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ABSTRACT 

Climate change poses significant challenges to healthcare systems. This research estimates 
temperature impacts on hospital workload, using inpatient records from more than 1,000 
emergency departments (EDs) in the People’s Republic of China between 2013 and 2022. We 
find inpatient admissions in EDs decrease by 12.3% on days with a mean temperature below 
−6°C, while increasing by 7.7% on days with a mean temperature exceeding 30°C, compared 
with a temperature reference of 12°C to 15°C. Heterogeneity analysis indicates that specific 
departments such as internal medicine, surgery, and pediatrics experience more substantial 
increases in workload during extreme heat. Temperature also reshapes the patient structure: male 
patients, child patients, and patients with injuries or respiratory diseases take up a larger 
proportion of total admissions on extremely hot days. Considering adaptation methods, we show 
that hospitals temporarily allocate more junior physicians to EDs when the temperature is hot. 
Hospitals in cities where people have higher incomes and better-heated homes are less sensitive 
to temperature changes. In terms of monetary burden, we estimate corresponding healthcare 
expenditures, which suggest that the impact of extreme temperatures is larger on the insured 
portion of expenditures than it is on out-of-pocket payments. This research highlights the 
relationship between temperature and workload burden faced by the major healthcare facilities, 
providing suggestions for the healthcare system to increase personnel and adjust resource 
allocation in response to climate change. 

 

Keywords: hospital workload, climate change, extreme temperature, healthcare expenditure, 
People’s Republic of China 
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I. INTRODUCTION 

Climate change-induced increases in the intensity and frequency of extreme temperatures impose 
considerable challenges on healthcare systems. In addition to physical damage to public 
infrastructure and electricity systems in various sectors (Rode et al. 2021), healthcare systems 
face particularly severe capacity constraints, driven by surging demand. Extreme temperatures 
adversely affect population health, leading to increased healthcare utilization. This surge in 
demand exacerbates shortages and the uneven distribution of healthcare resources, complicating 
efforts to achieve universal healthcare (Salas and Jha 2019, IPCC 2023). Strains on healthcare 
provision can thus result in poorer health outcomes, magnifying the global health impacts of 
climate change (WHO 2024). 

The impacts of climate change on healthcare systems have yet to be fully investigated. Most 
previous studies have documented that population mortality rises during extremely cold and hot 
weather events. 1  However, this U-shape relationship between temperature and all-cause 
mortality may not uniformly reflect the impact of extreme temperature on healthcare utilization 
and the corresponding workload for healthcare providers. There are at least three reasons for 
such inconsistency.  

First, a larger proportion of healthcare demand is driven by non-fatal health deterioration rather 
than acute fatal conditions. Existing work has suggested a temperature–morbidity relationship 
different from the U-shape temperature–mortality relationship. Some studies have found morbidity 
linearly impacted by temperature (White 2017, Karlsson and Ziebarth 2018, Mullins and White 
2019, Agarwal et al. 2021, Aguilar-Gomez et al. 2024, Gould et al. 2024), while others have 
observed morbidity increases on extreme cold and hot days (Weinberger et al. 2018; Iniguez, 
Roye, and Tobias 2021).  

Second, healthcare demand is influenced not only by health status but also by behavior 
preferences, which are highly shaped by weather conditions. For instance, extreme temperatures 
may encourage people to stay indoors to avoid exposure, making individuals with mild symptoms 
or lower health risks less likely to seek hospital care (Deschenes and Moretti 2009, Graff-Zivin 
and Neidell 2014).  

Third, climate change can impact healthcare demand via income channels, particularly for 
individuals whose work depends on mild outdoor conditions. Restricted work opportunities under 
extreme cold and hot climates may lead to lower income and tighter budgets, limiting access to 
healthcare services (Colmer 2021, Ebi et al. 2021). As these factors can counteract one another 
in their influence on healthcare demand, they contribute to a complex and nuanced relationship 
between climate change and the need for healthcare services. 

 
1 See, for example, Barreca (2012); Barreca et al. (2015, 2016); Carleton et al. (2022); Dell, Jones, and Olken (2014); 
Deschenes (2014); Deschenes and Greenstone (2011); Deschenes and Moretti (2009); Liao et al. (2023); Mullins and 
White (2020); Wellenius (2017); Yardley, Sigal, and Kenny (2011). 
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The relationship between climate change and healthcare utilization is particularly critical in 
developing countries and emergency departments (EDs), where workloads are already high even 
under mild temperature conditions (Asaro, Lewis, and Boxerman 2007; Hoot and Aronsky 2008; 
Lucas et al. 2009; Pearce et al. 2023). In developing countries, the impact is compounded by 
insufficient infrastructure, limited access to healthcare services, and a higher prevalence of 
vulnerable populations. According to the World Health Organization (WHO), low-income and 
lower middle-income countries have only 1.1 and 4.5 medical doctors per 10,000 population, 
respectively, compared with a number of 35.6 for high-income countries (WHO 2024). The 
healthcare system of the People’s Republic of China (PRC) is one of the most resource-strained 
and busiest in the world. From 2007 to 2022, the number of ED visits in the PRC increased 4.5-
fold, from 51.9 million to 224.2 million (NHC 2024). Public hospitals, in particular, are often 
overcrowded, with physicians overloaded with too many patients to serve. For example, in 2023, 
each ED physician served an average of over 2,000 patients (NBS 2024). EDs in these settings 
often cannot handle sudden increases in patient volume, resulting in longer waiting times, reduced 
quality of care, and, in some cases, higher mortality rates (Hoot and Aronsky 2008; Carter, Pouch, 
and Larson 2014; Chan 2018; Woodworth 2020; Ellis and Esson 2021). Moreover, the impacts of 
extreme temperature may vary across hospitals and departments with different expertise, sizes, 
and locations, which cannot be fully and directly documented in research focusing on overall 
population health.  

This paper estimates the contemporaneous and cumulative impacts of temperature on workload 
in EDs in the PRC. We construct a nationally representative dataset linking daily hospital 
administrative records of inpatient visits to weather information covering 1,113 EDs in the PRC 
over the period 2013–2022, which covers a population of 1.34 billion (or 94.97% of the total 
population of the PRC as of 2022). We exploit random daily variations in weather across the 
locations of hospitals to document how EDs respond to temperature on the day under different 
ambient temperatures as well as in the period that follows. The workload in EDs is measured via 
the number of patients hospitalized through EDs and their associated medical expenses on a 
hospital-department-day unit basis. Our primary focus is on inpatient visits through the ED rather 
than overall inpatient admissions, as this approach helps minimize confounding factors from pre-
scheduled hospitalizations via non-EDs in the hospital. We adopt the non-parametric approach of 
temperature bins to estimate the nonlinear effects of temperature, emphasizing the impacts of 
extremely high temperatures over 30°C and extremely low temperatures below −6°C. 

We find that daily inpatient visits through EDs in hospitals drop by 12.3% on average on days with 
a mean temperature below −6°C, and increase by 7.7% on days with a mean temperature 
exceeding 30°C, compared with days with a moderate temperature range of 12°C to 15°C. The 
contemporaneous impacts of temperature exhibit a nearly linear pattern, with inpatient visits 
through EDs steadily increasing as temperatures rise. Our findings reveal a highly sensitive 
relationship between inpatient admissions and temperature fluctuations. Even if the temperature 
change is very minor—such as in comparing a day at 12–15°C with one at 15–18°C or 9–12°C—
can present remarkable changes in the number of ED-driven inpatient admissions. Our results 
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remain robust across various specifications, including alternative fixed effects such as hospital 
fixed effects, week-of-year fixed effects, and hospital-year-month fixed effects. Additionally, we 
test the robustness using alternative clustering methods, different sets of control variables, and a 
falsification test. We also examine the robustness of our findings by employing different 
approaches to construct hospital-centered climate factors. 

We find that the effects of extreme high and low temperatures can persist over short- and medium-
term periods. Over 8 days, the cumulative impacts of extreme high and low temperatures are 
10.9% and −18.7%, respectively, which are 1.5 times greater than their contemporaneous effects. 
Our extended analysis indicates that the impact of extremely cold temperatures can persist for up 
to 20 days, whereas the effect of extremely high temperatures tends to diminish and becomes 
statistically insignificant after 2 weeks. 

In terms of medical expenditures, our findings reveal that total health expenditure in a hospital 
rises by 7.1% on hot days (daily mean temperature > 30°C) and drops by 10.4% on cold days 
(daily mean temperature < −6°C). These shifts in medical expenditures are largely driven by 
changes in inpatient visits, as extreme temperatures significantly affect the volume of cases 
seeking hospital care. We further examine the medical expenditure according to their copayment 
schemes. In the PRC, each medical expense can be categorized into three components: publicly 
insured, commercially insured, and out-of-pocket payments. Our analysis reveals that the insured 
portion experiences a larger absolute impact. However, on hot days, the growth rate of out-of-
pocket payments surpasses that of insured payments, implying that individuals bear a 
disproportionate share of the major medical expense burden from climate change-driven 
healthcare demand. 

We find that the relationship between temperature and healthcare utilization varies across 
hospitals, departments, and city characteristics. In the PRC, the hospital system is organized into 
a tiered structure, with three tiers to reflect the quality, scale, and capabilities of medical 
institutions. Our analysis reveals that inpatient admissions through EDs in lower-tiered hospitals 
are more sensitive to temperature fluctuations. This increased susceptibility can be attributed 
primarily to the fact that the health issues induced by climate change are often relatively mild. 
These health issues typically do not require highly specialized care—but may necessitate prompt 
treatment (Sartini et al. 2022). As a result, individuals tend to seek care at lower-tier hospitals, 
which are more accessible and generally handle less severe cases. By investigating the 
relationship across sub-departments within EDs, we find the impacts are larger in departments of 
internal medicine, surgery, and pediatrics. Additionally, EDs located in cities with centralized 
winter heating and higher income levels are less affected by temperature extremes.  

We further examine how temperature reshapes the patient structure in four different dimensions—
main diagnosed disease, demographic features (i.e., sex and age), insurance scheme, and 
disease severity. Corresponding to findings for heterogeneity among departments, we find that 
cases of injuries, respiratory diseases, endocrine diseases, and digestive diseases increase most 
during extremely high temperature. For demographic features, we find that male and child patients 
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take up a larger proportion of patient admissions during extremely hot days. EDs experience a 
more sensitive change in the number of inpatients participating in Urban Employee Basic Medical 
Insurance (UEBMI), the major insurance with the average highest reimbursement rate in the PRC, 
compared with other major insurance types, under extreme temperature. The proportion of 
patients with relatively milder illnesses increases on hot days, showing a downward shift in the 
average severity of the inpatient admissions. 

We examine whether hospitals can adapt to fluctuations in patient volume caused by weather 
changes by adjusting the number of healthcare staff. By regressing temperature variations against 
the number of working doctors, we find that hospitals increase the number of working doctors in 
EDs to accommodate higher inpatient admissions during hot days. The number of resident 
doctors—typically the most junior members of the medical team—rises more than that of chiefs 
or attending physicians. This adjustment of the medical workforce in EDs is more pronounced in 
tier 2 hospitals and hospitals located in cities with a higher average level of income or without 
centralized heating.  

Overall, the above findings suggest that (i) the temperature–healthcare utilization relationship has 
a linear pattern, which is different from the U-shape temperature–health relationship; (ii) the 
impacts can be remarkably stronger in departments such as internal medicine, surgery, and 
pediatrics, with a larger proportion of the inflow consisting of male patients, children, those with 
better insurance coverage, and those with milder illnesses; and (iii) hospitals can promptly adapt 
to the fluctuations in ambient temperature and the corresponding changes in inpatient inflow 
through personnel management.  

