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Abstract

Most news stories contain both granular quantitative information and coarse categoriza-
tions. For instance, company earnings are typically reported as a dollar figure alongside
categorizations, such as whether earnings beat or missed market expectations. We study
the hypothesis that when a decision is harder, people rely more on easier-to-process signals:
people still discriminate between coarse categories but distinguish less granularly within
them, creating higher sensitivity around category thresholds but lower sensitivity else-
where. Using stock market reactions to earnings announcements, we document that hard-
to-value stocks are associated with a more pronounced S-shaped response pattern around
category thresholds. Experiments that exogenously manipulate the problem difficulty pro-
vide supporting causal evidence in individual investor behavior. We then exploit variation
in investor familiarity with earnings surprises of different sizes to show that returns exhibit
greater sensitivity in regions with more historical density.
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Behavioral Finance
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1 Introduction

News stories describe events using both granular numerical information and coarse categoriza-
tions. Consider a firm’s quarterly earnings announcement: Walmart’s earnings per share (EPS)
for the fourth quarter in 2024 were $1.80. Also, Walmart beat the consensus analyst forecast
of $1.65 and reported higher earnings than in the same quarter of the previous year. When
integrating all available information into a decision is cognitively demanding, numerical in-
formation and coarse categorizations can compete for attention. If the decision-maker finds a
problem more challenging, they may rely more on easier-to-process information components,
such as familiar categories. Intuitively, people may have a sense of what familiar categories of
news mean – like whether earnings are above or below expectations – because such categories
are stable and recurring. These category shortcuts may allow for quick processing. By contrast,
estimating the precise impact of the quantitative signal is much harder. For instance, how does
the excess return differ when reported EPS is $1.98 versus $2.03?

In this paper, we study situations in which numerical information is provided alongside cat-
egory labels, defined through a partition of the numerical scale. We hypothesize that more diffi-
cult decisions lead people to rely more on coarse categories. The resulting behavioral pattern is
a more step-shaped or S-shaped response function: higher sensitivity at category boundaries but
lower sensitivity elsewhere. We discuss various microfoundations for why coarse information
can be cognitively “cheaper” and review the class of models that can predict a more non-linear
response around category boundaries for harder problems. We illustrate the core ideas using a
simple framework of constrained optimization in which decision difficulty creates imprecision:
numerical signals are processed less precisely than categorical information.

We empirically test the predictions about the role of decision difficulty for the relative re-
liance on coarse versus granular information in the context of stock market returns to earnings
surprises, both in aggregate market data and individual belief formation experiments with in-
vestors. Earnings announcements have several features that make them a well-suited testing
ground for our hypothesis: (i) decision-making is naturally difficult given the high-dimensional
nature of data that investors process in short periods of time; (ii) both categorical and quanti-
tative information are explicitly communicated in earnings news; (iii) earnings categories are
defined through thresholds on the numerical EPS scale; (iv) there are various categories that
investors are highly familiar with.1

1We do not examine settings where categories are unfamiliar but numerical information is commonly commu-
nicated. In such scenarios, numbers might be subjectively easier to integrate than categories, so that our predicted
effect reverses – an interesting avenue for future research.
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Field Evidence. Testing our hypothesis in the field requires a characterization of relevant nu-
merical signals and categorizations, as well as a measure of and variation in decision difficulty.
First, to identify which categories are most commonly communicated in earnings news, we ana-
lyze headlines in the Earnings category of theWall Street Journal between 2002 and 2021.2 We
document that a frequent categorization is into beating versus missing the consensus forecast,
with other common categorizations being about whether earnings are positive or negative, and
about the growth or decline of earnings over time.3 Our main analyses thus focus on earnings
surprises relative to market expectations. To obtain an empirical proxy of decision difficulty,
we leverage the literature on what makes a stock “hard to value” (e.g., Laarits and Sammon,
2024), adopting the concept of valuation uncertainty (VU) from Golubov and Konstantinidi
(2023). This measure captures uncertainty regarding the mapping from firm fundamentals to
stock prices, reflecting variation both across firms and within firms over time.

We begin our examination of the field data by studying the relationship between market-
adjusted returns in the five days following an earnings announcement and so-called “standard-
ized unexpected earnings” (SUE), calculated as the difference between the actual earnings per
share and the consensus forecast, divided by the closing price before the earnings announce-
ment. This allows us to investigate the role of being in the earnings beat versus miss category
– the sign of the surprise – alongside the effect of the numerical magnitude of firm earnings –
the size of the surprise.

Figure 1 illustrates a striking pattern in our sample of more than 176,000 earnings an-
nouncements for over 6,000 unique companies between 1986 and 2019: market-adjusted re-
turns exhibit a pronounced S-shaped relationship with SUE. Returns are, on average, highly
sensitive to the sign of earnings surprises but far less sensitive to their size. This non-linear
relationship between market-adjusted returns and earnings surprises has, in fact, been well es-
tablished in finance and accounting over the past three decades (e.g., Freeman and Tse, 1992;
Skinner and Sloan, 2002). A variety of explanations – primarily on the role of earnings per-
sistence – have been put forward in the literature, as we review in detail below. This paper
examines a complementary, behavioral hypothesis to help explain this pattern.

To study the association between valuation uncertainty and market-adjusted returns, we
compare the earnings response curve for observations associated with high VU versus low VU.
Our main specification estimates the relationship between market-adjusted returns and SUE for
symmetric windows around zero. For small windows around zero surprise, this primarily cap-

2Data used: https://www.kaggle.com/datasets/amogh7joshi/wsj-headline-classification.
3Numerical information about earnings is, in fact, mentioned in fewer than 10% of earnings news headlines.
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Figure 1: S-shaped Response of Market-Adjusted Returns to Earnings Surprises

Notes: This figure illustrates the relationship between market-adjusted returns and earnings surprises. The x-
axis represents standardized unexpected earnings (SUE), calculated as the difference between actual earnings
per share (EPS) and mean expected EPS, normalized by the previous closing price (Pi,t−1). The y-axis shows
the cumulative market-adjusted return over the five trading days following an earnings announcement.

tures the impact of crossing the category threshold (beat versus miss). Within these windows,
we predict that observations with greater valuation uncertainty show increased sensitivity to
SUE, reflecting a stronger reliance on coarse categorical distinctions. As we gradually expand
the width of the symmetric window around zero, the estimated relationship increasingly reflects
the sensitivity to the size of surprises. The second part of our hypothesis is that observations
with high valuation uncertainty are less sensitive to the magnitude of surprises.

Consistent with our hypotheses, our key finding is that higher valuation uncertainty is as-
sociated with higher sensitivity of market-adjusted returns to the sign of surprises, but lower
sensitivity to the size of surprises. While the estimated interaction between SUE and valua-
tion uncertainty is significantly positive for small symmetric windows around zero (capturing
responses to crossing the category threshold), it becomes significantly negative for large sym-
metric windows around zero (capturing responses to both the sign and size of surprises). The
effect sizes are economically meaningful: for a window size of 0.002 SUE around zero sur-
prise, a 0.01 increase (henceforth one unit) in SUE is associated with a 17.12 p.p. (p < 0.01)
increase in market-adjusted returns for a company with average valuation uncertainty. For a
company with a one-standard deviation higher valuation uncertainty, this effect is 19.42 p.p.
(p < 0.01), i.e., valuation uncertainty is associated with increases in the sensitivity to surprises
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by approximately 13% (p < 0.01).
For a window size of 0.05, a one-unit increase in SUE is associated with a 2.4 p.p. (p <

0.01) increase in market-adjusted returns for a company with average valuation uncertainty.
For a company with a one-standard deviation higher valuation uncertainty this effect is 2.1 p.p.
(p < 0.01), i.e., a decrease in the sensitivity to surprises by approximately 13%.

Our finding is robust to varying sets of controls, fixed effects, event study horizons and
specifications. We conduct an extensive set of tests on how our findings about the role of hard-
to-value stocks relate to previous explanations for the S-shaped response to earnings news in the
finance and accounting literature. We find that our results are not explained by differences in
book-to-market ratios, earnings quality, differential pre-announcement information acquisition
and differential strategic disclosure. We argue that the distinctive prediction associated with
our hypothesis – a more S-shaped pattern implies three crossing points between the earnings
response curves of high versus low VU observations – cannot easily be explained by existing
explanations. We also explore the relationship between valuation uncertainty and long-run
responses to earnings news and, in particular, post-earnings announcement drift (PEAD). In
our data, we find patterns consistent with the idea that high VU is associated with overreaction
for small and underreaction for larges surprise, yet these effects are more noisily measured.

Our framework makes distinct predictions about different forms of uncertainty. In partic-
ular, the model predicts that uncertainty about the location of category thresholds decreases
investors’ sensitivity to surprises everywhere, especially around category boundaries. Intuitively,
such uncertainty can also be conceptualized as the difficulty or imprecision involved in integrat-
ing categorical information. Consequently, our model predicts opposite effects of imprecision for
categorical versus numerical information. We test this prediction using variation in dispersion
of analysts’ earnings forecasts. Consistent with our framework, we find that higher dispersion
in earnings forecasts – unlike valuation uncertainty – predicts decreases in the sensitivity to sur-
prises, especially close to the category thresholds. This evidence also mitigates concerns that
our results are driven by unobservable characteristics that are correlated with different forms
of uncertainty.

Experimental Evidence. To provide causal evidence on the effect of decision difficulty on
return expectations, we run controlled online experiments with investors. In our experiments,
investors make incentivized predictions about same-day stock price movements of five different
real companies for a specific scenario of an impending, actual earnings announcement. In each
scenario, respondents receive a news story about a company’s earnings that contains both nu-

4



merical information about EPS and categorical information on whether the firm beat or missed
the consensus forecast. Our design varies the realized earnings surprises across participants. To
provide causal evidence on the difficulty of the decision problem, we randomly assign half of the
participants to a Baseline condition and the other half to a High Constraints condition. In High
Constraints, we increase the severity of processing constraints by adding some irrelevant (but
naturalistic) information to the earnings news piece and by imposing a 40 second time limit
for bonus eligibility. The results of our pre-registered experiments on individual price forecasts
strongly corroborate our main findings from aggregate price data in the field. We find a large
treatment difference in line with the distinctive pattern implied by our behavioral prediction.
Incentivized forecasts in High Constraints are more S-shaped: Expected price adjustments are
relatively larger for small earnings surprises – more positive for small beats and more negative
for small misses – but diminish in magnitude for larger surprises. The experiment allows us
to test a more specific notion of decision difficulty than our field proxy: here, the more pro-
nounced S shape is unambiguously driven by more severe processing constraints rather than,
e.g., preference uncertainty or stochasticity in the real world.

Local Variation in Decision Difficulty. Under constant decision difficulty for earnings sur-
prises of different sizes, the model predicts a symmetric and step-shaped (rather than S-shaped)
response function. The actual relationship between excess returns and earnings surprises, how-
ever, exhibits (i) smoothly diminishing sensitivity around zero rather than a sharp jump at
category boundaries, and (ii) pronounced asymmetry, with weaker sensitivity for negative sur-
prises. In the model, these patterns can result from differences in the difficulty of integrating
large versus small and positive versus negative earnings surprises, respectively. To understand
the potential role of such variation, we leverage a well-documented idea from the cognitive
sciences, suggesting that more familiar stimuli are easier to process and thus integrated more
precisely, implying higher sensitivity in stimulus ranges with higher historical density.⁴

We test this prediction by examining how the historical density of earnings surprises influ-
ences investors’ sensitivity to these surprises. To set the stage, we first document that the em-
pirical distribution of earnings surprises (i) exhibits a pronounced bell shape centered around
zero, rapidly declining as surprises grow in magnitude, and (ii) is notably asymmetric, with
negative surprises being less common than positive ones. In a next step, we estimate local
earnings response coefficients for a fine-grained partition of buckets with earnings surprises of

⁴Recent contributions have applied this principle of efficient coding (Laughlin, 1981; Barlow et al., 1961) to
economic choices in controlled experiments (e.g., Frydman and Jin, 2022, 2024).
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different sizes. Strikingly, the local sensitivity to the magnitude of earnings surprises is strongly
positively correlated with the local historical density, consistent with a negative relationship
between problem difficulty and historical density. In fact, the empirical density explains away
58% of the difference in sensitivities between positive and negative earnings surprises, as well
as 50% of the “jump” at the category threshold between beating and missing market expec-
tations. These findings complement rather than substitute our baseline results, as variation in
local density alone cannot fully explain the jump at zero, nor for the effects of valuation uncer-
tainty on return sensitivity. We test additional theories about variation in decision difficulty in
Section 6.

