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1 Introduction

The long-term price elasticity of demand for gasoline is an important parameter used
in economic research, policy design, and business decisions.1 Several previous studies
estimate the average elasticity by aggregating data across many different regions. This
strategy was largely due to the fact that the data was previously somewhat limited.

A recent contribution by Kilian and Zhou (2024) is one of the first papers to use
more detailed state-level data to analyze heterogeneity in markets. They find that
crude oil price pass-through into gasoline prices varies systematically across regions.
Their findings imply that there may be important heterogeneity between states. Liu
(2014) also finds evidence of heterogeneity in gasoline demand price elasticity. As the
largest market by revenue in the United States, California has been at the forefront of
regulating gasoline and energy markets to encourage the transition to a lower greenhouse
gas emission economy (e.g. by introducing a cap and trade system, or low carbon fuel
standards). Its fuel market is also largely segmented from the rest of the country. As
a result of various policies and generally higher prices, California consumers may react
differently to changes in gasoline prices.

In this paper, we focus on a recent sample period for California and estimate a
California-specific price elasticity. Estimating the price elasticity using observational
data has proven to be challenging. For effective estimation, researchers must control
for demand shocks and require supply-side price variation, achieved through an instru-
mental variable (IV) approach. Our focus on the California gasoline market allows us
to take advantage of its specific features, which in turn allows us to identify the price
elasticity of demand.

The California gasoline market is unique within the United States, given its large
size and strict environmental regulations.2 To achieve the environmental standards set
by the California Air Resources Board (CARB), refiners in California must build special
and costly units that produce specific blending components that are not required in the
rest of the country. As a result, CARB-grade gasoline is only consumed in California
and is almost exclusively produced there. Consequently, California is considered to
be nearly a separated gasoline market. Therefore, reductions in refining capacity in

1For example, Holland et al. (2009) estimate the social costs of implementing the Low Carbon
Fuel Standard (LCFS) and simulate different scenarios based on different supply and demand price
elasticities. Parry et al. (2022) weigh the benefits and downsides of different carbon pricing policies.

2See Table 5 in the Annex for a detailed description of the specifications required of CARB-
compliant gasoline.
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California cannot be easily compensated by importing gasoline and can greatly impact
prices. These market features allow us to control for demand shocks first and then use
supply shocks that have strong associations with retail prices.

We start by using detailed controls for demand shocks. To the extent that demand
is persistent, we can (at least partially) control for demand shocks by including lagged
sales. The rich data in California allow us to also control for inventories, imports,
and capacity utilization. For example, if a persistent demand shock hits, refiners will
adjust their inventories and refinery utilization in anticipation of this prolonged shock.3

Including such lagged variables as controls, we estimate long-run demand elasticities
between -0.24 and -0.20, slightly lower in magnitude but consistent with the findings
in Coglianese et al. (2017). However, these estimates cannot perfectly control for all
demand shocks; therefore there is still some attenuation bias from supply and demand
simultaneity.4 Due to the attenuation bias, these estimates can be seen as a lower
bound on the absolute size of the demand elasticity.

In the second step, we introduce unplanned refinery outages as instruments for
supply shocks to address supply and demand simultaneity.5 During the sample period,
California has seen large refinery outages. For example, due to an explosion at the
Torrance refinery in 2015, seven percent of the refining capacity was unavailable for
more than a year. In addition, there have been many other refinery outages that were
smaller and more frequent. These outages are the result of power outages, operational
accidents, or the need to replace parts. Importantly, they are plausibly exogenous and
can therefore be used as instruments for supply shocks. Specifically, the instruments
are relevant because they directly impact supply, consumers do not anticipate outages,
and satisfy the exclusion restriction because they are conditionally uncorrelated with
gasoline demand.

However, not all outages are the same. Outages rarely happen at a refinery-wide
level. Instead, there are specific units within the refinery that stop working. Each
unit has a different production capacity, and their outputs are important inputs to
other refining processes. Losing a small refining unit that creates a critical component
can have an outsized effect on the whole refining process. We use a detailed data set
with information on which refining units stopped working, the dates when the outage

3The level of inventories in California is sufficient to cover 20 days of consumption, approximately
(U.S. Energy Information Administration, 2024).

4See Section 4 for further discussion.
5As far as we can tell, this is the first research paper to use refinery outages to estimate the price

elasticity of gasoline demand in California.
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occurred, and how much capacity was lost.
The detailed data set allows us to differentiate between planned and unplanned out-

ages. Planned outages are linked to routine maintenance procedures and can be timed
to happen in low-demand periods. In contrast, unplanned outages happen following
operational accidents like fires, or explosions or due to unforeseen circumstances like
high-speed winds or power outages. Due to the haphazard nature of the unplanned
outages, these provide exogenous variation on gasoline supply.

Based on these instruments, we calculate two sets of price elasticity estimates for
the California gasoline retail market. We estimate the one-month price elasticity of
demand to be -0.25 and the long-term elasticity to be -0.60.

Our California-specific estimate is larger in magnitude than some other recent es-
timates. Kilian and Zhou (2024) find that elasticities can vary substantially across
subsamples, reaching very similar magnitudes to our estimate. The higher elasticity in
California, when compared to the aggregate estimates for the United States, may be
driven by a greater awareness of energy markets and environmental effects, as well as a
higher awareness of price changes. Indeed, Kilian and Zhou (2024) find that elasticities
are lower if the income is higher. California has above median income, suggesting that
our higher elasticity estimate is reflecting unique California-specific effects.

Our paper contributes to the existing literature on demand elasticity estimation.
Many previous papers used instruments that either take information from the crude
oil market or from changes in taxes. As we learn more about demand estimation, a
growing body of literature has found significant limitations in the instruments used.
These studies have identified three main challenges: the instruments’ relevance, the
instruments’ conditional correlation with consumer expectations, and the conditional
correlation between the instruments and aggregate economic activity (Houthakker et al.,
1974; Ramsey et al., 1975; Li et al., 2014; Coglianese et al., 2017; Kilian and Zhou, 2024).
In Section 2, we discuss these challenges in further detail. Section 3 discusses how local
California outages are robust to these challenges. Section 4 presents our results from
the OLS and IV estimates. Section 5 adds an additional discussion and concludes.