Our study contributes to the existing literature on climate and healthcare systems by estimating 
the relationship between temperature and hospital workload in a developing country. While some 
studies have been conducted in developed countries, such as the US (White 2017, Mullins and 
White 2019) and Germany (Karlsson and Ziebarth 2018), few have focused on developing 
countries (Agarwal et al. 2021, Gould et al. 2024). Previous literature, however, usually uses 
inpatient data to study the impacts on population morbidity (White 2017, Karlsson and Ziebarth 
2018, Mullins and White 2019, Agarwal et al. 2021, Gould et al. 2024). We analyze inpatient 
admissions at the hospital level to estimate the fluctuation in patient volume, patient structure, 
and total expenditure caused by extreme temperature for EDs. As discussed in Salas and Jha 
(2019), there is potential disruption of healthcare infrastructure as a result of extreme weather 
events; however, this economic research has largely overlooked this issue. Our study fills this gap 
and finds that healthcare providers face greater demands during periods of extreme high 
temperatures compared with extreme low temperatures. Furthermore, our study reveals potential 
changes in patient structure and variations among different medical departments within EDs, 
highlighting the uneven impacts of temperature on healthcare workload.  

Two studies closely related to this research in the literature on climate change and healthcare 
systems are Aguilar-Gomez, Graff-Zivin, and Neidel (2024) and Agarwal et al. (2021). Aguilar-
Gomez, Graff-Zivin, and Neidel study the impact of heat on healthcare utilization and patient 



5 

outcomes in Mexico. A key distinction between their study and ours is that the PRC’s diverse 
climate enables us to explore the effects of temperature over a much broader range. Given the 
narrow temperature range in Mexico, Aguilar-Gomez, Graff-Zivin, and Neidel focus only on the 
effects of temperatures between 18°C and 34°C. They document a similar pattern—an increase 
in ED and hospital visits and an increase in mortality during heat events. Our data from the PRC, 
which includes hospital-day observations at local temperatures below −6°C, allow us to estimate 
the impact of extremely low temperatures on ED visits and healthcare expenditures.  

Agarwal et al. (2021) provide evidence in the PRC using city-level inpatient admission rates as a 
measurement of population morbidity. We are different from Agarwal et al. in at least two aspects. 
First, we analyze from a supply-side perspective by aggregating the inpatient volume and 
expenditure to each individual ED, featuring more about the effects of temperature on the 
workload of the healthcare system. Second, Agarwal et al. study the population covered by two 
primary public insurance schemes in the PRC, excluding the population that is commercially 
insured, insured by other public schemes, or uninsured, which weakens the representativeness 
of the estimation. In comparison, our data include all inpatient admissions, disregarding their 
enrollment in health insurance, which allows us to precisely estimate the change in workload and 
patient structures.2 Furthermore, by examining healthcare expenditure and disease severity at 
the hospital level, our study offers a comprehensive evaluation of the impacts of temperature on 
healthcare providers, considering changes not only in quantity but also in complexity and cost. 

Our findings also contribute to the growing literature on climate change adaptation, specifically 
providing the first empirical evidence of adaptation through personnel management. Previous 
literature has documented adaptation strategies in agriculture, transportation, regional 
development planning, and residential defensive expenditures for undesired weather.3 Beyond 
these traditional adaptation methods for individuals to mitigate the adverse impact on health in 
our context, we move one step further to discuss the potential reaction approaches of healthcare 
providers, given the fluctuations in workloads induced by extreme temperature. As documented 
in Hwang et al. (2011), additional medical personnel and more flexible allocation of equipment 
can be solutions to hospital crowding. Our study provides evidence that, in response to increasing 
patient volume on extremely hot days, hospitals can adapt by increasing the number of practicing 
doctors serving hospitalized patients in the ED. Our findings suggest junior physicians in hospitals 

 
2 Another difference is that Agarwal et al. analyze inpatients through all departments, while we focus more on EDs, 
which is more related to non-deferrable diseases induced by the extreme temperature. In Agarwal et al.’s setting, the 
authors find non-results of the contemporaneous effects of temperature. We replicate their approach by examining 
hospitalizations through all departments, yielding similar statistically insignificant estimates. 
3 Creating a mild indoor climate via air conditioning or winter heating (Deschenes and Greenstone 2011; Barreca et al. 
2012; Barreca et al. 2016; Yu, Lei, and Wang 2019; Li, Smyth, and Yao 2023) and elevating average income to enhance 
accessibility and affordability of energy consumption, and therefore improving the resilience of the population during 
extreme weather events Dell, M., B. F. Jones and B. A. Olken (2014). “What Do We Learn from the Weather? The New 
Climate-Economy Literature.” Journal of Economic Literature 52(3): 740-798, Carleton, T., A. Jina, M. Delgado, M. 
Greenstone, T. Houser, S. L. Hsiang, A. Hultgren, R. E. Kopp, K. E. McCusker, I. Nath, J. Rising, A. Rode, H. K. Seo, 
A. Viaene, J. C. Yuan and A. T. Zhang (2022). “Valuing the Global Mortality Consequences of Climate Change 
Accounting for Adaptation Costs and Benefits*.” Quarterly Journal of Economics 137(4): 2037-2105, Cohen, F. and A. 
Dechezlepretre (2022). “Mortality, Temperature, and Public Health Provision: Evidence from Mexico.” American 
Economic Journal-Economic Policy 14(2): 161-192.. 
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enhance their flexibility to increase healthcare provision when facing a contemporaneous rise in 
patient volume. We also explore this adaptation method for hospitals of different levels and 
locations, providing further insights into effective strategies for adapting to climate change. 

The rest of paper is organized as follows. Section II introduces the data and the main 
measurements used. Section III describes the empirical strategies. Section IV provides baseline 
results of contemporaneous effects of temperature on hospital workload, a set of robustness 
checks, and the results on cumulative effects. Section V presents heterogeneity analysis. Section 
VI discusses the change in patient structure corresponding to the change in temperature. Section 
VII examines adaptation methods for hospitals to use to react to extreme temperatures by 
adjusting the medical workforce. Section VIII concludes.  

 

II. DATA 

We use data from three main sources: the home page of hospitalization records from 1,113 public 
hospitals in the PRC, hourly weather records from a comprehensive set of ground-based weather 
stations, and city- and county-level socioeconomic characteristics from various statistical 
yearbooks in the PRC. We aggregate the case-level hospitalization records to the hospital-by-
department-by-day level to measure hospital workload. We then merge the hospital workload data 
with weather records according to the location of the hospital and link them to local socioeconomic 
characteristics. Each of the three primary data sources is described in more detail below. 

A. Hospital Workload 

Data on hospitalization records are collected from 1,113 hospitals across 279 cities in 30 
provinces nationwide, covering the period from 2013 to 2022.4 The hospitals in our sample are 
mainly tier 3 and tier 2 hospitals (see panel B of Table 1). To ensure data completeness in the 
analysis, we restrict our sample to include only full hospitalization records during the research 
period, excluding patients admitted before 1 January 2013 and those discharged after 31 
December 2022. Additionally, we exclude hospitals with only a few hospitalization records—that 
is, fewer than 360 admissions per month. To avoid the biases related to local epidemic prevention 
and control policies, we dropped data from the first outbreak of coronavirus disease, from between 
January 2020 and April 2020. 

In our analysis, we focus primarily on patients hospitalized through the ED, as they are mostly 
likely to represent the acute and immediate health shock (White 2017). In contrast, admissions 
through other channels often involve non-acute conditions or pre-scheduled surgeries, making 
them less suitable for capturing sudden health crises. To measure hospital workload, we 

 
4 The raw data are not balanced panel data since the electronic medical record system starts from different years in 
different hospitals. In practice, the sample is restricted to include only hospital with home page records for at least 1 
year. 
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aggregate the daily number of ED admissions at both the hospital level and department levels.5 
In addition, we examine patient composition by calculating the number and proportion of ED 
hospitalizations across different age groups, sexes, diagnoses, and insurance types. Specifically, 
we categorize diagnoses into 19 disease groups based on the first hierarchy of the 10th revision 
of the International Classification of Diseases (ICD-10-CM). Appendix Table 1 provides detailed 
definitions and corresponding ICD-10-CM codes for each disease group. 6  Furthermore, we 
classify insurance status into five groups: three major public insurance categories, an uninsured 
group, and a category for individuals covered by other forms of insurance. For healthcare 
expenditures, we obtain both per patient and aggregated expenditures, payments shared by 
insurance, and out-of-pocket payments, all measured at the hospital level by the day of admission.  

B. Weather 

We obtain data on temperature and precipitation from the China Meteorological Data Service 
Center, an affiliate of the National Meteorological Information Center. This dataset includes hourly 
records from over 400 land-based weather stations across the PRC, reporting key meteorological 
variables such as temperature, dew-point temperature, precipitation, and wind speed. To link 
weather conditions to hospital locations, we calculate hospital-centered daily averages for multiple 
temperature measures, including ambient temperature, apparent temperature, highest and lowest 
temperatures, temperature variation (the max–min temperature difference), and precipitation. The 
detailed computation methods are outlined in Appendix A.  

We employ temperature bin models to capture the nonlinear effects of temperature, following 
established methodologies in the literature (Deschenes and Greenstone 2011; White 2017; 
Karlsson and Ziebarth 2018; Yu, Lei, and Wang 2019; Agarwal et al. 2021; Cohen and 
Dechezlepretre 2022). Specifically, we define 14 temperature bins for daily ambient and apparent 
temperatures, including 12 bins covering 3°C intervals and two extreme temperature bins (below 
−6°C and exceeding 30°C). Each bin represents the daily-hospital level weather realizations that 
fall into the range of the bin. In analyzing the impact of daily highest temperature, the bin for 
temperature exceeding 30°C is further refined into three categories: 30–33°C, 33–36°C, and 
above 36°C, allowing for a more granular examination of extreme heat effects. Similarly, for daily 
lowest temperature, the bin for temperatures below −6°C is adjusted to −9°C to −6°C, with an 
additional bin created for temperatures below −9°C. In addition, we categorize temperature 
variation (temperature gap within a day) into four bins to assess the impact of fluctuations within 
a day: 0–5°C, 5–8°C, 8–11°C, and above 11°C.  

C. City-Level Socioeconomic Characteristics 

We merge the socioeconomic characteristics to each hospital based on their geographically 
based city-level administrative affiliation. Most of the city-level socioeconomic characteristics are 
obtained from statistical yearbooks, including gross domestic product (GDP) per capita; share of 

 
5  Departments are classified at 2-digit level based on the department codes corresponding to the Directory of 
Departments in Medical Institutions issued by National Health Commission 2009.  
6 The Appendix is available at http://dx.doi.org/10.22617/WPS250176-2. 

http://dx.doi.org/10.22617/WPS250176-2
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GDP in the agriculture sector and the industrial sector; population; number of hospitals, beds, and 
physicians; and electricity usage.7 The county-level nighttime light index, serving as a proxy for 
economic activity, is obtained from the National Oceanic and Atmospheric Administration 
nighttime lights dataset, which provides satellite-based measurements of artificial light intensity. 
Data on centralized winter heating are collected from each city’s official announcements regarding 
the start and end dates of the heating season for each sampled year. Notably, 37% of the cities 
in our sample implement centralized winter heating from November to March each year. 

