensure a stable supply, optimize distribution, reduce
transportation emissions, balance supply and demand, and provide backup during peak
periods. Together, these factors lower operational costs and enhance both energy use and
environmental performance.

Higher population density is associated with a modest yet significant decline in
technical efficiency, likely reflecting challenges such as congestion, increased
competition for resources, and infrastructural strain. Similarly, the negative marginal
effect of public investments per manufacturing unit suggests that higher investments
correlate with lower efficiency—potentially due to inefficiencies in fund allocation or
because underperforming states receive more investments as remedial measures.

The education coefficient is near zero and statistically insignificant, indicating that
average years of education do not meaningfully influence technical efficiency after
controlling for other factors. In other words, higher educational attainment alone does not
drive efficiency improvements when undesirable outputs are considered.

Overall, air quality monitoring systems and local natural gas production emerge as
the most robust and policy-relevant determinants. Both factors enhance technical
efficiency by fostering better environmental management and ensuring a stable, cleaner
energy supply. In contrast, the anticipated benefits from higher education levelsandgreen
tax policies are not evident, challenging conventional expectations. For education, this

contradicts the notion that a more educated workforce inherently boosts efficiency
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(Mohan, 2020), and for green taxes, their limited impact may reflect their sparse
implementation. A more widespread or effectively designed green tax might, however,
play a crucial role in driving efficiency improvements (Bohmelt et al., 2018).

Contrary to the findings of Aucietal. (2021), who report that investments in modem
technologies and infrastructure foster productivity gains, our results indicate that higher
population density and elevated public investments are linked to lower technical
efficiency. In densely populated states, challenges such as congestion may impede
production, andthe negative association with public investments suggests that these funds
might be deployed reactively in states already struggling with performance rather than
servingas a proactive strategy for enhancing productivity.

In summary, the analysis of Table 3 indicates that, when both desirable and
undesirable outputs are considered, enhancing technical efficiency should center on
improving environmental monitoring and leveraging local natural gas resources.
Meanwhile, the expected benefits of higher education and green tax policies remain
unproven, and the negative associations with population density and public investments
warrant further investigation. These findings not only reinforce established determinants
but also offer new insights into the factors influencing technical efficiency in México’s

manufacturing sector.

6.3 Energy and Environmental Performance

Recognizing the significance of incorporating both desirable and undesirable outputs into
our analysis, this section focuses on evaluating the energy and environmental potential
while considering both output categories. When performing this analysis, we treat capital
and labor as constant variables (i.e., w = (0, 0, 1/3, 1/3, 1/3)). The outcomes related to the
energy efficiency (EEP, vertical axis) and GHG emission performance (GEP, horizontal
axis) for the years 1998 and 2018 are displayed in Figure 5.

Our findings revealed a positive correlation between energy and environmental
potential among inefficient states, comprising 17 in 1998 and 14 in 2018. This suggests
that a higher energy efficiency potential corresponds to a greater ability to conserve
energy, resulting in reduced pollution and enhanced environmental performance.

In 1998, excluding the dots on the frontier (i.e., those equal to 1), performance ranged

from the pair (7.0%, 8.8%), representing the energy and environmental performance of
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Michoacan, to the 100% of EEP in Sonora and the 67.7% of GEP in Chihuahua (see
Figure 5(a)). In 2018, we observed a slightly higher dispersion, with energy efficiency
and environmental performance ranging from a minimum of 10.8% and 6.4% in Chiapas
to a maximum of 100% EEP in Zacatecas and 89% in Puebla (see Figure 5 Notably, the
black dot in the upper-right corner of the figure, located at coordinates (1,1), includes
states on the production frontier. In 1998, there were 15 states in this dot, and by 2018,
the number had increased to 18. These states had adopted optimal practices in terms of
energy efficiency and environmental performance, achieving a balance between reducing
energy consumption and pollution without compromising production. The states that
moved to the frontier between 1998 and 2018 were mainly located in the Northern region
(represented by yellow markers). In contrast, states that remained in the inefficient region
or deviated fromthe frontier were mostly situated in the central-northern (green markers),
southern (blue markers), and central (red markers) regions of the country.

Regarding the average performance, there were no substantial changes in energy and
environmental performance between 1998 and 2018. The average Energy Efficiency
Performance (EEP) altered slightly from 0.73 to 0.75, and the Greenhouse Gas Emission
Performance (GEP) from 0.66 to 0.72. However, Figures 4 and 5 revealed considerable
variability (see Appendix A.3 for more information about EEP and GEP for the rest of
the years).

