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ABSTRACT 

We provide causal evidence from a developing country context that children exposed to lead at a 
young age exhibit worse cognitive outcomes. We exploit variation in exposure to lead-
contaminated toxic sites in Indonesia and estimate a two-way fixed effects model using variation 
in age at first exposure and variation in distance to the site. We find that children who were 
exposed in utero or up to 6 years old scored -0.48 s.d. lower in a test of numeracy and -0.36 s.d. 
lower in a test of general cognitive ability if they lived within 3 kilometers of the toxic site compared 
with those who lived beyond 6 kilometers. Confirming that the impact of lead exposure depends 
on distance, we find that the impact is halved for children who lived 3–6 kilometers from the site 
and were exposed before 7 years old. The learning penalty in numeracy is equivalent to about 3 
years of primary schooling in Indonesia for those who lived within 3 kilometers and 1.4 years for 
those who lived 3–6 kilometers from the toxic site. The effect size indicates the need to prevent 
lead exposure, especially at younger ages. 

Keywords: pollution, hazardous waste, skills, human capital, learning 

JEL codes: Q53, J24, I21 

  



I. INTRODUCTION 

According to the World Health Organization (WHO), even low levels of lead exposure are 
associated with adverse outcomes in cognitive development, behavior, and physical growth 
(UNICEF and Pure Earth 2020). The causal effects of lead exposure on cognitive skills have been 
established in developed countries. For example, the prohibition and removal of lead from paint 
in the United States led to higher standardized test scores among primary school students (Reyes 
2015, Aizer et al. 2018, Sorenson et al. 2019), indicating that lead exposure had previously 
impaired cognitive outcomes. Declines in lead exposure owing to the phaseout of leaded gasoline 
in Sweden improved cognitive and non-cognitive skills as well as high school completion rates 
(Grönqvist, Nilsson, and Robling 2020). A growing body of literature based on developed 
countries has shown that children exposed to lead at a young age exhibit worse cognitive and 
behavioral outcomes later (Grönqvist, Nilsson, and Robling 2020; Persico, Figlio, and Roth 2020). 

It is important to investigate the relationship between lead exposure and cognitive skills in 
developing countries, for two reasons. First, cognitive outcomes in developing countries lag far 
behind those in developed countries, as evidenced by internationally comparable standardized 
tests such as the Program for International Student Assessment (PISA) and Trends in 
International Mathematics and Science Study (TIMSS). A meta-analysis of 47 studies, 18 of which 
are observational studies from low- or middle-income countries, estimates that lead exposure 
accounts for over one-fifth of the gap in learning outcomes between rich and poor countries 
(Crawfurd et al. 2024).  

Second, the main sources of lead exposure are different between developed and developing 
countries. In high-income countries, lead was most commonly found in paint, petroleum, and 
water pipes, where lead has been banned for decades now. By contrast, lead in developing 
countries can be found in a variety of other sources, including foodware, spices, toys, and 
hazardous waste sites (Ericson et al. 2021; UNICEF and Pure Earth 2020). These sources of lead 
exposure have only recently started coming to light (Sargsyan et al. 2024). Understanding the 
effects of lead exposure in developing countries entails investigating the effects of sources other 
than those found in developed countries.  

This paper makes two main contributions to the literature. First, it provides evidence from a 
developing country context on the causal impact of lead exposure on cognitive skills. Previous 
studies investigating this causal link were all set in developed countries (Reyes 2015; Aizer et al. 
2018; Sorenson et al. 2019; Grönqvist, Nilsson, and Robling 2020; Persico 2022). The meta-
analysis by Crawfurd et al. (2024) includes 18 studies from developing countries, but all are 
observational. Our study is made possible by a near-universal mapping of toxic sites done by 
Pure Earth in Indonesia. Such data is rare in other developing countries. Second, it investigates 
the impact of a common source of lead exposure in developing countries, lead-contaminated toxic 
sites. A few studies have estimated the effects of toxic sites on cognitive outcomes, but those 
sites are not lead-specific and are located in developed countries (Rau, Urzúa, and Reyes et al. 
2015; Persico, Figlio, and Roth 2020). 

Lead-acid batteries, commonly used in cars and other automotive vehicles, account for 85% of 
lead consumed worldwide (WHO 2017). Recycling operations for used lead-acid batteries 
(ULABs), together with metal mining and processing and other hazardous waste sites, constitute 
lead toxic sites. Many countries lack adequate environmental controls and monitoring, resulting 
in informal, unregulated ULAB recycling activities. These practices contaminate their 
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surroundings by spilling lead dust and lead-containing electrolytes onto the ground and by 
emitting toxic fumes when smelting lead in open-air furnaces (UNICEF and Pure Earth 2020). 
Environmental contamination and human exposure can also occur from formal, registered 
recycling operations when controls are not adequate or when regulations are not sufficiently 
enforced (WHO 2017). Airborne lead concentrations around battery manufacturing and recycling 
plants in 37 developing countries were found to be seven times higher, on average, than the 
permissible exposure limit in the United States (Gottesfeld and Pokhrel 2011). 

When these recycling operations are conducted near homes and schools, children and adults are 
exposed to harmful levels of lead. Indeed, workers and children who live near recycling sites, 
particularly in developing countries, have a blood lead level (BLL) exceeding the guideline level 
set by the United States Centers for Disease Control and Prevention (Falk 2003; Noguchi et al. 
2013; van der Kuijp, Huang, and Cherry 2013; Sanders et al. 2014).1 Children living near formal 
recycling plants in developing countries have a BLL about 13 times higher than those of children 
in the United States (Gottesfeld and Pokhrel 2011). Even after recycling operations have stopped, 
elevated lead levels continue to be observed in children who live near the sites (Daniell et al. 
2015). 

We estimate the impact of lead exposure on learning outcomes in Indonesia, where ULAB 
recycling began in the 1970s (Irawati et al. 2022). Around 8 million children (over 10% of all 
children) in the country are estimated to have elevated a BLL (Tang et al. 2022). Children living 
near ULAB sites across Indonesia are observed to have a BLL between 4.9 µg/dl (Prihartono et 
al. 2019) and 25.8 µg/dl (Gunawan and Masloman 2014)—well above the 3.5 µg/dl threshold 
identified by WHO.2 Contextually, Indonesia has long struggled with low and stagnant levels of 
learning outcomes (Beatty et al. 2021; OECD 2023). 

We combine the Indonesian Family Life Survey, a long-spanning household and individual 
longitudinal dataset, with a near-universal mapping of lead toxic sites in the country collected by 
Pure Earth. We exploit three types of variation in a two-way fixed effects (TWFE) model to identify 
a causal impact from exposure to toxic sites: variation in the starting year of these sites, variation 
in the distance of the household to the site, and variation in the age of first exposure.  

We find large negative impacts on numeracy and general cognitive ability when the respondent 
was exposed in utero or during early childhood and lived less than 6 kilometers from the toxic 
site. Children who were exposed in utero or up to 6 years old scored -0.48 s.d. lower in a test of 
numeracy and -0.36 s.d. lower in a test of general cognitive ability if they lived within 3 kilometers 
of the toxic site compared with those who lived 6–10 kilometers away. Children who lived 3–6 
kilometers from the site and were exposed before 7 years old scored -0.24 s.d. lower in numeracy 
and -0.22 s.d. lower in general cognitive ability. The learning penalty in numeracy is equivalent to 

 
1 Although there is no known safe level of lead exposure, a BLL above 3.5 µg/dl is considered dangerous (WHO 2021). 
A BLL of less than 5 µg/dl has been associated with lower intelligence quotient and academic achievement, and 
behavioral problems (Lanphear et al. 2005; Tang et al. 2022), while a BLL above 10 µg/dl is associated with physical 
damage such as anemia and stunting (Irawati et al. 2022; Tang et al. 2022). Above 105 µg/dl is deadly. 
2 Children 1–5 years old living around ULAB sites in Cinangka village, Bogor, where battery recycling started in 1978, 
had an average BLL of 17 µg/dl (Irawati et al. 2022). Children of the same age living in three neighborhoods in Greater 
Jakarta had an average BLL of 4.9 µg/dl (Prihartono et al. 2019). Children aged 7–13 in Tangerang, Bogor, Bekasi, 
and Depok had an average BLL of 11.9 µg/dl (Rachmat, Kusnoputranto, and Supriyanto 2019). In Talawaan and 
Wenang in Sulawesi, children ages 6–8 had an average BLL of 25.8 and 11.4 µg/dl, respectively (Gunawan and 
Masloman 2014). A sample of adults living near ULAB sites in Pesarean village, Tegal, had a mean BLL of 39.3 µg/dl 
(Haryanto 2016). 
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about 3 years of primary schooling in Indonesia for those who lived within 3 kilometers and 1.4 
years for those who lived 3–6 kilometers from the toxic site. These estimates are robust to various 
robustness checks.  

The rest of the paper proceeds as follows. The next section discusses the data and Section III 
provides descriptive findings. Section IV presents the empirical methodology. Section V shows 
the results, and Section VI concludes. 

II. DATA 
A. Data 

We combine two data sources. The first dataset, to measure lead exposure, comes from the Toxic 
Sites Identification Program (TSIP) of the nongovernment organization (NGO) Pure Earth.3 The 
data includes 150 lead-contaminated toxic sites, a near-universal mapping of lead toxic sites in 
the country. Nearly all are located on the islands of Java and Sumatra (only three are located on 
other islands). It contains information on the location of the site, lead measurements in either soil 
or water, a description of the environment around the toxic site, and a risk estimation of 
contamination by the investigator. Information on the starting year is available for a subset of 
these sites. Five sites have information on the closing year. 