D. Summary Statistics 

The summary statistics for hospital workload data are presented in panel A of Table 1. Our sample 
includes over 25.5 million ED admissions across 817,344 hospital-days. On average, there are 
31.22 ED admissions per day at each hospital, with male patients comprising 52.3% of the total. 
Patients aged 65 and above account for approximately 36.3% of total visits, while children aged 
0–5 take up 9.4%. Average health expenditure per patient during hospitalization is CNY12,666.13 
(approximately $1,800), 35% of this amount being out-of-pocket payments. In panel B of Table 1, 
we summarize the daily number of physicians in charge of the ED hospitalization patients. On 
average, each hospital has 29 chief doctors, 38 attending doctors, and 47 resident doctors 
managing ED patients on a daily basis. Panel C of Table 1 presents the statistics for the climate 
variables. The lowest hospital-centered daily mean temperature in our sample is −38.38°C, while 
the highest daily mean temperature is 36.91°C. There are 32,488 hospital-day units with 
temperatures below −6°C, and 17,178 hospital-day units with temperatures over 30°C. The 
socioeconomic characteristics are summarized in panel D of Table 1.  

 

III. EMPIRICAL STRATEGY 

We use the nonparametric temperature bin model to examine the contemporaneous effects of 
temperature on hospital workload, which allows us to identify the nonlinear impact of temperature 
(Deschenes and Greenstone 2011, White and 2017, Agarwal et al. 2021, Cohen and 
Dechezlepretre 2022). Our baseline specification is as follows: 

𝑙𝑙𝑙𝑙 𝑌𝑌𝑖𝑖,𝑡𝑡 = 𝛽𝛽0 + �𝛽𝛽𝑗𝑗𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑖𝑖,𝑡𝑡
𝑗𝑗

14

𝑗𝑗=1

+ 𝛾𝛾𝑋𝑋𝑖𝑖,𝑡𝑡 + 𝛼𝛼𝑖𝑖,𝑤𝑤 + 𝜋𝜋𝑑𝑑 + 𝜖𝜖𝑖𝑖,𝑡𝑡 (1) 

where i, t, w, and d denote hospital, date, week-of-year, and day-of-week, respectively. 𝑌𝑌𝑖𝑖𝑖𝑖 
represents the outcome of interest, which measures hospital workload. Our baseline primarily 
employs the number of hospitalizations through the ED in hospital i on day t to measure the 
hospital workload. In subsequent analysis, we extend our analysis to additional outcomes such 
as healthcare costs and patient structures. We take the logarithm of the dependent variables to 

 
7  Not all cities in our sample have complete documentation of socioeconomic characteristics at the city level in 
yearbooks. In case of missing values, we use the corresponding province-level (the higher administrative unit) 
characteristics as an approximation. 
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estimate the effects in percentage relative to the benchmark temperature. Furthermore, we 
assess the number of hospitalizations by disease categories, age, and sex to explore potential 
heterogeneity effects.  

𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑖𝑖𝑖𝑖
𝑗𝑗  represents a series of dummy variables indicating whether the temperature at hospital i 

on day t falls within a specific j-th temperature bin. These temperature bins are ordered from the 
coldest to the hottest, with the estimator 𝛽𝛽1  capturing the contemporaneous effects of the 
extremely low temperature (< −6°C), and 𝛽𝛽14  reflecting the effects of the extremely high 
temperature (> 30°C). We omit the modest temperature bin (12°C–15°C) as a reference group in 
all regressions, so the estimates of all other bins are interpreted as the effects relative to a day of 
temperature range of 12°C–15°C. In other words, the coefficient 𝛽𝛽𝑗𝑗 measures the change in daily 
ED workload when the temperature on a given day falls within the j-th temperature bin, compared 
with when the temperature is between 12°C and 15°C.  

𝑋𝑋𝑖𝑖,𝑡𝑡 is a vector of control variables for hospital i on day t. In our primary specification, we control 
for daily precipitation conditions, as precipitation can influence both ambient temperature and 
inpatient visits. 𝛼𝛼𝑖𝑖,𝑤𝑤  and 𝜋𝜋𝑑𝑑  represent the hospital-year-week fixed effects and day-of-week 
fixed effects, respectively. Including hospital-year-week fixed effects helps control for all time-
varying shocks that occur within each hospital on a weekly basis. This includes confounders such 
as time-invariant hospital characteristics (i.e., location of hospital), time-variant hospital 
characteristics (i.e., rank of hospital), and common shocks affecting all hospitals during the same 
year-week periods (i.e., national holidays). Day-of-week fixed effects control for the unobserved 
systematic difference of weekends and weekdays. Standard errors in the baseline model are two-
way clustered at the hospital level and year-week level, allowing for serial correlation within a 
hospital and spatial correlation within a week-year. 𝜖𝜖𝑖𝑖,𝑡𝑡 is the error term. 

To check the robustness, we use five sets of alternative methods. First, we check the robustness 
with alternative fixed effect choices, including hospital fixed effects, week-of-year fixed effects, 
and hospital-year-month fixed effects. Second, we report the standard errors of our estimates 
using different clustering approaches. Third, we estimate the model with different sets of control 
variables. Our primary model controls only for local precipitation and includes the hospital-week-
of-year fixed effects. In robustness checks, we add more socioeconomic characteristics to the 
specification, including hospital fixed effects and week-of-year fixed effects, to control for local 
economic development level, economic structure, healthcare infrastructure, and electronic usage 
conditions.8 Fourth, we revisit our primary specification while modifying how we measure climate 
factors. In our baseline model, the hospital-centered daily temperature is calculated as a squared 
inverse distance-weighted average temperature from all weather stations in our dataset. To check 
the robustness, we re-estimate our baseline using different ways of constructing the hospital-
centered temperature measure. For example, one of our robustness checks is using the nearest 

 
8 Level of economic development is measured by GDP per capita, economic structure is measured by share of the 
agriculture sector and share of the industrial sector in GDP, and health infrastructure is measured by the number of 
hospitals, beds, and physicians.  
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station’s climate data to represent the hospital-centered weather factors. Additionally, we adjust 
the weight or geographical range used in computing hospital-centered weather factors. The 
detailed alternative computations are introduced in Appendix A. Last, we conduct a placebo test 
by randomly reshuffling climate conditions across hospitals and over time.  

Temperature may not only have contemporaneous effects on hospital workload on the same day 
but also exert delayed influences. To estimate the lagged impacts of temperature on hospital 
workload, we apply a distributed lag model (Deschenes and Moretti 2009, Deschenes and 
Greenstone 2011, White 2017):  

ln𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + ��𝛽𝛽𝑗𝑗,𝑡𝑡−𝜏𝜏𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑖𝑖,𝑡𝑡−𝜏𝜏
𝑗𝑗

𝑇𝑇

𝜏𝜏=0

+
14

𝑗𝑗=1

𝛾𝛾𝑋𝑋𝑖𝑖,𝑡𝑡,𝜏𝜏 + 𝛼𝛼𝑖𝑖,𝑤𝑤 + 𝜋𝜋𝑑𝑑 + 𝜖𝜖𝑖𝑖,𝑡𝑡 (2) 

where T lags for each temperature bins are included in the model to capture the potential delayed 
effects. Building on previous empirical studies suggesting that the impact of temperature on 
population health can last up to 30 days (Deschenes and Moretti 2009, White 2017), we consider 
lags ranging from 1 to 30 days to investigate the dynamic cumulative effects of temperature. 

Similar to the denotation in the previous model, 𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑖𝑖,𝑡𝑡−𝜏𝜏
𝑗𝑗  represents whether the temperature 

at hospital i on day 𝑡𝑡 − 𝜏𝜏 falls within the j-th temperature bin. The coefficient 𝛽𝛽𝑗𝑗,𝑡𝑡−𝜏𝜏 represents 
the effects of temperature (falling within the j-th temperature bin) during time period 𝑡𝑡 − 𝜏𝜏 on 
hospital workload in time period t. The cumulative effect of temperature is therefore calculated as 
a linear combination of the coefficients of all the j-th bins from day t to 𝑡𝑡 − 𝜏𝜏, 𝑖𝑖. 𝑒𝑒.∑ 𝛽𝛽𝑗𝑗,𝑡𝑡−𝜏𝜏

𝑇𝑇
𝜏𝜏=0 .  

i, t, w, and d are identically denoted as in the model for contemporaneous effects. The cumulative 
effect model controls for the same fixed effects and applies the same ways of clustering standard 
errors as in the previous model. The covariates 𝑋𝑋𝑖𝑖,𝑡𝑡,𝜏𝜏 controlled in the cumulative effect model 
include additional T lags for precipitation (i.e., ∑ 𝛾𝛾𝑡𝑡−𝜏𝜏𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖,𝑡𝑡−𝜏𝜏𝑇𝑇

𝜏𝜏=0 ). 

 

IV. BASELINE RESULTS 

A. Contemporaneous Effects 

We begin by examining the relationship between temperature and hospital workload using the 
temperature bin model demonstrated in equation (1), with 12°C–15°C as the benchmark. By 
controlling for hospital-year-week fixed effects and day-of-week fixed effects, the model 
conservatively estimates the impact of daily mean temperature on the number of ED admissions. 
The results are summarized in Figure 1, where each dot represents the estimated coefficients 𝛽𝛽𝑗𝑗 
from equation (1), indicating the difference in ED admissions when the temperature on that day 
falls in the j-th bin, relative to the benchmark temperature. The estimations are ordered by the 
temperature range of bins from the lowest to the highest. The 95% confidence interval (CIs) are 
plotted in yellow. We connect the dots and their corresponding 95% CIs across bins to visually 
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represent the change in ED admissions as temperature increases or decreases toward the 
extreme high or low ends. The corresponding coefficient estimates are provided in column 1 of 
Table 2. 

The contemporaneous effect of temperature on hospital workload displays a nearly linear pattern, 
with temperature having a monotonic, positive impact on the number of ED admissions. The 
workload of ED increases to a high volume during the extremely hot days. Specifically, for a day 
with mean temperature exceeding 30°C, the number of ED admissions increases when daily 
mean temperature is higher, reaching an increase by 7.7%, compared with a benchmark 
temperature of 12°C –15°C. During the extreme cold days, the workload of EDs shrinks to a 
smaller scale. Compared with the benchmark, on days with a mean temperature below −6°C, the 
number of ED admissions decreases by 12.3%. The variation in workload among EDs increases 
as the temperature moves toward both extreme hot and extreme cold. Relatively, the variation in 
workload during extreme cold days (with a daily mean temperature < 0°C) exceeds twice the 
variation during extreme hot days (with a daily mean temperature > 30°C). This suggests that the 
hospitals face larger uncertainty of patient inflow when the temperature becomes extreme.  

The contemporaneous effects observed in this study align with findings in the existing literature 
that use regional-level hospital admission rates as outcomes. Along with White (2017), Karlsson 
and Ziebarth (2018), Agarwal et al. (2021), Gould et al. (2024), and Aguilar-Gomez, Graff-Zivin, 
and Neidell (2024), our results suggest an increase in hospital admission on the hottest days. 
Contemporaneous effects of extremely hot days with a temperature exceeding 30°C are larger 
than those observed by White (2017) in California (3.4%) and by Karlsson and Ziebarth (2018) in 
Germany (2.9%) when the temperature exceeded 80°F (27°C), and lower than those observed 
by Agarwal et al. (2021) in the PRC (7.3%) when the temperature exceeded 27°C.  

