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ABSTRACT 

This paper evaluates the transition from X12-ARIMA to X13-ARIMA-SEATS for the seasonal 
adjustment of Armenia’s quarterly national accounts (QNA). We analyze the methodological 
advancements and their impact on key economic indicators, focusing on the precision and 
reliability of seasonally adjusted data. Our findings suggest that the indirect seasonal adjustment 
method, despite larger revisions, is preferable, given potential variations in seasonal patterns 
among gross domestic product components and strong user preferences for preserving 
accounting relationships. Furthermore, a partial concurrent update strategy achieves a better 
balance between accuracy and revision minimization compared to current or fully concurrent 
methods. Finally, deriving seasonally adjusted price deflators from seasonally adjusted volume 
and current price data aligns more closely with the underlying economic structure of Armenian 
QNA, given that QNA data is available primarily in nominal terms. These results remain 
consistent across various sensitivity checks, supporting our methodological approach for 
analyzing Armenia's QNA series. 

 

Keywords: Armenia, JDemetra+, national accounts, seasonal adjustment, X13-ARIMA-SEATS 

JEL codes: C22, C32, C5 
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1. INTRODUCTION  

Economic variables exhibit systematic and recurring within-year patterns influenced by a variety 
of factors, such as weather, institutions, and social customs and traditions. When these seasonal 
variations dominate changes in the original series from one period to another, identifying 
nonseasonal effects, including long-term movements, cyclical variations, and irregular factors—
informative economic signals—becomes challenging. Timely identification of turning points in 
key macroeconomic variables, like the quarterly national accounts (QNA), requires the removal 
of seasonal and calendar effects from time series data. This process involves utilizing analytical 
techniques to break down the series into unobserved components, based on a priori assumptions 
regarding their expected behavior. 

Removing the repeated impact of seasonal effects is important for both historical business cycle 
analysis and assessing current economic conditions. This helps in identifying fundamental long-
run movements and short-run fluctuations in the time series, thereby enhancing the 
interpretation of economic variables and contributing to informed decision making. However, the 
challenge of precisely defining seasonality means that the different approaches may result in 
different outcomes. Analyst expertise remains essential for finetuning the seasonal adjustment 
procedures and verifying the accuracy of the adjusted statistics. Expert-driven judgment is 
particularly important in the current economic landscape, where linear filters are typically applied 
for seasonal component extraction despite the prevalence of uncertainties and nonlinear trends 
in many economic series. 

The Statistical Committee of the Republic of Armenia (ARMSTAT) initiated its first seasonal 
adjustment of QNA in 1998, using the autoregressive integrated moving average (ARIMA) X11 
method developed by the United States Census Bureau. In 2013, ARMSTAT shifted to the X12-
ARIMA method and the Demetra+ program,1 aligning with recommendations from the 
International Monetary Fund (IMF) and the United Nations Economic Commission for Europe. 
However, X12-ARIMA, while representing an advance on earlier methods, relies heavily on 
linear models, limiting its ability to capture the nonlinear trends increasingly present in modern 
economies. Recognizing this limitation, ARMSTAT transitioned to the X13-ARIMA-SEATS 
method and the JDemetra+ software in 2022, aligning with the European Statistical System 
(ESS) 2015 guidelines on seasonal adjustment and the IMF's QNA 2017 manual. 

X13-ARIMA-SEATS offers several advantages over its predecessors. First, it incorporates the 
SEATS (signal extraction in ARIMA time series) method, specifically designed to handle 
nonlinear trends and structural breaks in time series data. Second, X13-ARIMA-SEATS provides 
a more advanced toolkit for diagnosing the quality and stability of seasonal adjustment models. 
Third, X13-ARIMA-SEATS can efficiently process multiple series simultaneously. In addition, 
JDemetra+ includes a more versatile interface compared to Demetra+, enabling users to apply 
tools such as nowcasting, temporal disaggregation, and benchmarking. Importantly, JDemetra+ 
provides common analysis options for different seasonal adjustment methods, allowing for easy 
comparison of results across these algorithms. 

  

 
1  ARIMA is a statistical method for analyzing and forecasting time series data by modeling its temporal structure, and 

Demetra+ is free software developed by the National Bank of Belgium for seasonal adjustment using 
TRAMO/SEATS and X12-ARIMA methods. 
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In this paper, we examine the implications of transitioning from the X12-ARIMA to the X13-
ARIMA-SEATS method for the seasonal adjustment of Armenia's QNA series. Our analysis 
focuses on assessing the methodological advancements and their impact on the interpretation 
of key economic indicators, with a particular emphasis on the precision and reliability of 
seasonally adjusted data in capturing underlying economic trends. Additionally, we conduct a 
wide range of advanced quality diagnostics to validate the underlying assumptions of the new 
seasonal adjustment framework and the major decisions regarding various aspects of the 
methodology.  

Our findings suggest that the new framework yields significant insights, particularly in the context 
of direct versus indirect adjustments, update strategies, and the relationship between price, 
volume, and value indices. While both direct and indirect approaches produce similar trends, 
notable discrepancies emerge, especially during crisis periods. The indirect method, despite its 
susceptibility to larger revisions, appears preferable, given the potential for divergent seasonal 
patterns among gross domestic product (GDP) components and user demand. Additionally, our 
exploration of update strategies highlights the advantages of a partial concurrent adjustment 
method, which balances accuracy with the minimization of revisions. Finally, the findings on the 
relationship between seasonally adjusted price, volume, and value indices indicate that deriving 
residuals from seasonally adjusted volume and current price data, rather than directly adjusting 
price deflators, aligns better with the underlying economic structure of the Armenian QNA. These 
results remain robust across various sensitivity checks, reaffirming the validity of our 
methodological approach and its applicability to the analysis of the Armenian QNA series. 

The remainder of this paper is structured as follows: Section 2 reviews the literature on seasonal 
adjustment methods, Section 3 details the methodology employed, Section 4 presents findings, 
Section 5 discusses quality diagnostics, Section 6 addresses the pre-adjustment of QNA during 
the coronavirus disease (COVID-19) crisis, and Section 7 concludes with a summary. 

 
2. LITERATURE REVIEW 

Seasonal adjustment methods fall into three broad categories: (i) nonparametric methods, which 
rely on linear smoothing filters to adjust the data; (ii) parametric methods, where seasonal 
adjustment is achieved through explicit specification and estimation of unobserved components 
within the data; and (iii) and semiparametric methods, which combine aspects of both explicit and 
implicit modeling of each component (see Figure 1). 
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Figure 1: Classification of Seasonal Adjustment Methods 

  
Source: Eurostat (2018). 

 

2.1. Nonparametric Models 

The most common seasonal adjustment methods use moving averages or linear smoothing 
filters to adjust data sequentially by adding and subtracting individual observations. A pioneer in 
this field was the United States Census Bureau’s X11 program, released in 1965 (Shiskin, 
Young, and Musgrave 1967). This was the result of over a decade of development, beginning 
with Method I in 1954 and followed by 12 experimental variants of Method II (X0, X1, etc.), 
culminating in the release of X11 (Shiskin 1978). 