The second dataset is the Indonesian Family Life Survey (IFLS).4 The IFLS is a household 
longitudinal survey representative of about 83% of the Indonesian population. It has had five 
waves: 1993, 1997, 2000, 2007, and 2014. The IFLS randomly selects enumeration areas (EAs) 
in each province from a nationally representative sampling frame used in the 1993 SUSENAS, a 
socioeconomic survey designed by the Indonesian central bureau of statistics.5 Within each EA, 
households are randomly selected from the 1993 SUSENAS listings (Frankenberg and Karoly 
1995). Between 1993 and 2014, the IFLS had a re-contact rate of 90.5%, including split-off 
households (Strauss, Witoelar, and Sikoki 2016a).  

Our main outcome variables to measure cognitive skills are scores in a numeracy test and a 
Raven’s Progressive Matrices test.6 The former reflects learning in school whereas the latter is a 
measure of general cognitive ability (Raven 2000). Thorsen, Gustafsson, and Cliffordson (2014) 
find that general cognitive ability plays an important role in how much an individual can learn in 
school. In our data, the correlation between the two variables is 0.3 (statistically significant). 

The numeracy test was included in the last three rounds of IFLS. The 2000 IFLS tested all 
respondents between 7 and 24 years old, the 2007 IFLS tested all 7- to 24-year-old respondents 
and respondents who took the test in 2000, and the 2014 IFLS tested all respondents between 7 
and 59 years old. With this setup, 19% of individuals took the identical test three times, 21.7% 
twice, and the rest once. The test consisted of five basic numeracy questions that the respondents 
are expected to learn to respond to in grades 1 to 5, or by the age of 10. There are two different 
versions of the test with one overlapping item. The more difficult version was asked to 
respondents 15 years or older at the time of the test. We apply a three-parameter logistic (3PL) 

 
3 This data is publicly available at www.contaminatedsites.org/  
4 This data is publicly available at www.rand.org/well-being/social-and-behavioral-policy/data/FLS/IFLS.html  
5 The IFLS oversampled rural enumeration areas and enumeration areas in smaller provinces to facilitate urban–rural 
and Javanese–non-Javanese comparisons.  
6 General cognitive ability consists of deductive ability—the ability to make meaning and handle complexity—and 
reproductive ability—the ability to absorb, recall, and reproduce information (Raven 2000).  

https://www.contaminatedsites.org/
http://www.rand.org/well-being/social-and-behavioral-policy/data/FLS/IFLS.html
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item response theory (IRT) model to generate a single score for all respondents (see Beatty et al. 
2021 for details on the method). A shortened version of Raven’s Progressive Matrices was also 
included starting in the 2000 IFLS. The test comprised a series of images, and the respondent 
was asked to point to an image that follows logically from the series. We take the number of 
correct answers out of 12 and standardize it over the whole sample of test takers to have a mean 
of 0 and a standard deviation of 1.  

To construct the treatment variable, the literature suggests that important determinants of risky 
lead exposure are lead levels in soil or water, the distance between the household and the 
polluted area, and age when exposed to lead. Clay et al. (2019) find larger negative effects on 
test scores and behavior from larger lead levels in the topsoil. The Environmental Protection 
Agency (EPA) developed an Integrated Exposure Uptake Biokinetic (IEUBK) model to predict BLL 
based on soil levels of lead (Caravanos et al. 2012), which suggests a concave relationship 
between soil lead and BLL. Studies that use the distance to a toxic site to measure the impacts 
of lead exposure find negative impacts for households within 3 kilometers of the site (Rau, Urzúa, 
and Reyes 2015; Persico, Figlio, and Roth 2020; Persico 2022). Rau, Urzúa, and Reyes (2015) 
find stronger effects within 1.5 kilometers and no statistically significant effects between 3 and 4.5 
kilometers.  

Young children, especially those aged 5 years or younger, are most susceptible to damage from 
lead exposure. First, during early childhood, the brain develops up to 90% of its adult volume by 
the age of 6 years (Brown and Jernigan 2012). In addition, the blood–brain barrier is not yet fully 
developed (WHO 2021). Second, young children are more likely to take in lead because they tend 
to put their hands on objects that may be contaminated and into their mouths. They also take in 
more per unit of body weight (ibid.). Most of the impact studies described previously focus their 
analysis on exposure either in utero or during early childhood, and therefore do not show 
differences in impacts by age of exposure. Rau, Urzúa, and Reyes (2015) find stronger effect for 
students who were 6 or 7 years old when first exposed than for those who were 9 years old.  

We merge the IFLS and toxic site data based on household and toxic site locations. The IFLS 
provides the location of the center of the EA of the household, not of the household itself. 
However, the EA covers a small area and thus is a reasonable proxy for household location. On 
average, a village is divided into two EAs. An urban village has a mean radius of 1.4 kilometers 
(mean+1 s.d. radius is 3.3 km) and a rural village has a mean radius of 3.2 kilometers (mean+1 
s.d. radius is 7.9 km). Most of our working sample are located in urban areas (Table 3). As studies 
previously mentioned find that toxic sites negatively affect children’s cognitive development up to 
3 kilometers, the center of the EA provides a precise enough approximation to identify households 
residing within a dangerous radius from a toxic site. 

Ideally, we need to know the location of the household during the early childhood of the 
respondent. However, households may move. Since the IFLS traces household migration, we 
were able to accurately identify the age of first exposure.7 We include respondents who lived near 
the toxic site at any point between 1993 and 2014. The age of first exposure is determined by the 
start of the toxic site or the year in which the household moved toward the toxic site.8 Moving 

 
7 We have to assume that respondents older than 28 in the 2014 IFLS did not move before 1993, because they were 
older than 6 in 1993. This is relevant for seven sites that started before 1993. 
8 We do not know the exact year in which the household moved. We only know that the household moved in between 
two survey rounds. We assume that the household moved halfway between the two survey rounds. 
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away from a toxic site does not affect the age of first exposure to lead but affects the duration of 
exposure. The latter is defined as years between the age of first exposure and the age an 
individual migrated. For those who did not migrate, duration is the difference between age at the 
time of the survey and age of first exposure.  

B. Site Selection 

Our analysis depends on the distance between the sampled IFLS EAs and the toxic sites. We 
limit our analysis to sites where the lead concentration in the soil or water was above the maximum 
recommended level as determined according to WHO and the EPA.9 This is 10 parts per billion 
(ppb) for water and 400 parts per million (ppm) for soil.10 We select these sites to increase the 
precision of our estimates. We further exclude one site that started after 2014, because the 
respondents in the IFLS data had not been exposed to the site yet. 

Table 1 shows the average number of IFLS respondents who lived around the toxic sites by 
different distance radiuses. Only 19 sites, nine of which have the information on starting date, 
have any IFLS respondents within a 1-kilometer radius. On average, eight respondents in all sites 
and seven respondents in those sites with information on starting date lived within this radius. At 
larger distances, more IFLS respondents are captured within the radius. Nearly all toxic sites have 
IFLS respondents within 10 kilometers.  

We focus on toxic sites with any IFLS respondents living within a 3-kilometer radius, and we limit 
our analysis to respondents living within a radius of 10 kilometers around these sites. These sites 
have a substantial sample living within a dangerous distance as defined in the literature. We 
expect the IFLS test takers to have a similar socioeconomic background within this range, while 
ensuring a sufficient sample size for statistical power. In addition, we limit our analysis to toxic 
sites with a known starting date. As the previous subsection explained, age at the time of lead 
exposure is relevant for the impact on cognitive development, and we need the starting date to 
determine this. This strategy provides us with 14 sites. We relax some of these decisions and 
assumptions in the robustness check section. 

  

 
9 Appendix Table A1 shows that the impact coefficients of sites with lead concentration below the maximum 
recommended level is smaller than our main findings, which is reasonable and lends credibility to our results. 
10 See Pure Earth Maximum Recommended Levels at www.pureearth.org/wp-content/uploads/2021/03/Maximum-
Recommended-Levels-Sheet1.pdf  

http://www.pureearth.org/wp-content/uploads/2021/03/Maximum-Recommended-Levels-Sheet1.pdf
http://www.pureearth.org/wp-content/uploads/2021/03/Maximum-Recommended-Levels-Sheet1.pdf
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Table 1: Average Number of Indonesian Family Life Survey Respondents by Radius 
Around Toxic Sites 

 (1) (2) (3) (4) 
 All Sites Sites with Starting Date 
 Number of sites 

with any 
respondents 

Average number 
of respondents 

around each site 

Number of sites 
with any 

respondents 

Average number 
of respondents 

around each site 
   < 1 km 19 8.26 9 6.56 
  (9.50)  (5.79) 
   < 3 km 59 66.42 14 92.57 
  (111.61)  (169.78) 
   < 6 km 82 179.24 18 178.11 
  (259.82)  (263.74) 
   < 10 km 89 430.52 21 382.00 
  (516.64)  (503.74) 
All 93  23  

Note: The table includes only sites where test results were above the maximum recommended level in soil or water 
as determined by the World Health Organization and the Environmental Protection Agency. The number of 
respondents includes all respondents who lived within the radius at any point in time between 1993 and 2014. In total, 
Pure Earth tested 147 sites, of which 45 have a known starting date. Standard deviations are in parentheses.  
Source: Authors’ calculations. 