Amongthe 17 states positioned below the frontierin 1998, 12 demonstrated improved
production practices, movingcloser to the frontier in both dimensions from 1998 to 2018.
Two states made progress in only one direction, while the remaining three states moved
farther away from the frontier in both dimensions, indicating a decline in efficiency.
Figure 6 illustrates the map detailing the percentage change in performance measures for
each state between 1998 and 2018. Concerning EEP (Figure 6(a)), Coahuila in the
Norther region emerged as the most improved state during this period, reaching the
production frontier by 2018. Likewise, the GEP map (Figure 6(b)) highlighted
noteworthy enhancements in six states: Sonora, Sinaloa, San Luis Potosi, Coahuila,
Michoacan, and Guerrero. Notably, Chiapas, Tabasco, and Yucatan, all in the Southem
region experienced a substantial decline in both EEP and GEP (Figure 6).

Utilizing a simple average for the analysis would result in an unfair representation.

Instead, it is imperative to consider the productive orientationof each state situated below
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the frontier. In Figure 5, the size of each marker corresponds to the sector’s contribution
to the national value added in the manufacturing sector. Given the exclusion of the oil
refining industry from the analysis, this simplification aids in evaluating efficiency,
considering the fluctuations in environmental regulations (CONUEE, 2018).

Nevertheless, it’s important to note that according to CONUEE (2018) other
industries such as iron and steel, cement, and paper also play a significantrole in these
states. These sectors exhibit substantial potential for improving their energy efficiency,
can be effectively intervened upon, and have access to advanced technologies that can
have positive environmental impacts. As such, evaluating efficiency in these states
requires a detailed understanding of the specific characteristics of each sector and the
broader regulatory environment (CONUEE, 2018).

Table 4: Energy Potential Savingsin 2018
State name  State EPS (%) EPS share (%)

Nuevo Lebn 68.5 40.6
Veracruz 76.2 20.2
Tamaulipas 61.6 9.2
Michoacan 51.9 6.8
Querétaro 45.2 5.5
Rest of states* 12.5 17.7
Total** 20.3 100

*Inthe second and third columns, EPS refers to the rest of
states’ average. ** In the second column, EPS is for the
country average, while in the third column, it represents the
totalsum.

Furthermore, the insights from Figure 5 underscore another dimension of this
analysis. For instance, while states like Chiapas and Michoacan exhibit a significant
potential for enhancing energy efficiency, their limited share in the national
manufacturing value-added would lead to comparatively minor contributions to the
overall national energy savings. Conversely, states such as Tamaulipas, Veracruz, and
Nuevo Leon, with higher proportions in the manufacturing value-added, hold the potential
to make substantial contributions to national savings due to their greater influence.

Turning to the energy aspect, Table 4 presents a comprehensive view of the Energy

Potential Savings (EPS) within the national manufacturingsector forthe year2018.11 The

1 EPS and GEPS are reported in Appendix A.3 forthe entire sample. From 1998 to 2018, therehavebeen
fluctuations in both EPS and GEPS, with values both increasing and decreasing over the years. However,
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EPS, amounting to 20.3% of total energy consumption, equivalentto 156 PJ of energy,
highlights the considerable impact that energy efficiency enhancement measures could
have.

Interestingly, when comparing proportions, Wu et al. (2012) identifies a national
energy potential savings of 19% for China’s industrial sector, calculated as an average for
the period 1997-2008. This comparison highlights the substantial opportunities for
energy efficiency in both countries. Notably, the table underscores the pivotal role of
certain states in these potential energy savings. Among them, Nuevo Ledn emerges as a
significant contributor, accounting for 40.6% of the potential savings at national level,
closely followed by Veracruz (20.2%) and Tamaulipas (9.2%). This reinforces the idea
that targeted improvements in energy efficiency could substantially drive national energy
conservation goals, with the contribution varying based on a state’s manufacturing

prowess and energy consumption patterns.

Table 5: GHG Emission Potential Savings in 2018
State name  State GEPS (%) GEPS share (%)

Hidalgo 64.3 17.6
Veracruz 52.4 17.2
Michoacan 36.6 13
Jalisco 35.1 11.3
Nuevo Lebn 23.1 9.5
Rest of states* 20.8 31.4
Total* 24.3 100

*In the second and third columns, GEPS refers to theaverage.
** In the second column, GEPS is for the country average,
while in the third column, it represents the total.