2 Previous Gasoline Elasticity Estimation Approaches

Gasoline consumption touches several aspects of the everyday lives of consumers. There-
fore, it is not surprising that the price elasticity of demand is used to inform public
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policy decisions, business decisions, and economic research as a whole (Hastings, 2004;
Yeh and Sperling, 2010; Carter et al., 2011; Knittel and Tanaka, 2021). However, there
are challenges when identifying the parameter using observational data.

The main challenge for parameter identification is the simultaneity of supply and
demand when using observational data from market outcomes. To address the pa-
rameter identification challenge, two components are necessary: exogenous variation
that is uncorrelated with unobserved demand components but strongly correlated with
gasoline prices (Gandhi and Nevo, 2021); second, a set of controls for demand shifters
(Berry and Compiani, 2021). The first set of components has not always been easy to
find.

A good instrument for estimating the price elasticity of demand for gasoline should
satisfy three key criteria: (i) relevance of the instruments; (ii) conditional independence
of the instrument from consumer expectations; (iii) conditional independence of the in-
strument from aggregate economic activity. In the following subsections, we describe
the instruments that have previously successfully addressed these difficulties using vari-
ous data sets from specific sample periods and geographic locations. Before introducing
our California-specific instruments, we provide a short overview.

Table 1 provides an overview of selected studies that have estimated the price elas-
ticity of demand by addressing simultaneity bias; most of them use information from
the crude oil market or from tax changes.

2.1 Instruments Based on the Crude Oil Market

One of the first studies to tackle this problem was Houthakker et al. (1974) who use
lagged price as an instrument. Another approach is to instrument for price using
information from the crude oil market (Ramsey et al., 1975). Crude oil is the primary
input into gasoline production (Gary et al., 2007c). Therefore, crude oil prices strongly
correlate with gasoline prices through a cost channel. However, crude oil prices are not
uncorrelated to gasoline demand. After distilling crude oil, close to 50% of its output is
gasoline blending components (U.S. Energy Information Administration, 2022b). This
makes crude oil and gasoline prices interconnected through consumers’ income and their
expectations of future economic activity.

Another set of instruments from the crude oil market is disruptions to crude oil
production. Hughes et al. (2008) find that these are not strong predictors of gasoline
prices. One possible reason for this finding is that most of the U.S. crude oil production
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Table 1: Selected works on IV estimation of the price elasticity of demand for
gasoline

Authors Instrument Estimated
price
elasticity

Estimate St. Errors

Houthakker et al. (1974) Lagged prices
of gasoline

Private
demand

-0.24 Not reported

Ramsey et al. (1975) Relative prices
of other
distillates

Private
demand

-0.65 0.36

Hughes et al. (2008) Weather-related
oil production
disruptions

Retail
demand

-0.03 0.01

Li et al. (2014) Gas taxes &
oil prices

Retail and tax
elasticity
of demand

-0.07 0.02

Coglianese et al. (2017) Gas taxes Retail
demand

-0.37 0.23

Kilian and Zhou (2024) Gas taxes Retail
demand

-0.32 0.067

Colina (2024) BLP
instruments

Retail
demand

-0.64 0.088

Notes: Estimation procedures that do not take into consideration the simultaneity of prices and
quantities risk having elasticity estimates biased towards zero. Previous studies have addressed
simultaneity through instruments based on data from the crude oil market, changes in taxes, highly
disaggregated observations across time, or quasi-natural experiments.
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disruptions that the authors consider are related to weather events in the Gulf of Mexico.
The general occurrence of these events follows a seasonal pattern and each specific
weather event can be forecasted with more than two weeks of anticipation. The seasonal
pattern and the ability to forecast weather events allow refiners to adjust their purchase
levels to compensate for disruptions to their supply of inputs. Supply disruptions may
therefore have a weak first-stage regression due to anticipatory behavior from refiners.
In contrast, our approach of narrowing the geographic area to California allows us to
improve on this approach. As we will discuss in more detail, our detailed data on
specific types of outages also allow us to strengthen the first stage.

2.2 Other Approaches to Address Endogeneity

Next, we provide a brief overview of other approaches. Using a panel data approach,
one strategy is to use tax changes as an instrument for price changes. This strategy
has been successfully used and refined in several studies. Davis and Kilian (2011) show
that state tax changes may have a noticeable effect on prices at the state level.

Li et al. (2014) show that the salience of the tax implementation may generate
endogeneity. For example, two tax changes of the same magnitude publicized differ-
ently may produce different consumer reactions through the expectation channel. The
authors therefore control for news coverage in anticipation of a tax change.

Coglianese et al. (2017) account for the anticipatory behavior of consumers to a tax
that is being implemented. They include leads and lags of retail prices to control for
anticipatory and forward-looking behavior.

Finally, Colina (2024), uses a natural quasi-experiment to address simultaneity con-
cerns and uses gas station level characteristics to control for local demand shifts; he
instruments station characteristics with BLP instruments to address endogeneity be-
tween observed and unobserved station attributes and prices as in Berry et al. (1995)
and Davis (2006).

There are alternative approaches that do not use an instrumental variable. Levin
et al. (2017) use disaggregated daily panel data for 243 U.S. cities from 2006 to 2009
and include city and day-of-sample fixed effects to control for supply and demand
simultaneity.

Our focus is on specifically studying the California market. This market is relevant
since it is the largest state in the United States in terms of gasoline revenue, and
economic activity (U.S. Energy Information Administration, 2022a; State of California,
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2024). Perhaps more importantly for our setting, California is largely segmented from
the rest of the United States due to its environmental regulations.

3 Using Refinery Outages as Exogenous Price Shocks

To address endogeneity, we follow an approach similar to Hughes et al. (2008), who use
supply disruptions in Venezuela, Iraq, and the United States. Focusing on California,
we propose refinery outages as a new set of instruments to estimate the price elasticity
of demand. This set of instruments solves the three main documented issues mentioned
in Section 2. Due to the institutional arrangement of gasoline production, a refinery
outage reduces available installed capacity and increases costs for producers.