 

C. Summary Statistics 

Table 2 presents information on the toxic sites from TSIP. We construct the variable measuring 
the degree of contamination as the times that the test result is above the maximum recommended 
level. This is done to put the test results on the same metric, since tests were sometimes taken 
from water and at other times from soil. The TSIP investigators estimate the population at risk 
based on the number of people living near the site or passing the site on their way to work or 
school, and the type of contamination risk (i.e., dermal, ingestion, or inhalation). For instance, 
water contamination near a residential area carries a larger population at risk than is the case for 
soil contamination in an industrial area. 

On average, sites with a known starting date had lead test results 92 times above the maximum 
recommended level. Given the mean test result of 38,765 ppm, the IEUBK model of the EPA 
(Caravanos et al. 2012) predicts BLLs of more than 63.4 µg/dl in 0–4-year-old children and of 
more than 50.1 µg/dl in 5–9-year-old children living with a distance of 0 kilometers from the toxic 
site. These are well above the 3.5 µg/dl threshold that is considered dangerous. The TSIP 
investigators estimate that, on average, 1,611 people were at risk of lead exposure around the 
toxic site, and they consider ingestion as the main risk of exposure. This could happen, for 
instance, if water is contaminated with lead or crops and livestock are grown on contaminated 
soil. Young children may also play on the soil. The average toxic site started in 1993. The oldest 
started in 1975 and the newest in 2012. 

The table also shows that sites with a known starting date are similar to sites without a starting 
date. A smaller share of sites with a starting date are informal sites. It is likely more difficult to 
trace the starting date of these sites.  
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Table 2: Toxic Site Characteristics 

  (1) (2) (3) 

 All Sites 
Known 

Starting Date 
No Starting 

Date 
Share informal 0.75 0.60 0.81 
  (0.44) (0.52) (0.40) 
Soil test result (ppm)1 41,273.71 38,756.42 42,000.93 
  (110,854.65) (114,519.55) (111,087.20) 
Times test above recommended level 101.91 91.97 105.00 
  (274.91) (275.68) (277.72) 
Estimated population at risk 1,948.19 1,611.33 2,044.43 
  (3,848.72) (3,420.74) (3,995.74) 
Main risk of exposure    
 Dermal 0.02 0.07 0.00 
  (0.13) (0.27) (0.00) 
 Ingestion 0.85 0.93 0.82 
  (0.36) (0.27) (0.39) 
 Inhalation 0.13 0.00 0.18 
  (0.35) (0.00) (0.39) 
Start year 1993 1993   
  (10.35) (10.35)  
Observations 59 14 45 

ppm = parts per million. 
1 One site had water tested instead of soil. The test result was 280 parts per billion. 
Note: None of these differences is statistically significantly different from 0, possibly because of the small sample 
size. Mean start year is rounded to the nearest integer. 
Source: Authors’ calculations. 

 

Table 3 presents the characteristics of respondents living within a 10-kilometer radius from the 
toxic sites with a known starting date. Close to 90% lived in urban areas. A wealth index based 
on household assets shows that our sample is somewhat wealthier than the average IFLS 
respondent, because it is standardized based on all IFLS respondents and larger than zero. The 
mean standardized test score is also larger than zero. 

On average, the respondents lived 5.5 kilometers from the toxic site, and they were 17.8 years 
old when first exposed. Importantly for our analysis, as is explained later, a fair share of the 
sample was first exposed to a toxic site in utero (14%) or during early childhood (12%). The 
average respondent took the numeracy and Raven tests at 24 years of age. 

A potential issue for our analysis is that 13% of respondents also have a site nearby without a 
known starting date. Therefore, we may have miscalculated their age of first exposure to a toxic 
site. In Section V.B, we show that our results are robust when we exclude these respondents from 
the analysis.  

Because the IFLS tested the same respondents in multiple rounds if their age was within the 
target age range, we have more observations than respondents in the dataset. We treat each 
observation as independent in our main analysis, even though it may be the same person tested 
in different years. However, the results are robust when using only the 2014 IFLS or if we 
implement a two-way clustering of the standard errors (see Section V.B).  
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Table 3: Characteristics of Respondents Living Within 10 Kilometers of Toxic Sites  
with a Starting Date 

 (1) (2) (3) (4) (5) 
 Obs Mean Std. Dev. Min. Max. 

Age at time of test (years)  6,206 24.02 12.70 7 59 
Male 6,206 0.48 0.50 0 1 
Years of school completed 6,195 9.67 4.37 1 21 
 Completed primary education (share) 6,195 0.81 0.40 0 1 
Mother’s education (years) 5,903 6.39 4.58 0 19 
Father’s education (years) 5,757 7.68 4.92 0 96 
Standardized wealth index 6,200 0.33 0.97 -3.42 4.57 
Lives in urban area (share)  6,206 0.89 0.32 0 1 
Age at first exposure to nearest toxic site 6,206 17.74 13.30 -1.00 59.00 
 In utero (share) 6,206 0.14 0.34 0 1 

0–6 years old (share) 6,206 0.12 0.32 0 1 
 7–12 years old (share) 6,206 0.12 0.33 0 1 
 13–18 years old (share) 6,206 0.15 0.36 0 1 
 19–25 years old (share) 6,206 0.18 0.38 0 1 
 26 years or older (share) 6,206 0.30 0.46 0 1 
Distance to nearest toxic site (km) 6,206 5.50 2.52 0.17 9.98 
    Toxic site within 3 km (share) 6,206 0.20 0.40 0 1 
Multiple treatment sites within 3 km (share) 6,206 0.02 0.15 0 1 
Site without starting date within 3 km (share) 6,206 0.13 0.33 0 1 
Duration of exposure (years) 6,206 11.02 7.74 0 36 
Standardized numeracy score 6,206 0.33 1.04 -1.97 2.46 
Standardized Raven test score 6,105 0.22 0.91 -2.17 2.14 

Note: Age at first exposure of -1 means in utero. 
Source: Authors’ calculations. 

 

III. DESCRIPTIVE FINDINGS 

We first ascertain the characteristics of individuals living close to the toxic sites. Table 4 presents 
the correlation between distance to the toxic site and several characteristics, controlling for the 
IFLS wave and toxic site fixed effects to correct for time trends and time-invariant characteristics 
of the areas around the toxic sites. We find that poorer people lived closer to the toxic site, 
although the estimates are only weakly statistically significant. Although years of education and 
wealth can be an outcome of lead exposure, mother’s and father’s education are not, and show 
a similar pattern. The table shows that exposure is not random. In Section IV, we specify our 
strategy to deal with this issue.  
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Table 4: Correlations Between Respondent Characteristics and Distance to Toxic Site 

 (1) (2) (3) (4) (5) (6) (7) 
 Age at 

Test Urban Male 
Years of 

Education 
Mother’s 

Education 
Father’s 

Education 
Wealth 
Index 

ln(Distance) 0.03 0.07 -0.00 0.48*** 1.10*** 1.30*** 0.08* 
 (0.27) (0.06) (0.01) (0.18) (0.27) (0.32) (0.04) 
Observations 6,206 6,206 6,206 6,195 5,903 5,757 6,200 

Note: Model includes site and Indonesian Family Life Survey wave fixed effects. Standard errors in parentheses and 
corrected for clustering at the enumeration area level. Significance level: * p < .10, ** p < .05, *** p < .01. 
Source: Authors’ calculations. 

Table 5 shows the correlation between test scores and distance to the toxic site conditional on 
age, urban status, sex, and mother and father’s education. We exclude household wealth from 
the list of independent variables because it could be affected by the toxic site as well. We also 
include fixed effects for IFLS waves to correct for the trend in test scores over time. This could be 
driven by, for example, improvement or deterioration in school quality. In our preferred model, as 
explained in the next section, we also include site fixed effects to control for site time-invariant 
unobserved characteristics. However, we cannot use site fixed effects when we split the sample 
by multiple age groups because we lose too much power as the sample is not evenly divided 
across sites. The table includes only test results from after the toxic site started. 

We find a positive correlation between distance and test scores (columns 1–3, panel A for 
numeracy and panel B for Raven), indicating that, the further away the household from a toxic 
site, the higher the score. When we separate the sample by age at first exposure, however, we 
lose statistical significance, possibly because of the small size of the sample.11  

 

Table 5: Correlation Between Test Score and Distance to Toxic Site by Age of Exposure 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 
    Age at First Exposure to Nearest Toxic Site 
 

All 
In 

utero 
0–6 

years 
7–12 
years 

13–18 
years 

19–25 
years 

26+ 
years 

Panel A. Dependent variable: numeracy test score 
ln(Distance) 0.05 0.13*** 0.09** 0.05 0.12 -0.10 -0.11 0.08 0.03 
 (0.04) (0.05) (0.04) (0.08) (0.08) (0.08) (0.08) (0.07) (0.05) 
          
Constant 0.19*** -0.13 -0.35* 0.16 -0.81*** 0.11 0.82*** -0.15 0.52* 
 (0.07) (0.15) (0.19) (0.27) (0.25) (0.52) (0.23) (0.37) (0.29) 
          
Controls No No Yes Yes Yes Yes Yes Yes Yes 
IFLS wave FE No Yes Yes Yes Yes Yes Yes Yes Yes 
Site FE No Yes Yes No No No No No No 
Observations 4,513 4,513 4,513 845 715 646 649 609 1,049 
 

 
11 Appendix Table A2 shows correlations for all sites, but we do not know if the sites started before or after the test. 
Because we find that age of first exposure is crucial for negative impacts, this may be why we do not find a correlation 
between test scores and distance to those sites. 