In terms of environmental considerations, the insights gleaned from the GHG
Emission Potential Abatement for the year 2018 underscore that enhancements in the
manufacturing sector’s environmental efficiency could potentially yield substantial
reductions in GHG emissions. Nationally, a potential reduction of 24.3%, equivalent to
around 6.4 Metric tons (Mt) of CO2e, could be achieved by implementing measures to
improve the sector’s environmental performance. These details are outlined in Table 5,
where the results emphasize that the influential role of specific states in shaping the

country’s environmental savings. Hidalgo (17.6% with respect to the national level),

no cleartrend canbe identified throughoutthis period.
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Veracruz (17.2%), and Michoacan (13%) are identified as key contributors to the
envisioned national environmental savings, due to their substantial manufacturing value-
added contributions.

It is worth noting that the synergy between energy and environmental efficiency is
vital. The virtuous cycle of improvements in one areareinforcing the other is evident. For
instance, advancements in energy efficiency translate into substantial energy savings,
resulting in reduced pollution levels and consequently, amplified environmental
efficiency. This holistic approach underscores the interconnectedness of energy and

environmental dynamics within the manufacturing sector’s performance landscape.
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Figure 5: Energy Efficiency Performance vs. GHG Emission Performance

Notes: 1) The black dot at (1,1) in the lower left corner illustrates the states on the production frontier,
which were 15 (Ags, BC,BCS, Camp, CDMX, Chis, Col, Gto, Mex, Mor, Nay, Qro, Qroo, Tlax, Zac) in
1998 and 17 (Ags,BC,BCS, Camp, CDMX, Chih, Coah, Col, Gro, Gto, Mex, Mor, Qroo, Sin, SLP, Son,
Tlax)in 2018. 2) States in the Northernregion use yellow markers, in the Southernregion blue markers, in
the central-Northern region green markers, and in the central region red markers. 3) The size of each dot
represents the participation of the state’s sector in the total domestic value added (VA). 4) Average EEP
and GEPwere 0.73 and0.66, respectively, in 1998,and0.75and0.72, respectively, in 2018. Source: Own
elaboration.
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from 1998 t0 2018, while in red meansa reduction during the same period. Source: Own elaboration.
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7 Discussion and concluding remarks

México’s ambitious commitmentto curbing GHG emissions by an impressive 22% before
2030, equating to the substantial mitigation of over 211 million tons of CO2e,
demonstrates an initiative-taking approach towards combating climate change.
Interestingly, an overlooked aspect of this endeavor is the potential embedded within the
individual states of México to significantly improve energy practices and reduce
emissions without compromising their manufacturing prowess, an aspect that warrants
closer examination and strategic consideration.

Currently, many states operate below their optimal efficiency levels, leaving room for
substantial improvements. If all states were to improve their practices and move closer to
the production frontier—the hypothetical boundary where energy use and environmental
impact are minimized for a given level of output—the manufacturing sector could
theoretically reduce energy consumption by 20.3% while maintaining the same
production levels. This estimate highlights inefficiencies in current energy use that can
be addressed through advancements in production technologies, process improvements,
and better energy management strategies.

The driving forces behind these findings are diverse. The analysis assumes that firms
operating below the frontier can optimize their energy use without altering their
production capacity. This does not imply a substitution of capital or labor for energy but
rather a focus on improving energy efficiency within the current production framework.

In addition, the sector could achieve a 24.3% reduction in GHG emissions. This
reduction primarily arises from lower energy consumption, as using less energy directly
translates into fewer emissions. Some of the emissions reductions may also stem from
cleaner energy sources or process optimizations that decrease emissions intensity. While
our study does not explicitly model a transition to renewable energy, it underscores that
energy efficiency improvements alone could generate significant environmental benefits.
If such an alignment were achieved, it could, in itself, contribute around three percentage
points towards the nation’s overarching target, corresponding to a substantial 6.4 million
tons of the total 211 million tons. This analysis highlights that each state’s position on the
production frontier holds a latent power to create sizeable emissions reductions,
irrespective of its current status.

However, this potential is not uniform across all regions. The northern states exhibit
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a promising capacity for energy savings, reflecting the industrial heft and innovation-
driven nature of these regions. Meanwhile, the central-northern and southern states
possess untapped potential to focus their efforts on reducing pollution, aligning with their
unique economic landscapes. These observations underscore the need for tailored
strategies that address each region’s specific strengths and opportunities.

Furthermore, envisioning a nationwide shift towards more efficient production
practices, similar to those already demonstrated in certain regions, holds the promise of
generating even more substantial energy savings and GHG reductions. The ripple effect
of such a transformation, cascading across the nation’s manufacturing landscape, could
lead to a collective impact far greater than the sum of its parts.