Contributions and Related Literature. An extensive literature, dating back to at least Simon
(1955), links behavioral anomalies to information processing constraints and bounded rational-
ity (e.g., Woodford, 2020). Recent studies emphasize how complexity shapes decision-making
and often induces simplification strategies (e.g., see the review of Oprea, 2024), such as the
reliance on simplified mental models. Relatedly, a recent literature emphasizes behavioral inat-
tention and attenuation as sources of global insensitivity to variations in choice parameters
(e.g., Gabaix, 2019; Enke and Graeber, 2023; Enke et al., 2025).

Complementing this literature, we propose that decision difficulty amplifies the reliance on
easier-to-integrate information, such as familiar categories, increasing sensitivity around cat-
egory thresholds while reducing responsiveness away from these thresholds. Our framework
relates to recent analyses of over- and underreaction to news (Ba et al., 2024; Bastianello and
Imas, 2025). Augenblick et al. (2025) empirically demonstrate decision-makers’ tendency to
overinfer from weak signals and underinfer from strong signals. Similarly, Ba et al. (2024)
propose a two-stage belief formation model: complexity is initially reduced via a coarse state
representation, followed by cognitively imprecise integration of detailed information. Our find-
ings are compatible with this interpretation, highlighting simplification through categorization
at the representational stage and numerical imprecision at the computational stage.

A cross-disciplinary literature argues that coarser information structures entail lower cogni-
tive processing costs, drawing on information-theoretic principles such as Shannon cost (Sims,
2003) and Kolmogorov complexity (see Oprea, 2024, for a review). This idea aligns with ratio-
nal inattention models, which predict discretization of information (see Maćkowiak et al., 2023,
for a review). Our results on variation in historical density of surprises in particular relate to
work on efficient coding (Frydman and Jin, 2022, 2024) and decision by sampling (Stewart et
al., 2006). Our paper contributes evidence from a high-stakes field context that speaks to these
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theories, moving beyond the existing evidence which is confined to lab experiments.
Our field evidence relates to studies on reference dependence and left-digit bias (Allen et

al., 2017; Pope and Simonsohn, 2011; List et al., 2023; Strulov-Shlain, 2023; Lacetera et al.,
2012). Meier et al. (2025) finds step-shaped forecast revisions by financial analysts consistent
with reference-dependent thinking, supporting our interpretation that the observed S-shaped
excess returns partly reflect behavioral phenomena. Unlike prior studies, we explicitly analyze
the role of decision difficulty.⁵

Our findings relate to foundational work on coarse thinking in economics (Mullainathan
et al., 2008; Mullainathan, 2002; Bordalo et al., 2020) and finance (Barberis and Shleifer,
2003). In Mullainathan (2002), agents discretely partition the state space, updating beliefs only
upon crossing categorical thresholds. Similarly, Mullainathan et al. (2008) propose that coarse
categorization may inadvertently cause individuals to generalize information from one scenario
to others within the same coarse category. These tendencies for coarsening may have a similar
psychological origin as the patterns of competition between coarse and granular information
structures that we study in this paper.⁶

Our findings contribute to the literature on stock market reactions to earnings news (e.g.,
Daniel et al., 1998; Bordalo et al., 2025; Hong and Stein, 1999; Barberis et al., 1998; Kwon and
Tang, 2025) and specifically to the understanding of S-shaped responses to earnings surprises
(Bernard and Thomas, 1989; Bouchaud et al., 2019; Hirshleifer and Teoh, 2003). Prior explana-
tions emphasize earnings persistence (Freeman and Tse, 1992), characteristics of growth versus
value firms (Skinner and Sloan, 2002), and earnings management practices (Burgstahler and
Dichev, 1997; Bhojraj et al., 2009). We propose an additional behavioral mechanism and em-
pirically distinguish it from these established financial-market explanations and endogenous
disclosure effects (Huang et al., 2025).

Our paper relates to behavioral finance literature documenting reduced investor sensitivity
to news under high information load or low attention (Hirshleifer et al., 2009b; DellaVigna and
Pollet, 2009), and evidence that uncertainty can lead investors to neglect public signals (Baner-
jee et al., 2024; Hirshleifer et al., 2009a; Engelberg, 2008; Cohen et al., 2020). Laarits and
Sammon (2024) show that hard-to-value stocks are globally insensitive to earnings surprises,

⁵Recent models link the prospect-theoretic value function to processing constraints (e.g., Villas-Boas, 2024),
but our findings do not directly address this form of diminishing sensitivity.

⁶Schley et al. (2023) examine how categorical thinking influences probability weighting, linking it to cognitive
science evidence that categories induce S-shaped response patterns around boundaries, consistent with evidence
from the cognitive sciences (Hollands and Dyre, 2000; Huttenlocher et al., 2000; Hsee et al., 1999); however,
these papers do not explicitly study decision difficulty.
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aligning with broader evidence on insensitivity of behavioral responses to beliefs in finance
(Giglio et al., 2021; Charles et al., 2024). We demonstrate that valuation uncertainty does not
merely reduce sensitivity globally, but increases sensitivity near categorical thresholds.

2 Behavioral Predictions

We study the role of decision difficulty (modeled as imprecision affecting optimization) for
how agents form beliefs in environments where granular numerical information is presented
alongside coarse categorical information. Categories are defined by threshold-based partitions
of the numerical scale. The agent understands the category memberships, but integrates the
numerical signal imprecisely.

Setup. A decision maker (DM) receives a quantitative signal s ∈ R, such as a company’s earn-
ings per share, and chooses their response r ∈ R. They further see a collection of K category
thresholds ck ∈ R; k = 1, . . . , K . These category thresholds may include, for example, the con-
sensus forecast, the EPS in the same quarter last year or simply the origin of the EPS scale.
Given s, each category threshold ck implies a qualitative signal sk = 1{s > ck}. The DM’s full
information set thus comprises a collection of binary categorizations alongside the numerical
signal itself, {s1, . . . , sK , s}. We assume that the DM processes the category thresholds precisely,
whereas they integrate the numerical signal imprecisely.⁷ Such imprecision emerges in the pro-
cess of integrating information to form a response r. We take a broad view of the potential
determinants of decision difficulty and the associated imprecision, including factors on the “de-
mand side” of information processing, e.g., the complexity of the optimization problem, and
factors on the “supply side”, e.g., the DM’s cognitive processing resources, subjective uncer-
tainty about preferences, hard capacity constraints like time constraints, or even perceptual
imprecision.

Assumption 1. Categorical information is incorporated precisely; the numerical signal is inte-
grated imprecisely.

The DM chooses their response r given the information set by maximizing an objective
function U(r, s). We assume that the DM’s unconstrained optimal response function r⋆(s) in the

⁷We assume no imprecision in processing the category thresholds for simplicity here. This assumption can
be relaxed in ways Augenblick et al. (2025) show. The more general version of Assumption 1 is that cognitive
imprecision on the numerical component is higher than on categorical information.
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absence of any imprecision is differentiable and monotonic. Without loss, we further assume
that it is increasing. We do not require that this unconstrained response function is linear or
takes any particular shape. The model is general: it applies to a belief r as a function of a signal
s, or to an action a as a function of some decision parameter p, with a⋆(p). There are likely
different sources of imprecision in different situations. Given our application to earnings news,
in what follows we focus on the interpretation of how a belief responds to information.

Category Prior and Default Response. In recent applications of cognitive imprecision, the
DM’s prior captures what they would do if they were completely incapable of simulating the
optimum. In this vein, we start with a normal unconditional prior N (rud ,σ2

ud). The objective
function and this prior pin down an unconditional “default response,” which is the action the
DM would take before receiving information, e.g., the prior mean given a quadratic loss func-
tion. In this class of models, the prior is thus signal-invariant; it induces an unconditional default
response rud that does not depend on the signal itself.

We then depart from and complement the notion of a signal-invariant prior with a category
prior r⋆ | s1, . . . , sK ∼ N (rd ,σ2

d) that induces a conditional default response rd , which already
incorporates the set of qualitative signals {s1, . . . , sK}. In particular, before integrating the nu-
merical signal, the agent identifies their mean optimal action conditional on the categorical
information:

rd = E[ r⋆ | s1, . . . , sK ]. (1)

The idea behind the category prior is that the DM parses and understands categorical informa-
tion. Intuitively, the agent forms a costless “first impression” by processing categorical informa-
tion such as, e.g., “earnings beating expectations” and forms a corresponding conditional belief,
e.g., the average excess return for companies with positive surprises.

The DM’s understanding of threshold information allows them to categorize their default
response. Because the DM is aware that playing this conditional mean action only leads to
optimal behavior on average, they remain uncertain about whether the conditional default
response is actually optimal, captured by the conditional prior uncertainty σ2

d . The conditional
default mean rd jumps at the category thresholds. The conditional default response is, thus, a
step function.

Imprecision in Optimization. Due to imprecision that only affects the integration of the
numerical signal s, the DM does not have direct access to their optimal response r⋆(s). Wemodel
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this imprecision as emerging in the mapping between numerical signal and response.⁸ Given
imprecision, the DM can only mentally simulate their best response. This mental simulation
creates an unbiased but noisy cognitive signal about the optimal response:

r c(s)∼N
�

r⋆(s),σ2
r (s)
�

(2)

The noisiness of this cognitive signal is determined by the imprecision parameter σ2
r (s). Note

that we generally allow for this level of imprecision to depend on the signal itself. We derive
our main predictions under the assumption of constant imprecision before turning to the role
of variation in imprecision. Proofs are provided in Appendix F.

Constrained Optimal Response. The DM integrates their imprecise cognitive signal with
their conditional prior, yielding:

r(s) = λ r c(s) + (1−λ)rd(s), (3)

where the weight on the cognitive signal, λ= σ2
d

σ2
r (s)+σ

2
d
decreases in imprecision, σ2

r (s), and
increases in the degree of prior noise. Crucially, the behavioral response is a weighted average
of optimal and default (step function) response.

Under the assumption of constant imprecision that is independent of the signal, σ2
r , the

behavioral response is a piecewise linear function that jumps at the threshold points. We do
not have to assume additional characteristics for r∗.⁹ In particular, the behavioral response
function has two key properties in comparison to the unconstrained response function r∗:

• The behavioral response r is more sensitive than the unconstrained optimal response r∗

at the boundaries induced by the category thresholds. Intuitively, this originates from
the jump in the piecewise linear behavioral response caused by the jump in the default
response function, which is absent from the smooth unconstrained response.

• The behavioral response r is less sensitive than the unconstrained optimal response r∗

everywhere except at the comparison thresholds. Intuitively, this originates from mixing

⁸Again, we embrace the different potential origins: information-processing constraints, uncertainty about pref-
erences, or true stochasticity in the mapping between response and optimal response.

⁹We allow for, but remain agnostic about, the possibility that the unconstrained optimal response, r⋆, itself
responds more strongly at category boundaries. For example, it might be that making a profit instead of a loss in-
deed affects the optimal response. Our prediction is merely that processing constraints would make the behavioral
response even more sensitive around category boundaries.
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the unconstrained optimal response with a default response function that is completely
inelastic (flat) everywhere but at the category thresholds.

Prediction 1. An increase in imprecision increases sensitivity of the expected behavioral response
at category boundaries (amplification) and decreases it everywhere else (attenuation).

Variation in Imprecision. In practice, the extent of processing imprecision might vary across
the range of stimuli. For example, assuming that noise increases in the absolute magnitude
of the unexpected earnings surprise would induce a smoother, sigmoid shaped response as a
function of SUE. In that case, the region of excess sensitivity is not constrained to the category
boundary, but excess sensitivity is predicted in a window around zero.1⁰ Models of decision
by sampling (Stewart et al., 2006) and efficient coding (e.g., Barlow et al., 1961; Laughlin,
1981; Frydman and Jin, 2024, 2022) predict that processing noise for a given stimulus range
is decreasing in its empirical density in the stimulus distribution. The degree of imprecision
in integrating the numerical signal might also directly depend on the set of categorizations:
in the cognitive sciences, a common finding is that more surprising information draws higher
attentional capacity (e.g., Itti and Baldi, 2009; Friston, 2005), potentially leaving a lower stock
of processing resources to the numerical signal. We empirically explore different determinants
of variation in imprecision in Section 6.