Building on the foundation of X11, the Australian Bureau of Statistics introduced SEASABS 
(Seasonal Analysis at the Australian Bureau of Statistics) in 1987 (Eurostat 2018). This 
knowledge-based algorithm retains records of previous series analyses, enabling comparisons 
of X11 diagnostics and insights into the parameters that produced acceptable adjustments. 
Young (1992) developed another version, GLAS (General Linear Abstraction of Seasonality), at 
the Bank of England for seasonally adjusting monetary variables. This method estimates and 
smooths trend and seasonal components with a triangular-shaped weighting pattern in a moving 
average of data, and it incorporates Lane’s (1972) minimum revision algorithm. Other similar 
tools include SABL (Seasonal Adjustment-Bell Laboratories) (Cleveland, Dunn, and Terpenning 
1978), a robust alternative to X11 that tackles outliers and smooths trends without rigid data 
assumptions. STL (seasonal and trend decomposition using Loess), developed by Cleveland et 
al. (1990), functions similarly to GLAS by applying localized smoothing techniques to estimate 
trend and seasonal components, using adaptable polynomial fits to model both linear and 
nonlinear patterns. 
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2.2. Parametric Models 

Some critics expressed concerns about nonparametric seasonal adjustment methods based on 
linear filters or moving averages. Slutsky (1927) and Yule (1927) noted the potential for these 
models to introduce artificial cycles, while others criticized the use of ad hoc empirical procedures 
when more rigorous mathematical tools were available. This growing dissatisfaction with 
nonparametric approaches led to the development of explicit model-based methodologies for 
seasonal adjustment. There are two main categories of these model-based approaches: (i) those 
that rely on deterministic frameworks, and (ii) those grounded in stochastic modeling. 

Early model-based methods relied on regression analysis. Pioneering works by Fisher (1937) 
and Mendershausen (1939) used least squares to fit polynomials and isolate seasonality. The 
1960s saw a rise in multiple regression techniques, driven by econometric model development 
and computing advancements. Notable contributions include works by Rosenblatt (1965) and 
Lovell (1963), which fit components using parametric functions and ordinary least squares. 
However, their inability to capture the stochastic nature of series has limited their use. Extensions 
with local regressions, like DAINTIES (Fischer 1995) and BV4 (Nourney 1984), have seen some 
development, though they face limitations like phase shifts and identification problems. 

Unlike deterministic methods, stochastic methods rely on specifying unobserved component 
ARIMA models and applying signal extraction techniques. A key direction is the ARIMA Model-
Based (AMB) approach, which models the observed time series using a seasonal ARIMA model, 
while components are derived from the model’s structure using spectral estimation techniques. 
Pioneering works in this area include contributions by Maravall and Pierce (1987), Bell (1984), 
Hillmer and Tiao (1982), and Burman (1980). However, while powerful, ARIMA models are 
susceptible to inaccuracies caused by outliers and may struggle to correctly estimate 
deterministic components. To address this limitation, developments like TRAMO-SEATS 
(Gómez and Maravall 1995) use the Wiener-Kolmogorov filter to extract the components from 
the spectrum of a fitted ARIMA model by minimizing the mean squared error between the 
estimated and actual components. Compared with X11, TRAMO-SEATS produces more stable 
seasonal components by using a canonical decomposition method that maximizes the variability 
of the irregular element while minimizing that of the seasonal factors. However, it relies heavily 
on a well-fitting ARIMA model, and results are particularly sensitive to parameter uncertainty, 
especially in very short or long time series. 

 

2.3. Semiparametric Models 

Building upon the work of Box and Jenkins (1970) on ARIMA models in the 1970s (see Box et 
al. 2015), Dagum (1980) proposed a new X11 variant called X11-ARIMA. This represented an 
improvement over the original X11 program and was further automated at Statistics Canada. 
The key improvement lies in X11-ARIMA's ability to extend predictions beyond the observed data 
and estimate values prior to the start of the series. This capability addresses missing data at the 
series' ends, allowing for less asymmetric filters. In contrast, the original X11 simply extrapolated 
missing values arbitrarily, leading to significant revisions when the missing data eventually 
became available. Another extension of X11 is the United Kingdom version, which incorporated 
forecasts based on the Kenny-Durbin autoregression technique (Kenny and Durbin 1982), 
though Fischer (1995) found that X11-ARIMA delivered more accurate forecasting results. The 
Dutch Central Bureau of Statistics also introduced an extension known as CPBX11 software 
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(Van der Hoeven and Hundepool 1986; Central Bureau of Statistics 1981), which merges 
functionalities from both the X11 method and the CPB-1 method developed by the Central 
Planning Bureau (Central Bureau of Statistics 1976). 

The United States Bureau of the Census further advanced X11-style models with the 
development of X12-ARIMA. It draws heavily from the foundations of X11-ARIMA, as outlined in 
the works of Findley et al. (1998) and United States Bureau of the Census (2000). X12-ARIMA 
uses the core X11 methodology while integrating most of the improvements introduced in X11-
ARIMA along with several new developments. The most significant one is the addition of a pre-
treatment stage called RegARIMA. This pre-adjustment allows for simultaneous estimation of 
outliers, trading-day (or working-day) variations, and other calendar effects like Easter and leap 
year, using a seasonal ARIMA model. X12-ARIMA allows the user to define the model or to 
select it via an automatic procedure based on five models, and uses the model to extrapolate 
the original series. X12-ARIMA also incorporates additional seasonal and Henderson filters. 
Furthermore, it offers all the diagnostic tools found in X11-ARIMA for evaluating the quality of 
seasonal adjustment, along with new features such as spectral tests to assess seasonality and 
detect residual trading-day effects, as well as assessments of the stability of the seasonal 
adjustment. 

 

3. METHODOLOGY 

We followed a three-stage approach in the seasonal adjustment of QNA: (i) pre-adjustment, (ii) 
decomposition, and (iii) quality diagnostics. 

 

Figure 2: Basic Framework of Seasonal Adjustment 

 
Source: Eurostat (2018). 

 

The first stage is pre-adjustment of data. The objective is to identify an ARIMA-based regression 
model that most accurately captures the features of the original series. 
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This involves detecting and correcting the series for data and/or component nonlinearities that 
could hamper the estimation of seasonality and calendar effects. The pre-adjustment stage 
primarily includes the selection of (i) the relationship between unobserved components (additive 
or multiplicative), (ii) order of the ARIMA model, (iii) calendar-related influences, and (iv) the 
treatment of outliers and other external variables. 

(i) Specification of the relationship between unobserved components: The X11 
decomposition primarily utilizes two models: additive and multiplicative. The additive model 
assumes independence between unobserved components, whereas the multiplicative model 
posits that the size of the unobserved component scales proportionally with the series level. 
JDemetra+ offers logarithmic transformation for multiplicative decomposition and no 
transformation for the additive model. For ARMSTAT data, we followed the ESS guidelines 
(2015), which recommend automatic transformation selection, but also an option for manual 
intervention for problematic series. To differentiate between transformations, we employed a test 
in X13-ARIMA-SEATS based on the Akaike Information Criterion (AIC). This involved fitting a 
RegARIMA model to both untransformed and transformed series, with the final decision based 
on the value of AIC. 

(ii) The order of the ARIMA model: The subsequent stage in the pre-adjustment process 
involves selecting a RegARIMA model to represent the series. In this model, the average 
behavior of the series or its logarithm is modeled as a linear combination of explanatory 
variables, while the series’ variability and correlation patterns are captured by an ARIMA 
process. We did not incorporate additional regressors beyond the built-in ones to model specific 
disruptions in the QNA series, as no significant methodological changes or events that could 
have caused structural breaks were identified. A RegARIMA model for pre-adjustment of series 
can be represented as follows:  

Φ(L)Φ(Ls)(1− L)d(1 − Ls)DYt = Θ(L)Θ(Ls)εt, 
 

where Yt is the original series, L is the backshift lag operator (Yt−1 = LYt),  Φ(L) is the regular 
autoregressive (AR) operator with lag order p, Φ(Ls) corresponds to the seasonal autoregressive 
operator with lag order P, Θ(L) is the non-seasonal MA operator with lag order q, Θ(Ls) is the 
seasonal MA operator with lag order Q, s is the seasonal frequency, and εt is a white noise error 
term. 
 