Continued on the next page 
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 (1) (2) (3) (4) (5) (6) (7) (8) (9) 
    Age at First Exposure to Nearest Toxic Site 
 

All 
In 

utero 
0–6 

years 
7–12 
years 

13–18 
years 

19–25 
years 

26+ 
years 

Panel B. Dependent variable: Raven test score 
ln(Distance) 0.07 0.10*** 0.07** 0.11 0.07 -0.09* 0.05 0.03 -0.00 
 (0.04) (0.03) (0.03) (0.08) (0.07) (0.05) (0.06) (0.03) (0.05) 
          
Constant -0.03 0.48*** 0.24** 0.26 0.25 0.15 1.19*** -0.77*** 0.01 
 (0.08) (0.11) (0.11) (0.23) (0.24) (0.30) (0.25) (0.15) (0.18) 
          
Controls No No Yes Yes Yes Yes Yes Yes Yes 
IFLS wave FE No Yes Yes Yes Yes Yes Yes Yes Yes 
Site FE No Yes Yes No No No No No No 
Observations 4,639 4,639 4,639 845 713 642 647 604 1,188 

FE = fixed effects; IFLS = Indonesian Family Life Survey. 
Note: The dependent variable is standardized numeracy (panel A) and Raven score (panel B). The regression 
includes only observations after being exposed to a toxic site. Controls are age, urban status, sex, and mother and 
father’s education, and interactions with indicators for missing values. Standard errors in parentheses and corrected 
for clustering at the enumeration area level. Significance level: * p < .10, ** p < .05, *** p < .01. 
Source: Authors’ calculations. 

 

IV. EMPIRICAL STRATEGY 

A. Model and Identification Strategy 

Residential location and toxic sites are not random. The potential endogeneity of distance—for 
instance less educated people generally live closer to toxic sites—means the estimates in Section 
III cannot be interpreted causally. To disentangle the impact of the toxic sites from other family 
characteristics, we compare respondents who were exposed during early childhood to cohorts 
that were exposed only later in life, while also exploiting variation in the year the toxic site started.   

We consider two dimensions that determine the treatment intensity: age at first exposure and 
distance between residence, proxied by the centroid of the EA, and the toxic site. Our model 
exploits three sources of variation: distance to the toxic site, age of first exposure, and start year 
of the toxic site. We consider respondents to be exposed to the toxic site if the site was active 
while the individual was in utero or between ages 0 and 6, and compare them to respondents not 
exposed to a toxic site before the age of 7.12 We choose this threshold because studies have 
shown that lead mainly affects the cognitive development of young children. Also, primary school 
in Indonesia starts at age 7, so we are measuring the impacts of lead exposure before reaching 
school-going age.  

We estimate the following model for respondent i living near site s, tested in IFLS wave t at age 
a: 

 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽1(𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 × ln (𝐷𝐷𝑖𝑖𝑖𝑖)) + 𝛽𝛽2𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 +  𝛽𝛽3ln (𝐷𝐷𝑖𝑖𝑖𝑖) + 𝛿𝛿1𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜃𝜃𝑖𝑖 + 𝛼𝛼𝑎𝑎 + 𝛾𝛾𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 (1) 

 

 
12 Note that all the treated cohorts were already exposed at the time of the test, but some of the respondents in the 
comparison cohort in the 2000 and 2007 IFLS waves had not yet been exposed to a site that started after their test. In 
the 2014 IFLS wave, all respondents had been exposed to a toxic site. 
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where Yist is the test scores, Tist indicates the treated cohort, first exposed during early childhood 
(in utero or up to 6 years old), Dis is the distance in kilometers between the household’s EA and 
the toxic site, and Xist is a vector of control variables. Note that the starting point of our dataset is 
the toxic site. We assign a time-invariant value of Dis based on the earliest IFLS wave in which an 
individual appears within 10 kilometers from a site. For the sample that eventually moved away 
from the original site, we assign the original distance.  

Controls include urban status, sex, and mother and father’s education. As in a standard TWFE 
effects model, we include site fixed effects, 𝜃𝜃𝑖𝑖, to correct for any site-specific time-invariant 
characteristics, and age-at-test fixed effects, 𝛼𝛼𝑎𝑎, to correct for birth year  cohort trends in test 
scores.13 We also include fixed effects for the IFLS wave, 𝛾𝛾𝑖𝑖, to correct for time trends in the test 
scores across respondents of the same age, as Indonesia experienced a negative trend in the 
IFLS numeracy score between 2000 and 2014 (Beatty et al. 2021). We prefer to cluster the 
standard errors at the EA level, but as robustness also show the results using a two-way clustering 
at the EA and individual levels.  

Our coefficients of interest are 𝛽𝛽1 and 𝛽𝛽2. While 𝛽𝛽2 measures the difference in test scores between 
the treated and comparison groups living within 1 kilometer from the toxic site, 𝛽𝛽1 measures how 
this difference changes for households that live further away from the toxic site. We expect 𝛽𝛽2 to 
be negative and 𝛽𝛽1 to be positive, reflecting a negative impact on test scores when the individual 
is exposed during early childhood and living close to the toxic site that diminishes as households 
live further from the site. 

Our model is similar to a staggered Differences-in-Differences (DID) model where all groups are 
eventually exposed to toxic sites, as there are no “never-opened” sites, but with an additional 
interaction term with the indicator for the treated group. The staggered start of toxic sites means 
the birth year  range of the treated cohort differs by site. The model compares the difference in 
test scores between the treated and comparison cohorts in the already-opened toxic sites to the 
difference between the same birth year  cohorts in all not-yet-opened sites.  

Our model relies on two identification assumptions. First, the treated and comparison cohorts 
would have had a similar correlation between test scores and distance without lead exposure. We 
perform several checks to confirm that this assumption holds. Figure 1 shows that the correlation 
between numeracy test scores and distance was similar between the groups for distances further 
than 3 kilometers.14 This is a version of a parallel pre-trend test but using distance instead of time. 
Moreover, Appendix Table A3 shows that the correlation between distance and characteristics is 
not significantly different between the groups for urban, father’s education, years of schooling, 
and wealth. However, we find that the correlation between distance and mother’s education is 
weaker for the younger cohort. In addition, we find a weak correlation difference for the sex of the 
respondent, but we show in Section V.C that the impacts are similar for boys and girls. 

  

 
13 When only using one IFLS wave, fixed effects for age at the time of the test are the same as birth year fixed effects. 
Given the correlation between age and test scores, we chose to use the age-at-test fixed effects.  
14 The model we estimate is similar to equation (1) but the distance variable is replaced with indicators for distance 
group relative to the nearest group (7.5–10 kilometers). Also, we did not perform a TWFE correction for the figure. 
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Figure 1: Test Scores by Distance to Toxic Site and Age of Exposure 

 
Note: The dependent variable is standardized test scores (left side) and Raven score (right side). Standard errors 
corrected for clustering at the enumeration area level. Estimates are conditional on control variables for sex, urban 
status, and parent’s education, and year fixed effects. Figures include only tests that were taken after the toxic site 
started. 
Source: Authors’ calculations. 

The second identification assumption is that, without any lead exposure, the test score trends 
across birth cohorts would have been the same across toxic sites. Generally, this assumption is 
tested by specifying the model in terms of an event study, with indicators for each relative year to 
the start of the treatment, which would be the start year of the toxic site minus 6 years to cover all 
respondents who were first exposed during early childhood. This would show us how the effect 
evolves with age at first exposure. However, we have too few observations in each birth year 
cohort for this analysis to be valid, because we would need respondents of the same age at 
different distances from the toxic site. Therefore, we group birth year cohort into age groups as 
used before in Table 5: exposed in utero, age 0–6 (early childhood), age 7–12 (primary school), 
age 13–18 (secondary school), age 19–25, and age 26 and older, when the brain is fully 
developed. Figure 2 shows that the four age groups exposed after age 7 show no differences in 
test score trends, suggesting this trend plausibly holds for the treated cohort had there been no 
exposure to lead.15  

 
15 The model we estimate is similar to equation (1) but the treated cohort indicator T is replaced with indicators for each 
age group relative to the youngest birth cohort group before treatment (7–9 years old at first exposure). 
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Figure 2: Test Scores by Age of Exposure and Distance to Toxic Site 

 
Note: The dependent variable is standardized test scores (left side) and Raven score (right side). Standard errors 
corrected for clustering at the enumeration area level. Estimates are conditional on control variables for sex, urban 
status, and parent’s education, and year fixed effects. Figures include only tests that were taken after the toxic site 
started. 
Source: Authors’ calculations. 

We also assume no endogenous migration—that is, parents might move when a toxic site starts 
near their house, or move closer to a toxic site. For instance, our estimates will be biased if 
wealthy parents are more likely to move when their children are exposed at a young age, or if 
poorer parents move near a toxic site if the site provides jobs. This assumption is tested in 
Appendix Table A4, where we find that lead exposure does not influence the decision to move 
away from a toxic site and the presence of a toxic site does not attract immigrants. These findings 
are independent of parental education, a proxy for wealth that is exogenous to lead exposure.  

We find that 367 respondents moved away after the start of a toxic site while 4,314 respondents 
moved toward a toxic site. To check for robustness, we estimate equation (1) on the sample that 
never moved in Section V.B.  

Finally, in utero lead exposure could also cause low birthweight, miscarriage, stillbirth, and 
premature death (WHO, 2021; Tanaka, Teshima, and Verhoogen 2022; Clay, Hollingsworth, and 
Severnini 2023), in which case we would underestimate the impacts of lead exposure on 
academic achievement. In Appendix Table A5, we use IFLS data at the mother-pregnancy level 
to study whether the toxic sites also affected pregnancy outcomes, exploiting variation in 
exposure to toxic sites across pregnancies of the same women. We find no such effects, perhaps 
because such outcomes are associated with much higher levels of BLL (Tang et al. 2022). 
Therefore, miscarriage, stillbirth, and premature death do not significantly affect our analysis. 