Gasoline production follows a multistep process. Refineries produce gasoline blend-
ing components, and these blending components are mixed to achieve specific perfor-
mance properties (Gary et al., 2007c). The blend is transported to a city terminal,
mostly by pipelines, and then mixed with ethanol to produce finished gasoline. The
finished gasoline is then distributed within the city to the gasoline stations (Borenstein
et al., 1992).

Different markets need different performance properties of their finished gasoline.
Refineries achieve these properties and optimize their configuration by choosing, amongst
other things, which refinery units to install and how to connect them together. In this
process, the output of one refining unit is used as input to another refining unit.

This combination of products is meant to maximize the refiner’s profits, conditional
on achieving performance requirements. This configuration results in refining units
connected in a complex multistage process (also see additional discussion in Section
3.3.).

Heat, pressure, catalysts, and other chemicals are used throughout the refining
stages. Because of the nature of these processes, every so often, refineries need to stop
operating one of the refining units for repair. Sometimes, a specific stage of the refining
process suffers from an accident or a malfunction. These incidents lead to unplanned
stops in the operation of a refining unit. We refer to the loss in refining capacity in a
specific refining unit as an outage.

Several circumstances lead to unplanned outages. Examples include an unplanned
power outage; an unplanned flaring event;6 a malfunction in the refining unit caused

6A flaring event happens when excess hydrocarbons are burned rather than released straight into
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by a leak, a crack, or loss in pressure or a fire; unexpected high winds; and unexpected
malfunction of the crude pipeline that supplies the refinery.

3.1 Data and Summary Statistics

We use a detailed data set from Bloomberg, where we observe the output of each
individual refinery unit within a refinery. We need this granularity in the data in
order to ensure a strong first stage for the IV estimation and also more precise overall
estimates. For explanatory purposes, we group the relevant refinery units into Primary
Conversion Units and Secondary Conversion units. The former are involved in the
initial processing and breakdown of crude oil into more useful components and produce
a sizeable share of the finished output and sulfur-reducing units that produce specific
distillates. The latter improve the quality of the components by reducing pollutants or
increasing octane levels; they produce smaller amounts of throughput but are essential
to achieve regulatory requirements; therefore, a small outage has an outsized effect.
We discuss the refining process and how it relates to our instrument in more detail in
Section 3.3.

Fuel sales data are from the California Department of Tax and Fee Administra-
tion; we source retail prices, inventories, imports, capacity utilization, and WTI prices
from the U.S. Energy Information Administration. The outage data set comes from
Bloomberg; these data are available starting in 2011 as part of the OIL <GO> market
monitor. Bloomberg aggregates data from national public sources like the Occupational
Safety and Health Administration (OSHA) and the Environmental Protection Agency
(EPA);7 regional agencies like the South Coast Air Quality Management District or the
Bay Area Air Quality Management District;8 and private market research firms that
specialize in fuel markets.

Our sample period runs from January 2011 until March 2023 with observations at
the state-monthly level. Table 2 reports summary statistics of the variables used in the
estimation. The upper part of the table reports statistics for control variables, while

the atmosphere. Plants usually inform local authorities about planned flaring. But sometimes pressure
builds up to dangerous levels, resulting in an unplanned flaring event. For more information, see Gary
et al. (2007b).

7Refineries are mandated to report work place injuries and events that result in exceeding emis-
sion limits (Occupational Safety and Health Administration, 1970; Environmental Protection Agency,
1984).

8Refineries are required to report flaring events to air quality management districts within a spec-
ified time as well as their root causes (California State Legislature, 1976).

8



the bottom part of the table shows statistics for outages, specifically the change in
capacity due to an outage. We note that sales are quite stable, suggesting that the size
of shocks to demand is not large when measured as a percentage of sales. Importantly,
the standard deviations of capacity lost due to outages are similar in magnitude, in
some units, to the standard deviation of sales, suggesting a potentially large impact of
outages on supply. We also note that the mean of inventories is quite large so that sales
can be smoothed. This link means that inventories may be a relevant control variable
when we estimate elasticities. As we discuss more later, we also see that capacity
utilization has an average of 84.5% and a maximum of 97.7%, implying potentially
large impacts of outages.

Figure 1 plots the dates and sizes of various types of outages over the sample period.
We note that with the exception of 2020 (probably related to the effects of the COVID
19 pandemic), outages occur frequently and throughout the sample. There are no visible
trends in outages and there also do not appear to be large and prolonged differences in
variability across different subsamples.

Table 2: Summary statistics

Variable N Mean SD Min Max
Date (monthly) 139 · · Jan 2011 Aug 2022
Sales (MMgals/month) 139 1,220.7 98.4 713.6 1,514.2
Retail price (USD/gal) 139 3.6 0.7 2.4 6.2
Inventories (MMgals) 139 753.9 68.7 617.4 952.6
Imports (MMgals/month) 139 946.8 209.0 419.4 1,641.4
Capacity util. (%) 139 84.5 6.7 60.5 97.7
WTI (USD/barrel) 139 70.0 23.7 16.5 114.8
Outages (MMgals/month)
:: Alkylation unit 139 9.7 16.6 0.0 90.1
:: Crude distiling unit 139 49.6 80.4 0.0 329.0
:: Coker unit 139 9.9 20.8 0.0 117.7
:: Hydrotreating unit 139 33.5 70.5 0.0 500.9
:: Reformer unit 139 29.4 41.6 0.0 233.2
Observations are at the state-month level. MM denotes millions
Sources: California Department of Tax and Fee Administration, US Energy Information
Administration, and Bloomberg L.P. (2022)

Notes: Note that sales are quite stable, suggesting that the size of shocks to demand is not large
when measured as a percentage of sales. Additionally, the standard deviations of capacity lost due to
outages are similar in magnitude to the standard deviation of sales, suggesting a potentially large
impact of outages on supply.
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Figure 1: Refining capacity lost for unplanned outages in different refining units
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Source: Authors’ calculations with data from Bloomberg L.P. (2022)

Notes: Unplanned outages are frequent, and their magnitude varies across time. Due to the
interconnections of the units, a small outage in the secondary conversion units like the Alkylation,
Hydrotreating, or Reformer units can have an outsized impact on the ability of refineries to produce
CARB-grade gasoline. Therefore, measuring outages at the refining-unit level, as opposed to
aggregate terms, is important due to the potential attenuation.