Identifying the model involves choosing the orders of AR and MA operators, both seasonal and 
non-seasonal (p, d, q)(P, D, Q). X13-ARIMA-SEATS employs a data-driven approach to 
determine the appropriate ARIMA model, beginning with a (0,1,1)(0,1,1) model, known as the 
"airline" model. This parsimonious model often provides a good fit for economic time series, and 
regression effects are identified and removed. Unit root tests determine the differencing orders 
(d and D). The (p,q)(P,Q) ARMA order is then identified by comparing statistical criteria across 
several models, up to a user-specified maximum order. Finally, residual diagnostics for the 
selected model are evaluated against the airline model for validation of the final model.  
 
We start with the ARIMA model provided by X13-ARIMA-SEATS, followed by a review of residual 
diagnostics to expose possible misspecifications. Unless significant issues arise, we prefer the 
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automatic choice, understanding that the differencing orders (d and D) usually are either 0 
(stationary component) or 1 (nonstationary component). 

(iii) Calendar effects: We next remove calendar effects from the series as these can 
significantly hinder the accuracy of our decomposition into unobserved components. When a 
quarter contains an atypical number of working days, the time series measuring economic 
activities may exhibit a temporary spike owing to the increased time available for production. 
Linear models such as ARIMA are unable to account for calendar-related variations, leading to 
misclassification during the decomposition process and assigning these effects to the irregular 
component. Consequently, the adjusted series may show a misleading rise or decline that is 
actually caused by differing numbers of working days in the comparison periods. 

To prevent this type of distortion, it is essential to estimate and eliminate calendar effects from 
the raw data before beginning the decomposition process. These effects are modelled using 
deterministic variables that precisely reflect changes in the calendar over time. The working-
days effect is handled through a single regressor, which contrasts the number of working days 
(for example, Monday through Friday) against weekend days (such as Saturday and Sunday) 
according to the following equation: 

wdt = �#Weekdays − 5
2� #Weekend days�, 

where the factor is included to ensure that the working-days regressor averages to zero during 
a standard seven-day week. 

This incorporates the assumption that weekdays generally have similar economic effects (in both 
direction and magnitude) that differ from those observed on weekend days. Any deviation from 
the standard week composition is captured within the regressor, where a value greater than 0 
indicates that quarter t has more working days than a typical week. In Armenia, controlling for 
these effects is particularly important, given the uneven distribution of national holidays and days 
of remembrance across quarters, where the minimum number of working days in a quarter can 
be as low as 57, whereas the maximum can reach 66 (see Table 1). 

 

Table 1: Nonworking Days in Armenia 

Year Q1 Q2 Q3 Q4 Nonworking Days Status Official Holidays 

2012 59 60 64 65 31 December, 1–6 January 2009–2021 
New Year 

2013 57 60 66 65 31 December, 1–2, 6 January From 2022 

2014 58 60 66 65 7 January 2009–2021 
Mereloc 

2015 58 61 65 65 None From 2022 

2016 58 64 65 65 28 January No change Army Day 

2017 59 61 64 65 8 March No change Women's Day 

2018 59 60 64 65 24 April No change Genocide 
Memorial Day 

2019 57 60 66 65 1 May No change Labor Day 

Continued on the next page 
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Year Q1 Q2 Q3 Q4 Nonworking Days Status Official Holidays 

2020 59 61 65 65 9 May No change Victory Day 

2021 57 64 65 65 28 May No change Republic Day 

2022 61 64 65 65 5 July No change Constitution Day 

2023 60 60 64 64 21 September No change Independence Day 
Source: Law on Holidays and Memorial Days of the Republic of Armenia. 
arlis.am/DocumentView.aspx?docid=102931. 

In addition to conventional calendar effects, we also control for the Easter effect, which can shift 
between March (Q1) and April (Q2) in a given year. To account for this, an Easter regressor is 
used, which measures the share of days before Easter within March and April. Once the length 
of the Easter effect is established, the regressor is defined as: 

et = �WDt
wd� − WD������, 

where WDt represents the number of working days in quarter t and WD����� is the average share of 
working days in that quarter. Usually, WD����� is approximated as 0.5 for both the first and second 
quarters, implying that the Easter effect days are evenly split between these two periods. 

Finally, we control for the leap year effect using a regressor that accounts for the extra day in 
February of leap years. The regressor is assigned a value of 0.75 if t is in February of a leap year, 
-0.25 if t is in February of a nonleap year, and 0 otherwise. This regressor establishes a 4-year 
cycle with a peak in February of leap years. Over the full cycle, the positive effect of the leap year 
is offset by the negative effects in the following nonleap years. 

(iv) Outliers and other intervention variables: The final stage of pre-adjustment is detecting 
and adjusting outliers to minimize their influence on the decomposition process. This step is 
crucial because outliers, if left unaddressed, can significantly distort the underlying trend and 
seasonal patterns in the series. X13-ARIMA-SEATS offers an automated outlier detection 
procedure that utilizes dummy variables within a specified timeframe. This procedure calculates 
coefficients for various outlier types and incorporates those with statistically significant t-statistics 
into the model. We generally follow the automatic outlier detection approach outlined in ESS 
(2015) guidance point 2.7. However, for specific events, this approach may not be suitable, as 
outliers can be challenging to identify, particularly during times of significant economic shifts like 
recessions. A prominent example is the COVID-19 pandemic, which significantly impacted 
economic activity worldwide in a way that is not reflected in historical data. In such cases, 
detecting and adjusting outliers becomes even more challenging as a result of the limited 
availability of future observations needed to fully understand the event’s nature. For events like 
COVID-19, we adopted a manual approach to outlier detection and adjustment; this is discussed 
in detail in Section 6. 

For the decomposition method, we adopted the X13-ARIMA-SEATS approach, which integrates 
both X11-type and SEATS filters within a single program. This allows for a straightforward 
comparison of series with different features by applying a uniform set of diagnostic measures. 
Our choice is based on extensive experience and expertise of ARMSTAT staff, who have 
employed the X11 methodology since 1998 and X12-ARIMA since 2013. Additionally, this 

https://www.arlis.am/DocumentView.aspx?docid=102931
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approach aligns with recent standards and recommendations in time series analysis, particularly 
the ESS guidelines (2015) and IMF recommendations. 

The X11 filter is an iterative process that applies a series of predetermined moving average filters. 
After the series is pre-adjusted (including backcasting and forecasting), it undergoes three rounds 
of filtering, each with adjustments for extreme values, known as the B, C, and D iterations. 
Additionally, the X11 filter incorporates an algorithm designed to minimize the influence of outliers 
during adjustment. This algorithm identifies extreme values through statistical analysis of the 
seasonal-irregular (SI) ratios and temporarily replaces them with average values during the B and 
C stages. Table 2 provides an overview of the main steps in this procedure. 