Extension: Imprecision in Categories. In practice, a second, distinct form of uncertainty di-
rectly affects optimization: uncertainty about the location of the category thresholds, such as the
analyst forecast of EPS. Uncertainty about what constitutes the expected level of the announced
variable introduces uncertainty about categorizing the surprise.11 We introduce normal noise
about the category threshold that pins down what gets coded as zero surprise, so s̃ ∼N (s,σ2

s ).
The noise parameter σ2

s captures the degree of dispersion.12 Technically, this noise parameter
can also be thought of as reflecting the difficulty or imprecision in integrating categories, akin

1⁰Increasing noise in the absolute magnitude of the signal has been documented in a wide variety of experi-
mental tasks by Enke et al. (2025), who argue that noise is driven by the distance to “simple points” where the
DM understands the mapping between parameter and action, akin to category thresholds.

11There are three different ways of thinking about analyst forecast dispersion. First, it may capture a given
individual’s uncertainty about the category threshold, for example because they saw several contradicting analyst
forecasts. Second, different individuals may use different benchmarks, but every one of them is certain about
their expectations. In the latter case, the resulting behavioral response of the model captures the (equal-weighted)
aggregation of individuals with different reference points, each of them behaving constrained optimal according
to equation (3).

12Note that uncertainty about a reference level is examined in the literature on stochastic reference points (e.g.,
Sprenger, 2015), but has not been explored with respect to its effect on the shape of the response function.
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to whatσ2
r (s) captures for integrating the numerical signal. Notably, Prediction 2 highlights that

this empirically distinguishable form of uncertainty yields contrasting and testable implications.

Prediction 2. An increase in uncertainty about the location of the category threshold decreases
sensitivity for all levels of surprise, but most strongly around the category threshold of zero surprise.

Discussion. First, we do not microfound the notion that integrating coarse partitions of nu-
merical information is “cognitively cheaper” here but refer the reader to the various existing
justifications discussed in the prior literature in Section 1. Second, under this assumption, there
are various modeling approaches that can, in principle, generate the key behavioral prediction
we derive here. The objective of our empirical approach is to test this shared prediction but not
to sharply distinguish between modeling approaches. This class of models has been widely ap-
plied across disciplines – including in modeling the implications of cognitive imprecision (e.g.,
Ilut and Valchev, 2023; Woodford, 2020, 2012; Khaw et al., 2021). Our model aligns well with
key ideas in Augenblick et al. (2025). While Augenblick et al. (2025) model an agent who
knows the direction of an update but not the strength, in our model people form a conditional
prior that depends on comparisons to (potentially multiple) category boundaries.13 One impli-
cation is that our model, applied to belief formation, supports updating in the wrong direction
(as often documented in standard belief updating experiments when priors are extreme, e.g.,
in the data of Enke and Graeber (2023)). This partly results from the fact that we formulate
our model in action space, i.e., the signal provides a noisy signal of the optimal action rather
than of the signal strength.1⁴ Moreover, we do not model a binary state space but a continu-
ous one, and people process the quantitative signal with noise, rather than the implied signal
strength. In our model (and unlike in Augenblick et al. (2025)), the DM does not form an
estimate of the signal strength, but of the optimal response directly. In their model, the con-
ditional expectation of signal strength bS(sd) “jumps” as the direction of the Bayesian update
switches; in our model, the conditional prior jumps at category boundaries. While Augenblick
et al. (2025) develop a highly instructive general updating setup that does not require Bayesian
updating or any specific functional form, we restrict our attention to a setup with normal es-
timates, which are similar in spirit to their log-normal setup in updating space. Augenblick et
al. (2025) focus on a setup with one qualitative signal (the direction of the update) and one or

13If there is a single category boundary, K = 1, and the optimal response crosses the origin, r⋆(0) = 0 , our
setup delivers some similar predictions.

1⁴Augenblick et al. (2025) extend their model to incorporate distortions of the prior in Section II.C. In our
framework, distortions are formulated directly in action space and can thus accommodate distortions of parameters
other than the signal diagnosticity by design.
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more quantitative signals; our setup is about (potentially multiple) qualitative signals and one
or more quantitative ones. All in all, the foundations of our model are consistent with and build
on Augenblick et al. (2025); but people in our framework know the central tendency of their
response to a stimulus category (rather than the direction of an update) and mentally simulate
their response (rather than responding to the signal strength). Above and beyond Augenblick
et al. (2025), we acknowledge that alternative formulations, such as the feature-specific noise
in Bastianello and Imas (2025), may be consistent with our main predictions under specific as-
sumptions. The distinction between categorical and numerical information (or qualitative and
quantitative information more generally) is also reminiscent of the distinction between the ini-
tial representation of a problem, driven by attentional phenomena, based on which the DM then
(imprecisely) processes the different components of the problem, the computational stage (e.g.,
Ba et al., 2024).

3 Field Setting:Market Responses to Earnings Announcements

3.1 Data

Setting. Earnings announcements are important events in the financial reporting calendar
of U.S. publicly traded companies, heavily scrutinized by investors and analysts alike. These
announcements provide a comprehensive overview of a company’s financial performance. The
key metric often highlighted is earnings per share (EPS), which serves as a critical indicator
of a company’s profitability. Companies typically release earnings through press releases and
conduct earnings calls, during which senior executives discuss the results and provide forward
guidance. Analysts and investors closely monitor these earnings surprises, making EPS a focal
point of financial analysis and investment decisions.

Earnings Announcements. Our paper focuses on market-adjusted returns around earnings
announcements. To study these, we need to determine when investors can first trade on earn-
ings information. Using the Institutional Brokers’ Estimate System (IBES) earnings release date
and time, we identify the first trading day with available earnings information. If earnings are
released before 4:00 PM ET on a weekday, we label that day as the effective earnings date. If
released on or after 4:00 PM ET, on a weekend, or on a trading holiday, the next trading day
is the effective earnings date. We link IBES data to stock price data from the Center for Re-
search in Security Prices (CRSP) using the mapping file provided by Wharton Research Data
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Services (WRDS) and restrict the sample to firms with non-missing earnings and consensus
(mean) earnings expectations. We use IBES’ measure of earnings-per-share in the unadjusted
detail file, that is, “street” earnings. This measure is designed to take out the effect of one-time
items (Hillenbrand and McCarthy, 2024).1⁵

Analyst Expectations. The IBES also provides comprehensive information on analyst expec-
tations and forecasts for EPS for publicly traded companies at various horizons. To quantify
uncertainty about a company’s earnings, we use the measure of analyst dispersion from Ben-
David et al. (2023), defined as “the standard deviation of EPS forecasts divided by the absolute
value of the average EPS forecast”.

Earnings Surprises. To quantify earnings surprises, we use analyst expectations from IBES.
Following DellaVigna and Pollet (2009), we define standardized unexpected earnings (SUE)
as:

SUEi,t =
EPSi,t − Et−1[EPSi,t]

Pi,t−1
(4)

where EPSi,t is the earnings per share. Et−1[EPSi,t] is the mean expected earnings per share
in the last IBES statistical period before earnings were released. Pi,t−1 is the last closing price
before the earnings announcement. To mitigate the influence of extreme outliers, we winsorize
SUEi,t at the 1% and 99% level.

Market-Adjusted Returns. We use historical data on stock prices, returns, and trading vol-
umes from CRSP. Following Campbell et al. (2001), we define market-adjusted returns as the
difference between the stock’s return and the return on the value-weighted market portfolio.
Specifically, the stock’s return (Ri) is calculated as the cumulative total return on the stock
(inclusive of capital gains and dividends) over a given period, while the market return (Rm)
represents the weighted average cumulative total return of all ordinary common shares traded
on major exchanges in the United States stock market.1⁶ The market-adjusted return (RMA) is
then given by RMA = Ri−Rm, effectively isolating the stock’s performance from broader market
movements.

1⁵The term “unadjusted” means that earnings were not adjusted by IBES for stock splits. We use data from the
unadjusted file because in constructing the adjusted file, IBES rounds estimates and actual earnings to the nearest
penny, which can reduce the precision of any earnings surprise measure.

1⁶We use market-adjusted returns instead of factor-adjusted returns to avoid noise inherent in estimating factor
betas. Further, given that we are focusing on such a narrow window around earnings announcements, the earnings
news (rather than e.g., factor news) is likely the main driver of returns.
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Proxies for Stock Valuation Difficulty. To proxy for the severity of processing imprecision,
we leverage the existing literature on what makes stocks “hard to value” (see, e.g., Laarits and
Sammon, 2024). From this body of work, the measure of “valuation uncertainty” (VU) in Gol-
ubov and Konstantinidi (2023) is most closely related to our object of interest, as it captures
uncertainty regarding the mapping between fundamentals and stock prices. Concretely, valu-
ation uncertainty, VUi,t−1, of company i at time t − 1 is defined as the interquartile range of
expected firm value given by a multiples-based valuation model at different points in the dis-
tribution of a given firm’s industry at a given point in time. The measure varies both within
companies over time and across companies at a given point in time.1⁷ We will therefore refer to
“observations with high/low valuation uncertainty” rather than “firms with high/low valuation
uncertainty”, because a given firm might be associated with high or low VU at different times.

Intuitively, high valuation uncertainty means that translating information about, say, earn-
ings, into prices or returns is associated with higher uncertainty. This may be due to a variety of
reasons, including attributes that make a firm “more complicated” (e.g., having multiple busi-
ness segments Cohen and Lou (2012)), cyclical factors (e.g., market or industry environment)
that make valuations more difficult or uncertain and the generic difficulty of valuing certain
types of assets (e.g., intangible capital (Lev and Gu, 2016)). We do not claim to distinguish
between these sources of valuation uncertainty, but rather embrace the multitude of factors
contributing to uncertainty about the mapping in line with the broad notion of processing im-
precision described in Section 2. That said, the within-stock across-time variation in valuation
uncertainty we explore is unlikely to be due to corresponding variation in preference uncer-
tainty.1⁸

Data Filtering. To construct our final sample, we start with the set of all CRSP ordinary
common shares (share codes 10-11) that are traded on major exchanges (exchange codes 1-3).
We then further restrict to stocks which can be matched to IBES, and to stock-quarters with
non-missing earnings-per-share and consensus earnings-per-share estimates. Next, we require
that each stock-quarter has non-missing data for our measure of analyst dispersion (Ben-David
et al., 2023), which requires that at least 3 analysts cover the stock, and a non-zero value
for consensus expected earnings. We also require that the stock has a non-missing value for

1⁷To avoid look-ahead bias, we identify month-end values of VU based solely on information that was public
as of that month’s end. For each earnings announcement, we use the value from the last month-end before the
announcement date.

1⁸In our experiments, we are able to manipulate the decision difficulty due to the severity processing constraints
more directly, see Section 5.
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valuation uncertainty. Finally, we require that the stock has non-missing returns on the earnings
announcement day itself, and the following four trading days, as well as a non-missing closing
price on the last trading day before the earnings announcement. After applying these filters,
given our standard error clustering strategy, we then remove all singletons both in terms of
year-quarters and stocks. This filtering procedure yields a final sample of more than 176,000
earnings announcements for more than 6,000 unique companies between 1986 and 2019.

Summary Statistics. We present summary statistics in Table 1. SUE has a median of zero and
a standard deviation of 0.079. EPS are on average $0.33 with a standard deviation of $0.72.
Market-adjusted returns over the first five trading days on and after the earnings announcement
are on average zero, but they exhibit large dispersion. The interquartile range spans from -0.048
to 0.046. The total number of observations in our main regression tables is slightly smaller than
the number of observations in Table 1, as they restrict to subsets of the SUE distribution.