3.2 Characteristics of Outages

In Section 2 we summarized three documented concerns about instruments for the price
of gasoline. We will now relate those concerns to gasoline outages.

The first concern is the relevance of the instruments. Outages in specific refining
units result in increased costs for the refiner. As one of the components of the opti-
mized blend is missing, refiners either: source the missing component from an outside
supplier, which is costly (American Petroleum Institute, 2013); reduce total output
while maintaining the optimal blend, which increases inventory costs due to unused
components (U.S. Energy Information Administration, 2007); or produce a suboptimal
blend subject to achieving performance requirements (Valentine and Josefson, 2017).
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In each case, there is an increase in operational costs and the possibility of a reduced
output, which will impact market prices.

A second concern is the conditional independence of the instrument from consumer
expectations. For example, if consumers expect higher prices in the future, they can
buy gasoline before a price increase happens. However, due to the unexpected nature of
accidents, consumers cannot engage in anticipatory buying before a specific operational
problem occurs when dealing with refining accidents.

Third, the salience of an event affects consumer expectations of the magnitude of
the impact. Regarding refinery outages, news agencies cannot cover an accident in an-
ticipation of it happening. Therefore, the level of coverage cannot affect expectations
before the incident. However, once the unplanned outage occurs, it may be covered
by the news. Most unplanned outages in the United States are reported to the Oc-
cupational Safety and Health Administration (OSHA). Large, unplanned outages are
reported in specialized news outlets. To account for possible salience effects, we will
include lagged retail sales.

Another possibility is that consumers may expect the duration of the outage to be
long-lived, and they react differently from a regular price change. However, the vast
majority of outages are resolved in a short period of time; 83% of them are solved in less
than a month. Therefore, outages are unlikely to elicit changes in long-term consumer
behavior, such as buying a more fuel-efficient vehicle, moving closer to their job to
reduce commute distances, or choosing alternative modes of transportation. Figure 2
provides additional detail on the duration of outages.

Another concern is the conditional independence of the instrument from aggregate
economic activity. It is possible that accidents in a refinery are more likely to occur when
the units are running at full capacity. This would violate the assumption that accidents
happen randomly. To account for the possible systematic variation in accidents, we
control for the percentage of operating capacity at which the refineries operate.

California’s gasoline market faces a set of regulatory and infrastructure constraints
that make it a partially isolated market from the rest of the 47 contiguous states and
the District of Columbia. This unique setting causes the proposed instrument to have
a strong first-stage regression because it is relatively difficult to substitute for the loss
of local production capacity.

Due to environmental regulations, Californians consume the cleanest gasoline in the
United States. However, within the United States, only California refineries produce
this blend for the majority of our sample period (Pyziur, 2016). Therefore, when there
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Figure 2: Cumulative Distribution of the duration of outages
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Notes: Most unplanned outages are short-lived. The red dots highlight that 83.25% of the outages
last less than a month, while 95% of outages last less than four months.

is an outage and refining capacity is lost, wholesalers cannot substitute local production
with refined products produced elsewhere in the United States

An alternative to sourcing refined products from outside the state is to substitute
with products made within the state. However, refineries in California have been oper-
ating increasingly close to their installed capacity, making it harder to increase regional
production in response to a local outage. Figure 4 shows the throughput of refineries in
PADD 5 as a percentage of the installed available capacity.9 PADD 5, encompasses Cal-
ifornia and other states along the West of the United States, of which California is by far
the largest. Additionally, the pipeline transportation infrastructure within California is
limited, and the major refining centers in the north and south are not connected to each
other by pipeline. This lack of connectivity makes it challenging to move fuels between

9A Petroleum Administration for Defense Districts (PADD) is a geographic division of crude and
fuels markets established during World War 2 to ration gasoline consumption. Today, market partici-
pants use the division to analyze regional trends (U.S. Energy Information Administration, 2012).
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Figure 4: Utilization of refining capacity

Source: Authors’ calculations with data from the U.S. Energy Information Administration

Notes: Refineries in PADD 5 are running ever closer to the limit of their installed capacity as time
progresses. The gray area shows the range of the throughput of refineries in PADD 5 as a percentage
of the installed available capacity. The dark dots indicate the average level at which refineries
operated during a given month, while the red line shows a time trend.

regions, especially to and from inland areas (U.S. Energy Information Administration,
2015).

A second alternative to substitute for the loss of local production capacity is to im-
port refined products from outside the United States into California. Two other coun-
tries produce the refined products needed to achieve the required blend for California:
Singapore and South Korea. According to California Energy Commission (2020a), the
minimum number of days needed for a vessel to reach California and be fully unloaded
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is 19 and 13 days, respectively. However, weather conditions across the Pacific Ocean
and local logistics constraints at California’s ports can extend this timeframe. The
lag between an outage and when imported products may arrive creates a temporary
contraction in supply.

One of the possible local logistics constraints when importing distillates is scheduling
their transportation once the vessel is unloaded. Schremp (2015) explains that only two
sets of pipelines transport products in California. The first one starts in San Francisco
and finishes in Reno passing through several refineries along the way. The second set of
pipelines starts in Los Angeles and forks to Las Vegas and Phoenix. The limited number
of pipelines leads to a strict scheduling system in which users need to buy space and
time in the pipeline in advance. Then, it is likely that an importer would have to buy
the already reserved pipeline capacity to move imported products (California Energy
Commission, 2020a). This would increase transportation costs, which may ultimately
be passed on to the retail price, resulting in a strong first-stage regression.

3.3 Different Types of Outages

Gasoline production is a multistage process. Refinery units are involved in different
stages in this process, each with a different installed capacity. Therefore, an outage
of 10 million gallons per month will have a very different impact depending on the
stage of the process in which it occurs. To improve the power of the instruments, we
differentiate by the source of the outage at the refinery unit level.