In contrast with the U-shaped relationship between mortality and extreme temperatures found in 
most studies (Deschenes and Greenstone 2011, Barreca 2012, Barreca et al. 2016), but in line 
with studies on morbidity and extreme temperature, which often show a near-linear relationship, 
we observe negative contemporaneous effects during extremely cold days. Specifically, our study 
finds a 12.3% decrease in hospital admissions on days with temperatures below −6°C, which is 
a larger effect compared with the 10°F (−12°C) threshold observed by Karlsson and Ziebarth 
(2018). White (2017) also finds negative contemporaneous effects in California when 
temperatures drop below 40°F (4°C), with a 6.1% decrease, which is smaller than our estimate.  

Agarwal et al. (2021) report positive but statistically insignificant contemporaneous effects on 
hospital admissions for patients enrolled in the Urban Resident Basic Medical Insurance (URBMI) 
or Urban Employee Basic Medical Insurance (UEBMI) insurance schemes, regardless of the 
hospitalization channel (outpatient or ED). We replicate this model using the number of patients 
through all channels in our sample and find similar statistically insignificant contemporaneous 
effects as Agarwal et al. (2021) (see Appendix Figure 1). Additionally, we conduct heterogeneity 
analysis by type of insurance and find hospital admissions of patients enrolled under the different 
types of insurance (URBMI, UEBMI, New Cooperative Medical Scheme [NMCS], other insurance, 
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entirely out-of-pocket payment) and find similar linear-shaped contemporaneous effects of 
temperature. We discuss these results in Section V.  

B. Robustness Check 

We conduct five sets of robustness check. First, we estimate the temperature–hospital workload 
relationship with different fixed effects, including hospital fixed effects, week-of-year fixed effects, 
and hospital-year-month fixed effects. Second, we check the robustness when we cluster the 
standard error at hospital level only. Third, we re-estimate the models after controlling for local 
socioeconomic characteristics. Fourth, we conduct the robustness checks by using alternative 
measures of hospital-centered temperature to take the place of the squared inverse distance-
weighted average temperature from all weather stations at the location of the hospitals. Fifth, we 
conduct a placebo test by randomly reshuffling climate conditions across hospitals and over time. 

Appendix Table 2 summarizes the estimations of models with varied specifications and alternative 
ways of clustering standard errors. In each column, we report two types of standard errors: the 
parentheses present the standard error two-way clustered at the hospital and year-week level, 
and the bracket indicates the standard errors clustered at the hospital levels. In columns (1) to 
(5), we report the estimations of specifications controlling for different sets of fixed effects. In 
column (1), we check the robustness by controlling for hospital fixed effects and year-week fixed 
effects. Column (2) checks the robustness by controlling for hospital-by-year-week fixed effects. 
In column (3), the robustness is checked by a specification with hospital fixed effect and year-
week fixed effect, adding the day-in-week fixed effect controlling the unobservables, which varies 
among weekdays. Column (4) reports the estimations of our primary model, which controls for the 
hospital-by-year-week fixed effects and the day-in-week fixed effect. Column (5) checks the 
robustness by controlling for hospital-by-year-month fixed effects.  

The results using different sets of control variables are summarized in Appendix Table 3. Column 
(1) shows the temperature-healthcare utilization relationship for the model when we only include 
temperature bins, controlling for hospital-by-year-week fixed effects and day-in-week fixed effects, 
and with two-way clustered standard errors. Column (2) shows the results for the baseline model, 
where daily hospital-centered precipitation is added compared with the model used in the first 
column. Columns (3) to (6) include a set of city-year-level socioeconomic characteristics to the 
specification with hospital fixed effects and year-week fixed effects. To be specific, in column (3), 
we add GDP per capita to measure the effect of economic development level, and in column (4) 
we further add the share of the agriculture sector and the share of the industrial sector in GDP to 
control for the effect of economic structure. In column (5), we add the number of hospitals, beds, 
and physicians in the city where the hospital is located to control for the overall level of healthcare 
infrastructure in the neighborhood of the hospital. In column (6), we further consider electricity 
usage to control for the engineering-oriented impact. The positive relationship of high temperature 
and hospital workload are consistent across all models. The negative effects of mild low 
temperature become statistically insignificant as we add more control variables; however, the 
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statistically significant negative relationship between extreme low temperature and hospital 
workload remains robust.  

We then provide estimations using different ways of constructing hospital-centered temperature, 
and report results in Appendix Table 4. Column (1) provides estimations using alternatively 
weighted hospital-centered temperature, and column (2) provides estimations using the 
temperature from the nearest weather station. Columns (3) to (6) provide estimations using 
hospital-centered temperature computed from restricted sets of weather station according to 
distances between stations and hospitals. The coefficients using each measurement of 
temperature are consistent with and have similar magnitude to our primary results, suggesting 
good robustness. And column (7) shows the results for the placebo test. None of the coefficients 
are statistically significant, which suggests that the results of this paper are not driven by 
unobserved factors or coincidence.  

C. Other Measures of Temperature 

We further investigate the impact of extreme temperature by examining the contemporaneous 
effects of alternative temperature measures, including daily apparent temperature, highest 
temperature, and lowest temperature. The estimated coefficients are reported in columns (2) to 
(4) of Table 2, which are generally consistent in sign and significance with the contemporaneous 
effects estimated using daily mean temperature. The impact of extreme temperature measured 
by apparent temperature on hospital workload is slightly more moderate than that measured by 
the ambient temperature. Compared with a day with a mean apparent temperature of 12°C–15°C, 
there are 6.4% more ED admissions on a day with a mean apparent temperature exceeding 30°C, 
and 11.5% fewer ED admissions on a day with a mean apparent temperature below −6°C. Using 
daily highest temperature and lowest temperature to identify the impact of extreme temperature 
events, we find that, when the highest temperature on a day reaches 36°C and above, the number 
of ED admissions is 9% higher than that on a day with a highest temperature between 12°C and 
15°C. At the other end, ED admissions decrease by 9% on a day with the lowest temperature 
below −9°C. The results suggest a larger magnitude of impact of extreme heat on hospital 
workload. 

We additionally include the temperature difference within a day into our primary model with 
contemporaneous effects of daily mean temperature. We categorize the difference of temperature 
within a day into four groups—less than 5°C, 5°C–8°C, 8°C–11°C, and above 11°C. The group of 
temperature difference less than 5°C is taken as the reference group. As shown in column (5) of 
Table 2, after controlling for the daily difference, the impact of temperature on ED admissions is 
of moderately less magnitude, and still statistically significant, and maintains a close-to-linear 
pattern. The estimated coefficients for each temperature difference group are positive and 
statistically significant (illustrated in Appendix Figure 2), increasing in magnitude when 
temperature difference becomes larger. When temperature difference within a day exceeds 11°C, 
ED admissions increase by 27%, compared with a day with a temperature up to 5°C.  
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D. Cumulative Effects 

We then study the cumulative effect of the extreme temperature below 0°C and above 30°C. We 
first consider a lagging period of a month, as frequently considered in the previous literature on 
extreme temperature (Deschenes and Moretti 2009, White 2017). As depicted in panel A of Figure 
2, the cumulative effect of extreme temperature on ED admissions is statistically insignificant over 
a period of 30 days, on both the hottest and the coldest end. Over a period of a week, the extreme 
hot temperature over 30°C cumulatively leads to an increase by 10.9% in ED admissions, which 
is of greater magnitude compared with the corresponding contemporaneous effect of extreme 
heat. The extreme cold temperature below −6°C cumulatively leads to a decrease by 18.7% in 
ED admissions, although this is of no statistical significance. The variation of cumulative impact 
of low temperature on ED admission is relatively larger than the cumulative impact of high 
temperature, over a lagging period of both a month and a week. 

The above results show that the cumulative effect of extreme temperature on ED admissions has 
a larger magnitude and is more statistically significant over a lagging period of a week and 
diminishes over a 1-month period. The variation of the impact across EDs increases, whereas the 
magnitude of coefficient decreases. This leads us to consider the change in cumulative effect of 
extreme temperature over a lagging period varying from 1 to 30. The results are depicted in panels 
C and D of Figure 2. The negative cumulative effects of extreme low temperature expand as the 
cumulative period extends to a 25-day period, reaching an approximately 25% decrease in the 
number of admissions, and then shrinks gradually as the cumulative period continues to extend. 
The positive cumulative effects of extreme high temperature expand as the cumulative period 
extends to a 10-day period, and then die out quickly as the cumulative period extends to 30 days.  

Our findings on extremely high temperature are similar to the findings of Agarwal et al. (2021) and 
Karlsson and Ziebarth (2018), which both suggest an statistically insignificant positive cumulative 
effect on the hottest days > 27°C. The results differ from those of White (2017), who find a positive 
cumulative effect of the hottest days. The dying-out pattern of the cumulative effects of the highest 
temperature when cumulative periods extend is consistent with the findings of Agarwal et al. (2021) 
and White (2017). Agarwal et al. (2021) find the cumulative effects of extremely high temperature 
become statistically insignificant at the level of 10% soon, when the cumulative periods extends 
to 5 days, whereas White (2017) find the statistically significant cumulative effect of extremely 
high temperature when the cumulative periods reach 50 days. For the coldest temperature, the 
results of cumulative effects are different from estimations in previous literature on city-level 
hospital admissions. We find negative but statistically insignificant cumulative effects in a period 
of 31 days, different from the positive and statistically significant effects found by White (2017) 
and the positive but statistically insignificant effects found by Agarwal et al. (2021). White (2017) 
suggest an 11% increase in hospital admissions on days with a temperature below 40°F (4°C) 
and Agarwal et al. (2021) suggest a statistically insignificant 9% increase on days with a 
temperature below −6°C.  
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E. Financial Burden 

Additionally, we examine the impact of temperature on healthcare expenditure. Three 
measurements are used in estimation: average daily expenditure per patient in a hospital, 
average total expenditure per patient during their hospital stay, and aggregated total expenditure 
in a hospital. All measurements are averaged or aggregated for patients hospitalized on the same 
day. 

As illustrated in Figure 3, per patient daily expenditure and total expenditure increase slightly on 
extremely cold days, with statistically significant positive effects discerned for extremely high 
temperatures, which contrasts with the contemporaneous effects on hospital admissions. The 
aggregated total medical expenditure realized in a hospital throughout the stay of patients 
hospitalized on extremely hot days over 30°C increases significantly by 7.1%; for those 
hospitalized on extremely cold days, total medical expenditure aggregated at the hospital level 
decreases by 10.4% (the corresponding estimations are reported in columns (1) to (3) of Appendix 
Table 5). The signs of contemporaneous effects on total daily expenditure aggregated at the 
hospital level of the two extremes align with those of inpatient admission numbers. These findings 
indicate that the upswing in medical expenditure on the hottest days is attributed primarily to an 
increase in inpatient visits, whereas the extreme cold temperature only elevates medical 
expenditure for individual patients without imposing greater burdens on healthcare providers.  

We then study the payment structure to see the share of the increasing expenditure between 
patients and public insurance during extremely hot days. As depicted in Figure 3, aggregated at 
hospital level, both insured payments and out-of-pocket payments increase during extreme hot 
days, and decrease during extreme cold days, taking a similar trend as total expenditure. The 
corresponding coefficients are reported in columns (4) to (7) of Appendix Table 5. We find a larger 
magnitude of coefficients for out-of-pocket payment (7.7% during the hottest days and 11.7% 
during the coldest days) compared with those for total expenditure; and a smaller magnitude of 
coefficients for insured payments (6.2% during the hottest days and 8.1% during the coldest days), 
compared with those for total expenditure. 