Table 1: Summary Statistics

Obs. Mean SD P25 P50 P75

SUE 176,893 -0.003 0.079 -0.001 0.000 0.002
EPS 176,893 0.327 0.719 0.050 0.250 0.510

Mkt. Adj. Ret 176,893 0.000 0.092 -0.048 -0.002 0.046
Valuation Uncertainty 176,893 0.750 0.232 0.607 0.747 0.894

Dispersion 176,893 0.430 0.449 0.189 0.271 0.450

Notes: This table presents equal-weighted summary statistics for all earnings announcements in our sample.
Market-adjusted returns are computed as the difference between the cumulative return on the stock over the
first five trading days in which earnings information could be traded on, and the cumulative return on the
value-weighted market portfolio over the same period. Valuation Uncertainty and Dispersion are measured as
of the last month-end prior to each earnings announcement.

3.2 Event Study Approach

Our main analyses focus on the cumulative market-adjusted returns from the first day the in-
formation could have been traded on to four trading days after.1⁹ Our analyses focus on a
relatively short time horizon around the event for several reasons: First, most of the price ad-
justment to new information should occur on the announcement day or within a few days after,
as investors rapidly process and act on the new information (Martineau, 2022). Second, by

1⁹Our results are robust to using different time horizons around the event (Appendix Table A5).
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focusing on a short window around the earnings announcement, the study minimizes the in-
fluence of other unrelated news or events that could affect stock prices. Over a longer window,
it becomes increasingly likely that other factors (e.g., macroeconomic news, industry develop-
ments, or non-earnings-related firm-specific events) will confound the analysis. In other words,
a shorter event window ensures that the observed abnormal returns can be more confidently
attributed to the earnings announcement rather than other extraneous variables.

3.3 Market-Adjusted Returns and Earnings Surprises

Descriptive Evidence. We first start by plotting the average stockmarket response to earnings
surprises. Figure 1 (Section 1) displays the raw data on the relationship between SUE (on the
x-axis) and market-adjusted returns from the earnings announcement day itself (t = 0), to four
trading days after the earnings announcement (t = 4) (on the y-axis).

The figure shows a pronounced S-shaped response to earnings news on average: the stock
market response to earnings news is highly sensitive around zero surprise but fairly insensitive
further away from zero surprise. Moving from a SUE of -0.01 to 0.01 is associated with an
average difference of 8.56% in cumulative market-adjusted returns from t = 0 to t = 4.2⁰
Moving from a SUE of 0.01 to 0.02 is associated with a change of 30 basis points in cumulative
market-adjusted returns. Similarly, moving from a SUE of -0.02 to -0.01 is associated with a
change of 58 basis points in market-adjusted returns.

The slope of the empirical response function is steepest where the sign of the surprise
switches. In terms of the magnitudes of the slope, the steepest part of the curve is observed
around the point where SUE is zero and flattens out for larger absolute surprises, where only
the magnitude of the surprise varies. Notably, rather than a discrete jump around zero surprise,
the pattern exhibits rather smooth diminishing sensitivity. Moreover, there is a clear asymme-
try: conditional on the sign of the surprise, returns are far less sensitive to the magnitude of
negative surprises than to the magnitude of positive surprises.

This non-linear relationship betweenmarket-adjusted returns and earnings surprises is well-
established (Freeman and Tse, 1992; Skinner and Sloan, 2002). Several explanations exist:

2⁰A salient feature of Figure 1 is that for small positive SUEs – which one would think is good news – average
market-adjusted returns are negative. This is because many of the surprises in this range are less than 1 penny.
Recall that our measure of SUE is the earnings surprise relative to the pre-earnings announcement price, so there
will be a range with sub-penny earnings beats e.g., a 5 dollar stock or 100 dollar stock could both have a 1/2 of
a cent surprise, and have different SUEs. These sub-penny earnings beats are viewed less favorably by the market
than a beat of at least one cent per share. If we re-make this figure with dollar earning surprises, and form bins
in one cent increments, the first positive bin (i.e., the bin with surprises of at least 1 cent) has positive average
returns, i.e., we restore the expected result.
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Freeman and Tse (1992) link the S-shape to earnings persistence, where small surprises signal
lasting cash-flow changes. Alternatively, earnings management, where firms strive to slightly
exceed analyst forecasts, explains the sharp response to small negative surprises but not positive
ones (Burgstahler and Dichev, 1997; Bhojraj et al., 2009; Stein, 1989). Recent work highlights
strategic disclosure by firms withholding modestly positive news to enhance price reactions
(Huang et al., 2025). Our subsequent analysis tests predictions of our behavioral framework
and shows that the patterns in our data are inconsistent with these alternative explanations.

4 Field Evidence on Valuation Uncertainty and the S-Shape

In this section, we provide basic tests of our first hypothesis: that the difficulty of the decision
problem – as proxied by valuation uncertainty – predicts increased sensitivity to the crossing
of category boundaries, but is associated with decreased sensitivity within categories.

4.1 Raw Data

We begin with a look at the raw data before turning to empirical tests. For illustration, Figure 2
displays the raw data on the relationship between standardized unexpected earnings (on the x-
axis) and the cumulativemarket-adjusted return from t = 0 to t = 4 on the y-axis, separately for
observations with high versus low valuation uncertainty. The red dots show observations with
valuation uncertainty in the top quintile, while the blue dots show observations with bottom
quintile valuation uncertainty.21 The figure illustrates that the sensitivity to the sign of the
earnings surprise is higher for observations in the top quintile of valuation uncertainty than
for those in the bottom quintile of valuation uncertainty. Top quintile VU observations exhibit
more negative excess returns for small negative surprises and more positive excess returns for
small positive surprises.

These patterns flip once we consider earnings surprises further away from zero. Return
responses appear to be less sensitive to the magnitude of surprises for observations with top
quintile valuation uncertainty than for those with bottom quintile valuation uncertainty, espe-
cially for positive surprises. This plot provides suggestive evidence of a relationship between

21We choose a window of four days, rather than e.g., one day, as one might be concerned that stocks with
more valuation uncertainty might respond slower to news than stocks with less valuation uncertainty. Therefore,
focusing on a shorter window of just the earnings day itself might mechanically generate differences between how
high and low valuation uncertainty stocks appear to respond to news. In Appendix A, Tables A5 and A6 show that
our results are not sensitive to the post-earnings return window we consider
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Figure 2: Earnings Responses: Top versus bottom quintile of Valuation Uncertainty

Notes: This figure illustrates the earnings responses under different levels of valuation uncertainty. The x-axis
represents standardized unexpected earnings (SUE), calculated as the difference between actual earnings
per share (EPS) and mean expected EPS, normalized by the previous closing price (Pi,t−1). The y-axis shows
the cumulative market-adjusted return, reflecting the total return on the stock from the announcement day
itself to four trading days after the announcement, minus the value-weighted market return over the same
period. The red dots represent data from stock quarters with top-quintile valuation uncertainty, and the blue
dots represent data from stock quarters with bottom-quintile valuation uncertainty. Valuation uncertainty is
defined as the dispersion in expected market capitalization given by a multiples based valuation method at
different points in the industry-year distribution (Golubov and Konstantinidi, 2023).

valuation uncertainty and market-adjusted returns that follows the distinctive predictions of
our framework. We next provide more systematic evidence on this relationship.
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4.2 Empirical Specification

Baseline Specification. To quantify the stock market response to earnings announcements,
we follow Kothari and Sloan (1992) and estimate canonical earnings response regressions of
the following form:

ri,(t,t+n) = αVUi,t−1 + βSUEi,t + γSUEi,t × VUi,t−1 +δX i,t +φt +ψi + εi,t , (5)

where ri,(t,t+n) is the cumulative market-adjusted return from the first day investors could trade
on earnings information to n days later. Our main specification focuses on the cumulative
market-adjusted returns from n = 0 (the first day investors could have traded on the earnings
information) to n = 4 (four trading days later). Our key object of interest in this equation is γ,
which illustrates how the response to earnings surprises depend on the valuation uncertainty
associated with a company i before the earnings announcement at t. To ease interpretation of
magnitudes, we normalize VU to have mean zero and a standard deviation of one.

We control for both security (Permno) fixed effects, ψi and year-month fixed effects, φt .
With security fixed effects, our regression captures differences in post-earnings announcement
returns when for a given stock there is more or less valuation uncertainty. The time fixed ef-
fects account for time-variation in average returns around earnings announcements. Our results
should therefore be interpreted as exploiting heterogeneity in post-earnings announcement re-
turns in the cross-section at each given point in time.

In addition, we control for several time-varying firm-level characteristics in X i,t−1: time since
listing (age), market capitalization, returns from t-12 to t-2 (the returns typically used to form
momentum portfolios), book-to-market, CAPM beta, institutional ownership and total daily
stock volatility over the past 12 months.22 The logic of including these controls is that being
hard to value may be correlated with other characteristics known to predict how stocks re-
spond to earnings news, e.g., growth firms respond differently than value firms (Skinner and
Sloan, 2002) and institutions tend to lower their inventory of volatile firms ahead of earnings
announcements (Di Maggio et al., 2023). By including these controls, we aim to understand
the role of variation in valuation uncertainty above and beyond its correlation with these other
time-varying firm characteristics. All control variables are computed as of month end for the
last month before the earnings announcement. Standard errors are clustered at the stock and
year-quarter level.

22Table A1 demonstrates the robustness of our results to excluding these control variables and fixed effects.
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Estimating Stock-Price SensitivityWithin and Across Categories. Ourmain prediction con-
cerns the correlation between valuation uncertainty and the sensitivity of stock market returns
across a category threshold – for a switch in the sign of the surprise – as well as the sensitivity
within-category – as the magnitude of surprises varies. We begin with an “expanding windows”
approach: we estimate our main specification for many symmetric windows around zero SUE
with varying width. For tiny windows around zero surprise, the slope coefficient picks up the
sensitivity of stock market responses to crossing the category threshold. Here, our prediction
is that VU is associated with higher sensitivity, corresponding to a positive interaction effect
between VU and the earnings response coefficient. As we gradually expand the window size,
the earnings response coefficient increasingly also captures the sensitivity to the magnitude of
surprises on either side. Our prediction is that VU is associated with lower earnings response
sensitivity within the category, so that the overall effect of VU decreases as the window size
increases.23

Table 2: Effect of Valuation Uncertainty on Earnings Response Coefficients by Earnings Size

(1) (2) (3) (4) (5)
SUE Window ≤ |0.002| ≤ |0.005| ≤ |0.01| ≤ |0.025| ≤ |0.05|

SUE 17.12*** 9.938*** 6.473*** 3.691*** 2.393***
(0.662) (0.384) (0.257) (0.169) (0.123)

VU 0.000693 0.000707 0.000814 0.00118** 0.00130**
(0.001) (0.001) (0.001) (0.001) (0.001)

SUE x VU 2.302*** 0.859*** 0.254* -0.261*** -0.331***
(0.427) (0.226) (0.150) (0.099) (0.072)

Observations 95,081 133,062 153,221 167,506 173,587
R-squared 0.116 0.112 0.111 0.103 0.095

Notes: This table shows data on earnings announcements from 1986-2019. This table studies howmarket-adjusted
returns respond to standardized unexpected earnings (SUE) and how this varies by Valuation Uncertainty. SUE
refers to the deviation of a company’s reported earnings per share from the consensus earnings forecast by analysts,
normalized by the last closing price before the earnings announcement. Valuation uncertainty is defined as the
z-scored dispersion in expected market capitalization given by a multiples-based valuation method at different
points in the industry-year distribution. Our specifications control for both security (Permno) fixed effects and
year-quarter fixed effects. We also control for time since listing (age), market capitalization, returns from t-12 to
t-2, book-to-market, CAPM beta, institutional ownership and total daily stock volatility over the past 12 months.
Clustered standard errors are reported in parentheses. The window size indicates the range of SUE around zero
considered in each regression. Significance levels are denoted as follows: * p<0.1, ** p<0.05, *** p<0.01.

23In Appendix A.2 we show that our results are qualitatively similar when estimating a pooled specification.
Specifically, rather than estimating Equation 5 in expanding windows, we estimate a single regression on the entire
sample, and include dummy variables to partition the space of earnings surprises. In the pooled specification, we
observe a pronounced amplification of the response to surprises for windows close to zero.
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4.3 Valuation Uncertainty and Sensitivity to Surprises

Table 2 shows that SUE is positively and significantly associated with market-adjusted returns
across all specifications, i.e., the earnings response coefficient is positive, as expected. Specifi-
cally, in column (1), when focusing only on surprises close to zero, a one-unit increase in SUE
(defined as a SUE of 0.01 i.e., a 1% surprise in earnings yield given our definition of SUE) is
associated with a 17.12 p.p. increase in market-adjusted returns (p < 0.01). This positive rela-
tionship persists under larger surprise windows, though attenuated, across columns (2) through
(5), with coefficients ranging from 9.94 to 2.39, all significant at the 1% level.