 

Table 2: X13-ARIMA-SEATS Algorithm 

Step 1 Calculate the trend using a 2 × 4 MA  TCt
(1) = M2×4(Xt) 

Step 2 Compute the SI component (St + It)(1) = Xt − TCt
(1) 

Step 3a Derive the seasonal component by applying a 
3 × 3 MA for each month St

(1) − M3×3�(St + It)(1)� 

Step 3b Normalize the seasonal component using 
a 2 × 4 MA S�t

(1) = St
(1) − M2×4�St

(1)� 

Step 4 Calculate the seasonally adjusted series SAt
(1) = (TCt + It)(1) = Xt − S�t

(1) 

Step 5 Estimate the trend component using a 13-
term Henderson MA TCt

(2) = H13�SAt
(1)� 

Step 6 Compute the SI component again (St + It)(2) = Xt − TCt
(2) 

Step 7a Determine the seasonal component by 
applying a 3 × 5 MA for each month  St

(2) − M3×3�(St + It)(2)� 

Step 7b Normalize the seasonal component using 
a 2 × 4 MA S�t

(2) = St
(2) − M2×12�St

(2)� 

Step 8 Estimate the final seasonally adjusted series SAt
(2) = (TCt + It)(2) = Xt − S�t

(2) 
MA = moving average, SI = seasonal-irregular. 

Source: Eurostat (2018).  

 

4. FINDINGS 
 
In an ideal scenario, seasonally adjusted QNA series should retain the accounting relationships 
inherent in the original data. However, owing to nonlinearities inherent in seasonal adjustment 
procedures, inconsistencies may arise across variables and frequencies. This section explores 
the results of applying seasonal adjustment methods to Armenian QNA data, addressing key 
issues such as (i) direct versus indirect adjustment of aggregates; (ii) update strategies; (iii) 
revision period; and (iv) the interaction among volume, price, and value indices in seasonally 
adjusted data. 
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4.1. Comparison of Direct and Indirect Approaches to Seasonal Adjustment  

Seasonal adjustment of aggregate series can be performed in two ways: by directly adjusting the 
overall aggregate or by first adjusting the individual components and then summing them to form 
the aggregate. In the context of QNA, a seasonally adjusted GDP estimate might be obtained by 
adjusting GDP directly or by summing the seasonally adjusted series of value-added by economic 
activity and net taxes on products. This principle also applies when compiling GDP from the 
expenditure side. 

Conceptually, neither the direct nor the indirect approach holds an inherent advantage. For 
aggregates, the direct approach may yield superior results when component series exhibit similar 
seasonal patterns and possess highly correlated trend cycles. Aggregation, in this case, often 
lessens the impact of irregular fluctuations within component series, which might otherwise hinder 
proper seasonal adjustment at the most granular level. This effect can be particularly pronounced 
in small open economies like Armenia, where irregular events exert a stronger influence on data. 
Conversely, the indirect approach may be optimal when component series display vastly divergent 
seasonal patterns. Here, aggregation can create large, volatile seasonality, obscuring stable 
effects and complicating the identification of seasonality within the aggregate series. Additionally, 
breaks, outliers, and calendar effects may be detectable more readily in detailed series than 
directly from aggregates, as they often present simpler and more economically interpretable 
patterns at the disaggregated level. While adjusting data at a more granular level can be 
beneficial, it may lead to remaining seasonal patterns in the aggregated series, create less stable 
seasonally adjusted outputs, and increase the likelihood of future revisions. 

In Figure 3, we compare original and seasonally adjusted chain-linked volume indices calculated 
using both direct and indirect approaches, while Figure 4 shows the respective year-on-year 
growth rates. The process of deriving indirectly seasonally adjusted aggregate series involved (i) 
seasonally adjusting the chain-linked component series, (ii) reversing the chain-linking to obtain 
unchained values, (iii) aggregating the adjusted components, (iv) reapplying the chain-linking 
process to the aggregate, (v) re-referencing the seasonally adjusted aggregate series to the index 
reference year, and (vi) ensuring that the total for the year remained consistent between the 
seasonally and calendar-adjusted series and the calendar-adjusted series alone. While both 
approaches generally produce similar trends, notable discrepancies emerge in certain periods. 
For instance, while the average relative difference in year-on-year growth rates remains close to 
0, deviations of up to 1.0 percentage point occur in some quarters. This underscores the 
importance of a careful choice between direct and indirect methods when working with Armenian 
QNA data.  

To guide the selection between direct and indirect seasonal adjustment methods, we first 
examine the correlations among the trend-cycle components of sectoral value-added, as 
presented in Figure 5. The letters in the figure correspond to the NACE (statistical classification 
of economic activities in the European Community) sectors, whose descriptions can be found in 
Appendix A. Positive correlations are depicted by blue circles; negative correlations are shown in 
red. The intensity of the color reflects the strength of the correlation: darker hues indicate stronger 
correlations, whether positive (dark blue) or negative (dark red), whereas lighter hues represent 
weaker correlations. Blank cells indicate statistically insignificant correlations at the 1% 
significance level. Notably, some sectors exhibit highly correlated economic activity, such as the 
strong correlation between accommodation and food service activities (I) and real estate activities 
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(L). However, most trend-cycle components show insignificant correlations. This suggests that 
directly adjusting GDP may mask important seasonal variations within individual sectors, 
potentially compromising the quality of the seasonally adjusted GDP. 

 

Figure 3: Chain-Linked Volume Indices (2012 = 100)  

 
Source: Authors’ calculations based on QNA data from ARMSTAT. 

 

Figure 4: Year-on-Year Growth Rates of Gross Domestic Product  

 
Source: Authors’ calculations based on QNA data from ARMSTAT. 
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Figure 5: Correlation Matrix of Trend-Cycle Components of Sectoral Value-Added  

 

Source: Authors’ calculations. 

 

To further investigate the implications of these methods, we conducted a revision analysis on year-
on-year GDP growth rates. We employed a recursive estimation approach over the period from 
2013Q1 to 2022Q4 and subsequently incorporated additional data points up to 2023Q4. The 
resulting revisions for 2021, 2022, and 2023 indicate that both direct and indirect methods 
introduce changes to the seasonally adjusted GDP series. However, the magnitude of revisions 
tends to be marginally larger under the indirect method, which is evidenced by the higher Mean 
Squared Error (MSE) values for indirect adjustment across analyzed periods. The larger revisions 
under the indirect approach likely result from the amplification of noise and inconsistencies arising 
from the independent adjustment of component series. In contrast, the direct method, which 
operates on aggregate data, may benefit from a smoothing effect, leading to more stable 
estimates. Despite the higher revision susceptibility of the indirect method, we preferred it for 
Armenia, given the potential for divergent seasonal patterns among GDP components and the 
strong user demand for preserving accounting and aggregation relationships in the QNA data. 
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Table 3: Comparison of Revisions Under Direct and Indirect Seasonal Adjustment 

(year-on-year changes in seasonally adjusted gross domestic product) 

 
2021 2022 2023 

 

 
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  

Direct Adjustment 
Until  MSE 

2022Q4 -2.5 9.2 3.4 11.1 8.3 13.1 15.2 12.5      
 

0.86 2023Q1 -2.5 9.3 3.4 11.1 8.3 13.1 15.2 12.5 11.2    

2023Q2 -2.5 9.3 3.4 11.1 8.3 13.1 15.2 12.5 11.2 9.5   

2023Q3 -2.6 9.2 3.5 11.1 8.2 13.0 15.3 12.5 11.1 9.4 7.8  

2023Q4 -2.6 9.2 3.5 11.1 8.2 13.1 15.4 12.5 11.0 9.5 7.8 7.6 

Indirect Adjustment 
Until  MSE 

2022Q4 -2.5 8.6 3.9 12.4 7.9 12.0 15.8 13.9      
 

1.21 
2023Q1 -2.8 8.7 4.0 12.4 7.7 12.1 15.7 13.8 11.3    

2023Q2 -2.9 8.9 3.9 12.4 7.7 12.3 15.7 13.8 11.3 9.0   

2023Q3 -2.9 9.0 3.8 12.4 7.6 12.4 15.7 13.8 11.3 8.9 7.5  

2023Q4 -2.9 9.0 4.1 12.1 7.8 12.4 15.9 13.5 11.4 9.1 7.8 6.6 
MSE = mean squared error.  