Nonetheless, it is importantto acknowledge that these transformations do not come
without their challenges. Under a scenario of steadily rising energy prices, the anticipated
energy savings could potentially exert positive pressure on production costs. However,
this hinges on the delicate balance between the savings realized and the necessary
investments required to usher in these transformative changes. The feasibility of these
investments would need to be carefully evaluated against the backdrop of broader
economic considerations.

In conclusion, México’s journey towards a greener future entail multifaceted
implication. The potential for emissions reduction within each state offers a compelling
pathway towards meeting national goals. By leveraging regional strengths, fostering
innovation, and adopting efficiency-enhancing practices, México could indeed turn the
tide on emissions while simultaneously redefiningits manufacturing landscape. This dual
benefit— a substantial environmental contribution and a potential economic advantage —
underscores the critical intersection between sustainable practices and a resilient,

forward-looking economy.
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A Appendix

A.1 Descriptive Statistics

Variable Unit 1998 2003 2008 2013 2018
mean sd mean sd mean sd mean sd mean sd

6

zﬁ‘)'”eadded go"lg] MXN " 519043 63989 61,965 681132 68782 76252 65760 71,398  96.554 105,195

CO2e [1x 103ton

emissions (C)  CO2e] 2872 2503 2659 2125 3320 2615 3546 2831 3676 3.395

Energy (E) ~ [Lx105Joules]  19.8  26.9 194 287 21.9  32.0 256  36.0 426 556
6

Capital (K) go"lg))] MXN " 71132 81548 75564 81,380 70,495 68,650 78,128 82,402 86,010 89,863

[1 x 103 hours
Labor (L) worked)] 302,823 316,557 306,172 304,121 324,316 310,070 359,963 337,214 469,327 433,529
Observations 32 32 32 32 32
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A.2 Technical Efficiency

Region  State 1998 2003 2008 2013 2018
Y YC Y YC Y YC Y YC Y YC
Central CDMX 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Central Gto 1.00 1.00 0.92 0.75 0.84 0.70 0.84 0.78 1.00 1.00
Central Hgo 0.68 0.48 0.87 0.45 1.00 0.56 1.00 0.07 1.00 0.40
Central Mor 1.00 1.00 1.00 1.00 1.00 1.00 0.71 0.51 1.00 1.00
Central Mex 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Central Pue 0.63 0.72 0.88 0.81 0.79 0.69 1.00 1.00 0.92 0.91
Central Qro 1.00 1.00 0.77 0.56 1.00 1.00 0.66 0.64 0.91 0.89
Central Tlax 1.00 1.00 0.65 0.69 1.00 1.00 1.00 1.00 1.00 1.00
NCentral Ags 1.00 1.00 0.67 0.53 0.96 0.95 0.37 0.47 1.00 1.00
NCentral BCS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
NCentral Col 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.49 1.00 1.00
NCentral Dgo 0.87 0.72 0.00 0.3 0.91 0.63 0.34 0.33 0.84 0.69
NCentral Jal 096 0.78 1.00 0.71 1.00 0.69 1.00 1.00 0.94 0.85
NCentral Mich 1.00 0.37 1.00 0.06 1.00 0.45 1.00 0.00 1.00 0.04
NCentral Nay 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.54 0.79 0.60
NCentral SLP 1.00 0.65 1.00 0.47 1.00 0.65 0.82 0.61 1.00 1.00
NCentral Sin 1.00 0.68 0.85 0.57 1.00 0.67 0.85 0.24 1.00 1.00
NCentral Zac 1.00 1.00 1.00 1.00 1.00 1.00 0.81 0.48 1.00 0.76
Northern BC 1.00 1.00 0.92 0.89 1.00 1.00 0.87 0.86 1.00 1.00
Northern Chih 0.84 0.81 1.00 1.00 1.00 0.70 0.78 0.77 1.00 1.00
Northern Coah 1.00 0.70 0.87 0.68 1.00 1.00 1.00 1.00 1.00 1.00
Northern NL 0.81 0.70 1.00 0.69 1.00 0.87 1.00 0.81 0.91 0.83
Northern Son 0.99 0.81 0.77 0.56 1.00 0.74 1.00 1.00 1.00 1.00
Northern Tamps 1.00 0.72 0.69 0.65 1.00 1.00 0.48 0.57 0.83 0.75
Southern Camp 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Southern Chis 1.00 1.00 0.84 0.77 0.83 0.64 1.00 1.00 0.00 0.00
Southern Gro 1.00 0.60 0.81 0.54 0.88 0.48 1.00 1.00 1.00 1.00
Southern Oax 1.00 0.54 1.00 0.31 1.00 0.49 1.00 0.00 0.78 0.58
Southern QRoo 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Southern Tab 0.82 0.70 1.00 1.00 0.80 0.78 0.77 0.81 0.72 0.60
Southern Ver 1.00 0.3 0.89 0.44 1.00 0.69 1.00 0.65 0.63 0.41
Southern Yuc 0.77 0.67 0.52 054 0.61 0.56 0.41 0.38 0.49 0.59
National 0.95 081 0.87 0.72 0.96 0.81 0.87 0.69 0.90 0.81