Our main object of interest is the interaction effect between SUE and valuation uncertainty.
As predicted by our model, Column 1 reports a positive and significant interaction coefficient
for narrow SUE windows around zero. In other words: valuation uncertainty predicts increased
sensitivity to the crossing of a category boundary. Yet, this interaction coefficient falls as we
gradually expand the window of support, and finally turns negative and significant for windows
larger than 0.01 (see Columns (3), (4) and (5)). This means that valuation uncertainty predicts
decreased sensitivity to the magnitude of surprises conditional on their sign.

These effects are economically meaningful. For an observation with a one-standard devia-
tion higher valuation uncertainty the market adjusted return is 19.3 p.p. (p < 0.01) compared
to 17.12 p.p. for an observation with an average valuation uncertainty. This means that a one-
standard deviation higher valuation uncertainty predicts increases in the sensitivity to surprises
by 13 percent. For a window size of 0.05, a one unit increase in SUE is associated with a 2.4 p.p.
(p < 0.01) increase in market-adjusted returns for a company with average valuation uncer-
tainty. For a company with a one-standard deviation higher valuation uncertainty this effect is
2.1 p.p. (p < 0.01), i.e., it predicts decreases in sensitivity to surprises by 13 percent. For com-
parison, DellaVigna and Pollet (2009) show that the immediate stock response is 15% lower
for Friday announcements than for non-Friday announcements.

Figure 3 zooms in on the analysis of the interaction between the earnings surprise and val-
uation uncertainty for a larger number of window sizes around zero. The figure shows that
the interaction coefficient is highly significant and positive for relatively small windows around
zero. Consistent with the evidence from the table, the interaction coefficient becomes nega-
tive and significant for windows larger than 0.01 of SUE. Taken together, these correlational
findings are consistent with the central behavioral prediction of our model. The prediction of
a more S-shaped relationship is quite distinctive and thus hard to rationalize with alternative
explanations, which we address in the next subsection.
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Figure 3: Effect of Valuation Uncertainty on Earnings Response Coefficients

Notes: This figure shows the coefficients of the interaction effect between the Standardized Unexpected Earn-
ings (SUE) and valuation uncertainty (VU) for varying sizes of the window of SUE around zero. The smallest
window size (i.e., the leftmost coefficient) is +/- 0.002 around zero, and each dot represents adding 0.001
to each side of the window. Valuation uncertainty is defined as the z-scored dispersion in expected market
capitalization given by a multiples-based valuation method at different points in the industry-year distribu-
tion. The x-axis represents the window size around zero for standardized unexpected earnings, and the y-axis
shows the interaction coefficient. Error bars indicate the 95% confidence intervals for each coefficient.

4.4 Robustness

In this subsection, we discuss our findings regarding a series of alternative mechanisms and
considerations brought forward in the existing literature.

Definition of Surprise. Is the S-shaped response of stock prices to earnings news a function of
how we define SU E? In Appendix A.1, we show that our main findings are robust to a variety of
alternative definitions of SUE. In addition, we consider the relationship between post-earnings
returns and percentile ranks of SUE, as discussed in Hartzmark and Shue (2018). We argue
that percentile ranks of SUE would not be well suited to test our hypotheses about the effects
of within- versus across-category earnings response sensitivity. There is a substantial mass of
observations exactly at SU E = 0 (over 10% of our sample) and an even larger mass within a
SU E of ± 0.001 (about 37% of our sample). Consequently, percentile ranks “spread out” a large
number of observations at and around SU E = 0, which interferes with the identification of the
sensitivity around the nominally defined category threshold (see results in Appendix A.1).
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Firm Size, Time Period, and Return Horizon. As we show in Appendix A.3, our results
are robust to restricting to large market capitalization stocks (stocks above the median market
capitalization each quarter) and to data after 2010. Our results are thus not entirely driven by
small stocks, or data from earlier time periods. Moreover, a significant body of work in finance
has studied the long-run response to earnings news, i.e., excess returns up to 90 days after
an announcement. Historically, this literature documented a tendency for stocks with good
news to continue to outperform, and stocks with bad news to continue to underperform, the
so-called post-earnings announcement drift (PEAD). In Appendix B, we explore the relationship
between long-run responses to earnings news and valuation uncertainty. In our data, we find
patterns consistent with the idea that high VU is associated with overreaction for small and
underreaction for large surprise. Yet, these estimates are noisily measured given the increased
noise present for the longer time horizon where additional news event shape stock prices.

Earnings Persistence. One possible alternative explanation for the differences in how val-
uation uncertainty affects the response to earnings news for SUEs close to zero versus away
from zero is differences in the persistence of earnings news. For this to explain our results,
however, two things would need to be true. First, small surprises for high valuation uncertainty
firms would need to be more persistent than small surprises for low valuation uncertainty firms.
And second, large surprises for high valuation uncertainty firms would need to be less persistent
than large surprises for low valuation uncertainty firms. To test for such differential persistence,
we examine the predictive power of an earnings surprise for earnings growth over the subse-
quent year. As we explain in more detail in Appendix A.4, differences in earnings persistence
cannot account for our findings.

Earnings Manipulation. A potential concern with our main results is that managers engage
in earnings manipulation to ensure a small positive SU E in order to avoid the negative returns
associated with missing earnings expectations. Specifically, the concern is that a small earnings
miss is a signal of a larger problem at the firm – as management was unable to engineer a
positive surprise. And, this signal – rather than SU E itself – explains the significant jump in
returns at the category boundary of SU E > 0. Further, if companies with more valuation un-
certainty have a stronger incentive to engage in earnings manipulation (i.e., the signal for a
small earnings miss is perceived by the market to be stronger), this might explain our results
on heterogeneity in the S-shaped response to earnings news. If this was the case, we would
expect to see more bunching of earnings news just above zero for high VU stocks. As we ex-
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plain in Appendix A.5, we do not see pronounced differences in bunching across high and low
VU observations. Moreover, our results on earnings persistence (described in the previous para-
graph) are also inconsistent with systematic differences in earnings manipulation by valuation
uncertainty.

Accounting for Accruals. One potential concern is that firms with high valuation uncertainty
may be more likely to use accruals to engineer small earnings beats. We address this concern
by re-estimating our main specification controlling for abnormal accruals, and interactions of
accruals with SUE. Appendix Table A11 shows that positive accruals per se predict more neg-
ative market responses, especially for values of SUE close to zero. Yet, controlling for accruals
leaves the estimated interaction coefficient between SUE and VU virtually unchanged.

Differences in Pre-Announcement Information Acquisition. One concern with the results
in Table 2 is that they might be driven by differences in the amount of information incorporated
into stock prices before the earnings announcement itself between high and low valuation uncer-
tainty stocks and depending on the size of the surprise. As we outline in more detail in Appendix
A.8, we conduct a series of tests which show that, if anything,more information is incorporated
into prices ahead of time for high VU stocks – which would work against our main finding. We
conclude, therefore, that differences in the incorporation of information pre-announcement are
unlikely to be driving our baseline results.

Effect of Contemporaneous News Releases. One potential concern with the results in Table
2 is that they may not reflect a nonlinear reaction to earnings news itself, but instead arise
mechanically from the presence of other contemporaneous disclosures that are also nonlinearly
related to SUE. For example, if managerial EPS guidance is issued at the same time as earnings
announcements – and if that guidance exhibits an S-shaped relationship with SUE – then the
observed return pattern may be driven by market reactions to the guidance rather than to the
earnings surprise alone.

To address this possibility, Appendix A.10 restricts the sample to observations with no con-
temporaneous management EPS guidance. Figure A6 shows that the S-shaped response to earn-
ings news remains virtually unchanged in this subsample. Similarly, Table A16 confirms that
our baseline results from Table 2 are nearly identical on the no guidance subsample. Together,
these findings suggest that our results are not driven by the correlation between SUE and con-
temporaneous disclosures or by market reactions to such disclosures.
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4.5 Uncertainty About the Location of Category Thresholds

Our framework makes distinct predictions about different forms of uncertainty. While uncer-
tainty about the mapping of earnings to stock valuations increases sensitivity around category
thresholds (Prediction 1), uncertainty about the location of category thresholds decreases sen-
sitivity (Prediction 2). In this subsection, we examine how prior uncertainty about the category
threshold in our setting – the consensus forecast – affects the sensitivity of stock prices to news.
We proxy this uncertainty with dispersion of analysts’ earnings forecasts.

Specification. To estimate heterogeneous earnings response sensitivity by degree of forecast
dispersion, we estimate the following specification:

ri,(t,t+n) = αSUEi,t ×Dispersioni,t−1 + βSUEi,t + γDispersioni,t−1 +δX i,t−1 +φt +ψi + εi,t , (6)

where Dispersioni,t−1 is the standard deviation of analyst forecasts for the earnings of company
i in the last IBES statistical period before the earnings announcement, normalized by the mag-
nitude of the consensus estimate of earnings per share Ben-David et al. (2023). We include the
same set of controls and fixed effects as in the previous section.2⁴ This measure thus captures
the extent of analyst uncertainty about a company’s earnings before the earnings announce-
ment. Again, to ease interpretation, we normalize Dispersion to have mean zero and standard
deviation one.

Results. Table A2 displays our results on analyst dispersion. The first column again confirms
the expected baseline positive earnings response coefficient, i.e., a strong positive relationship
between SUE and market-adjusted returns, with a coefficient of 16.49 (p < 0.01). The interac-
tion term between SUE and dispersion is negative (-1.40, p < 0.01), suggesting that the effect of
SUE on returns is significantly diminished when analyst dispersion is high, consistent with our
predictions and inconsistent with the idea that uncertainty per se leads to a more pronounced
S shape.

The interaction coefficient remains negative and significant at the 1% level for larger win-
dows of SUE of 0.005, 0.01, 0.025 and 0.05. The magnitude of the effects of analyst dispersion
on earnings responses is sizable. For a window of 0.002 a one-standard deviation increase in

2⁴Table A3 examines robustness to the exclusion of controls.
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analyst forecast dispersion decreases the earnings response by almost 10 percent. For a window
of 0.005 the magnitude of the response is reduced by 5 percent.

Taken together, the evidence clearly highlights that uncertainty about the location of a cat-
egory threshold is associated with earnings response insensitivity across the board, and espe-
cially so close to the category threshold. This evidence mitigates concerns that our findings on
valuation uncertainty can be explained by unobservables that are correlated with our uncer-
tainty measure.

Relationship Between Dispersion and Valuation Uncertainty. Measures of category uncer-
tainty might be correlated with valuation uncertainty and alternative measures of processing
constraints more generally. Appendix Table A13 shows a pairwise correlation matrix with a set
of related measures. We estimate a correlation of 0.3 between VU and Dispersion. Given this
positive correlation and the opposing effects of these different measures on returns, our main
estimates of the effect of VU on the S shape might be downward-biased. Table A4 shows that,
if anything, our results on the amplifying effect of valuation uncertainty for small surprises
become stronger after controlling for dispersion.

4.6 Related Concepts and Measurements

As illustrated by the preceding analysis and the conceptual framework, different forms of un-
certainty capture different concepts with distinct behavioral predictions.

Different Concepts. We conceptualize decision difficulty as creating uncertainty about the
mapping between a signal and one’s optimal response. This is often characterized as people at-
tending to a specific information while struggling to precisely incorporate it into their response.
This form of uncertainty, hence, at least partly operates on the intensive margin of attention:
people process signals but imprecisely. A related yet different concept is the idea that distrac-
tion might induce (some) people to not attend to a signal at all. This channel operates on the
extensivemargin of attention: variation in information content cannot affect behavior if it is not
processed to begin with. The existing literature on measures of distraction highlights this latter
channel: multiple same-day earnings announcements, extreme macro news, Friday earnings
announcements and the occurrence of major sports events plausibly affect which fraction of
investors attend to a given firm announcement versus not, but do not necessarily shift uncer-
tainty about how to map the announcement into a best response (conditional on attending). We

27



deem this distinction important: inattention is unlikely to generate the pattern that we identify,
because our proposed channel relies on people actually processing (at a minimum) the categor-
ical information content, and is compatible with people attending to numerical information as
well. Distraction, by contrast, would lead to global attenuation because (some) people do not
process and respond to any of the information components.