Source: Authors’ calculations. 

 

4.2. Strategies for Updating Seasonal Adjustment 

Seasonal adjustment procedures can follow different updating approaches, depending on the 
frequency with which the adjustment models and their settings are re-evaluated as new or revised 
data become available. Two main approaches are mostly used: concurrent or current adjustment.  

In the concurrent approach, the model, its configuration, and parameters are re-estimated every 
time new or revised data points are added. This ensures that the adjusted series reflect the latest 
seasonal patterns and structural changes, typically resulting in the most accurate estimates. 
However, this strategy tends to produce more frequent revisions to the adjusted data due to 
ongoing updates to the underlying model and parameters. In contrast, the current adjustment 
approach updates the model and its components only during predetermined review windows – 
usually held annually or when significant changes occur in the source data. Between these review 
periods, the model structure and estimated parameters remain unchanged. Adjusted values are 
generated by applying projected seasonal and calendar factors to the incoming data. As a result, 
revisions to the seasonally adjusted series are concentrated within the review periods, with no 
adjustments made during the interim unless historical source data are modified. 

A compromise between the concurrent and current seasonal adjustment strategies is the partial 
concurrent approach. In this method, the choice of models and adjustment settings is fixed during 
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scheduled review periods – usually once per year or following substantial data revisions – and 
remains constant until the next review. However, the parameters of the model are re-estimated 
every time the series is updated with new data. While the model and adjustment settings are 
generally kept unchanged between reviews, they may be revised in response to rare or 
exceptional circumstances that demand special treatment. Outside of such events, any revisions 
to the seasonally adjusted data arise solely from the updated parameter estimates. This strategy 
offers a balanced approach by maintaining a high level of accuracy in the adjustments while 
reducing the frequency and magnitude of revisions. 

In Figure 6, we compare the magnitudes of revisions to year-on-year GDP changes across the 
three approaches. As anticipated, the partial concurrent method generates fewer revisions in 
estimates compared to the current and concurrent approaches, which lead to larger revisions. 
For instance, the second quarter of 2023 experienced a 0.3 percentage point revision in the year-
on-year GDP change using the current approach, a more substantial 1.1 percentage point revision 
with the concurrent approach, and a minor -0.1 percentage point revision with the partial 
concurrent approach. Consequently, ARMSTAT adopted this latter method for seasonally 
adjusting QNA in Armenia. The model, filters, and outliers within this approach are revised 
annually, while seasonal factors and calendar effects are updated with each new data release. 
This approach aligns with the ESS guidelines and the IMF manual on QNA, both of which 
recommend partial concurrent adjustment to account for new information and minimize the size 
of revisions resulting from the seasonal adjustment process. 

 

Figure 6: Current Versus Concurrent Versus Partial Concurrent Adjustment 

(revisions to year-on-year gross domestic product growth rates, percentage points) 

 
Source: Authors’ calculations. 
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4.3. Revision Period 

Another critical aspect of revisions policy is determining the revision period for QNA publications, 
which defines the number of previously released quarterly observations subject to revision. In a 
partial concurrent approach, the entire seasonally adjusted series is modified whenever a new 
observation is added or an existing one is revised. Revisions can be substantial for years near the 
last revised observation in the original series, but tend to be minor for more distant observations. 
This pattern arises because seasonal adjustment filters assign greater weight to recent 
observations compared to those further in the past. 

According to the IMF’s QNA manual, a partial concurrent adjustment strategy mandates revising 
seasonally adjusted series for at least 2 complete years prior to modifying the original data. This 
period enables the inclusion of updated regression coefficients and newly detected outliers into 
the latest seasonally adjusted data. Maintaining a minimum of 2 full years is crucial for accurately 
calculating quarter-to-quarter growth rates for the current and preceding year using consistently 
adjusted data. Seasonally adjusted data published before this 2-year window can remain 
unchanged unless artificial breaks emerge in the series. Similarly, the ESS guidelines 
recommend setting the starting point for the earliest seasonally adjusted data revision at the 
beginning of a year, 3 years before the unadjusted data revision period.  

To determine an appropriate revision period for Armenia, Figure 7 compares revisions to year-on-
year GDP growth rates following the addition of new observations for each quarter of 2023. The 
analysis reveals that, while recent data significantly impacts the most recent estimates, earlier 
observations remain relatively stable. Based on these findings, ARMSTAT adopted a revision 
policy that updates the previous 3 years of data with each new observation, while preserving 
estimates for earlier periods. The only exception to this revision policy occurred when ARMSTAT 
transitioned to a new seasonal adjustment framework at the end of 2022. During this period, the 
entire series was updated compared to the previous methodology, aligning with ESS 
recommendations for major revisions. 

 

Figure 7: Changes in Seasonally Adjusted Estimates by Adding New Observations 

(revisions to year-on-year gross domestic product growth rates, percentage points) 

 
Source: Authors’ calculations. 
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4.4. Relationship Between Price, Volume, and Value Indices for Seasonally Adjusted Series 

Seasonally adjusted estimates for national accounts price indices, volume measures, and current 
price data can be obtained by either adjusting each series independently or adjusting two and 
deriving the third as a residual, assuming all three exhibit seasonal patterns. Given nonlinearities 
in seasonal adjustment processes, these methods produce different results, although the 
differences are typically minor. As the IMF suggests, deciding which series to derive residually 
should be determined on a case-by-case basis based on which approach yields the most 
reasonable outcome. 

Theoretically, seasonality in current price data is generated by seasonality from price and volume 
effects. Therefore, the best approach appears to be applying seasonal adjustment to the price 
and volume series and then indirectly deriving seasonally adjusted data in current prices. 
However, directly adjusting data in current prices may be preferred when the main data source is 
available in nominal terms. 

Before 2022, ARMSTAT seasonally adjusted only the volume indices. However, since adopting 
the new framework, both volume measures and current price data are seasonally adjusted, while 
price deflators are derived as residuals. This decision is influenced by the fact that the underlying 
data for QNA is collected in nominal terms in Armenia, and volume indices are subsequently 
derived using QNA series at the previous year’s prices through the double deflation method. 

 

5. QUALITY DIAGNOSTICS 

In this section, we evaluate the quality of the seasonally adjusted series using both parametric 
and nonparametric criteria. To verify the absence of residual seasonality, we begin by conducting 
seasonality tests on the directly adjusted series and their irregular components.  The residual 
seasonality tests used in JDemetra+ are derived from the set of diagnostics originally created for 
X12-ARIMA. Among these, we primarily rely on the F-test, which uses seasonal dummy variables 
(including a mean effect and three seasonal dummies for quarterly data) to determine whether 
they are jointly statistically insignificant. 