Figure 4 depicts the impact of temperature on proportion of insured payment to total payment. 
Insured payment takes up less of a proportion for patients admitted during extreme hot days. The 
results suggest that the change in the monetary burden is taken on mainly by patients themselves, 
rather than by health insurance. Our findings are consistent with Li, Smyth, and Yao (2023), who 
suggest out-of-pocket payments are more affected than insured payments by extreme 
temperature.  
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V. HETEROGENEITY ANALYSIS 

A. Tiers and Grades of Hospitals 

In this section, we examine the heterogeneity of contemporaneous effects on hospitals with 
different tiers and grades. In the PRC, the hospitals are ranked from highest to lowest as tier 3, 
tier 2, and tier 1, and A, B, and unrated within each tier. Hospitals ranked higher have better scale, 
have more medical equipment, and are more advanced in treating severe diseases. Our sample 
includes majorly tier 3 and tier 2 hospitals graded A or unrated. For the few hospitals graded B, 
we recategorize them with the group graded unrated of the corresponding tier into one group in 
the following analysis.  

Estimations of heterogeneity by tier and grade are shown in Figure 5. The corresponding 
coefficients are reported in columns (1), (4), (7), and (8) of Appendix Table 6. For hospitals ranked 
tier 3 and tier 2 grade A, we find contemporaneous effects similar to the baseline results. For 
hospitals ranked tier 2 grade B and unrated, which are the lowest ranked hospitals in our dataset, 
the contemporaneous effects of extreme temperature are not statistically significant. The 
magnitude of coefficient estimated for hospitals ranked tier 3 grade A (the highest rank) is smaller 
than that of hospitals ranked tier 2 grade A and tier 3 grade B and unrated. The results indicate 
that the workload of middle-ranked hospitals is more sensitive to changes in temperature. The 
highest-ranked hospitals also have increasing patient numbers and decreasing patient numbers 
during hot days and cold days, respectively, but the impact is not as large as for their middle-
ranked counterparts.  

B. Departments Within Hospitals 

We then investigate the within-ED heterogeneity of contemporaneous effects by department. 
Patients admitted via EDs are assigned to different inpatient departments immediately after 
admission, which enables us to investigate the workload of each department. Based on official 
documentation released by the National Health Commission (NHC), we uniform the categorization 
of medical departments across hospitals and obtain in total 16 departments.9  

Figure 6 shows the contemporaneous effects by department; the corresponding estimations are 
provided in Appendix Table 7. For Internal Medicine, Surgery, and Pediatrics, the 
contemporaneous effects of extreme high temperature are positive and statistically significant, 
with a magnitude of 3.8%, 5.2%, and 4.4%, respectively. For the coldest temperature, the number 
of ED admissions decreases most in Internal Medicine. In Surgery, the number of ED admissions 
decreases during cold days, although this is statistically insignificant, while the variation of 
admissions expands largely compared with other departments. Emergency, Intensive Care, and 

 
9  Our categorization is based on the 2-digit level uniformed code of departments (www.nhc.gov.cn/cms-
search/downFiles/77e5a71bc2fa4dc88236d582632ab7ea.pdf). The 16 departments defined in this study are (1) 
Internal Medicine, (2) Surgery, (3) Obstetrics and Gynecology, (4) Pediatrics, (5) Ophthalmology, (6) Otolaryngology, 
(7) Stomatology, (8) Dermatology, (9) Psychiatry, (10) Epidemiology, (11) Oncology, (12) Emergency, (13) Rehabilitation, 
(14) Intensive Care, (15) Traditional Chinese Medicine, and (16) Other. We include departments such as Dental and 
Occupational Diseases in “Other” owing to low patient numbers.  

http://www.nhc.gov.cn/cms-search/downFiles/77e5a71bc2fa4dc88236d582632ab7ea.pdf
http://www.nhc.gov.cn/cms-search/downFiles/77e5a71bc2fa4dc88236d582632ab7ea.pdf
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Traditional Chinese Medicine also see a marginal significant linear effect of temperature. The rest 
of the departments see only a slight change or even no change in ED admissions under extreme 
temperature.  

At this point, we document that the impact of temperature on hospital workload is not uniform 
across departments. There could be several potential explanations for this. First, the magnitude 
of the deviation in the number of patients with different diseases varies, as the mortality of different 
diseases is impacted heterogeneously by temperature. Second, healthcare utilization of 
individuals with different characteristics is not uniformly sensitive to temperature condition. Third, 
expecting a change in cost or quality of treatment during extreme temperatures, patients may 
adjust their decisions regarding seeking healthcare services. In the section that follows, we 
uncover the change in patient structure during extreme temperatures to more comprehensively 
investigate the impact on hospital workload.  

C. Location of Hospitals: Income Level and Winter Heating 

In this subsection, we examine the heterogeneity contemporaneous effects based on the income 
level of cities and presence or absence of centralized winter heating. Heterogeneity by location 
matters because hospitals in cities with differing income levels and heating infrastructure may 
have varying capacities to manage the potential challenge of extreme weather events. Previous 
literature suggests that higher socioeconomic status enables individuals to afford energy-
intensive measures to create mild indoor climates, potentially mitigating temperature-related 
health impacts (Dell, Jones, and Olken 2014, Yu, Lei, and Wang 2019, Carleton et al. 2022). 
Detailed estimations are provided in Appendix Tables 8 (for heterogeneity by city income level) 
and 9 (for heterogeneity by centralized winter heating), with corresponding visualizations in 
Figures 7 and 8. 

The findings indicate significant heterogeneity in how extreme temperatures affect hospital 
workloads based on city income levels and heating infrastructure, with notable differences 
observed across age groups. For heterogeneity by income levels, hospitals in lower-income cities 
show larger fluctuations in total inpatient admissions during extreme temperatures compared with 
those in higher-income cities. On extremely hot days (above 30°C), inpatient admissions increase 
by 8.4% in low-income cities. The corresponding increase is 7% in high-income cities. Similarly, 
on extremely cold days (below −6°C), admissions decrease by 13.9% in low-income cities 
compared with a smaller decrease of 11% in high-income cities. These differences suggest that 
hospitals in lower-income areas experience a greater burden of temperature-induced changes in 
patient load. 

Breaking down these results by age groups, we observe notable disparities. For patients aged 5 
and below, the changes in admissions are significant in low-income cities but insignificant in high-
income cities. Specifically, admissions below age 5 increase during extreme heat and decrease 
during extreme cold in low-income areas, whereas high-income cities show no statistically 
significant changes for this age group. By contrast, the pattern for older patients is different. On 
extremely hot days, admissions of older patients increase by 6.5% in high-income cities and by 
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4.4% in low-income cities. During extremely cold days, older people admissions decrease 
similarly across income levels, with reductions of 11.7% in high-income cities and 11.5% in low-
income cities. This age-specific variation highlights how temperature impacts are distributed 
differently within populations depending on income level. 

Heterogeneity by centralized winter heating also reveals significant differences in hospital 
workloads during extreme temperatures. In cities with centralized heating, total inpatient 
admissions decrease by 10.6% on extremely cold days, compared with a larger decrease of 16.4% 
in cities without heating. On extremely hot days, the increases in total admissions are comparable, 
with hospitals in cities with heating seeing a 7.8% increase and those in cities without heating 
experiencing an 8.3% increase. These results suggest that centralized heating substantially 
moderates the impact of cold temperatures on hospital workloads but has limited influence during 
heatwaves. 

Disaggregating the heating results by age groups reveals further patterns. For patients aged 5 
and below, admissions increase more in cities with heating during extremely hot days, in contrast 
with the smaller changes observed for total admissions in heated areas. This could indicate age-
specific sensitivity to extreme heat in regions with heating infrastructure. For older patients, the 
changes in admissions are consistent across heating groups. During extreme heat, admissions 
increase similarly in both heated and non-heated cities. During extreme cold, the decrease is 
smaller in heated cities (10.6%) than in non-heated cities (16.4%).  

 

VI. PATIENT STRUCTURE 

A. Diagnosed Disease 

We first examine the patient structure of disease. There is a large diversity of healthcare services 
within a hospital regarding different diseases. A shift in the patient structure of disease, even if the 
total amount is unchanged, will lead to a higher workload for some parts of a hospital, and a 
shortage for some healthcare resources, which cannot be shared or mitigated by other parts 
facing a lower workload. Separating ED admissions into 19 groups of main diagnosed diseases, 
our results reveal an increase in the number of ED admissions during high temperature, and a 
decrease during low temperature, but with various magnitudes and statistical significances across 
groups.  

The results are depicted in Figure 9, and the corresponding estimations are presented in Appendix 
Table 10. For injury and respiratory diseases, the contemporaneous effects of extremely high 
temperature are positive and statistically significant, with magnitudes as large as 11.9% and 7.5%, 
respectively. Our findings stand with the existing literature suggesting that injuries, cardiovascular 
diseases, and respiratory diseases increase in high temperature (Dillender 2021, Fritz 2022). For 
low temperature, the contemporaneous effects for these two diseases are statistically significantly 
negative, also with large magnitudes, reaching −9.2% and −10.1%, respectively.  
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Hospital admissions of patients diagnosed with diseases of the nervous, digestive, and circulatory 
systems and neoplasms also decrease statistically significantly by approximately 10% on the 
coldest days, but do not statistically significantly increase during the hottest days. Hospital 
admissions for infectious diseases increase statistically significantly on the hottest days (by 2.5%) 
and decreases on the coldest days (by 3%) compared with a benchmark temperature day. This 
result is consistent some clinical findings that morbidity of infectious disease decreases in low 
temperature (Burkart et al. 2021). Explaining this is outside the scope of this paper. For 
admissions related to the eye, the skin, musculoskeletal diseases, pregnancy, the perinatal period, 
genes, and mental illness, no statistically significant contemporaneous effects or slight 
contemporaneous effects are found. These results are consistent with the findings of studies 
focusing on morbidities (White 2017, Agarwal et al. 2021), which suggests hospital workload is 
slightly driven by diseases with morbidities less likely related to change in temperature, as 
compared with temperature-sensitive diseases such as injuries, cardiovascular diseases, and 
respiratory diseases.  

Appendix Figure 3 displays the cumulative effects of the highest (panel B) and lowest (panel A) 
temperatures categorized by disease. Across most diseases, the cumulative effects of extreme 
high temperatures diminish as the cumulative timeframe extends, consistent with the overall trend. 
These findings suggest that the influence of extreme heat persists in increasing the workload 
associated with infectious diseases even over an extended period, thereby prolonging the 
hospital's exposure to the pressure caused by such diseases. 

The cumulative effects of extreme cold temperature die out soon for respiratory diseases, though 
the contemporaneous effects for such diseases are statistically significant and of a large 
magnitude. For circulatory diseases, the decrease in cumulative effects of coldest temperatures 
becomes larger as the period extends. Other diseases have a similar pattern of not statistically 
significant cumulative effects.  

B. Demographic Features 

Age. We now examine the age structure of patients. We separate the number of ED admissions 
according to age into three groups: children aged 5 and below, the older people aged 65 and 
above, and the rest of the population. The first two groups stand for the babies and the older 
people, who may need special consideration in treatment. Panel A of Figure 10 depicts impacts 
on numbers of patients by age group, and panel B the change in proportions. The sign of 
contemporaneous effects across different age groups remains consistent; however, the 
significance and magnitudes of the coefficients differ notably. EDs experience an increase in 
pediatric patients on the hottest days and a decrease on the coldest days, with a smaller 
magnitude than for the middle-aged patients. There is a similar decrease in the number of old 
patients to that among patients aged 6–64; however, during extreme high temperature, the 
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increase in the number of old patients is not as large as that in the number of middle-aged 
patients.10 The corresponding results are reported in columns (1) to (3) of Appendix Table 11.  