Alternative Measurements. Among the many proxies for “hard-to-value,” valuation uncer-
tainty appears to be the closest measure to our characterization of processing constraints. This
is because, by definition, it suggests that for a given firm at a given point in time, there is a wider
possible range of valuations. This translates directly to the idea in the model of the mapping
between numerical signals and best response.

The literature on what makes stocks hard to value, however, discusses many other possi-
ble measures. First, a longer cash-flow duration may make a stock harder to value because
investors need to forecast fundamentals further in the future to accurately estimate the stock’s
true value today. Cash-flow duration might partly affect the mapping uncertainty we are in-
terested in, while it seems unrelated to the concepts of uncertainty about category thresholds
as well as distraction. It clearly also captures features unrelated to the severity of processing
constraints, as e.g., some companies have different payout ratios at different points in their life
cycles. Appendix Table A12 shows that cashflow duration is associated with a more pronounced
S-shaped pattern. Second, the literature has also used measures of whether a company spans
many business functions/geographical regions (Cohen and Lou, 2012), idiosyncratic volatility
and trading volume (Ben-David et al., 2023) as proxies for valuation uncertainty. Appendix Ta-
ble A12 shows that amplification of small surprises and the comparative static of a decreasing
interaction coefficient for larger surprises holds for all three of these other proxies of valuation
uncertainty.

5 Experimental Evidence

To provide causal evidence on the relationship between decision difficulty and the S-shaped
empirical earnings response function, we complement the correlational field evidence with in-
centivized experiments conducted with investors.
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5.1 Design

Baseline Setting. Participants receive a hypothetical earnings news article about a real com-
pany, which has their actual quarterly earnings announcement scheduled within five days of
the study. While the earnings news piece is created by us for the purpose of this experiment,
it closely follows the structure and information of real earnings news coverage and includes
real-time information about the company. The news article mentions (i) the company’s con-
sensus forecast of EPS (actual value at the time of experiment), (ii) the current stock price
(actual value), (iii) a realization of the EPS, which is the earnings scenario that we vary across
participants, (iv) categorical information about whether realized EPS beat or miss the consen-
sus forecast, which is also mentioned in the headline, and (v) very basic firm background for
context.

The earnings scenario – characterized by a realized EPS – is determined by randomly draw-
ing a value for the implied standardized unexpected earnings (as defined above) from +/-
[0.0001, 0.0005, 0.001, 0.005, 0.01] and by then calculating the implied EPS value.2⁵ This
range of SUE captures over 85% of the empirical distribution. See below the body of the earn-
ings news article for the company Darden Restaurants for the scenario of an SUE of -0.0005.

Darden Restaurants, Inc. is an American multi-brand restaurant operator headquar-
tered in Orlando, Florida. In their earnings announcement for the third quarter
of 2024, Darden reported earnings below market expectations. Trading at a stock
price of $164.73 prior to the announcement, Darden reported earnings per share
of $1.94. Darden therefore earned 3.96% less than analysts expected, given the
consensus forecast of $2.02 earnings per share.

Participants are asked to consider the scenario that the upcoming, actual earnings announce-
ment of the company was actually occurring right now,2⁶ and the actually announced EPS
equals the displayed realized earnings. The main task is to then predict the change between
the current stock price (which in the scenario is the stock price right before the earnings an-
nouncement) and the same-day closing price. We provide screenshots of the entire experiment
in Appendix E, which includes the decision screen for the Baseline condition (Appendix Figure
A16). Our baseline task thus provides the standard set of numerical information provided in
earnings news coverage alongside the most common categorization as beating or missing the

2⁵The firm’s realized earnings are calculated based on the firm’s actual consensus forecast of earnings, its actual
stock price at the time of the experiment, and this SUE.

2⁶The full data collection was conducted between late morning and early afternoon EST, in the time window
earnings announcements are most common.
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forecast (also mentioned in the header), emulating the type of simultaneous provision of coarse
and granular information structures that motivates this paper.

We present five independent scenarios to participants, each about a different real U.S. com-
pany with a quarterly earnings announcement occurring within the five days following the data
collection. For each participant, we randomly draw the order of the companies as well as the
SUE realization.

Incentives. In addition to a $1.70 base payment, one out of 10 participants is randomly drawn
to be eligible for a $50 bonus, with one round randomly selected as the round-that-counts. An
eligible participant wins $50 if two conditions are met: First, the standardized unexpected earn-
ings implied by the company’s actual earnings announcement (in the days following the study)
falls within 10% of the scenario provided.2⁷ Second, the participant’s stock price prediction
must fall within 1 percentage point of the actual change observed on the announcement day.

Treatments. Participants are randomly assigned (with equal probability) to one of the fol-
lowing two between-subject conditions: Baseline and High Constraints. Relative to the Baseline
condition, the High Constraints condition attempts to increase decision difficulty in the specific
sense of increasing the severity of information processing constraints. We do so in two comple-
mentary ways. First, we effectively manipulate the “demand side” of processing constraints by
increasing the information load of the task without adding any information that should affect
estimates. In particular, in addition to the exact same earnings news presented in Baseline, High
Constraints displays further background information on the company’s history that is neutral
in character and irrelevant for the price movement on the announcement day. To provide an
example, below is an excerpt of the irrelevant information provided for one company:

Darden is an American multi-brand restaurant operator headquartered in Orlando,
Florida. Darden has more than 1,800 restaurant locations and more than 175,000
employees, making it the world’s largest full-service restaurant company. The com-
pany began as an extension of Red Lobster, founded byWilliam Darden and initially
backed by General Mills. Red Lobster was later sold in July 2014.

Second, we manipulate the “supply side” of processing constraints by limiting the processing
capacity available to respondents in this condition. Specifically, to remain eligible for a bonus

2⁷In a follow-up question at the end of the study, participants estimated the likelihood to be 56.54% on average,
suggesting that they viewed the task as relevant for their payoff.
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payment, respondents need to submit their estimate in a given round within a time limit of 40
seconds, effectively inducing time pressure. In Baseline, median response time was 25 seconds
(25th percentile: 15 seconds; mean: 47 seconds, 75th percentile: 45 seconds). Respondents
almost always complied with the time limit: we recorded 6.7% timeouts across all rounds and
participants. An example decision screen for this condition is shown in Appendix Figure A16.

Notably, the High Constraints condition manipulates a specific determinant of decision dif-
ficulty: how the demand for cognitive processing resources relates to available capacity. In
general, as discussed in Section 2, decision difficulty can also capture other sources, such as
uncertainty about preferences. While our field data does not allow to disentangle these conclu-
sively, our experiments do.

Predictions and Category Defaults. In each round, we elicit the same-day price change pre-
diction in percent and restrict the entry range to a window ranging from -15% to +15% of
the current stock price. We analyze the prediction data in two pre-registered formats. First, we
analyze the raw predictions. Second, we also elicit category defaults, which is a respondent’s
best estimate of the historical average of same-day percent price change for companies who
beat the forecast, and for those who missed the forecast.2⁸ These category defaults are the di-
rect empirical analogue of the conditional default response rd , see Section 2. Equipped with
each respondent’s individual category defaults, we can express their predictions in a specific
firm scenario in relation to the corresponding category default, which we refer to as our nor-
malized predictions. Specifically, predictions of price changes for positive (negative) surprises
are divided by the respondent’s category default for positive (negative) earnings surprises. The
normalized predictions have the intuitive interpretation that a stated prediction that equals the
individual’s category prior equals a value of one. Our findings are similar for both measures.

Discussion. Two remarks about the experimental design are in order. First, our High Con-
straints manipulation intends to manipulate the severity of processing constraints in ways that
have some ecological validity and appear practically relevant: on financial markets, investors
routinely face large amounts of information, some of which is technically irrelevant to a given
valuation, and are time-constrained in their decisions (Hirshleifer and Teoh, 2003). That said,
the intervention is not meant as a tool to precisely identify different cognitive channels. For
example, one might draw a distinction between individuals not processing some component of

2⁸The specific question we ask is: “Historically, what do you think was a company’s average stock price change
on a day where announced earnings [exceeded / fell below] the consensus forecast?”
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information altogether (a form of selective attention) versus individuals attending to but not
fully (or imprecisely) integrating a piece of information. We believe that both channels are
important in practice, and additional experiments could be used to disentangle them.

Second, how strongly people respond to different components of information – especially
under constraints – is likely a function of the extent to which they have encountered and delib-
erated about a given signal in the past. This applies to both numerical and categorical informa-
tion. It is plausible that a relatively stronger reliance on categorical information is a function of
how familiar people are with the corresponding categories. In our context, earnings beats and
misses is the most common set of categories for investors, so we might expect them to have a
good sense of their category defaults. The prior elicitation of or training on a specific category
as experimental manipulations might be another fruitful avenue for future work to identify the
role of familiarity for the relative reliance under processing constraints (see also Section 6).

5.2 Sample

The data collection took place in December 2024 andwas pre-registered on AsPredicted (#205080;
https://aspredicted.org/n3zm-md9t.pdf). The pre-registration includes the experimen-
tal design, hypotheses, outcomes, sample size, and exclusion criteria. We recruited participants
on Prolific, a widely used online platform. Our final sample comprises data from a total of 1,000
U.S. investors who successfully completed the experiment. All of our participants have an ac-
count on a trading platform and are at least 18 years of age.

Comprehension Questions and Exclusion Criteria. We pre-specified that respondents who
fail to pass a set of three comprehension questions on the instructions within the first two
attempts are not allowed to proceedwith the study.We do not screen on prior knowledge; rather,
the correct answers are mentioned in the instructions. The three comprehension questions,
shown in Appendix Figure A10, test whether people have understood the general instructions
about earnings announcements and stock responses. 9% of the respondents who started the
experiment failed the comprehension check and were thus not allowed to participate. To ensure
our data only include investors who have at least some basic understanding of the setting,
we further pre-specified the exclusion of respondents who believe the historical average same-
day price reaction was non-positive for positive earnings surprises or non-negative for negative
earnings surprises. After applying these exclusions, we end up with a final sample size of 897

32

https://aspredicted.org/n3zm-md9t.pdf


respondents.2⁹

5.3 Results

Result 1: Shape of the Empirical Response Function in Baseline. The blue markers in Panel
(a) of Figure 4 plot the median normalized return prediction for each SUE value in Baseline. The
blue line illustrates the implied slope. Even in our simple baseline condition without any addi-
tional complications, we find that the data from our individual prediction experiment exhibit a
pattern that is qualitatively highly similar to the price patterns observed in the field data: the
response function exhibits a pronounced S shape. Median return predictions are very sensitive
to crossing the category threshold – from missing to beating expectations – but are far less
sensitive to the magnitude of a surprise (conditional on its sign).

Result 2: Processing Constraints and Price Predictions. Next, we test for the effect of the
treatment manipulation on the sensitivity of the price change predictions to variation in sur-
prises. The red markers in Panel (a) of Figure 4, showing predictions in High Constraints, follow
a noticeably more S-shaped pattern than the empirical response function of condition Baseline.
We document the distinctive prediction of our framework that implies three different cross-
ing points of the implied response functions: first, the implied slope around zero surprise is
steeper in High Constraints than in Baseline, meaning that more severe processing constraints
cause more extreme predictions for small surprises, i.e., more positive (negative) predictions for
small positive (negative) surprises. Focusing on either only positive or only negative surprises,
however, the implied slope of the response function is lower in High Constraints. As a result, the
directional effect of more severe processing constraints reverses for sufficiently large absolute
surprises: High Constraints causes more extreme predictions for small positive and negative sur-
prises yet less extreme predictions for large positive and negative surprises. In our data, these
two crossing points happen to be symmetrically located at SUE values of −0.001 and +0.001.
At those values, median normalized predictions in both conditions equal one, meaning that
respondents state predictions equal to their two category defaults at the median.