B. Correction for Two-Way Fixed Effect Identification Problems 

Our main identification model is a type of repeated cross-section two-way fixed effect (TWFE) 
model. Recent literature, starting with Goodman-Bacon (2021), points out issues with these types 
of models. The estimator is a weighted average of the treatment effects at different sites. This 
strain of literature finds that, if treatment effects are not homogeneous across sites and over time 
(i.e., the same for different durations of treatment), some weights may be negative, and the 
estimator would be biased (de Chaisemartin and D’Haultfoeuille 2022). The reason for this is that 
the sites that remain treated are also used as controls for new sites that started. We cannot 
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assume homogeneous treatment effects because treatment sites have different levels of lead and 
duration of exposure may play a role in the impacts on test scores.16 

To deal with this issue, we use the two-stage correction suggested by Gardner et al. (2024).17 
The correction is done by identifying the correct group and time fixed effects in a first stage using 
only the comparison cohorts. In the second stage, the average treatment effects are identified by 
comparing the outcomes of the treated and comparison cohorts after removing these fixed effects. 
This method follows the original idea of a TWFE model: measuring the difference between a 
staggered treated and a not-yet-treated or control group corrected for time-invariant differences 
between the groups and for trends in the outcome variable over time. By estimating these fixed 
effects only on the not-yet-treated observations, they are not contaminated by heterogeneity in 
treatment effects across groups or over time. 

We prefer this solution because it can be applied to our model, which exploits three sources of 
variation. Another solution to the TWFE problem is to estimate the effects for each site separately 
using not-yet-treated as control and to take the average effects (de Chaisemartin and 
D’Haultfoeuille 2022). However, this estimation focuses only on the switchers around the start of 
the toxic site. We do not have enough data to generate sufficient statistical power to use these 
corrections. Moreover, the software developed for these solutions does not allow for an additional 
interaction term with the treatment indicator. 

C. Additional Sites 

Our main sample consists of IFLS respondents living around 14 toxic sites with starting dates. To 
add more sites, we estimate the starting year of the other sites using Google Earth images. This 
strategy has previously been used to identify village buildings (Guo et al. 2016), urban agriculture 
spaces (Taylor and Lovell 2012), or map other land uses (Zhao et al. 2021). Using the 
geographical coordinates of the toxic sites provided by Pure Earth, all available Google Earth 
images were manually examined. The earliest available and clear images exhibiting a building 
structure are used to specify the month and year of the post-start date. And then, the earliest 
images exhibiting the absence of previously found structure are used to indicate the month and 
year of the pre-start date. Sites for which no Google Earth image is available for the latter are 
tagged as not having a pre-start date. 

Of the 107 sites without a starting date, only 24 could be tagged as having both pre-start and 
post-start dates and 48 as having only post-start dates; 34 could not be tagged with pre- or post-
start dates. When we verify this method using the sites with start dates provided by Pure Earth, 
the correlation appears to be low. Therefore, we use the additional sites only as a robustness 
check and retain the original 14 toxic sites as our main sample. After keeping the sites whose 
lead content is above the WHO requirements and that have a sufficient IFLS sample, we were 
able to add 11 sites. The results are in Section V.B. 

 

 
16 The latter may be less of an issue, as we do not find significantly different impact estimates between the whole 
sample and the sample that did not migrate. Further discussion is in Section V. 
17 Borusyak, Jaravel, and Speiss (2022) and Liu, Wang, and Xu (2022) suggest the same correction. 
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V. RESULTS 

A. Main Results 

In our main results, we include only toxic sites for which the start year is known and whose lead 
content is higher than the WHO limit. Table 6 presents the estimates where we apply the two-
stage TWFE correction. 

We find a consistent negative impact on test scores associated with living near a toxic site for 
respondents who were first exposed during their early childhood. Column 1 shows that the impact 
of early exposure for those who lived within 1 kilometer of the toxic site is -0.35 s.d. lower 
numeracy score. This negative effect becomes smaller the further away from the toxic site the 
household is, supporting the descriptive findings in Section III and the literature.  

In column 2, we estimate the model with indicators for different distance ranges to the toxic site 
instead of a continuous variable, for interpretation purposes. We find that, compared with those 
living 6–10 kilometers away from the toxic site, respondents scored -0.48 s.d. lower if they lived 
within 3 kilometers of the site and -0.24 s.d. lower if they lived 3–6 kilometers from the toxic site 
and were exposed in utero or during early childhood. Comparing these estimates with existing 
studies mentioned in the Introduction is difficult, given the differences in the treatment variable. 
To put the impact into perspective, Beatty et al. (2021) show that Indonesian children gain 1 s.d. 
in this numeracy test in 6 years of primary school. Therefore, the impact is equivalent to 1.4 to 
2.9 years of schooling. The correlation between distance and test scores does not exist for 
respondents exposed to toxic sites after age 7, which is shown by the coefficients close to zero 
for the distance indicators.  

Column 3 includes multiple birth cohort groups to test for parallel trends across older cohorts and 
to specifically estimate the impact of exposure in utero versus exposure at 0–6 years of age. We 
find large negative effects of exposure in utero or up to 6 years old relative to being exposed at 
7–12 years, significant at 10%, which decline by distance. The impact on those exposed in utero 
is significantly larger than for those exposed at 0–6 years old. Column 3 also confirms that there 
were similar trends in test scores for those exposed at 7 years old or later. Therefore, we argue 
that these cohorts provide a correct comparison group for our identification. As discussed in the 
previous section, we prefer to combine these age cohorts into one treated and one comparison 
group, as shown in column 1. This increases our power, which we need when estimating 
heterogeneous effects further below. 

On the Raven test results (columns 4–6), we generally find similar impacts. The only difference 
is that exposure in utero appears to have the most negative impact, while the effects of being 
exposed in other age groups appear to be much smaller (column 6). This corroborates studies in 
the literature that show that exposure to stress and adverse conditions in utero significantly reduce 
general cognitive ability (e.g., Beshir and Maystadt 2020; Chang, Favara, and Novella 2022). 
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Table 6: Impact of Lead Exposure on Numeracy and General Cognitive Skills 

 (1) (2) (3) (4) (5) (6) 
 Numeracy Test Raven Test 

Treated -0.35** 0.25**  -0.31** 0.15***  
 (0.15) (0.11)  (0.14) (0.06)  

ln(Distance) 0.00  -0.03* 0.00  -0.02 
 (0.00)  (0.02) (0.00)  (0.01) 
Treated*ln(Distance) 0.28***   0.21***   
 (0.10)   (0.08)   
Within 3 km  -0.04   -0.03  
  (0.03)   (0.02)  

Within 3 to 6 km  -0.01   -0.01  
  (0.02)   (0.02)  

Treated*Within 3 km  -0.48***   -0.36***  
  (0.15)   (0.13)  

Treated*Within 3 to 6 km  -0.24*   -0.22***  
  (0.12)   (0.07)  
Exposed in utero   -0.41*   -0.49** 
   (0.24)   (0.19) 

Exposed at 0–6 y.o.   -0.30*   -0.21 
   (0.16)   (0.15) 
Exposed at 13–18 y.o.   0.03   -0.10 
   (0.08)   (0.07) 
       
Exposed at 19–25 y.o.   -0.00   -0.00 
   (0.06)   (0.05) 
       
Exposed at 26 and older   -0.05   -0.04 
   (0.06)   (0.03) 
       
Exposed in utero*ln(Distance)   0.37**   0.34*** 
   (0.16)   (0.11) 
       
Exposed at 0–6 y.o.*ln(Distance)   0.25***   0.15** 
   (0.09)   (0.07) 
       
Exposed at 13–18 y.o.*ln(Distance)   0.01   0.08* 
   (0.05)   (0.04) 
       
Exposed at 19–25 y.o.*ln(Distance)   0.02   0.02 
   (0.05)   (0.03) 
       
Exposed at 26 and older*ln(Distance)   0.08*   0.05* 
   (0.05)   (0.03) 
Observations 6,206 6,206 6,206 6,331 6,331 6,331 
Note: The dependent variable is standardized numeracy score for columns 1–3 and standardized Raven score for 
columns 4–6. The omitted category in columns 2 and 5 is “within 6 to 10 km” and in columns 3 and 6 it is “exposed at 
between 7 and 12 y.o.” All models include survey year-round, toxic site, and age fixed effects, and control variables 
for urban status, sex, and parent’s education. All models are estimated using a correction of a repeated cross-section 
two-way fixed effect model. Standard errors in parentheses and corrected for clustering at the enumeration area 
level. Significance level: * p < .10, ** p < .05, *** p < .01. 
Source: Authors’ calculations. 
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B. Robustness Checks 

We implement several robustness checks to see if some stylized facts potentially bias our results. 
We also check for robustness by relaxing some assumptions and changing sampling decisions. 
All these results are in Table 7, with panel A (B) showing the results for numeracy (Raven). 

First, as shown earlier, in Table 3, 13% of respondents also had a toxic site within 3 kilometers 
without a known starting date. Therefore, the age of exposure may be incorrect for this group. In 
column 1 of Table 7, we show that our impact estimates are virtually identical when we exclude 
these respondents. 