The results on the proportion of patients of different age groups further reveal the change in 
patient structure during extreme temperatures. On the hottest days, baby patients aged 5 and 
below make up a statistically significantly larger proportion, whereas old patients aged 65 and 
above make up a statistically significantly smaller proportion. On the coldest days, the proportion 
of middle-aged patients increases, whereas the proportion of old patients decreases statistically 
significantly. The results imply that, though the number of older patients during extreme high 
temperature increases, the proportion of this cohort drops, while baby patients take up a larger 
proportion, requiring more healthcare resources. 

Sex. The results for numbers of male and female admissions are depicted in panel A of Figure 11, 
and the results for proportions of male patients are depicted in panel B of Figure 11. The 
corresponding results are reported in columns (4) to (5) of Appendix Table 11. The 
contemporaneous effects are less heterogeneous with regard to sex, as the sign and significance 
of all coefficients are consistent. The magnitude of effects at both extremes are larger for men 
than for women, showing that number of admissions of male patients increases more on the 
hottest days. On the cold days, the magnitude of impact on number of admissions of both sexes 
is similar. Overall, male patients make up a larger proportion during hot days, whereas on days 
with a temperature lower than 15°C there is no change in the structure of patients by sex. The 
findings are consistent at high temperature to the estimations with regard to morbidity in Agarwal 
et al. (2021). Agarwal et al. report a statistically significant increase in hospitalization of both sexes 
on extremely hot days, with women less influenced than men. Their estimations report no 
statistically significant effects on the coldest days, which differs from our estimations. The sex 
difference found in this paper is consistent with some existing literature that suggests older women 
show greater adaptability to extreme heat than men (van Steen et al. 2019, Navas Martin et al. 
2023).  

C. Insurance 

We further consider the type of insurance the patients are enrolled in. Co-payment patterns differ 
among patients with different types of insurance, potentially leading to a variance in their 
sensitivity to climate change. In this section, we investigate in the structure of patients regarding 
their enrollments in the three major public health insurance schemes (UEBMI, URBMI, and 

 
10 Additionally, we segment the ED admissions into 18 5–year groups, for more detailed analysis on age structure. The 
results for the more precise age groups are presented in Appendix Table 12. For all age groups, we find statistically 
significant positive effects during extreme hot temperature, and statistically significant negative effects during extreme 
cold temperature. The population aged 15–30 has the smallest significance of contemporaneous effects. Hospital 
workload is driven mainly by number of patients aged 50 and above, according to our estimations. Contemporaneous 
effects on hospital admissions of patients aged 50–65 are statistically significant and of large magnitude, exceeding 
the estimations for overall admissions of both hottest and coldest temperature. The number of visits of patients aged 
65–80 decreases by around 9% on the coldest days, reaching the largest magnitude among all groups. However, the 
magnitudes of contemporaneous effects shrink when the age of patients reaches 80–85 and even become of less 
significance for patients aged 85 and above. Overall, the results are consistent with the findings using three age groups.  
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NMCS). The estimations are depicted in Figure 12, where panel A shows the impact of 
temperature on number of patients of each insurance type and panel B shows the impact of 
temperature on proportions of each insurance type. The corresponding coefficients are reported 
in Appendix Table 13.  

Number of ED admissions for all three insurance types increases when temperature is high and 
decreases when temperature is low. The number of ED admissions enrolled in UEBMI increases 
and decreases by a larger magnitude during extreme temperature compared with the other two 
insurance types. The number of ED admissions insured by NCMS increases by only 1.9% on 
extreme hot days, and decreases by 5.1% on extreme cold days, which is are only half the 
magnitude of the corresponding estimations for the total number of ED admissions. The 
proportions of NCMS enrollees and URBMI enrollees drop statistically significantly when the 
temperature exceeds 30°C, whereas the proportion of UEBMI drops statistically significantly when 
the temperature is below −6°C. The results suggest UEBMI enrollees are more sensitive to the 
change in temperature. As UEBMI generally has a higher premium rate and a lower deductible 
amount compared with URBMI and NCMS, our results imply that the change in hospital workload 
is driven mainly by the inflow of patients facing a smaller number of out-of-pocket payments. In 
Section VIII, we further examine the impact of temperature on healthcare expenditures as well as 
the co-payment structure. 

D. Severity of Sickness 

We use diagnosis-related group (DRG) points to measure the severity of sickness. Used to assign 
diseases into different reimbursement groups, DRG points reflect the average relative cost of a 
specific category of disease at city level. In our dataset, each patient has a DRG point recorded 
based on their diagnosis at the time of admission. For example, if a patient has a recorded DRG 
point of 0.5, it implies their diagnosed disease is expected to cost half of the average inpatient 
cost in the city of that year throughout their stay in hospital. Therefore, DRG can be recognized 
as a uniformed measurement of severity of sickness of each admission at city-year level. By using 
our fixed effect model, the variation of DRG points across city and year are captured by the 
hospital-year-week fixed effect, thus ensuring compatibility among hospitals.  

We categorize the DRG points into six groups11 and aggregate the number and proportion of 
admissions of patients with DRG points falling in each group at daily ED level. The estimated 
coefficient for the number of admissions of each severity group is depicted in panel A of Figure 
13. The corresponding coefficients are reported in Appendix Table 14. The number of patients 
with not-very-severe diseases (with a DRG point less than 2) is sensitive to the change of 
temperature, whereas the number of patients with severe diseases (with a DRG point over 2) is 
not statistically significantly affected by the temperature. The number of admissions for patients 
with lower-than-average severity of sickness increases during extreme hot days, and decreases 

 
11 The cutoffs of the groups are 0.25, 0.5, 1, 2, and 4.  
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during extreme cold days statistically significantly, and with the largest magnitude (by around 
10%), marking the most sensitive sickness groups.  

The results for changes in the proportion of patients with various grades of sickness is depicted 
in panel B of Figure 13. The corresponding coefficients are reported in Appendix Table 15. We 
find patients with relatively milder diseases make up a greater proportion during extreme hot days, 
and a lesser proportion during extreme cold days. On the other hand, along with the findings that 
the number of patients with severe diseases is not statistically significantly influenced by extreme 
temperature, these patients take up a lower proportion during the hotter days and a larger 
proportion during the colder days. Overall, the structure of patients with regard to severity of 
sickness shifts to consisting of more severe and severest patients during the coldest days, while 
consisting of more relatively milder patients during the hottest days. This shift implies that the 
increase in hospital workload during extreme high temperature is mainly contributed to by the 
increase in the number of patients, rather than by the increase in the efforts and resources 
expected to be required for each individual patient. 

Given the structure of sickness changes as the temperature varies, we further examine the 
efficiency and quality of treatments for patients hospitalized during extreme temperature. We 
follow the previous literature to measure efficiency by length of stay, and measure the quality by 
the in-hospital mortality rate (Rathlev et al. 2007, Lucas et al. 2009, Pearce et al. 2023). In our 
sample, most of the patients have at least one operation during their stay in hospital, so we take 
number of days between admission and the first operation as an additional measurement of 
efficiency. The results are depicted in Appendix Figure 4. Generally, we find the efficiency and 
quality of treatments are not statistically significantly affected by the temperature. For efficiency, 
the coefficients are statistically insignificant, suggesting that being admitted into hospital on days 
with either higher or lower temperature does not influence length of stay or day between 
admission and first operation. For in-hospital mortality rate, the coefficient of extreme low 
temperature is statistically significantly positive, whereas the coefficients of the other temperature 
bin remain statistically insignificant. However, given the previous results for structure of severity 
of sickness, indicating that patients are on average more severely sick during extreme cold days, 
the results on in-hospital mortality rate do not suggest a change in the quality of treatment.  

VII. ADAPTATION 

In this section, we explore the adaptation method of hospitals whose EDs face an expanding 
inpatient volume on extremely hot days. As suggested in the previous literature, additional medical 
personnel and a more flexible allocation of equipment can be solutions to hospital crowding 
(Hwang et al. 2011). Here, we examine whether hospitals could adjust the provision of healthcare 
services to suit the increase or decrease in demand on extreme temperature days by adjusting 
the number of physicians—the main providers of services. 

We estimate the effect of extreme temperature on the number of physicians serving in the 
inpatient sector of the ED. As shown in Figure 14, we find the number of physicians in charge of 
ED-hospitalized patients increases as the temperature becomes higher. The corresponding 
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coefficients are reported in Appendix Table 16. We find the total number of physicians slightly 
increases, by 2.3%, during extremely high temperature, and decreases by 8% during extremely 
low temperature, with only slight significance. By further investigating physicians of different 
seniorities, we find that the number of senior physicians (chief doctors) is not affected by extreme 
temperatures, but the number of the most junior physicians (resident doctors) decreases by 8.8% 
on the coldest days and increases by 2.9% on the hottest days, statistically significantly. The 
variation in the number of physicians on cold days is relatively large compared with that on hot 
days. This suggests that, though there are on average fewer physicians really in charge of ED 
patients when admissions decrease, hospitals do not face the necessity to adjust their personnel 
allocation. Our results show that hospitals are taking active actions to increase the number of 
physicians (majorly junior ones) serving the expanding ED admissions during extremely hot days.  

We then explore the heterogeneity in adaptation across different hospitals. Hospitals of various 
levels and local contexts may differ when practicing adaptation strategies. In the following analysis, 
we identify potential disparities in responding to contemporaneous temperature shock among 
hospitals of different tiers and grades, located in cities with different average incomes and 
centralized winter heating policies.  

We estimated the impact of temperature on the total number of physicians and the number of 
physicians by seniority. The estimations shown in Figure 15 are for heterogeneity by hospital 
ranking. We find the total number of physicians increases only in tier 2 hospitals (by 3.2% and 
4.9% for grade A and other grades, respectively). The estimated coefficient for the impact of 
extremely high temperature on the total number of physicians in tier 3 hospitals is not statistically 
significant. On extremely cold days with a temperature below −6°C, hospitals ranked tier 3 B and 
below reduce the number of physicians serving inpatients in the ED in response to the decreases 
in patient volume. Overall, though experiencing similar fluctuations in the number of inpatient 
admissions associated with temperature, tier 3 hospitals lack the flexibility in personnel 
adjustment. The estimations by seniority show a similar pattern. For tier 2 A hospitals, the number 
of the chief, attending, and resident physicians in the ED increases by 2.2%, 2.7%, and 3.8%, 
respectively, standing out among hospitals ranking in other tier-grade groups. Junior physicians 
are more flexible in adjusting during extreme temperature; however, for tier 3 A hospitals, even 
the number of resident physicians does not increase during extremely hot and cold days.  

We then study the disparities in practicing adaptation in hospitals located in cities with different 
average incomes and centralized winter heating policies. The estimations are presented in 
Figures 16 and 17 for the two aspects, respectively. The average income level groups are defined 
in a similar way as in Section V. In EDs located in cities with high average income, the total number 
of physicians increases by 2.8% on extremely hot days with a temperature over 30°C and 
decreases by 8.4% on extremely cold days with a temperature below −6°C. The total number of 
physicians does not significantly change in EDs located in cities with middle and low-average 
income. The number of chief physicians is not impacted by extreme temperature, while the 
number of residence physicians significantly increases by 2.6% and 3.3% in EDs located in 
middle- and high-income cities.  
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Compared with EDs in regions with centralized winter heating, where the number of physicians is 
not significantly affected by extremely high temperature, EDs located in regions without 
centralized winter heating have 2.7% more physicians serving inpatients on a day with a 
temperature exceeding 30°C. There is also disparity in the magnitude of the impact of the 
extremely low temperature between these two groups. EDs in regions with centralized winter 
heating have 6.4% fewer physicians on days below −6°C, while the magnitude of the decrease in 
all physicians is 13.7% for EDs in regions without centralized winter heating. Similarly to the 
overall findings, the number of chief physicians changes slightly in response to extreme 
temperature, whereas the number of resident physicians increases by 3.4% and decreases by 
14% on extremely hot and cold days in regions without winter heating.   