The rejection thresholds and test results for this analysis are presented in Tables 4a and 4b. As 
indicated, the p-values for most series exceed 0.05, confirming the absence of residual 
seasonality in the individual GDP components. Since the seasonally adjusted QNA series are 
derived indirectly by aggregating the corresponding subcomponents, we also perform similar tests 
on the aggregated series. As shown in Appendix C, all aggregated series are free from residual 
seasonality. Additionally, we conduct analogous tests on the price deflators calculated from 
seasonally adjusted volume measures and current price data, with results in Appendix C 
supporting that these series are also devoid of residual seasonality. 
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Table 4a: Critical Values for Interpreting F-Test Results 

P-value JDemetra+ default settings 
<0.01 Severe 
[0.01, 0.05) Bad 
[0.05, 0.1) Uncertain 
≥0.1 Good 

Source: JDemetra+ Reference Manual (https://jdemetradocumentation.github.io/JDemetra-
documentation/). 

 

Table 4b: Results of the F-Test for the Presence of Residual Seasonality and Trading-Day 
Effects 

NACE 
Code 

Residual Seasonality Residual Trading-Day Effects 
Seasonally 

adjusted series 
Irregular 

component 
Seasonally 

adjusted series 
Irregular 

component 
A Good (0.668) Good (0.418) Good (0.079) Good (0.405) 
B Good (0.921) Good (0.832) Good (0.101) Good (0.134) 
C Good (0.477) Good (0.446) Good (0.429) Good (0.269) 
D Good (0.513) Good (0.635) Good (0.905) Good (0.058) 
E Good (0.768) Good (0.569) Good (0.207) Good (0.779) 
F Good (0.321) Good (0.222) Good (0.172) Good (0.650) 
G Good (0.382) Good (0.187) Good (0.493) Good (0.091) 
H Good (0.985) Good (0.781) Good (0.639) Good (0.240) 
I Good (0.959) Good (0.568) Good (0.607) Good (0.292) 
J Good (0.895) Good (0.973) Good (0.371) Good (0.598) 
K Good (0.938) Good (0.541) Good (0.966) Good (0.328) 
L Good (0.953) Good (0.958) Good (0.804) Good (0.436) 
M Good (0.898) Good (0.403) Good (0.255) Good (0.756) 
N Good (0.728) Good (0.487) Good (0.235) Uncertain (0.024) 
O Good (0.422) Good (0.446) Good (0.059) Good (0.124) 
P Good (0.812) Good (0.477) Good (0.131) Good (0.976) 
Q Good (0.717) Good (0.633) Good (0.216) Good (0.304) 
R Good (0.814) Good (0.557) Good (0.160) Good (0.059) 
S Good (0.593) Good (0.397) Good (0.489) Good (0.799) 
T Good (0.723) Good (0.781) Good (0.091) Uncertain (0.017) 

Source: Authors’ calculations. 

 

We next evaluate the specified RegARIMA models from the pre-adjustment phase using several 
tests for normality, independence, randomness, and linearity of residuals. Ensuring residuals are 
normally distributed is important for the accuracy of forecast prediction intervals. To test this, we 
use the Doornik-Hansen test, which evaluates skewness and kurtosis in multivariate data 
transformed to achieve independence. The corresponding p-values from this test are presented 
in column (1) of Table 5. The findings show that residuals from all RegARIMA models conform to 
a normal distribution, indicating no additional model refinement is required. 

https://jdemetradocumentation.github.io/JDemetra-documentation/
https://jdemetradocumentation.github.io/JDemetra-documentation/
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To check the independence of residuals, we apply the Ljung-Box and Box-Pierce Q-statistics, 
calculated for both regular and seasonal lags. The regular lag tests evaluate autocorrelation over 
the first 16 lags, while seasonal lag tests focus on the first two seasonal lags. Assuming the 
residuals are random, their test statistics should follow a chi-square distribution, with degrees of 
freedom equal to the number of model parameters. The results of these tests are shown in 
columns (2) and (3) of Table 5. Since most p-values exceed 0.05, we do not reject the null 
hypothesis that residuals are independently and identically distributed, supporting the 
independence assumption. 

The randomness of the residuals' signs is evaluated using the Wald-Wolfowitz test, also called 
the Run test. This test analyzes data centered on the mean by counting the number and length 
of runs – defined as consecutive values all above or all below the mean. An up run consists of 
successive values above the mean, while a down run consists of successive values below it. The 
test examines whether these up and down runs are evenly distributed over time, since both an 
excess and a shortage of runs are unlikely in truly random sequences. It also tests whether the 
lengths of these runs occur randomly. The outcomes shown in columns (4) and (5) of Table 5 
demonstrate that, in our case, the residuals exhibit randomness both in terms of the number of 
runs around the mean and their average length. 

Finally, the linearity of residuals test provides evidence of whether there is autocorrelation in 
residuals or not. Significant values of the Ljung-Box and Box-Pierce Q-statistics of the squared 
residuals indicate random variation in the coefficients or time-varying conditional variances, 
leading to lower reliability of the test statistics and forecast coverage intervals. The results in 
columns (6) and (7) of Table 5 show that, in our dataset, the null hypothesis of no autocorrelation 
cannot be rejected, which means the residuals do exhibit a linear structure. 

 

Table 5: P-Values of RegARIMA Residual Tests 

NACE 
Code 

Normality Independence Randomness Linearity 

Doornik-
Hansen 

Ljung-
Box 

Box-
Pierce 

Runs 
around 
mean 

number 

Runs 
around 
mean 
length 

Ljung-Box 
on 

squared 
residuals 

Box-Pierce  
on squared 
residuals 

 (1) (2) (3) (4) (5) (6) (7) 
A 0.765 0.753 0.903 0.901 1.000 0.893 0.972 
B 0.947 0.543 0.753 0.989 1.000 0.623 0.802 
C 0.712 0.637 0.894 0.205 1.000 0.616 0.886 
D 0.903 0.587 0.824 0.368 1.000 0.047 0.202 
E 0.797 0.943 0.989 0.871 1.000 0.365 0.616 
F 0.540 0.971 0.993 0.796 1.000 0.061 0.278 
G 0.218 0.867 0.964 0.510 1.000 0.767 0.937 
H 0.567 0.586 0.820 0.300 1.000 0.469 0.707 
I 0.911 0.473 0.743 0.407 1.000 0.581 0.803 
J 0.954 0.562 0.821 0.067 0.984 0.680 0.843 
K 0.430 0.915 0.985 0.698 1.000 0.737 0.907 
L 0.230 0.911 0.959 0.447 1.000 0.966 0.990 
M 0.585 0.075 0.307 0.950 1.000 0.824 0.931 
N 0.844 0.648 0.884 0.203 1.000 0.455 0.709 

Continued on the next page 
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NACE 
Code 

Normality Independence Randomness Linearity 

Doornik-
Hansen 

Ljung-
Box 

Box-
Pierce 

Runs 
around 
mean 

number 

Runs 
around 
mean 
length 

Ljung-Box 
on 

squared 
residuals 

Box-Pierce  
on squared 
residuals 

 (1) (2) (3) (4) (5) (6) (7) 
O 0.401 0.836 0.935 0.638 1.000 0.003 0.057 
P 0.275 0.357 0.621 0.003 0.023 0.792 0.931 
Q 0.813 0.442 0.683 0.531 1.000 0.130 0.372 
R 0.703 0.091 0.292 0.183 1.000 0.403 0.630 
S 0.244 0.600 0.847 0.948 1.000 0.136 0.456 
T 0.236 0.348 0.652 0.901 1.000 0.888 0.961 

Source: Authors’ calculations. 