Second, by definition, the comparison cohort is older than the treated cohort at the time of the 
test. Age at the time of the test is correlated with the test score, which increases during school-
going age and decreases again after the respondent is above 18 years old (Beatty et al. 2021). 
We have already shown, in Table 4, that age at the time of the test is not correlated with distance. 
We perform an additional test to show that the difference in age at the time of the test does not 
confound our analysis. Because respondents were tested in multiple rounds, we can take an 
earlier test result for the comparison cohort than for the treated cohort. When we match the treated 
and comparison cohorts on age at the test, we find similar signs, as shown in column 2, but with 
a much larger estimate of early exposure. Appendix Table A6 shows that the match reduced the 
age difference between exposed and comparison cohorts. 
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Table 7: Robustness Checks 

 (1) (2) (3) (4) (5) (6) (7) (8) 
 

Excluding 
Observations 
with Multiple 
Sites Nearby 

Treated and 
Comparison 
Matched on 
Age at Test 

Stayers 
Based on 
Individual 
Migration 
History 

Stayers Based 
on Household 

Location 
Between IFLS 

Rounds 

Including 
Additional 
Sites with 
Starting 

Date 

Control 
for Wind 
Direction 

Including 
District 
Fixed 

Effects 

Multiway 
Clustering of 
Enumeration 

Area and 
Individual 

Panel A. Dependent variable: numeracy test score 
Treated -0.35** -0.60*** -0.32 -0.47* -0.20* -0.38** -0.25 -0.35* 
 (0.17) (0.19) (0.22) (0.28) (0.12) (0.16) (0.15) (0.19) 
ln(Distance) 0.00 -0.00 -0.01 0.01 0.00 0.01 -0.00 0.00 
 (0.00) (0.01) (0.01) (0.01) (0.00) (0.00) (0.00) (0.00) 
Treated*ln(Distance) 0.29** 0.33*** 0.40*** 0.40** 0.17** 0.29** 0.22** 0.28** 
 (0.12) (0.11) (0.13) (0.17) (0.08) (0.11) (0.11) (0.12) 
Observations 5,430 2,045 1,543 2,797 7,046 5,758 6,206 6,206 
Mean dep. var.  0.36 0.34 0.40 0.29 0.30 0.33 0.33 0.34 
Panel B. Dependent variable: Raven test score 
Treated -0.31** -0.15 -0.25 -0.51* -0.34*** -0.28* -0.24* -0.31* 
 (0.15) (0.17) (0.21) (0.29) (0.12) (0.15) (0.14) (0.18) 
ln(Distance) 0.00 0.00 0.01 0.01* 0.00 0.00 0.00 0.00 
 (0.00) (0.00) (0.01) (0.01) (0.00) (0.00) (0.00) (0.00) 
Treated*ln(Distance) 0.22** 0.13 0.22* 0.34** 0.16** 0.20** 0.17** 0.21** 
 (0.08) (0.09) (0.12) (0.17) (0.07) (0.08) (0.07) (0.10) 
Observations 5,534 2,044 1,558 2,905 8,400 5,884 6,331 6,331 
Mean dep. var.  0.20 0.39 0.14 0.09 0.16 0.18 0.18 0.18 

IFLS = Indonesian Family Life Survey. 
Notes: The dependent variable in panel A (B) is standardized numeracy score (Raven score). Column 1 excludes individuals without a starting date within 3 kilometers. Column 
2 matches the exposed test takers and control individuals based on their age at the time of the test across test rounds. Column 3 limits the sample to non-movers after they are 
exposed to the toxic site, according to the IFLS migration module. Column 4 is similar to Column 3, but migration is measured based on household location between IFLS 
waves, identifying movers by checking for changes in residence. Column 5 includes additional exposed individuals based on expanded toxic site data and starting dates from 
Google Earth. Column 6 includes wind direction as a covariate. In Columns 7 and 8, we apply district fixed effects and two-way clustering of standard errors at the individual 
and enumeration area levels, respectively. All models are estimated using a correction of a repeated cross-section two-way fixed effect model. Standard errors in parentheses 
and corrected for clustering at the enumeration area level, except for column 8. Significance level: * p < .10, ** p < .05, *** p < .01. 
Source: Authors’ calculations. 
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Third, implicit in our main analysis is the assumption that an individual remains exposed to the 
toxic site once he or she is treated, which does not hold true for those who moved away from a 
toxic site. Similarly, we set distance to toxic site the first time a sample shows up within 10 
kilometers of a toxic site, and do not change the distance if the sample migrates. In this sense, 
our main impact estimates can be considered as intent-to-treat effects (ITT). To check if the 
results are robust to this decision, we re-estimate the model only on the sample of non-movers. 
Column 3 shows the results of this robustness check among stayers based on individual migration 
history in the IFLS migration module, while column 4 tests for robustness if migration is measured 
based on household location between IFLS waves. Both tests confirm robustness of our main 
impact estimates.18 

Fourth, as we discuss in Section 4.3, we add more sites by inferring their possible start date using 
Google Earth. In column 5, we estimate equation (1) by adding the sample from these additional 
sites to the original sample. The point estimates are smaller, but the differences are not 
statistically significant.  

Our fifth robustness check is by controlling for the location of the sample’s house relative to the 
toxic site. The main motivation is to differentiate between living upwind and downwind from the 
toxic site, which would affect how much of the airborne lead is inhaled. Although column 2 of 
Table 2 indicates that none of the toxic sites we use carry a risk exposure through inhalation, for 
completeness we still control for the location, following Rau, Urzúa, and Reyes (2015). As shown 
in column 6 of Table 7, the results are nearly identical to our main results. 

Sixth, we replace the site fixed effects with district fixed effects to control for unobserved 
characteristics of the larger geographical area around the sites. This is a less restrictive set of 
fixed effects. Finally, we allow for a two-way clustering of the standard errors to take into account 
the fact that a subsample consists of the same individuals taking the test multiple times. Columns 
7 and 8 show that our results are robust to these aspects, although the standard errors of the 
estimates are larger. 

C. Heterogeneity Analysis 

Table 8 presents gender heterogeneity in our impact findings. The literature shows that males are 
affected more (Clay, Portnykh, and Severnini 2019; Grönqvist, Nilsson, and Robling 2022). In our 
context, we do not find any differences by sex, as the coefficients are not statistically different 
between groups. Therefore, lead exposure affects both sexes equally negatively. 

Table 9 presents impact heterogeneity by duration of exposure. We test whether a longer duration 
of lead exposure has stronger effects by splitting duration of exposure into three categories: 
bottom 30% (0–4 years of exposure), middle 40% (5–14 years), and top 30% (15–36 years). 
Although the point estimates appear to be different in magnitude and are statistically significant, 
we do not find statistically significant differences in the effects of exposure by duration. Thus, age 
at first exposure matters more than duration of exposure. 

 
18 Consistency in the magnitude of effect sizes estimated in columns 3 and 4 support the consistency of migration 
measures based on household location and individual migration history. Household location between IFLS waves is 
tracked down to the EA level, whereas individual location based on the migration history module is tracked down to 
subdistrict level only. The average radius of subdistricts is 10 kilometers, not precise enough for measuring distance to 
toxic sites. 
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Table 8: Impact Heterogeneity by Sex 

 (1) (2) (3) (4) 
 Numeracy Test Raven Test 
 Male Female Male Female 
Treated -0.27 -0.48*** -0.35* -0.29** 
 (0.19) (0.16) (0.19) (0.15) 
     
ln(Distance) 0.01 0.00 0.00 0.00 
 (0.00) (0.00) (0.00) (0.00) 
     
Treated*ln(Distance) 0.22* 0.34*** 0.29*** 0.14* 
 (0.12) (0.10) (0.11) (0.07) 
     
Observations 2,998 3,208 3,060 3,271 
Mean dep. var.  0.29 0.38 0.24 0.11 
p-value (male – female) 0.42 0.26 

Notes: The dependent variable in columns 1–2 (3–4) is standardized numeracy score (Raven score). All models are 
estimated using a correction of a repeated cross-section two-way fixed effect model. Standard errors in parentheses 
and corrected for clustering at the enumeration area level. Significance level: * p < .10, ** p < .05, *** p < .01. 
Source: Authors’ calculations. 

 

Table 9: Impact Heterogeneity by Duration of Exposure 

 (1) (2) (3) (4) (5) (6) 
 Numeracy Test Raven Test 
 Bottom 30% Mid 40% Top 30% Bottom 30% Mid 40% Top 30% 
 

(0–4 years) 
(5–14 
years) 

(15–36 
years) (0–4 years) 

(5–14 
years) 

(15–36 
years) 

Treated -0.86*** -0.50*** -0.25 1.37*** -0.71*** -0.50 
 (0.21) (0.19) (0.60) (0.28) (0.17) (0.32) 
       
ln(Distance) 0.02** 0.00 0.00 -0.00 0.01** 0.00 
 (0.01) (0.01) (0.00) (0.00) (0.01) (0.00) 
       
Treated*ln(Distance) 0.11 0.29*** 0.46* 0.13 0.10 0.47*** 
 (0.13) (0.09) (0.27) (0.16) (0.07) (0.16) 
       
Observations 1,366 1,993 1,042 1,392 2,052 1,083 
Mean dep. var.  0.26 0.29 0.24 0.08 0.22 -0.20 
p-value (difference 
relative to reference 
category) 

ref 0.416 0.281 ref 0.981 0.426 
0.232 ref 0.440 0.636 ref 0.711 
0.114 0.149 ref 0.414 0.375 ref 

ref = reference category.  
The dependent variable in columns 1–3 (4–6) is standardized numeracy score (Raven score). All models are 
estimated using a correction of a repeated cross-section two-way fixed effect model. Standard errors in parentheses 
and corrected for clustering at the enumeration area level. Significance level: * p < .10, ** p < .05, *** p < .01. 
Source: Authors’ calculations. 
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D. Panel Individual Analysis on Numeracy 

As the IFLS is a longitudinal survey, we can estimate impacts on test score gains over time for 
the same individuals. We identify individuals who took the numeracy test at between 7 and 12 
years old, and retook it 7 years later. This could be between the 2000 and 2007 rounds, or 
between the 2007 and 2014 rounds. We select this age group because respondents should still 
be in primary school during the first survey, and they are supposed to learn the contents of the 
numeracy test during that time. Meanwhile, 7 years later, when they are between 14 and 19 years 
old, they are expected to know the answers to the numeracy questions. We find 680 respondents 
who meet the inclusion criteria for this analysis. 