 

VIII. CONCLUSION 

This paper uses daily-level hospital-centered temperature and hospitalization records from 
hospitals across over 1,000 hospitals throughout the PRC from 2013 to 2022 to investigate the 
impact of extreme temperature on hospital workload. Focusing on EDs, we apply fixed effect 
models to examine the contemporaneous effect of daily temperature on the daily number of ED 
admissions, as well as the cumulative effect of temperature on the number of ED admissions over 
various cumulative periods.  

Our results reveal that the number of hospital admissions at individual hospitals decreases by 
12.3% during extremely cold days with temperature below −6°C and increases by 7.7% during 
extremely high temperature exceeding 30°C, compared with a benchmark temperature of 12°C–
15°C. Taking the temperature of the previous 7 days into account, we find a cumulative decrease 
of around 18.7% on the coldest days and a cumulative increase of 10.1% on the hottest days. 
The cumulative effects diminish within a month. The magnitude of both contemporaneous and 
cumulative effects on hospital admission numbers are larger compared with estimations in 
previous literature. In addition, we explore the impact of extreme temperature by estimating the 
impact of daily highest temperature and daily lowest temperature. Our results show an increase 
in workload by 9% on extremely hot days with the highest temperature exceeding 36°C, and a 
decrease in workload by 9% on extremely cold days with the coldest temperature below −9°C. 
The impact of extremely high temperature is underestimated in the previous literature as the most 
extreme temperature is averaged away when using daily mean temperature. We also observe the 
monetarized impact of climate change: the total healthcare expenditure aggregated at the hospital 
level increases as the temperature gets higher. The increment is shared by patient and public 
insurance, while the former averagely take on more.  

Beyond the overall impact of temperature on hospital workload, our results of heterogeneity 
analysis indicate that the impact of climate change on hospital workload will be larger for the 
middle-ranked hospitals, several specific departments, and cities with lower average income and 
without centralized winter heating. Accordingly, the patient structure also changes during extreme 
temperature, with children, male patients, and patients with respiratory diseases and injuries 
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making up a larger proportion. The increase in admissions on extremely hot days consists mainly 
of mild severity of sickness, and the outcomes of these patients after their stays are not statistically 
significantly worsened.  

Additionally, we examine the adaptation methods for hospitals to respond to the increasing 
volume of inpatient admissions on extremely hot days. Our results show that, during extremely 
high temperature, additional personnel are assigned to EDs to serve the increasing admissions. 
The adjustment happens mainly among junior physicians (i.e., resident doctors), in tier 2 hospitals, 
and in hospitals located in cities with higher average income and no centralized winter heating.  

Departing from most of the literature about the relationship between climate change and health, 
this study investigates the impact of extreme temperature on the healthcare system from the 
perspective of hospitals. We would like to note that our results are conservative in measuring the 
change in hospital workload, as the data used in the analysis have information only on ED 
admissions; boarding patients and outpatients in EDs are not recorded. We solely study the 
impact of temperature on hospital workload, leaving the mechanisms unexplored. Comparing our 
findings with the previous literature about the impact of climate change on population health, the 
difference between the linear pattern we find and the J-shape pattern in the literature suggests 
that worsened health is only part of the mechanism through which climate change will influence 
realized healthcare utilization. Future research could try to specify other mechanisms such as 
unwillingness to travel outdoor or change in income and affordability of healthcare under climate 
change.  
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TABLES AND FIGURES 

 

Figure 1: Contemporaneous Effects on Hospital Admissions 

 

CI = confidence interval.  

Notes: The figure presents contemporaneous effects on overall hospital admissions through emergency 
departments. Estimations of contemporaneous effects 𝛽𝛽𝑗𝑗 are presented. Horizontal coordinates here show 
the median point of the corresponding temperature bin—for example, the horizontal coordinates of 𝛽𝛽1 are 
−7.5ºC, and are the same throughout the paper. Vertical dash line = benchmark temperature bin (12ºC–
15ºC). 

Source: Authors’ calculations. 
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Figure 2: Cumulative Effects on Hospital Admissions 

 

CI = confidence interval.  

Notes: The figure presents cumulative effects on overall hospital admissions through emergency 
departments. Panels A and B correspond to joint estimations of 𝛽𝛽𝑗𝑗,𝑡𝑡  . . .𝛽𝛽𝑗𝑗,𝑡𝑡−𝜏𝜏 of equation (5) with τ taking 
the value of 30 and 7, respectively. Panel C corresponds to joint estimations of 𝛽𝛽1,𝑡𝑡  . . .𝛽𝛽1,𝑡𝑡−𝜏𝜏, 𝛽𝛽2,𝑡𝑡  . . .𝛽𝛽2,𝑡𝑡−𝜏𝜏, 
𝛽𝛽3,𝑡𝑡  . . .𝛽𝛽3,𝑡𝑡−𝜏𝜏 with τ varying from 0 to 30, providing cumulative effects of various periods of the extreme 
cold temperature. Panel D corresponds to joint estimation of 𝛽𝛽14,𝑡𝑡  . . .𝛽𝛽14,𝑡𝑡−𝜏𝜏 with τ varying from 0 to 30, 
providing cumulative effects of various periods of the extreme hot temperature. Vertical dash line in panels 
A and B = benchmark temperature bin (12ºC–15ºC). 

Source: Authors’ calculations. 
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Figure 3: Contemporaneous Effects on Healthcare Expenditure 

 
CI = confidence interval.  

Notes: The figure presents contemporaneous effects on healthcare expenditure. Estimations of contemporaneous effects 𝛽𝛽𝑗𝑗  are presented. Horizontal 
coordinates here show the median point of the corresponding temperature bin. Vertical dash line = benchmark temperature bin (12ºC–15ºC). 

Source: Authors’ calculations. 
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Figure 4: Contemporaneous Effects on Healthcare Expenditure Co-Payment 

  

CI = confidence interval, OOP = out-of-pocket.  

Notes: The figure presents contemporaneous effects on healthcare expenditure co-payment. The first row 
presents the average individual expenditure and the second row the expenditure of all patients in a hospital. 
The first column shows the effects on total expenditure, the second column shows the effects on OOP 
payments, and the third column shows the insured portion of the payment. Estimations of contemporaneous 
effects 𝛽𝛽𝑗𝑗  are presented. Horizontal coordinates here show the median point of the corresponding 
temperature bin. Vertical dash line = benchmark temperature bin (12ºC–15ºC). 

Source: Authors’ calculations. 
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Figure 5: Contemporaneous Effect by Tiers and Grades of Hospitals 

 

CI = confidence interval.  

Notes: The figure presents contemporaneous effects on hospital admissions for hospitals of different tiers 
and grades (in parentheses). Estimations of contemporaneous effects 𝛽𝛽𝑗𝑗  are presented. Horizontal 
coordinates here show the median point of the corresponding temperature bin. Vertical dash line = 
benchmark temperature bin (12ºC–15ºC). 

Source: Authors’ calculations. 
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Figure 6: Contemporaneous Effect by Departments 

 
CI = confidence interval.  

Notes: The figure presents contemporaneous effects on hospital admissions for 16 departments. 
Estimations of contemporaneous effects 𝛽𝛽𝑗𝑗 are presented. Horizontal coordinates here show the median 
point of the corresponding temperature bin. Vertical dash line = benchmark temperature bin (12ºC–15ºC). 

Source: Authors’ calculations. 
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Figure 7: Contemporaneous Effects by City Average Income 

 

CI = confidence interval.  

Notes: The figure presents contemporaneous effects on hospital admissions of different population with 
different levels of income. Estimations of contemporaneous effects 𝛽𝛽𝑗𝑗  are presented. Horizontal 
coordinates here show the median point of the corresponding temperature bin. Vertical dash line = 
benchmark temperature bin (12ºC–15ºC). 

Source: Authors’ calculations. 
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Figure 8: Contemporaneous Effect by City Centralized Winter Heating 

 

CI = confidence interval.  

Notes: the figure presents contemporaneous effects on hospital admissions in areas with or without central 
heating. Estimations of contemporaneous effects 𝛽𝛽𝑗𝑗 are presented. Horizontal coordinates here show the 
median point of the corresponding temperature bin. Vertical dash line = benchmark temperature bin (12ºC–
15ºC). 

Source: Authors’ calculations. 
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Figure 9: Patient Structure: Diagnosed Diseases 

 

CI = confidence interval. 

Notes: The figure presents contemporaneous effects on hospital admissions for 19 different alphabet-level 
categorized diseases based on International Classification of Diseases Version 10. Estimations of 
contemporaneous effects 𝛽𝛽𝑗𝑗  are presented. Horizontal coordinates here show the median point of the 
corresponding temperature bin. Vertical dash line = benchmark temperature bin (12ºC–15ºC). 

Source: Authors’ calculations. 
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Figure 10: Patient Structure—Age 

 

CI = confidence interval. 

Notes: The figure presents contemporaneous effects on hospital admissions for age groups of 0–5, 6–64, 
and > 65. Panel A shows estimations for numbers of admissions and panel B shows estimations for 
proportion of admissions of each age group. Estimations of contemporaneous effects 𝛽𝛽𝑗𝑗 are presented. 
Horizontal coordinates here show the median point of the corresponding temperature bin. Vertical dash line 
= benchmark temperature bin (12ºC–15ºC). 

Source: Authors’ calculations. 
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Figure 11: Patient Structure—Sex 

 
CI = confidence interval. 

Notes: The figure presents contemporaneous effects on hospital admissions of male and female patients. 
Panel A show estimations for numbers of admissions, and panel B shows estimations for proportion of male 
patients. Estimations of contemporaneous effects 𝛽𝛽𝑗𝑗 are presented. Horizontal coordinates here show the 
median point of the corresponding temperature bin. Vertical dash line = benchmark temperature bin (12ºC–
15ºC). 

Source: Authors’ calculations. 
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Figure 12: Patient Structure—Type of Insurance 

 
CI = confidence interval, NCMS = New Cooperative Medical Scheme, UEBMI = Urban Employee Basic 
Medical Insurance, URBMI = Urban Resident Basic Medical Insurance.  

Notes: The figure presents contemporaneous effects on structure of hospital admissions by insurance type. 
In panel A, the dependent variables are logarithms of hospital-level daily number of admissions through 
emergency departments of one type of insurance among URBMI, UEBMI, and NCMS. In panel B, the 
dependent variables are proportions of admissions of the corresponding groups in panel A. Estimations of 
contemporaneous effects 𝛽𝛽𝑗𝑗  are presented. Horizontal coordinates here show the median point of the 
corresponding temperature bin. Vertical dash line = benchmark temperature bin (12ºC–15ºC). 

Source: Authors’ calculations. 
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Figure 13: Patient Structure—Severity of Sickness 

 
CI = confidence interval, DRG = diagnosis-related group. 

Notes: The figure presents contemporaneous effects on hospital admissions for different severities of sickness. Severity 
is measured by DRG points, which is the ratio of average cost of a specific DRG disease group to the average cost of 
all patients at city level. Panel A shows the estimations for numbers of admissions, and panel B shows the estimations 
for proportion of admissions of each level of severity. Estimations of contemporaneous effects 𝛽𝛽𝑗𝑗  are presented. 
Horizontal coordinates here show the median point of the corresponding temperature bin. Vertical dash line = 
benchmark temperature bin (12ºC–15ºC). 