 

After ensuring all of the critical assumptions are satisfied in the pre-treatment stage, we analyze 
the quality of the seasonal adjustment results using a set of “M diagnostics” produced by 
JDemetra+. The various indicators assess different aspects of the seasonal adjustment process, 
such as how much the irregular component contributes to the overall variance (M1, M2, and M3), 
the randomness of the irregular component (M4), the significance of changes in the trend and 
irregular components (M5), the ratio of annual changes in the irregular component to the seasonal 
component (M6), the presence of identifiable seasonality (M7), and the stability of short- and 
long-term variations (M8, M9, M10, and M11). In addition, JDemetra+ produces two composite 
indicators (Q and Q − M2), which assess the overall quality of the models. Values exceeding 1 
suggest possible problems with the adjustment, while values ranging from 0 to 1 are considered 
satisfactory. 

The M-diagnostic indicators for all sectors, presented in Table 6, suggest the seasonal adjustment 
process is generally satisfactory for most sectors. However, a few sectors exhibit potential issues 
in specific indicators. In particular, some sectors, like mining and quarrying (B), manufacturing 
(C), and information and communication (J), have problems with moving seasonality, as indicated 
by M10 and M11 statistics exceeding the acceptable value of 1. Similarly, several sectors have a 
high irregular component, such as real estate activities (L), administrative and support service 
activities (N), and other service activities (S). However, for all sectors, the two composite 
indicators have values less than 1, confirming that, overall, the seasonal adjustment process 
appears to be adequate. 
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Table 6: The M-Diagnostics  

NACE 
Code M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 Q Q-M2 

A 0.0 0.0 1.3 1.2 1.0 1.2 0.1 0.3 0.2 0.3 0.3 0.5 0.5 
B 0.6 0.1 0.2 0.5 0.2 0.3 0.6 1.0 0.7 1.5 1.4 0.5 0.6 
C 0.1 0.1 0.5 0.2 0.7 0.9 0.3 0.8 0.6 1.5 1.5 0.5 0.5 
D 0.7 0.4 1.3 0.6 1.3 0.8 0.4 1.4 0.8 1.6 1.6 0.9 0.9 
E 0.8 0.1 0.6 0.5 0.5 0.5 0.4 0.8 0.5 0.8 0.7 0.5 0.6 
F 0.0 0.0 0.3 0.6 0.6 1.1 0.1 0.3 0.2 0.5 0.4 0.3 0.3 
G 0.0 0.0 0.0 0.3 0.2 1.0 0.3 0.5 0.5 0.4 0.4 0.2 0.3 
H 0.8 0.3 0.4 0.9 0.4 0.9 0.2 0.2 0.1 0.2 0.2 0.4 0.4 
I 0.1 0.0 0.0 0.2 0.2 0.7 0.3 0.7 0.1 0.6 0.4 0.2 0.2 
J 1.1 0.2 0.3 0.7 0.2 0.1 0.4 1.1 0.9 1.2 1.2 0.6 0.6 
K 0.1 3.0 0.0 0.7 0.2 0.3 0.4 1.1 0.4 0.9 0.7 0.7 0.4 
L 1.2 0.9 1.0 0.5 1.0 0.5 0.5 1.2 0.9 1.6 1.5 0.9 0.9 
M 0.3 0.3 0.9 0.3 0.7 0.3 0.3 0.6 0.3 0.9 0.9 0.5 0.5 
N 0.7 1.1 1.2 1.0 1.0 0.1 0.3 0.6 0.2 0.7 0.7 0.7 0.6 
O 0.7 0.8 1.8 0.3 1.5 0.1 0.4 0.8 0.7 0.4 0.4 0.7 0.7 
P 0.1 0.1 1.1 1.2 0.9 0.3 0.2 0.4 0.3 0.4 0.4 0.5 0.5 
Q 0.3 0.2 0.8 0.6 0.9 0.5 0.3 0.9 0.6 0.7 0.7 0.6 0.6 
R 0.2 0.0 0.0 0.7 0.2 0.9 1.0 2.1 0.5 2.1 2.0 0.7 0.8 
S 1.2 0.5 1.0 0.7 0.9 0.1 0.4 0.9 0.3 0.8 0.4 0.7 0.7 
T 0.1 0.1 0.9 0.2 0.8 0.3 0.1 0.4 0.3 0.7 0.7 0.4 0.4 

Source: Authors’ calculations. 

 

Seasonally adjusted time series should remain consistent, showing minimal variation when a few 
observations are added or removed from the original data. To evaluate this stability, we use 
sliding spans analysis, which examines how seasonal adjustment results fluctuate when different 
portions of the original dataset are used. This method specifically assesses the estimated 
seasonal factors and the quarter-to-quarter changes in the seasonally adjusted series, providing 
warnings if there is too much variability for the same quarter or if the count of unstable seasonal 
factors or changes surpasses acceptable thresholds. 

In JDemetra+, a threshold of 3% of the test statistics is used to identify abnormal values. 
Following IMF guidelines, seasonal adjustment results are deemed stable when unstable 
seasonal factors account for less than 15% of all observations, and when abnormal quarter-to-
quarter variations in the seasonally adjusted series represent less than 35% of the total 
observations. This is also consistent with the recommendations of Findley et al. (1990), who 
provide similar acceptable thresholds for these measures. Figures 8a and 8b show the share of 
abnormal seasonal factors and quarter-to-quarter changes, respectively, in the case of Armenian 
QNA series. As can be seen, in most cases, these shares are below the respective thresholds, 
meaning the seasonal adjustment results remain roughly constant in different specifications with 
varying numbers of observations. 



   
 

21 

Figure 8a: Abnormal Seasonal Factors  

(% of total number of observations) 

 
Source: Authors’ calculations. 

 

Figure 8b: Abnormal Quarter-to-Quarter Changes in Seasonally Adjusted Data 
(% of total number of observations) 

 
Source: Authors’ calculations. 
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6. PRE-ADJUSTMENT OF QNA DURING THE COVID-19 CRISIS 

The COVID-19 outbreak had a severe impact on the Armenian economy, leading to a GDP 
contraction of 7.2% in 2020. Statistically, this crisis introduced challenges in analyzing the 
endpoint of time series, for several reasons. First, estimating a level shift at the first data point 
was impossible since the series level prior to the given data was unknown. Second, a level shift 
at the last data point could not be distinguished from an additive outlier, and a temporary change 
at the last data point could also be mistaken for an additive outlier. 

These inherent conceptual constraints pose challenges in accurately estimating the trend-cycle 
and irregular components. For instance, a level shift occurring near the end of a series might be 
mistakenly classified as an additive outlier, causing it to be attributed incorrectly to the irregular 
component instead of the trend-cycle. Although this misclassification does not alter the seasonally 
adjusted outcomes, selecting different outlier types can affect the extent of series revisions and 
may also influence the detection of turning points. ESS guidelines on seasonal adjustment, 
particularly in chapter 2.8 concerning the “Treatment of outliers at the end of the series and at the 
beginning of a major economic change,” recommend modeling outliers at the end of a time series 
based on statistical criteria and economic information, especially during periods of significant 
economic change. However, in the case of COVID-19, the situation is more complex. The outlier 
may appear in the trend-cycle component or the irregular component, depending on the final 
specification. Since the seasonally/calendar adjusted results include both components, the 
impact of the COVID-19 crisis on the data remains evident. 