We estimate a triple differences model using a similar treatment definition as in the previous 
analyses. The first difference is between respondents exposed in utero or during early childhood 
and those exposed at age 7 or older. The second difference is between respondents living within 
6 kilometers of the toxic site and those living between 6 and 10 kilometers from the site. This 
threshold is based on our previous findings (Figures 1 and 2; Table 6) and the need for a sufficient 
sample size to have statistical power. We use a binary indicator instead of the continuous distance 
variable because of the smaller sample size. The third difference is over time. Appendix Table A7 
shows how the panel sample is divided across these groups. The treatment group of interest lives 
within 6 kilometers from a toxic site and was exposed during early childhood, consisting of 210 
respondents. 

We estimate the following model for individual i who first took the numeracy test in IFLS wave t: 

 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽1(𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 × 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 × 𝑃𝑃𝑖𝑖+7) + 𝛽𝛽2(𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 × 𝑃𝑃𝑖𝑖+7) +  𝛽𝛽3(𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 × 𝑃𝑃𝑖𝑖+7) + 𝛽𝛽4(𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 × 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖) + 𝛽𝛽5𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 +
𝛽𝛽6𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽7𝑃𝑃𝑖𝑖+7 + 𝛿𝛿1𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛾𝛾𝑤𝑤 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖         (2) 

 

where Yist is the numeracy score, Tist is an indicator for those exposed during early childhood, Cist 
is in indicator for living within 6 kilometers of the toxic site in year t (2000 or 2007), Pt+7 indicates 
the survey round 7 years later, Xist is a vector of control variables for urban status, sex and parent’s 
education, 𝛾𝛾𝑤𝑤 are survey round fixed effects to correct for a time trend, and 𝜀𝜀𝑖𝑖 is the error term. 
Note that we do not include toxic site fixed effects. We also did not put age-at-test fixed effects, 
owing to the small sample size. Because we study test score gains of the same respondents, 
these do not affect the results. We do not estimate this model using Raven test scores, as we 
selected the sample to see progression through primary school.  

The findings are presented in Table 10. Columns 1 and 2 show the double difference estimates. 
Column 1 includes only respondents who were exposed early, and column 2 includes only 
respondents who lived within 6 kilometers of the toxic site. We find a consistent negative effect 
on test scores gains between primary school age and secondary school age. In the double 
difference, students gained about a full standard deviation on the test during these 7 years, and 
the treated respondents scored -0.26 to -0.27 s.d. lower (columns 1 and 2, respectively).  

For a triple difference analysis, only one parallel trend assumption needs to hold. Column 3 shows 
that the four groups classified in Appendix Table A7 had similar test scores in the baseline year, 
suggesting that the respondents exposed to a toxic site during early childhood had not fallen 
behind yet early in primary school. However, it is more likely that all respondents scored low on 
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the test at that stage. The similarity in baseline scores suggests that we could also expect similar 
trends in scores over time. In the triple difference results (column 3), we find that the treated 
respondents barely learned any of the skills tested, as the average gain in test scores was 0.68 
s.d. while the treatment effect is -0.61 s.d.19  

Although we do not aim to exploit the staggered start of toxic sites in this analysis, this model 
does do that. However, it should not be an issue because we use only two time periods for each 
panel group. Nevertheless, we also show the model estimated on each panel group separately 
to confirm that results are fairly homogeneous in columns 4 and 5, although we lose precision 
owing to the smaller sample size.  

 

Table 10: Impacts of Early Lead Exposure on Numeracy Test Score Gains,  
Individual Panel Data 

 (1) (2) (3) (4) (5) 
 All 

Panel 
Sample 

All 
Panel 

Sample 

All 
Panel 

Sample 
2007–
2014 

2000–
2007 

Within 6 km -0.02  -0.12 -0.05 -0.18 
 (0.10)  (0.09) (0.13) (0.13) 
      
7 years later 1.02*** 0.99*** 0.68*** 0.30 0.26* 
 (0.18) (0.12) (0.13) (0.24) (0.14) 
      
Within 6 km * 7 years later -0.26*  0.36** 0.11 0.50*** 
 (0.15)  (0.15) (0.28) (0.17) 
      
Treated   0.07 0.05 -0.01 0.18 
  (0.09) (0.11) (0.14) (0.15) 
      
Treated * 7 years later  -0.27* 0.25 0.20 0.08 
  (0.14) (0.18) (0.28) (0.31) 
      
Treated * Within 6 km   0.07 0.08 0.04 
   (0.14) (0.18) (0.19) 
      
Treated * Within 6 km * 7 years later   -0.61*** -0.58 -0.19 
   (0.22) (0.36) (0.36) 
Observations 544 716 1,360 682 678 
Mean dep. var. baseline 0.21 0.17 0.23 0.14 0.32 

Note: The dependent variable is standardized numeracy score. Standard errors in parentheses and corrected for 
clustering at the enumeration area level. All models include year fixed effects and control variables for urban status, 
sex, and parent’s education. Column 1 includes only respondents who were exposed early, and column 2 only 
respondents who lived within 6 kilometers of the toxic site. Significance: * p < .10, ** p < .05, *** p < .01. 
Source: Authors’ calculations. 

 
19 For completeness, we show the estimation results for the Raven test score in Appendix Table A8. Since general 
cognitive ability is formed early in life, we do not expect any effects as the sample covers 7-12-year-old individuals at 
baseline. The results generally reflect this, showing mostly statistically insignificant estimates except Column 2, where 
the interaction term coefficient shows a positive impact among exposed children seven years later.  



23 

VI. CONCLUSION 

We estimate the impacts of exposure to lead toxic sites, mostly used lead-acid battery (ULAB) 
recycling, on cognitive skills in a developing country. With the recycling of these batteries, which 
are mostly used in vehicles, lead leaks into the environment. Previous studies have shown 
negative impacts of lead exposure on children’s academic achievement in developed countries, 
but only a few have focused on the impacts of toxic sites, and none has measured the impacts in 
a developing country context.  

Exploiting variation in the start of these toxic sites, distance to the toxic site, and age at the start 
of the toxic site, we find extensive negative effects on cognitive ability. Respondents who were 
exposed to the toxic site before the age of 7 and who lived within 3 kilometers of a toxic site saw 
the largest decline on numeracy score of 0.48 s.d., and those living within 3 to 6 kilometers saw 
a decline of 0.24 s.d. When we study test score gains over 7 years of a subsample of panel 
respondents who were primary school age at the baseline, we find an even larger negative effect 
of 0.6 s.d. for those living within 6 kilometers of the sites. We find similar impacts using the Raven 
test score as the outcome variable, which measures general cognitive ability. Since this type of 
ability is mainly formed in utero and early life, the negative impact is permanent. General cognitive 
ability is significantly lower only among the sample exposed to lead in utero. These results are 
robust against several threats to identification.  

To put the magnitude of these effects into perspective, 0.5 s.d. is half of what students learn 
during primary school (Beatty et al. 2021), and effects above 0.15 s.d. are generally considered 
large in the education literature (Evans and Yuan 2022).  

Post-2010, the Government of Indonesia made significant progress in environmental 
management by introducing targeted regulations to address lead pollution and incorporating 
ULAB management into technical guidelines. These efforts represented a substantial 
advancement in tackling environmental challenges and improving regulatory frameworks. After 
2020, however, the Omnibus Law reforms shifted priorities toward facilitating business operations 
by streamlining environmental permit processes and enhancing regulatory clarity. 

With the negative and large impact of lead exposure on cognitive ability, this paper emphasizes 
the need for stronger regulation or more stringent enforcement around toxic sites and for cleaning 
up the environment, to prevent more children from being harmed. Several papers have shown 
that regulations to limit lead exposure, such as removing lead-based paint (e.g. Sorenson et al. 
2019), phasing out leaded gasoline (Grönqvist, Nilsson, and Robling 2020), and cleaning up 
Superfund sites (Persico, Figlio, and Roth 2020), significantly improved cognitive ability again. 
However, so far, these efforts have taken place mainly in high-income countries. Protecting 
children in low- and middle-income countries from lead exposure should also be urgently 
prioritized.  
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APPENDIX TABLES 

 

Table A1: Impact Estimate for Toxic Sites with Lead Concentration  
Below the Maximum Recommended Level 

 (1) (2) 
 Numeracy Raven 
Treated -0.51* -0.18 
 (0.27) (0.12) 
   
ln(Distance) 0.03 0.00 
 (0.02) (0.01) 
   
Treated*ln(Distance) 0.01 0.07 
 (0.15) (0.08) 
Observations 739 1835 
Note: The dependent variable is standardized numeracy score. Analysis includes 
respondents living within a 10-kilometer radius of any of six sites with a lead test result 
below the maximum recommended level and any respondents within 3 kilometers. 
Standard errors in parentheses and corrected for clustering at the enumeration area 
level. Significance level: * p < .10, ** p < .05, *** p < .01. 
Authors’ calculations. 