Not all outages are the same; simply aggregating capacity loss would result in noisier
estimates. For example, the crude distilling unit (CDU) is usually the largest refining
unit within a refinery, and all refineries have one. This unit is the first one to receive
the crude oil at the refinery; it then applies heat and produces the first batch of dis-
tillates. A loss of 10 million gallons per month will not have a big impact since its
output would not be a limiting factor in producing California-compliant gasoline.10 In
contrast, the alkylation unit has a smaller capacity as it is used mainly at the end
of the refining process and produces specific distillates that make the refining blend
California-compliant. The alkylation unit is expensive to build and install; only select
refiners have one. Losing 10 million gallons per month would create a large disruption
in the market. Appendix Section A discusses the differences in refinery units in more

10The installed refining capacity in California is approximately 51.3 million barrels per month
(California Energy Commission, 2023).
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detail.

3.4 Statistical Diagnostics for IV

We are now ready to start our estimation. The first step is to estimate the first stage,
where we regress the log of the monthly retail gasoline price on various measures of
outages and other explanatory variables. We also control for seasonal monthly fixed
effects. A necessary condition for our estimation to be valid is a choice of instruments
that do not suffer from the weak-instrument problem. We choose three different speci-
fications, including different sets of control variables corresponding to our main results,
which we report in the next section.

Table 3 reports the results. We find that the instruments are strong jointly; the
conventional instrument threshold for the F-statistic is 10 and this is cleared in all
three specifications by a wide margin. As expected, we find that the coefficients on
outages are, in most cases, positive and jointly statistically significant. We also find
that the statistically significant coefficients are positive, supporting the interpretation
that these identify supply shocks. Specifications 1 and 2, in particular, provide evi-
dence that alkylation and reformer unit outages are strongly correlated with prices. As
we mentioned earlier, past capacity utilization can be correlated with future outages.
Indeed, in specification 3, inclusion of this variable marginally reduces statistical sig-
nificance of individual outages, but the overall F-stat remains high. Overall, we prefer
specification 3 since it results in a strong first stage regression and controls for the
possibility of persistent demand shocks affecting capacity utilization.

One of the advantages of using more detailed data on outages is our ability to account
for the different effects of the various types of outages. As discussed, the volume and
unit cost of production across components used in the blending process vary. This
approach, therefore results in stronger overall instruments.

Finally, one might imagine that unplanned outages are, in fact, related to market
conditions in a way that would decrease their validity. We have performed an additional
test to address this concern. Specifically, in a partial adjustment model, which is what
we are estimating, we need to check that instruments are lag-exogenous. We check
this by running Granger causality tests of the unplanned outages on lagged prices.
The results are reported in Appendix Table 6. We find that the instruments are not
predictable by past market conditions and are, therefore, lag-exogneous, supporting our
estimation approach.
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Table 3: First-stage estimation results.

First stage regression
Dep. Variable: log Retail Prices Specification 1 Specification 2 Specification 3

(1) (2) (3)
A) Coefficient estimates
Alkylation unit outage 1.335∗∗ 1.218∗∗ 0.861
:: s.e. (0.583) (0.557) (0.594)
CDU outage -0.189 -0.169 -0.118
:: s.e. (0.138) (0.142) (0.153)
Coker unit outage 0.330 0.135 0.310
:: s.e. (0.616) (0.585) (0.680)
Hydrotreating unit outage -0.130 -0.104 -0.144
:: s.e. (0.205) (0.202) (0.219)
Reformer unit outage 1.480∗∗∗ 1.432∗∗∗ 1.192∗

:: s.e. (0.505) (0.514) (0.636)
Constant 11.681∗∗∗ 14.391∗∗∗ 19.806∗∗∗

:: s.e. (2.223) (3.242) (3.711)
Seasonal Month fixed effects Yes Yes Yes
log Retail sales, lagged Yes Yes Yes
log WTI, lagged Yes Yes Yes
log Inventories, lagged Yes Yes
log Imports, lagged Yes Yes
log Capacity util., lagged Yes
B) Model stats.
Observations 138 138 138
R-squared 0.745 0.752 0.761
F stat. 13.92 16.29 20.81
Newey-West standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Outage units are in billion barrels per month to improve legibility.

Notes: We find that the instruments are strong jointly; clearing the conventional instrument
threshold of 10, for the F-statistic, by a wide margin. We also find that the statistically significant
coefficients are positive, supporting the interpretation that these identify supply shocks.
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4 Estimating Short and Long Run Elasticity

This chapter examines the estimation of short- and long-run gasoline demand elasticities
using a dynamic partial adjustment model. By leveraging refinery outages as exogenous
instruments, the analysis addresses simultaneity bias and demonstrates that estimation
procedures that fail to account for simultaneity tend to underestimate elasticities. The
results reveal that California’s gasoline consumers exhibit a short-run elasticity of -0.25
and a long-run elasticity of -0.60, reflecting both immediate and persistent responses
to price changes.

4.1 Partial Adjustment Model

Following Balestra and Nerlove (1966); Houthakker et al. (1974); Paul et al. (2009);
Taylor and Houthakker (2009) we use a traditional dynamic log-log specification that
relates the quantities consumed to the prices observed on the market. We use equation
(1) to estimate the parameters of interest: the one-month price elasticity of demand,
β1, and the long-run elasticity of demand implied by the partial adjustment model.

We use additional lagged covariates to control for demand shocks. In different speci-
fications, we control for aggregate and speculative demand shocks. We include the level
of inventories, the level of imports, the refinery utilization rate, and the price of crude
oil.11 To control for dynamic adjustments, we estimate different model specifications
given by lagged covariates in the following model,

qt = β0 +β1pt +
11∑

s=1
ms

t +
L∑

ℓ=1

(
ρℓqt−ℓ +λℓwtit−ℓ +γℓinvt−ℓ +δℓimpt−ℓ +θℓutilt−ℓ

)
+εt, (1)

where β, γ, δ, ρ, λ, θ are parameters, and ms
t are monthly seasonal fixed effects. The

variable qt is the log of the level of gallons of gasoline sold in month t in millions.
The variable pt is the log of the monthly retail price of regular gasoline; invt is the
log of the level of blending components in inventories; impt is the log of imports into
California of motor gas blending components; wtit is the log spot price of a barrel
of West Texas Intermediate crude oil (WTI). The model in equation (1) includes the
lagged dependent variable qt−ℓ to control for partial adjustments, and the monthly fixed
effects ms

t to account for demand seasonality. εt is a shock of unobserved time-varying
11As has been emphasized by Kilian (2009) and Kilian and Zhou (2024), the raw WTI price is likely

correlated with aggregate demand shocks.
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factors with mean zero. We use the Bayesian information criterion (BIC) to choose
specifications with L = 1.