To test the statistical significance and size of these effects, we pre-specified an approach
that mirrors our analyses for the field data. We estimate a simple regression equation of the

2⁹Our findings also hold for a sample that does not apply these pre-specified exclusion criteria.
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Figure 4: Experimental Results
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coefficients on the interaction term between SUE and the high constraints dummy for varying window sizes
of SUE.
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following form:

ri j = αHigh Constraintsi + βSU Ei j ++γSU E j ×High Constraintsi + ϵi j (7)

where ri j is the response (a price change prediction) of individual i for company j.High Constraintsi

is an indicator taking value one for respondents in High Constraints and value zero for respon-
dents in Baseline. SU E j denotes the size of the surprise for company j. Our key object of interest
is the coefficient on the interaction term between SUE and High Constraints, γ. Following the
approach used in the observational data, we run this regression repeatedly for expanding sym-
metrical windows around zero SUE. To account for the effect that the local sensitivity to SUE
also changes in Baseline, we normalize the interaction coefficient by dividing by the coefficient
on SUE, β .

Panel (b) of Figure 4 presents the resulting estimates (γ̂/α̂) for expanding symmetric ranges
of surprises. The coefficient of about 0.5 for the smallest window around zero SUE means that
more severe processing constraints increase the sensitivity to SUE by 50% (p < 0.01), relative to
Baseline. As we gradually increase the window size, the interaction coefficient falls, eventually
turning negative once we include data with SUE > 0.001. For the full dataset, the interaction
coefficient equals -0.2 (p < 0.01), indicating a 20% lower sensitivity to SUE compared to
Baseline. Appendix Table A18 provides these results in regression format. Taken together, these
patterns show that respondents in High Constraints are significantly more responsive to the
crossing of category thresholds, yet less sensitive to the numerical magnitude of surprises. We
interpret these results as indicative that the correlation between valuation uncertainty and the S
shape in excess returns may partly be a result of how individuals’ beliefs respond to the severity
of processing constraints.

Robustness. We conduct a battery of pre-registered robustness tests and sensitivity analyses,
summarized in Appendix C. As illustrated in Figure A8, results remain robust when we (a)
use raw rather than normalized price change predictions; (b) do not normalize the interaction
coefficient by the Baseline slope; (c) analyze means instead of medians; (d) exclude timeouts
in the High Constraints condition (6.7%); (e) exclude participants reporting online information
searches (5.24%); and (f) drop observations where predicted price changes contradict the sign
of earnings surprises (7.6%).

35



6 Local Variation in Processing Constraints

Our empirical analyses so far have focused on the main qualitative pattern of the earnings
response function: high sensitivity at category thresholds and insensitivity elsewhere. Under
constant imprecision for all earnings announcements, our model predicts a symmetric and step-
shaped (rather than S-shaped) response function. We thus left two key features of the actual
empirical relationship unexplored. First, rather than exhibiting a discontinuous step-function,
returns display a smoothly diminishing sensitivity around zero surprises. Second, the response
function exhibits a pronounced asymmetry: reactions to negative surprises are substantially
muted compared to those for positive surprises. In the model, these patterns can only result
from differences in the precision of integrating large versus small and positive versus nega-
tive earnings surprises, respectively. This section investigates two hypotheses from behavioral
economics and cognitive science regarding variation in local processing constraints.

6.1 The Role of Stimulus Frequency for Processing Accuracy

A central hypothesis in cognitive science asserts that stimuli encountered more frequently are
processedmore accurately, as prominently articulated by the principle of efficient coding (Barlow
et al., 1961; Laughlin, 1981). This principle posits that sensory systems optimize stimulus rep-
resentation within biological constraints, leading to greater sensitivity in stimulus ranges with
higher empirical density. Originally applied to lower-level cognitive processes such as percep-
tion (e.g., Girshick et al., 2011; Wei and Stocker, 2015), efficient coding has recently influenced
economic models (e.g., Woodford, 2012) and empirical analyses of subjective value (Polanía et
al., 2019), estimation accuracy (Heng et al., 2020), and risk-related choices (Frydman and
Jin, 2022, 2024). A complementary perspective, decision by sampling, similarly predicts higher
discriminability in denser stimulus regions, proposing that subjective valuations arise from com-
parisons to memory-based samples (Stewart et al., 2006; Stewart and Simpson, 2008).

Stimulus Frequency and Local Earnings Response Sensitivity: Illustration. To empirically
approach this hypothesis, we first correlate the local sensitivity to variation in earnings magni-
tudes, i.e., the local earnings response coefficient (ERC) in a given window of surprises, with
the relative frequency of that stimulus window. Specifically, we partition earnings surprises into
SUE bins of width 0.001. The blue markers in Figure 5 plot the total number of observations
in each bin. We make two main observations: First, the historical distribution is strongly bell-
shaped with mass concentrated around zero surprise (11.8% of the data is clustered at exactly
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zero surprise). This is unsurprising: larger surprises should happen less often. Second, there is
a pronounced asymmetry: positive surprises are more common (52.9%) than negative surprises
(35.3%).

To illustrate the relationship with local earnings response sensitivity, we next run standard
earnings response regressions in 5-bin rolling windows, i.e., for each SUE bin, we run a regres-
sion that includes observations in that bin as well as the two adjacent bins on either side. The
red markers in Figure 5 indicate the locally estimated earnings response coefficients with 95%
confidence intervals. The shape of the distribution of local earnings response coefficients tracks
the distribution of data mass. ERCs are generally higher for less extreme surprises and higher
for positive bins than the corresponding negative ones. Note that this evidence directly speaks
to the two features of the overall shape of the empirical response function that our previous
analyses did not speak to: diminishing sensitivity away from zero surprise and a pronounced
positive-negative asymmetry.

Figure 5: Historical Stimulus Frequency and Earnings Response Coefficients

Notes: First, we assign stocks into bins of SUE in increments of 0.001. Dots are centered at the minimum SUE
within each bin, so e.g., the dot at exactly zero contains SUEs in the interval [0, 0.001). Each blue dot represents
the number of observations in that bin. Then, in 5-bin rolling windows, we run an earnings response regression of
cumulative market-adjusted returns from the day of the earnings announcement (t = 0) to the close 4 days after
the earnings announcement (t = 4) on SUE. The red dots represent the earnings response coefficient, and the red
lines represent a 95% confidence interval.

Regression Analyses. To formally test the hypothesized relationship, we first estimate a ker-
nel density on the historical distribution of surprises with 100 points. In line with the analysis
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in Table 2, we restrict our attention to SUEs between −0.05 and +0.05, corresponding to 98%
of the data. Then, we run the following regression:

ri,(t,t+n) = β1SUEi,t + β21SUEi,t<0 + β31SUEi,t<0 × SUEi,t

+ γ1SUEi,t × ln(Di,t) + γ21SUEi,t<0 × ln(Di,t)

+ γ31SUEi,t<0 × SUEi,t × ln(Di,t) + θX i,t +ωln(Di,t) +φt +ψi + εi,t

(8)

Di,t is the kernel density estimate for the point closest to a given observation’s SUE and X i,t

are the same controls as in Section 4. In Equation 8, we use the natural logarithm of density
rather than the density itself, as the distribution of Di,t is heavily skewed, with over 10% of
the data mass concentrated exactly at an SUE of zero. Finally, to ease the interpretation of the
regression coefficients, we normalize ln(Di,t) so that it takes a value of 1 when SUE is exactly
equal to zero.

The results are shown in Table 3. Column 1 replicates the baseline earnings response regres-
sion (restricting to SUE ∈ [−0.05, 0.05]) with both a linear term for SUE (capturing sensitivity
to numerical magnitude) and a category indicator for negative SUE. Column 2 adds the log den-
sity and its interaction terms. We first examine the effect of conditioning on density (including
its interactions) on the effect of switching the category from an earnings beat to an earnings
miss. We find that this reduces the effect by approximately 50%.3⁰ This result is consistent with
the idea that about half of the jump that a piecewise linear model attributes to the category
switch might be explained by local variation in the frequency of data.

Next, we turn to the role of the historical distribution for the observed slope asymmetry
between positive versus negative SUE. The baseline difference in estimated slopes for positive
versus negative SUE is large: the estimated sensitivity to the magnitude of positive surprises
is 2.7, and it is 2.5 lower for negative surprises. Upon including the log data density and its
interactions, the estimated difference in slopes is dramatically reduced from −2.5 to −1.04, a
58% reduction. This suggests that a substantial portion of the empirical asymmetry between
positive and negative surprises in Figure 1 can be explained away when accounting for the
fact that negative surprises are far less common. Consistent with this, Appendix A.1 shows
that percentile ranks (constructed so each bin contains equal historical density) exhibit an
approximately linear relationship with excess market returns.

Taken together, we find evidence that is compatible with the idea that decision difficulty –

3⁰Specifically, the effect in Column 1 was −3.09%. After including the baseline effect and the interaction term
with density—evaluated at SUE = 0, where we have normalized ln(Di,t) = 1 we obtain a total effect of −3.4%+
1.87%= −1.53%, which is roughly half of −3.09%.
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and thus, processing imprecision – is lower for more frequently encountered stimuli, allowing
us to demonstrate the potential relevance of these principles for higher-level cognitive tasks in
a relevant economic field context.

Table 3: Historical Density and Earnings Response Sensitivity

(1) (2)

SUE 2.714*** 1.739***
(0.124) (0.180)

1SU E<0 -0.0309*** -0.0340***
(0.001) (0.002)

1SU E<0 x SUE -2.494*** -1.044
(0.141) (0.756)

ln(Density) -0.0181***
(0.001)

ln(Density) x SUE 0.718***
(0.054)

1SU E<0 x ln(Density) 0.0187***
(0.002)

1SU E<0 x SUE x ln(Density) -0.578***
(0.130)

Observations 173,587 173,587
R-squared 0.115 0.128

Fixed Effects YQ + Permno YQ + Permno
Controls ALL ALL

Notes: This table studies how the density of the data in a given range of SUEs affects earnings responses. For this
exercise, we restrict to SUEs between -0.05 and 0.05, and estimate a kernel density with 100 points. Column 1 is
an earnings response regression restricted to the subset of data with SUEs between -0.05 and 0.05, allowing for
a differential level and slope effect for SUEs less than zero. Column 2 includes the kernel density estimate from
the point in the kernel density function closest to a given observation’s SUE (the variable “Density”), as well as
interactions between Density and SUE, the indicator variable for negative SUE, and the interaction term between
the indicator variable for negative SUE and SUE itself. Clustered standard errors are reported in parentheses.
Significance levels are denoted as follows: * p<0.1, ** p<0.05, *** p<0.01.

6.2 Surprise and Competition for Attention

Our principal hypothesis is that decision difficulty increases reliance on easier-to-process prob-
lem components. This means more binding cognitive constraints can create competition be-
tween processing coarse categorical and granular numerical information. We have so far as-
sumed differential processing cost, but not modeled such competition directly. A prominent
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principle in the cognitive sciences is that more surprising information requires more processing
resources (e.g., Friston, 2005; Itti and Baldi, 2009).31 Surprising news therefore, may reduce
the capacity to process remaining information. Applied to our setting, a natural question is
whether a more surprising category realization – a profit when a loss was expected, compared
to a profit when a profit was expected – consumes greater cognitive resources, reducing the
capacity to process granular numerical information. This question explores direct competition
between categorical and numerical information, leveraging the link between surprise and pro-
cessing load.

In a set of additional empirical analyses, we find that returns exhibit significantly lower
sensitivity to numerical earnings information when categorical outcomes deviate unexpectedly
from market expectations. For example, firms experiencing earnings growth when a decline
was expected by the market display diminished responsiveness to the numerical magnitude
of earnings surprises, consistent with the notion that surprising categorical outcomes redirect
limited cognitive resources away from detailed numerical processing. We report similar findings
for other categorizations, e.g., profits versus losses. Appendix D provides additional details on
the empirical strategy and all results. Taken together, these analyses use the degree of surprise
in an easier-to-process piece of (categorical) information to predict the responsiveness to harder-
to-process (numerical) information, directly speaking to a well-established cognitive principle
in an economic field setting.