Source: Authors’ calculations. 
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Figure 14: Adaptation by Adjusting Physicians Serving in Emergency Departments 

 

CI = confidence interval. 

Notes: The figure presents contemporaneous effects on the number of physicians serving emergency 
department inpatients. Estimations of contemporaneous effects 𝛽𝛽𝑗𝑗 are presented. Horizontal coordinates 
here show the median point of the corresponding temperature bin. Vertical dash line = benchmark 
temperature bin (12ºC–15ºC). 

Source: Authors’ calculations. 
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Figure 15: Adaptation by Level of Hospital 

 
CI = confidence interval. 

Notes: The figure presents contemporaneous effects on the number of physicians serving emergency 
department inpatients by seniority and level of hospital. From the left to the right are total number of 
physicians, chief physicians, attending physicians, and resident physicians. From the bottom to the top are 
tier 2 (B & unrated), tier 2 (A), tier 3 (B & unrated), and tier 3 (A) hospitals. Estimations of contemporaneous 
effects 𝛽𝛽𝑗𝑗  are presented. Horizontal coordinates here show the median point of the corresponding 
temperature bin. Vertical dash line = benchmark temperature bin (12ºC–15ºC). 

Source: Authors’ calculations. 
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Figure 16: Adaptation by City Average Income 

 

CI = confidence interval. 

Notes: The figure presents contemporaneous effects on the number of physicians serving emergency 
department inpatients by seniority and city average income level where hospitals are located. From the left 
to the right are total number of physicians, chief physicians, attending physicians, and resident physicians. 
From the bottom to the top are cities with high, middle, and low average incomes. Estimations of 
contemporaneous effects 𝛽𝛽𝑗𝑗  are presented. Horizontal coordinates here show the median point of the 
corresponding temperature bin. Vertical dash line = benchmark temperature bin (12ºC–15ºC). 

Source: Authors’ calculations. 
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Figure 17: Adaptation by Centralized Winter Heating 

 
CI = confidence interval. 

Notes: The figure presents contemporaneous effects on the number of physicians serving emergency 
department inpatients by seniority and centralized winter heating policy where hospitals are located. From 
the left to the right are total number of physicians, number of chief physicians, attending physicians, and 
resident physicians. From the bottom to the top are hospital locations where there is no/is centralized winter 
heating. Estimations of contemporaneous effects 𝛽𝛽𝑗𝑗 are presented. Horizontal coordinates here show the 
median point of the corresponding temperature bin. Vertical dash line = benchmark temperature bin (12ºC–
15ºC). 

Source: Authors’ calculations. 
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Table 1: Summary Statistics 

 Number of Units Obs Mean Standard Deviation Min. Max. 
 (1) (2) (3) (4) (5) (6) 
Panel A: Hospital Admissions 
Daily emergency department admissions 25,514,630 817,344 31.22 41.57 1 1,080 
Age groups       

0–5 2,402,343 817,344 2.94 6.62 0 266 
6–64 13,849,928 817,344 16.95 233.73 0 611 
65+ 9,262,359 817,344 11.33 16.12 0 412 
Sex groups       

Male  13,447,957 817,344 16.45 22.14 0 567 
Female 12,024,535 817,344 14.71 20.24 0 520        
Expenditure per patient – 814,611 12,666.13 111,44.57 0.01 1,280,536 
Insured – 814,611 8,200.11 9,132.89 0 656,013.4 
Out-of-pocket – 814,611 4,466.02 ,7655.36 0 1,167,768        
Panel B: Hospital Characteristics 
Number of hospitals  1,113 817,344 – – – – 
Tier 3 764 562,115 – – – – 
Tier 2 348 253,449 – – – – 
Tier 1 1 1,780 – – – – 
Number of physicians       

Chief – 817,344 28.96 24.7 0 328 
Attending – 817,344 37.69 30.65 0 328 
Residence – 817,344 47.46 36.2 0 363        

       
  

Continued on the next page 
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 Number of Units Obs Mean Standard Deviation Min. Max. 
 (1) (2) (3) (4) (5) (6) 
Panel C: Hospital-Centered Climate Factors 
Precipitation – 817,344 4.32 10.96 0 923.13 
Temperature – 817,344 15.28 10.61 -38.38 36.91 
Temperature bins       

(,−6°C] 32,488 817,344 0.04 – – – 
(−6°C,−3°C] 14,587 817,344 0.02 – – – 
(−3°C,0°C] 23,663 817,344 0.03 – – – 
(0°C,3°C] 36,818 817,344 0.05 – – – 
(3°C,6°C] 50,950 817,344 0.06 – – – 
(6°C,9°C] 61,870 817,344 0.08 – – – 
(9°C,12°C] 62,421 817,344 0.08 – – – 
(12°C,15°C] 71,298 817,344 0.09 – – – 
(15°C,18°C] 79,464 817,344 0.10 – – – 
(18°C,21°C] 84,313 817,344 0.10 – – – 
(21°C,24°C] 99,010 817,344 0.12 – – – 
(24°C,27°C] 104,656 817,344 0.13 – – – 
(27°C,30°C] 78,515 817,344 0.10 – – – 
(30°C,) 17,178 817,344 0.02 – – –        

Continued on the next page 
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 Number of Units Obs Mean Standard Deviation Min. Max. 
 (1) (2) (3) (4) (5) (6) 
Panel D: City/County-Level Socioeconomic Characteristics 
Gross domestic product per capita (CNY10,000) 267 694,974 6.58 5.56 1.32 48.60 
% from agriculture sector 244 625,734 12.09 9.24 0.09 81.84 
% from industrial sector 244 625,734 38.37 13.52 1.54 63.51 
Population 267 694,974 455.01 340.27 16.20 3,404 
Centralized winter heating 277 817,344 0.37 0.48 0.00 1.00 
Number of hospitals 251 676,965 133.11 126.19 13.00 906.00 
Number of beds 250 675,291 23,739.00 21,308.32 2,805.00 162,147 
Number of physicians 251 676,965 13,077.14 12,602.23 1,605.00 94,417 
Light index (county level) 797 815,300 4.69 9.11 0.00 69.01 

Electricity usage 207 440,610 
2,065,458.0
0 

2,219,415.00 
121,144.0
0 

15,700,000 

By urban residence 206 438,852 197,708.30 285,226.00 6,900.00 23,998,841 
Notes: The table presents summary statistics for the samples defined in Section II.A (panels A and B), II.B (panel C), and II.C (panel D). Column (1) 
shows the number of hospital admissions in panel A, the number of hospitals in panel B, the number of daily hospitals with a centered temperature 
falling into each temperature bin in panel C, and the number of cities/counties with non-missing socioeconomic characteristics in Panel D. In all 
panels, column (2) shows number of observations (hospital-day) in the sample. Columns (3) to (6) show statistics for our hospital-day level sample 
in panels A to C, and statistics for city-level variables in panel D. In panel A, expenditure of specific healthcare items is not comprehensively 
documented, so the sum of expenditure on the listed four items is not equal to total expenditure. Panel B reports the number of hospitals in our 
sample and the number of physicians who serve in the inpatient sector in a hospital-day in our sample. Temperature bins in panel C are dummy 
variables, the mean of which shows the percentage of daily hospitals with a centered temperature falling into each bin.  

Source: Authors’ calculations. 
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Table 2: Contemporaneous Effects on Hospital Daily Admission 

Y=Number of Patients (1) (2) (3) (4) (5) 

X=Mean Ambient Temperature 
Mean 
Ambient T 

Mean 
Apparent T 

Max. 
Ambient T 

Min. 
Ambient T 

Mean 
Ambient T 

(,−9°C)    −0.090***  
    (0.024)  

[−9°C,−6°C) −0.123*** −0.115*** −0.100*** −0.073*** −0.109*** 
 (0.026) (0.020) (0.025) (0.020) (0.026) 
[−6°C,−3°C) −0.098*** −0.100*** −0.089*** −0.067*** −0.085*** 
 (0.022) (0.017) (0.022) (0.016) (0.022) 
[−3°C,0°C) −0.086*** −0.090*** −0.076*** −0.051**** −0.074*** 
 (0.018) (0.015) (0.019) (0.013) (0.018) 
[0°C,3°C) −0.075*** −0.063*** −0.056*** −0.041*** −0.065*** 
 (0.014) (0.009) (0.016) (0.009) (0.013) 
[3°C,6°C) −0.053*** −0.053*** −0.043*** −0.031*** −0.045**** 
 (0.009) (0.007) (0.011) (0.006) (0.009) 
[6°C,9°C) −0.042*** −0.031*** −0.031*** −0.021*** −0.037*** 
 (0.006) (0.005) (0.008) (0.005) (0.006) 
[9°C,12°C) −0.019*** −0.016*** −0.016*** −0.014*** −0.017*** 
 (0.003) (0.003) (0.004) (0.003) (0.003) 
[15°C,18°C) 0.015*** 0.016*** 0.017*** 0.017*** 0.012*** 
 (0.003) (0.003) (0.004) (0.003) (0.003) 
[18°C,21°C) 0.032*** 0.031*** 0.032*** 0.026*** 0.026*** 
 (0.004) (0.005) (0.005) (0.005) (0.004) 
[21°C,24°C) 0.048*** 0.044*** 0.048*** 0.039*** 0.039*** 
 (0.006) (0.006) (0.006) (0.006) (0.006) 
[24°C,27°C) 0.064*** 0.053*** 0.062*** 0.042*** 0.052*** 
 (0.007) (0.007) (0.006) (0.008) (0.007) 
[27°C,30°C) 0.074*** 0.055*** 0.075*** 0.057*** 0.058*** 
 (0.008) (0.008) (0.007) (0.011) (0.008) 
[30°C,33°C) 0.077*** 0.064*** 0.086***  0.060*** 
 (0.010) (0.011) (0.007)  (0.010) 
[33°C,36°C)   0.087***   
   (0.008)   

[36°C,)   0.090***   
   (0.011)   

Temp. diff.  No No No No YES 
Precipitation YES YES YES YES YES 
Hospital-year-week FE YES YES YES YES YES 
      

Continued on the next page 
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Y=Number of Patients (1) (2) (3) (4) (5) 

X=Mean Ambient Temperature 
Mean 
Ambient T 

Mean 
Apparent T 

Max. 
Ambient T 

Min. 
Ambient T 

Mean 
Ambient T 

Day-of-week FE YES YES YES YES YES 
N 798,258 798,258 798,258 798,258 798,258 
R-square 0.898 0.897 0.897 0.897 0.897 

FE = fixed effects. 

Notes: Dependent variable is logarithm of daily number of ED admissions. Column titles are temperature 
measurements used in estimation. Bin “[12°C,15°C)” is omitted, as it is the reference bin. In columns (1–3) 
and (5), coefficient reported at row “[−9°C,−6°C)” is coefficient for bin “(,−6°C)”. In columns (1), (2), and (5), 
coefficient reported at row “[30°C,33°C)” is coefficient for bin “[30°C,)”. In column (4), coefficient reported 
at row “[27°C,30°C)” is coefficient for bin “[27°C,)”. All specifications estimate equation (1) by Ordinary Least 
Squares, controlling for precipitation, hospital-year-week fixed-effect, and day-of-week fixed-effect. 
Standard errors are two-way clustered at hospital level and year-week level. * Significant at 10% level, ** 
significant at 5% level, *** significant at 1% level. 

Source: Authors’ calculations. 
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