An unexpected shock to demand may take time to propagate. In theory, there
are two reasons why there can be partial adjustments. There may be autocorrelation
in the errors; alternatively, it is possible that the shock comes from independent and
identically distributed distribution but there is a partial adjustment in the quantity, e.g.,
due to market frictions or for institutional reasons. From an econometric perspective,
these two are observationally equivalent.Our estimation approach can be used in either
case. We also account for any remaining unmodeled autocorrelation using Newey-West
standard errors.

Having estimated the short-term elasticity, we can then calculate the long-term
price elasticity of demand, i.e. the response in quantity to a permanent increase in
price, assuming that all other variables remain fixed. The response of the quantity
after a sufficient amount of time has passed - the long-run elasticity - is then given by
β⋆ ≡ β1/(1 − ρ1).12

4.2 Results

The model parameter estimates described in equation (1) are presented in Table 4.
There are three model specifications, each with different lagged control variables. The
estimates of each model specification are presented side by side, comparing two estima-
tion techniques, ordinary least squares (OLS) and instrumental variables (IV).

We first present OLS estimates with Newey and West (1987) standard errors; we
label these columns as OLS. However, this estimation procedure does not address the
simultaneity of supply and demand and will, therefore, suffer from simultaneity bias,
which results in estimated coefficients that are biased towards zero.13 Thus, the OLS
estimates provide a lower bound for the elasticity estimates. In addition, if we find
that OLS coefficients are lower in absolute value than IV-estimates this represents evi-
dence in support of the IV strategy that we employ. The columns labeled ‘IV ’ present

12Consider the model in Equation 1. Under the long-run assumptions mentioned in the main text,
the variables in the model take the same value in period t and t − 1. We proceed to calculate the total
derivative with respect to price, and then solve for ∆q/∆P to obtain β⋆.

13Let εd be unobserved demand shocks. From a structural supply and demand model, we know
that increases in demand, all else constant, cause the equilibrium price of gasoline, P ⋆, to increase,
then cov(P ⋆, εd)>0. From economic theory, we expect β1 in Equation 1 to be ≤ 0. From a univariate
OLS regression that fails to control for econometric endogeneity, the estimated coefficient will be
β̂1 = β1 + cov(P ⋆,εd)/var(εd), biasing the estimate towards zero.
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results from the second estimation technique which uses an instrumental variable esti-
mation procedure to control for simultaneity. We implement a two-stage least squares
estimating procedure.

Table 4: Elasticity estimates under various specifications

Dep. Var.: log Retail Sales Specification 1 Specification 2 Specification 3

OLS IV OLS IV OLS IV
(1) (2) (3) (4) (5) (6)

A) Long term elasticity (β∗) -0.204∗ -0.824∗∗ -0.235∗∗ -0.797∗∗∗ -0.230∗∗ -0.603∗∗

:: s.e. (0.118) (0.330) (0.118) (0.325) (0.112) (0.270)
B) Coefficient estimates
log Retail price (β1) -0.041 -0.254 -0.044 -0.242 -0.047 -0.251
:: s.e. (0.029) (0.309) (0.027) (0.324) (0.040) (0.308)
log Retail sales, lagged (ρ1) 0.797∗∗∗ 0.690∗∗∗ 0.809∗∗∗ 0.695∗∗∗ 0.794∗∗ 0.601∗∗∗

:: s.e. (0.084) (0.158) (0.078) (0.186) (0.172) (0.223)
Constant (β0) 4.182∗∗ 6.315∗∗ 4.790∗∗ 7.496 5.103∗ 9.401
:: s.e. (1.817) (3.142) (1.602) (5.155) (3.011) (5.730)
Seasonal month fixed effects Yes Yes Yes Yes Yes Yes
log WTI, lagged Yes Yes Yes Yes Yes Yes
log Inventories, lagged Yes Yes Yes Yes
log Imports, lagged Yes Yes Yes Yes
log Capacity util., lagged Yes Yes
Observations 138 138 138 138 138 138
R-squared 0.717 0.664 0.723 0.680 0.723 0.681
Note: ∗ p < 0.10,∗∗ p < 0.05, ∗∗∗ p < 0.01
Note: HAC standard errors in parenthesis. IV estimation is done through 2SLS
Note: Long term elasticity β∗ ≡ β1/1−ρ1.

Notes: Our parameters of interest are β1 and β⋆. Our preferred specification is # 3 since it
estimates the parameters of interest with the most precision.

Table 4 Panel B reports estimates of the model parameters. The price coefficients
in all specifications are negative but not statistically significant in the case of OLS. The
corresponding IV estimates are approximately six times as large; the somewhat low
level of statistical significance is most likely driven by the relatively small sample size.
The reason for this is that the data on outages start only in 2011.14

The fact that the OLS estimates are much smaller in magnitude compared to their
IV counterparts is consistent with the well-documented case that estimates of demand
elasticity that control poorly for simultaneity tend to be biased towards zero (see Davis
and Kilian (2011); Coglianese et al. (2017); Kilian and Zhou (2024) for further details).
The change in magnitude in the elasticity estimates validates the assumption that the

14In an earlier version of the paper, using a shorter sample period, power and statistical significance
were indeed lower.
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instruments control for simultaneity bias.
Panel A reports long-run elasticities (see definition above). We find that all IV

estimates for the long-term price elasticity of demand are statistically significant at the
5% level. Our preferred specification is #3 – it is likely that the additional controls in
that specification are effective at reducing a hypothetical bias from persistent demand
shocks in the estimate. We note in particular that, when additional controls are added
relative to specification #2, the point estimate drops quite a bit and the standard error
is reduced by almost 20%.