Note: 1) The showed values represent total technical efficiency. The Y variable describes total
technical efficiency when only the desirable output is considered. The YC variable shows it when
both desirable and undesirable outputs are considered. 2) The value 1.00 stands for the production
frontier. Hence, the closer to this value more efficient could be. 3) National variable is the average
technical efficiencies in each year. NCentral is for the North-Central region.
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A.3  Energy Efficiency and GHG Emission Performance

1998 2003 2008 2013 2018
Region State EE GE EE GE EE GE EE GE EE GE

P P P P P P P P P P
Central CI;M 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Central Gto 1.00 1.00 0.76 0.36 0.49 0.42 0.52 0.57 1.00 1.00
Central Mex 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Central Mor 1.00 1.00 1.00 1.00 1.00 1.00 0.11 0.18 1.00 1.00
Central Tlax 1.00 1.00 0.23 0.61 1.00 1.00 1.00 1.00 1.00 1.00
Central Pue 050 057 0.77 0.66 0.33 0.49 1.00 1.00 0.56 0.89
Central Qro 1.00 1.00 0.30 0.17 1.00 1.00 0.22 0.39 0.55 0.85
Central Hgo 0.18 0.18 0.30 0.06 0.28 0.09 0.08 0.10 0.21 0.18
NCentral BCS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
NCentral Ags 1.00 1.00 0.74 0.04 0.94 1.00 0.07 0.18 1.00 1.00
NCentral Sin 0.76 0.23 0.77 0.25 1.00 0.21 0.28 0.06 1.00 1.00
NCentral Col 1.00 1.00 1.00 1.00 1.00 1.00 0.58 0.01 1.00 1.00
NCentral SLP 0.45 0.25 0.35 0.07 041 0.31 0.25 0.18 1.00 1.00
NCentral Zac 1.00 1.00 1.00 1.00 1.00 1.00 0.35 0.07 1.00 0.35
NCentral Nay 1.00 1.00 1.00 1.00 1.00 1.00 0.49 0.01 0.90 0.06
NCentral Jal 0.70 0.53 0.70 0.34 055 0.37 1.00 1.00 0.83 0.65
NCentral Dur 0.74 050 0.44 0.02 0.46 0.15 0.05 0.09 0.38 0.33
NCentral Mich 0.07 0.09 0.06 0.05 0.07 0.08 0.03 0.09 0.15 0.19
Northern Coah 0.28 0.39 0.39 0.37 1.00 1.00 1.00 1.00 1.00 1.00
Northern Chih 0.62 0.68 1.00 1.00 0.54 0.39 0.37 0.70 1.00 1.00
Northern Son 1.00 0.45 0.61 0.10 0.73 0.34 1.00 1.00 1.00 1.00
Northern BC 1.00 1.00 0.93 0.81 1.00 1.00 0.39 0.96 1.00 1.00
Northern Tamps 0.24 0.44 0.26 0.34 1.00 1.00 0.12 0.25 0.38 0.57
Northern NL 0.23 0.54 0.26 0.46 0.37 0.84 0.37 0.66 0.31 0.77
Southern Qroo 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Southern Camp 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Southern Gro 0.71 0.09 0.81 0.15 0.56 0.01 1.00 1.00 1.00 1.00
Southern Oax 0.53 0.14 0.45 0.15 0.60 0.08 0.20 0.08 0.95 0.16
Southern  Yuc 0.54 054 0.75 0.03 0.65 0.22 0.13 0.13 0.35 0.35
Southern Tab 0.68 0.28 1.00 1.00 0.48 0.72 0.25 0.87 0.16 0.23
Southern  Ver 0.13 0.15 0.17 0.08 0.34 0.41 0.14 0.35 0.13 0.25
Southern Chis 1.00 1.00 1.00 0.64 0.90 0.21 1.00 1.00 0.11 0.07

Notes: 1) The shown values stand for Energy Efficiency (EEP) and GHG Emission Performance (GEP). 2)
We can see México City, México, Baja California Sur, Quintana Roo and Campeche keep through five
periods the optimal energy efficiency and GHG emissions performance. NCentralis for the North-Central

region.
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