 

Table A2: Correlation Between Numeracy Score and Distance  
to Toxic Site for All Toxic Sites 

 (1) (2) (3) (4) 
 All Sample All Sample All Sample Only Age >= 18 
 
Panel A. Dependent variable: numeracy score (std.) 
ln(Distance) -0.07*** -0.04*** 0.02 -0.01 
 (0.01) (0.01) (0.02) (0.03) 
     
Controls  No Yes Yes Yes 
Year fixed effects  No Yes Yes Yes 
Site fixed effects No No Yes Yes 
Observations 14,470 14,470 14,470 1,117 
Mean dep. var. -0.04 -0.04 -0.04 0.09 
 
Panel B. Dependent variable: Raven score (std.) 
ln(Distance) -0.07*** -0.04*** 0.02 -0.01 
 (0.01) (0.01) (0.02) (0.03) 
     
Controls  No Yes Yes Yes 
Year fixed effects No Yes Yes Yes 
Site fixed effects No No Yes Yes 
Observations 14470 14470 14470 1117 
Mean dep. var. -0.04 -0.04 -0.04 0.09 
Note: The dependent variable is standardized numeracy score for panel A and 
standardized Raven score for panel B. Table uses household location at the time of 
the test to determine distance to toxic site. Analysis includes all 59 sites with any 

Continued on the next page 
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IFLS respondents within 3 kilometer as reported in Table 1. Standard errors in 
parentheses and corrected for clustering at the enumeration area level. Significance 
level: * p < .10, ** p < .05, *** p < .01. 
Authors’ calculations. 

 

Table A3: Correlation Between Distance and Characteristics  
by Treatment Cohort 

 (1) (2) (3) (4) (5) (6) (7) 
 

Age at Test Urban Male 
Mother’s 

Education 
Father’s 

Education 

Years of 
Education 
at School 

Wealth 
Index 

        
ln(Distance) -20.53*** 0.12* -0.05 -6.86*** 3.73*** 2.51*** 0.08 
 (1.37) (0.07) (0.05) (0.62) (0.73) (0.85) (0.11) 
        
Treated 0.03 0.08 -0.01 0.33* 1.11*** 1.28*** 0.07* 
 (0.43) (0.06) (0.01) (0.18) (0.30) (0.34) (0.04) 
        
Treated*ln(Distance) 2.30*** -0.05 0.05* 1.62*** -0.50 -0.20 0.02 
 (0.76) (0.04) (0.03) (0.43) (0.45) (0.47) (0.06) 
        
Observations 6,206 6,206 6,206 6,195 5,903 5,757 6,200 
Note: All models include age-at-test, year-of-test, and site fixed effects. Only column 1 does not include age-at-test fixed 
effects. Standard errors in parentheses and corrected for clustering at the enumeration area level. Significance level: * p 
< .10, ** p < .05, *** p < .01. 
Authors’ calculations. 

 

Table A4: Test for Endogeneity of Migration Decisions 

 (1) (2) (3) 
 All Sample Mother Completed 

More Than Primary 
Education 

Mother Completed 
Primary Education or 

Less 
 
Panel A. Dependent variable: moving away from a toxic site 
Treated -0.025 -0.008 -0.047 
 (0.030) (0.030) (0.057) 
    
ln(Distance) 0.001 0.000 0.001 
 (0.001) (0.001) (0.001) 
    
Treated*ln(Distance) 0.044* 0.037 0.048 
 (0.025) (0.025) (0.051) 
    
Observations 2,123 797 1,196 
Mean dep. var. 0.027 0.029 0.022 
 

Continued on the next page 
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 (1) (2) (3) 
 All Sample Mother Completed 

More Than Primary 
Education 

Mother Completed 
Primary Education or 

Less 
Panel B. Dependent variable: moving toward a toxic site 
Treated -0.527*** -0.519*** -0.497*** 
 (0.167) (0.188) (0.158) 
    
ln(Distance) -0.001 0.000 -0.001 
 (0.001) (0.001) (0.001) 
    
Treated*ln(Distance)  -0.023 -0.036 -0.002 
 (0.090) (0.100) (0.096) 
    
Observations 2,123 797 1,196 
Mean dep. var. 0.890 0.765 0.951 
Note: The dependent variable for Panel A is a dummy for moving away from a toxic site. The dependent 
variable for panel B is a dummy for moving toward a toxic site. For those who moved toward a toxic site, 
distance and age at first exposure are measured at the time of move. All models include age-at-test, year-of-
test, and site fixed effects and controls. Standard errors in parentheses and corrected for clustering at the 
enumeration area level. Significance level: * p < .10, ** p < .05, *** p < .01.  
Authors’ calculations. 

 

Table A5: Effect of Toxic Site Exposure on Pregnancy Outcomes 

 (1) (2) (3) (4) (5) (6) 
 Pregnancy Ended in 

Miscarriage or Stillbirth 
Child Born Alive But 
Died Before Age 7 Birthweight (kg) 

 
All 

Two or more 
pregnancies All 

Two or more 
pregnancies All 

Two or more 
pregnancies 

Pregnancy exposed to 
toxic site 

0.002 0.000 -0.007 -0.030 -0.114** 0.088 

 (0.002) (0.004) (0.012) (0.030) (0.046) (0.129) 
       
Within 6 km 0.001 0.002 -0.018 -0.039 -0.014 -0.000 
 (0.003) (0.003) (0.017) (0.036) (0.057) (0.288) 
       
Pregnancy 
exposed*Within 6 km 

-0.001 -0.001 0.021 0.020 0.013 -0.124 

 (0.003) (0.001) (0.019) (0.038) (0.071) (0.153) 
       
Controls  Yes Yes Yes Yes Yes Yes 
Mother fixed effects No Yes No Yes No Yes 
Observations 2,824 2,544 2,824 2,544 1,002 788 
Number of mothers 1120 869 1120 869 794 521 
Mean dep. var.  0.122 0.132 0.005 0.007 3.091 3.109 
Note: The mother fixed effects model relies on variation in exposure to toxic sites across pregnancies within the 
same women, who are 264 women of whom 132 lived within 6 kilometers of a site at the end of the pregnancy 
period. Only about half of the babies were weighed at the time of birth. Controls include decade of the pregnancy 
to correct for trends in wealth and maternal care standards, age of the mother at the time of birth, and the baby’s 
sex. Standard errors in parentheses and corrected for clustering at the enumeration area level. Significance 
level: * p < .10, ** p < .05, *** p < .01. 
Authors’ calculations. 
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Table A6: Difference Between Treated and Comparison Cohort in Characteristics 

 All Matched on Age at Test 
Age -21.46*** -7.94*** 
 (0.63) (0.57) 
Urban 0.03*** -0.07*** 
 (0.01) (0.02) 
Male 0.03 0.03 
 (0.02) (0.03) 
Mother’s education (years) 3.12*** 0.75** 
 (0.26) (0.36) 
Father’s education (years) 2.38*** 0.65* 
 (0.23) (0.35) 
Note: All models include year-of-test and site fixed effects. Standard errors in 
parentheses and corrected for clustering at the enumeration area level. 
Significance level: * p < .10, ** p < .05, *** p < .01. 
Authors’ calculations. 

 

Table A7: Sample Size by Treatment Group for Individual Panel Analysis 

 Within 6 km 6–10 km Total 
Exposed early (treated) 210 168 378 
Exposed after age 7 114 190 304 
 324 358 682 

Authors’ calculations. 

 

Table A8: Impacts of Early Lead Exposure on Raven Test Score Gains,  
Individual Panel Data 

 (1) (2) (3) (4) (5) 
 All 

Panel 
Sample 

All 
Panel 

Sample 

All 
Panel 

Sample 
2007–
2014 

2000–
2007 

Within 6 km -0.15  -0.05 -0.03 -0.07 
 (0.10)  (0.08) (0.11) (0.10) 
      
7 years later -0.67*** -0.77*** -0.78*** -1.05*** -0.48*** 
 (0.12) (0.08) (0.10) (0.17) (0.12) 
      
Within 6 km * 7 years later 0.07  0.01 -0.12 0.09 
 (0.13)  (0.11) (0.21) (0.14) 
      
Treated   -0.13* 0.01 -0.08 0.10 
  (0.08) (0.12) (0.12) (0.19) 
      
Treated * 7 years later  0.24** 0.13 0.17 0.01 
  (0.11) (0.16) (0.20) (0.26) 
      
Treated * Within 6 km   -0.13 -0.14 -0.07 
   (0.14) (0.17) (0.21) 
      

Continued on the next page 



28 

 (1) (2) (3) (4) (5) 
 All 

Panel 
Sample 

All 
Panel 

Sample 

All 
Panel 

Sample 
2007–
2014 

2000–
2007 

Treated * Within 6 km * 7 years later   0.07 0.11 0.15 
   (0.19) (0.27) (0.30) 
Observations 543 715 1358 680 678 
Mean dep. var. baseline 1.02 0.94 0.99 1.19 0.79 

Note: The dependent variable is standardized raven score. Standard errors in parentheses and corrected for 
clustering at the enumeration area level. All models include year fixed effects and control variables for urban status, 
sex, and parent’s education. Column 1 includes only respondents who were exposed early, and column 2 only 
respondents who lived within 6 kilometers of the toxic site. Significance: * p < .10, ** p < .05, *** p < .01. 
Authors’ calculations. 
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