One may be also interested in the length of time until prices reach the long-run equi-
librium in response to a supply shock. This can be done, for example, using impulse
response analysis in the local projection framework of Jordà (2005). A careful anal-
ysis using this methodology would require a longer time series to get sufficient power
compared to the partial adjustment model we use. Nevertheless, in Section C of the
Appendix, we report preliminary results of such an LP approach. These results suggest
that the long-run equilibrium is reached eleven months after a shock.

4.3 Discussion and Implications

We find that the one-month price elasticity is -0.25 and that the long-term elasticity
is -0.60. The one-month price elasticity estimates, for our sample period, suggest that
California consumers could be more price-sensitive than the average U.S. consumer as
reported by Kilian and Zhou (2024), since our central estimate falls well outside the 95%
confidence interval reported by the authors. The magnitude of the long-term elasticity
is consistent with cross-sectional heterogeneity documented by Kilian and Zhou (2024)
and the aggregate, long-term elasticity estimates of Colina (2024). Given the large
interest in energy and environmental policies in California, our estimates can inform
optimal policy. Similarly, knowing that consumers are quite price-sensitive could open
the door to carbon tax policies that are more palatable to elected officials (Parry et al.,
2022).

Gasoline consumption touches on several aspects of consumers’ everyday lives, and
knowing consumers’ price sensitivity is essential to the design of public policies and
informing business decisions. Our estimates show substantial consumer price-sensitivity.
Based on this evidence, policymakers, investors, and researchers may re-evaluate the
implications of consumers’ reactions to price changes.

For example, Holland et al. (2009) estimate the welfare costs of implementing the

20



Low Carbon Fuel Standard (LCFS) and simulate different scenarios based on different
supply and demand price elasticities values. Our estimates exceed the range of values
for which they simulate welfare outcomes. Still, based on their argument, the conclu-
sion follows that welfare costs of adjusting to the new standards would be lower since
consumers are more responsive to the implied subsidies of the LCFS.

5 Conclusion

This study introduces refinery outages as novel instruments to estimate gasoline demand
elasticity in California, a market distinguished by its unique regulatory environment
and infrastructure constraints. The granularity of the outage data enables precise
identification of short- and long-term elasticities, with estimates of -0.25 and -0.60,
respectively. These findings indicate that California consumers are more price-sensitive
than previously believed in commonly cited papers. By controlling for simultaneity
and leveraging detailed information on unplanned outages, this analysis addresses key
econometric challenges in demand estimation.

The robustness of the proposed methodology lies in its focus on exogenous supply
shocks and the specific characteristics of the California gasoline market. We differentiate
between types of outages and their impact on the production of California-compliant
gasoline, ensuring strong first-stage regressions and credible instruments. These findings
underscore the potential of the approach to be extended to other geographic regions
or industries that face similar regulatory environments. Such an approach could help
identify market-specific elasticities and further explore heterogeneity across markets,
contributing to our understanding of drivers of variation in elasticities, also see Gafarov
et al. (2023) and Gaarder et al. (2024).

These results have important policy implications. The demonstrated sensitivity of
consumers to gasoline price changes suggests opportunities for designing more effective
environmental and taxation policies. For instance, the higher elasticities imply that
carbon pricing or subsidies for cleaner alternatives could induce significant behavioral
changes, aiding in the transition to lower greenhouse gas emissions. This analysis thus
contributes not only to refining elasticity estimates but also to informing the broader
discourse on sustainable energy policy and consumer welfare as in Colina (2024).
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A Types of Refining Units

There are several ways to classify refinery units: the stage of the refining process at
which they are located, the physical and chemical reactions they use, or the outputs
they generate. We make a broad classification, for explanatory purposes, into Primary
Conversion Units and Secondary Conversion Units mostly based on the stage of the
refining process in which the units are located.

A.1 Primary Conversion Units

The crude distilling unit (CDU) and coking units are part of the Primary Conver-
sion Units. These units are shown at the begining of the refining process in Figure 6
highlighted in orange. The main task of these units is to transform heavy and medium
hydrocarbons into lighter distillates by “cracking” them.15 These lighter distillates have
higher octane levels.

Specifically, the CDU separates crude oil into different components based on boiling
points. While the coking unit processes heavy residual components from the CDU
into hydrocarbons with lower boiling points and solid petroleum coke. The lighter
hydrocarbons with further serve as inputs into other units. After crude oil passes
through the CDU, some heavy residual fuels remain. Coking units convert these heavy
residuals into hydrocarbons with lower boiling points that can be used as inputs to
other units.

A.2 Secondary Conversion Units

These units modify and improve the quality or properties of the products derived from
the primary units by further reducing the level of polluting elements or increasing
the octane level. For example, the alkylation, hydrotreating, and reformer units are
essential to reach CARB-grade standards. Specifically, California Air Resources Board
(CARB) mandates specifications that reduce the pollution from gasoline consumption
compared to conventional gasoline. These specifications are reached largely thanks to
the alkylation and hydrotreating units.

Finished gasoline is a blend of petroleum distillates and ethanol. According to
Larson (2018), most geographies in the United States use a blend known as Conventional

15Cracking is the process where heavy hydrocarbon molecules are broken up into lighter molecules,
usually with higher octane levels.
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Blendstock for Oxygenate Blending (CBOB), while some highly populated areas along
the Northeast coast of the United States use a blend with more stringent environmental
requirements known as Reformulated Blendstock for Oxygenate Blending (RBOB).

However, in California, a different blend known as California Reformulated Gaso-
line Blendstock for Oxygenate Blending (CARBOB) is mandated. Compared to RBOB,
this blend has even lower volatility or tendency to vaporize, as measured by Reid Vapor
Pressure (RVP); it also has lower levels of toxic pollutants like sulfur and benzene than
conventional blends.

Table 5: Specifications for different types of gasoline

Gasoline parameter CBOB RBOB CARBOB
(1) (2) (3) Units

Benzene content . 1.3 1.22 % of volume
Reid Vapor Pressure 7.9 7 5.99 psi
Sulfur content 80 80 21 ppm
Source: California Air Resources Board (2014) and TransportPolicy.net (2017).