To address this issue, we followed Eurostat’s guidelines and initially modeled the crisis period 
(2020Q1) as an additive outlier. As new data became available, the type of outlier was re-
evaluated, with the possibility of revising it to a transitory change or a level shift or maintaining it 
as an additive outlier. This decision was made based on a comparative analysis of the three 
options, starting with the successive periods. This methodological rigor ensured that the data's 
integrity and the economic narrative remained consistent throughout the crisis period. 

 

7. CONCLUSION 

In this paper, we have analyzed the implications of transitioning from the X12-ARIMA to the X13-
ARIMA-SEATS method for the seasonal adjustment of Armenia’s QNA series. The X13-ARIMA-
SEATS method, which incorporates the SEATS filter and advanced diagnostics, provides a more 
robust and reliable approach to capturing nonlinear trends and structural breaks in time series 
data. The new framework also aligns with the ESS guidelines (2015) and IMF recommendations, 
which summarize best standards and practices regarding the various aspects of the seasonal 
adjustment process. 

Our findings highlight the significant methodological advancements introduced by the new 
framework and its positive impact on the interpretation of key economic indicators. We have 
demonstrated that, although the indirect method may be more susceptible to revisions, it is 
preferable for Armenia given the divergent seasonal patterns among GDP components and the 
importance of preserving accounting relationships. Additionally, we highlight the advantages of 
the partial concurrent adjustment strategy, which balances accuracy with the minimization of 
revisions. Furthermore, our findings on the relationship between price, volume, and value indices 
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underscore the importance of deriving implicit price deflators as residuals from seasonally 
adjusted volume and current price data rather than directly adjusting them, as most QNA series 
are derived from nominal data. 

To ensure the quality of the seasonal adjustment process, we conducted a comprehensive set of 
diagnostic tests to evaluate various aspects of the adjustment, including the absence of residual 
seasonality, the validity of underlying assumptions, and the stability of the results. The results of 
these tests indicate that, overall, the seasonally adjusted QNA series are free from residual 
seasonality, the pre-adjustment models meet all necessary assumptions, and the seasonal 
adjustment results are stable. We have also addressed the specific challenges posed by the 
COVID-19 crisis in the context of seasonal adjustment by carefully modeling the outlier 
associated with this event as additive outliers at the beginning of the crisis and then revisiting if 
necessary to ensure the data integrity and the economic narrative remain consistent throughout 
this period.  
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Appendix A. Codes of NACE Sectors 
NACE 
Code Economic Area 

A Agriculture, forestry, and fishing 
B Mining and quarrying 
C Manufacturing 
D Electricity, gas, steam, and air conditioning supply 
E Water supply, sewerage, waste management, and remediation activities 
F Construction 
G Wholesale and retail trade, repair of motor vehicles and motorcycles 
H Transportation and storage 
I Accommodation and food service activities 
J Information and communication 
K Financial and insurance activities 
L Real estate activities 
M Professional, scientific, and technical activities 
N Administrative and support service activities 
O Public administration and defense, compulsory social security 
P Education 
Q Human health and social work activities 
R Arts, entertainment, and recreation 
S Other service activities 

T Activities of households as employers; undifferentiated goods and services 
producing activities of households for own use 

Source: Statistical classification of economic activities in EU 
(https://ec.europa.eu/eurostat/web/nace). 

 

 
 
 
 
 
 
 
 
 
 
 

https://ec.europa.eu/eurostat/web/nace
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Appendix B. P-Values from Seasonality Tests for Indirectly Adjusted QNA Series 
NACE 
Code 

Autocorrelations 
at Seasonal Lags Friedman Kruskall-Wallis Periodogram Seasonal 

Dummies 

A 0.656 0.896 0.647 0.729 0.710 
B+C+D+E 0.834 0.766 0.631 0.669 0.603 

F 0.194 0.819 0.761 0.691 0.802 
G+H+I 0.117 0.664 0.431 0.612 0.647 

J 0.815 0.997 0.865 0.803 0.633 
K 0.973 0.241 0.316 0.315 0.331 
L 1.000 0.921 0.997 0.915 0.871 

M+N 0.900 0.965 0.868 0.922 0.977 
O+P+Q 1.000 0.818 0.868 0.598 0.642 
R+S+T 0.063 0.615 0.513 0.375 0.222 

Source: Authors’ calculations. 

 

Appendix C. P-Values from Seasonality Tests for Implicit Price Deflators 
NACE 
Code 

Autocorrelations 
at Seasonal Lags Friedman Kruskall-Wallis Periodogram Seasonal 

Dummies 

A 1.000 0.871 0.776 0.679 0.632 
B 0.916 0.408 0.377 0.301 0.332 
C 0.518 0.182 0.308 0.254 0.410 
D 1.000 0.314 0.465 0.288 0.368 
E 0.363 0.209 0.352 0.509 0.091 
F 0.331 0.444 0.214 0.121 0.382 
G 0.798 0.614 0.252 0.262 0.305 
H 1.000 0.219 0.271 0.431 0.586 
I 0.838 0.166 0.348 0.156 0.097 
J 0.896 0.200 0.210 0.495 0.398 
K 0.288 0.220 0.094 0.306 0.326 
L 0.999 0.921 0.992 0.999 0.998 
M 0.989 0.483 0.798 0.903 0.885 
N 0.624 0.871 0.574 0.546 0.657 
O 1.000 0.343 0.258 0.269 0.402 
P 0.245 0.240 0.155 0.144 0.171 
Q 0.443 0.714 0.135 0.083 0.074 
R 1.000 0.663 0.768 0.954 0.953 
S 1.000 0.663 0.909 0.889 0.968 
T 0.419 0.664 0.809 0.960 0.948 

Source: Authors’ calculations. 
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Appendix D. Metadata 
Time series Expenditure and production components of 

GDP 
- at current prices 
- chained volume indices (2012=100) 

Frequency Quarterly 

Software JDemetra+, v2.2.2 

Method X13-ARIMA-SEATS 

Calendar used National calendar with nonworking days 
defined by the law of RA “On Holidays and 
Memorial Days of the Republic of Armenia”, 
with Easter and leap year effects 

Outlier detection and correction Automatic, except in special situations (e.g., 
pandemic modeling) 

Selection of model parameters and filters Automatic 

Method of decomposition Additive, multiplicative 

Direct/indirect adjustment Indirect adjustment 

Benchmarking with nonseasonally adjusted 
data 

Yes 

Current/concurrent adjustment Partial concurrent adjustment where the 
model, filters, outliers, and calendar 
regressors are revised once a year, and 
seasonal and calendar factors are estimated 
every time new data becomes available 

Quality indicators Statistical tests and other tools offered by 
JDemetra+ 

Release calendar On the 65th/67th day after the end of the 
reporting quarter 

Revision of adjusted data Seasonally adjusted data is revised starting 
from the 1st quarter of the 3rd year 
preceding the reporting year 

Source: ARMSTAT (https://armstat.am/en/?nid=202).  

  

https://apc01.safelinks.protection.outlook.com/?url=https%3A%2F%2Farmstat.am%2Fen%2F%3Fnid%3D202&data=05%7C02%7Cgminasyan.consultant%40adb.org%7Ca14f3608de484b913ffa08dd39de4449%7C9495d6bb41c24c58848f92e52cf3d640%7C0%7C0%7C638730348968090346%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=5y62%2BbI3TrlRCAQcb8CGYrBcSEKqJE0vhJp306IqjhQ%3D&reserved=0
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