To achieve CARB’s standards, California refiners need to include components into
the blend that will accomplish two opposing objectives: reaching the desired octane
level and the desired environmental regulations. Three refining units are instrumental
in reaching these dual objectives: alkylation, reformer, and hydrotreating units.

Although the volume of output from the secondary conversion units is low compared
to the CDU and coking units, these units are essential for meeting environmental regu-
lations. Therefore, their outages strongly affect the ability to produce CARB-compliant
gasoline. Figure 6 shows a flow chart of the refinery process and highlights in red where
the alkylation and hydrotreating units participate in creating the gasoline blend.

Alkylation units produce alkylates, a distillate with low RVP, low sulfur, and high
octane levels (Peterson, 1996). However, there are two downsides to alkylation units:
the first is that they have high fixed costs; the second one is that one of the main inputs
into the unit is isobutane.

Isobutane is a chemical produced during one of the refining stages and has limited
availability. Isobutane is also a main input to another process called polymerization,
which produces a high-octane distillate, yet this distillate is more polluting than the
alkylates. Installing a polimerization unit is substantially cheaper than an alkylation
unit and yields a high-octane product, making it more attractive for refiners (Gary
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et al., 2007a). Therefore, alkylation units tend to be used only in regions with very
strict RVP requirements, such as California (Peterson, 1996).

Hydrotreating units are the second set of units that help refiners achieve CARB’s
standards. The main objective of these units is to reduce a product’s sulfur content.
These units are common throughout the United States and not only in California,
as opposed to alkylation units. However, California refineries tend to rely more on
hydrotreating units than their counterparts in the contiguous United States (California
Energy Commission, 2020b). Therefore, an outage in these units noticeably affects the
ability of refiners to meet CARB’s standards.
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B Testing Exogeneity of Unplanned Outages

As an additional check, we perform Granger causality tests to investigate if past prices
can predict unplanned outages. Our estimation strategy assumes that unplanned out-
ages are unrelated to past prices. To test this assumption, we regress the five unplanned
outages, which we include in the IV estimation strategy (see Table 3), on past log prices
and monthly controls to allow for within-year seasonality and the lagged log WTI price
to control for aggregate energy demand changes.

Table 6: Granger causality test

Dep. Variable Coefficient estimate s.e. p-value
Alkylation unit outage 0.86 0.56 0.13
CDU outage -0.13 0.14 0.36
Coker unit outage -0.66 0.44 0.14
Hydrotreating unit outage -0.14 0.13 0.30
Reformer unit outage 0.15 0.47 0.76

Notes: Following Angrist and Pischke (2009); Deaton (2010) we argue that exogeneity cannot be
directly tested for. However, we show evidence consistent with conditional mean independence by
showing that past prices cannot predict future unplanned outages.

Table 6 reports the results of the Granger causality tests. We find that past prices
do not predict unplanned outages, consistent with our assumption of exogeneity of the
instrument. For all of the unplanned outages, we cannot reject the null hypothesis of no
relationship with past prices. The p-values on past prices lie above 10% for unplanned
outages. Furthermore, the sign has no consistent pattern: two out of five coefficients
are positive, while three are negative. This evidence confirms no precedence of prices
on outages in the sense of Leamer (1985).

C Statistical Association Between Quantities Con-
sumed Across Time and an Initial Price Shock

It is interesting to examine the market dynamics after an initial price shock to have a
better understanding between short-term and long-term effects. To learn about how
a price shock passes onto market outcome variables, we estimate a model identical to
Equation (1) but change the dependent variable to qt+h for h = 0, 1, 2, . . . , 13 using the
local projection approach of Jordà (2005).
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This exercise measures the statistical association between a price shock at time t

and subsequent market-equilibrium quantity outcomes. Since this exercise uses obser-
vational variables qt+h, h = 0, 1, 2, . . . , 13, but it no longer controls for demand nor
supply changes h periods after the initial shock, we cannot isolate consumer behavior
from the observed market outcome.16

Table 7: Parameter
estimates of the dynamic
association†

Event
time

Equilibrium
quantity

s.e.

0 -2.51% 3.08
1 -2.78% 3.84
2 -3.36% 2.66
3 0.37% 2.86
4 2.87% 4.67
5 1.06% 4.44
6 -0.52% 2.83
7 -2.12% 1.98
8 -3.16% 1.96
9 -3.53% ∗∗ 1.76
10 -5.59% ∗ 2.91
11 -6.63% ∗∗ 2.64
12 -7.39% ∗ 3.90
13 -9.88% ∗ 5.03

* p < 0.10, ** p < 0.05, *** p < 0.01
† between market-level quantities
and a price increase of 10%.

Figure 9: Event study of a 10% price increase
on the market equilibrium quantities
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Notes: The figure shows the dynamic association
between market-equilibrium quantities and an initial, and
sustained, price increase of 10% at t = 0.

Table 7 reports the local projection coefficients based on model Specification 3. We
find that a 10% price increase is associated with drop in equilibrium quantities during
the current month and the next two months as well; however, the estimates are noisy,
likely following from our limited sampling period. The results show that nine months
after an initial price change, the associated change in quantity is larger in magnitude and
significant ranging from -3.5% to -6.6%, in line with the long-term elasticity estimates

16Due to the somewhat short sample period and the fact that, when implementing this local pro-
jection methodology we lose observations as we are projecting forward, the power of our estimate
is reduced. If we were to include further demand controls, the power will be further reduced as we
lose degrees of freedom. In the future, as more data become available and the resulting power of our
empirical analysis increases, we will estimate the impulse response function.
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reported in table 4. Associated with this table, we present Figure 9, which plots the
estimated correlation coefficients along their 95% confidence intervals.

Due to the somewhat short sample period and the fact that, when implementing
this local projection methodology, we lose observations as we are projecting forward,
the power of our estimate is reduced when compared with the partial adjustment model
estimates in the main text of text paper. In the future, as more data become available
and the resulting power of our empirical analysis increases, it will be possible to estimate
the impulse response function with more precision.
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