7 Conclusion

We hypothesize that decision difficulty increases the reliance on easier-to-process problem com-
ponents. We apply this idea to the competition between categorical and numerical information
in a high-stakes field setting and using incentivized experiments. A class of models makes the
distinctive prediction that higher decision difficulty, by creating processing imprecision, leads
to sharpening across categories of news and flattening within-category: this yields step-shaped
or S-shaped behavioral response functions around category thresholds.

Using a dataset of over 176,000 earnings announcements from the field, we provide evi-
dence of more pronounced S-shaped response functions for stocks that are harder to value. We
confirm our findings with incentivized individual belief formation experiments with investors

31The special role of surprises for shaping attention has previously been studied in other economic context (e.g.,
Bordalo et al., 2020). In rational inattention models (Sims, 2003), Shannon information cost implies that agents’
cognitive processing effort scales with the informativeness of signals. As a result, more surprising events are more
cognitively costly to process.
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that leverage causal manipulations of processing constraints. We then exploit local variation in
decision difficulty in the field. We document evidence in support of the idea that processing
accuracy is higher for more frequently encountered stimuli, suggesting that additional prop-
erties of the empirical earnings response function – smoothly diminishing sensitivity and an
asymmetry between negative and positive surprises – may be partly explained by an account
of behavioral responses to limited processing capacity.

We believe that our hypothesis – that there is competition between easy- and hard-to-
integrate information – applies to many other settings. Our approach provides a blueprint for
studying concepts like decision difficulty in the field: for the case of coarse versus granular in-
formation, our tests require two main ingredients. First, a selection of relevant categorizations
that decision makers face in practice. These can be readily identified in practical applications,
e.g., using news reporting. Second, empirical proxies that capture variation in decision diffi-
culty. Here, too, one can leverage existing measures (such as proxies of what makes a stock
hard to value) and resort to characteristics of the decision environment that previous work
argues should be related to processing difficulty (such as historical stimulus frequency or the
degree of surprise).
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A Additional exhibits for field data on earnings responses

Appendix Figure A1: Histogram of SUE

This figure presents a histogram of Standardized Unexpected Earnings (SUE) in our sample. SUE is calculated
as the difference between the actual earnings per share and the consensus forecast, divided by the closing price
before the earnings announcement (DellaVigna and Pollet, 2009; Hartzmark and Shue, 2018). Our measure
of earnings-per-share takes out the effect of one-time items.
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Appendix Table A1: Effect of Valuation Uncertainty on Earnings Response Coefficients by Earnings Size: no con-
trols and no fixed effects

(1) (2) (3) (4) (5)
SUE Window ≤ |0.002| ≤ |0.005| ≤ |0.01| ≤ |0.025| ≤ |0.05|

SUE 15.35*** 9.121*** 6.034*** 3.490*** 2.271***
(0.638) (0.350) (0.241) (0.160) (0.117)

VU -0.00233*** -0.00157*** -0.00121** -0.00092 -0.00088
(0.001) (0.001) (0.001) (0.001) (0.001)

SUE x VU 1.980*** 0.672*** 0.134 -0.297*** -0.332***
(0.416) (0.213) (0.142) (0.096) (0.069)

Observations 95,723 133,490 153,511 167,678 173,668
R-squared 0.028 0.043 0.048 0.044 0.037

Notes: This table studies how market-adjusted returns respond to standardized unexpected earnings (SUE) and
how this varies by Valuation Uncertainty. Panel A includes all observations, while Panel B focuses on the bottom
quintile of analyst dispersion. SUE refers to the deviation of a company’s reported earnings per share from the
consensus earnings forecast by analysts, normalized by the last closing price before the earnings announcement.
Valuation uncertainty is defined as the z-scored dispersion in expected market capitalization given by a multiples-
based valuation method at different points in the industry-year distribution. Clustered standard errors are reported
in parentheses. Thewindow size indicates the range of SUE around zero considered in each regression. Significance
levels are denoted as follows: * p<0.1, ** p<0.05, *** p<0.01.
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Appendix Table A2: Effect of Analyst Dispersion on Earnings Response Coefficients by Earnings Size

(1) (2) (3) (4) (5)
SUE Window ≤ |0.002| ≤ |0.005| ≤ |0.01| ≤ |0.025| ≤ |0.05|

SUE 16.49*** 9.903*** 6.562*** 3.681*** 2.276***
(0.673) (0.397) (0.266) (0.155) (0.102)

Dispersion -0.00092 -0.00114** -0.00100** -0.000899** -0.000647*
(0.001) (0.000) (0.000) (0.000) (0.000)

SUE x Dispersion -1.396*** -0.454** -0.314*** -0.197*** -0.111***
(0.410) (0.182) (0.103) (0.054) (0.033)

Observations 95,081 133,062 153,221 167,506 173,587
R-squared 0.116 0.112 0.112 0.103 0.095

Notes: This table shows data on earnings announcements from 1986-2019. This table studies how market-
adjusted returns respond to standardized unexpected earnings (SUE) and how this varies by Valuation Uncer-
tainty. SUE refers to the deviation of a company’s reported earnings per share from the consensus earnings
forecast by analysts, normalized by the last closing price before the earnings announcement. Dispersion is the
z-scored standard deviation of analyst forecasts about earnings in the last IBES statistical period before the
announcement, normalized by the magnitude of the consensus estimate of earnings per share Ben-David et al.
(2023). Our specifications control for both security (Permno) fixed effects and year-quarter fixed effects. We
also control for time since listing (age), market capitalization, returns from t-12 to t-2, book-to-market, CAPM
beta, institutional ownership and total daily stock volatility over the past 12 months. Clustered standard er-
rors are reported in parentheses. The window size indicates the range of SUE around zero considered in each
regression. Significance levels are denoted as follows: * p<0.1, ** p<0.05, *** p<0.01.
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Appendix Table A3: Effect of Analyst Dispersion on Earnings Response Coefficients by Earnings Size: no controls
and no fixed effects

(1) (2) (3) (4) (5)
SUE Window ≤ |0.002| ≤ |0.005| ≤ |0.01| ≤ |0.025| ≤ |0.05|

SUE 14.87*** 9.166*** 6.144*** 3.466*** 2.152***
(0.643) (0.361) (0.246) (0.142) (0.096)

Dispersion -0.00504*** -0.00446*** -0.00386*** -0.00339*** -0.00308***
(0.001) (0.000) (0.000) (0.000) (0.000)

SUE x Dispersion -1.167*** -0.380** -0.284*** -0.174*** -0.107***
(0.392) (0.176) (0.102) (0.053) (0.033)

Observations 95,723 133,490 153,511 167,678 173,668
R-squared 0.03 0.045 0.05 0.045 0.038

Notes: This table studies howmarket-adjusted returns respond to standardized unexpected earnings (SUE) and
how this varies by Valuation Uncertainty. SUE refers to the deviation of a company’s reported earnings per
share from the consensus earnings forecast by analysts, normalized by the last closing price before the earnings
announcement. Dispersion captures the z-scored standard deviation of analyst forecasts about earnings in the
last IBES statistical period before the earnings announcement, normalized by the magnitude of the consensus
estimate of earnings per share Ben-David et al. (2023). Clustered standard errors are reported in parentheses.
The window size indicates the range of SUE around zero considered in each regression. Significance levels
are denoted as follows: * p<0.1, ** p<0.05, *** p<0.01.
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Appendix Table A4: Robustness: Simultaneous heterogeneous effects by Valuation Uncertainty and Dispersion

(1) (2) (3) (4) (5)
SUE Window ≤ |0.002| ≤ |0.005| ≤ |0.01| ≤ |0.025| ≤ |0.05|

SUE 16.91*** 9.980*** 6.542*** 3.737*** 2.416***
(0.669) (0.391) (0.264) (0.173) (0.126)

VU 0.000701 0.000793 0.000947* 0.00135** 0.00144***
(0.001) (0.001) (0.001) (0.001) (0.001)

Dispersion (0.001) -0.00109** -0.00105** -0.00106*** -0.000820**
(0.001) (0.000) (0.000) (0.000) (0.000)

SUE x VU 2.815*** 1.065*** 0.384** -0.212** -0.313***
(0.427) (0.231) (0.152) (0.101) (0.072)

SUE x Dispersion -2.222*** -0.746*** -0.411*** -0.151*** -0.0560*
(0.406) (0.184) (0.102) (0.054) (0.033)

Observations 95,081 133,062 153,221 167,506 173,587
R-squared 0.117 0.112 0.112 0.103 0.095

Notes: This table studies how market-adjusted returns respond to standardized unexpected earnings (SUE)
and how this varies by Valuation Uncertainty and Analyst Dispersion. SUE refers to the deviation of a com-
pany’s reported earnings per share from the consensus earnings forecast by analysts, normalized by the last
closing price before the earnings announcement. Valuation uncertainty is defined as the z-scored dispersion in
expected market capitalization given by a multiples-based valuation method at different points in the industry-
year distribution. Analyst Dispersion captures the z-scored standard deviation of analyst forecasts about earn-
ings in the last IBES statistical period before the earnings announcement, normalized by the magnitude of the
consensus estimate of earnings per share Ben-David et al. (2023). We use the same controls and fixed effects
as Table 2. Clustered standard errors are reported in parentheses. The window size indicates the range of SUE
around zero considered in each regression. Significance levels are denoted as follows: * p<0.1, ** p<0.05,
*** p<0.01.
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Appendix Table A5: Returns on only earnings day

(1) (2) (3) (4) (5)
SUE Window ≤ |0.002| ≤ |0.005| ≤ |0.01| ≤ |0.025| ≤ |0.05|

SUE 14.24*** 8.174*** 5.262*** 2.951*** 1.916***
(0.664) (0.378) (0.239) (0.149) (0.105)

VU 0.00039 0.000414 0.000554* 0.000826*** 0.000910***
(0.000) (0.000) (0.000) (0.000) (0.000)

SUE x VU 2.014*** 0.677*** 0.241** -0.178** -0.235***
(0.346) (0.183) (0.117) (0.081) (0.056)

Observations 95,081 133,062 153,221 167,506 173,587
R-squared 0.115 0.114 0.114 0.104 0.096

Notes: This table studies how market-adjusted returns respond to standardized unexpected earnings (SUE) and
how this varies by valuation uncertainty. Panel A includes all observations, while Panel B focuses on the bottom
quintile of analyst dispersion. SUE refers to the deviation of a company’s reported earnings per share from the
consensus earnings forecast by analysts, normalized by the last closing price before the earnings announcement.
Valuation uncertainty is defined as the z-scored dispersion in expected market capitalization given by a multiples-
based valuation method at different points in the industry-year distribution. We use the same controls and fixed
effects as Table 2. Clustered standard errors are reported in parentheses. The window size indicates the range of
SUE around zero considered in each regression. Significance levels are denoted as follows: * p<0.1, ** p<0.05,
*** p<0.01.

54



Appendix Table A6: Returns from earnings day to t+2

(1) (2) (3) (4) (5)
SUE Window ≤ |0.002| ≤ |0.005| ≤ |0.01| ≤ |0.025| ≤ |0.05|

SUE 16.58*** 9.677*** 6.244*** 3.554*** 2.287***
(0.643) (0.376) (0.245) (0.160) (0.116)

VU 0.000498 0.000481 0.000597 0.00101** 0.00106**
(0.001) (0.000) (0.000) (0.000) (0.000)

SUE x VU 2.321*** 0.804*** 0.226 -0.250*** -0.290***
(0.384) (0.208) (0.137) (0.095) (0.068)

Observations 95,081 133,062 153,221 167,506 173,587
R-squared 0.116 0.114 0.113 0.105 0.096

Notes: This table studies how market-adjusted returns respond to standardized unexpected earnings (SUE) and
how this varies by Valuation Uncertainty. Panel A includes all observations, while Panel B focuses on the bottom
quintile of analyst dispersion. SUE refers to the deviation of a company’s reported earnings per share from the
consensus earnings forecast by analysts, normalized by the last closing price before the earnings announcement.
Valuation uncertainty is defined as the z-scored dispersion in expected market capitalization given by a multiples-
based valuation method at different points in the industry-year distribution. We use the same controls and fixed
effects as Table 2. Clustered standard errors are reported in parentheses. The window size indicates the range of
SUE around zero considered in each regression. Significance levels are denoted as follows: * p<0.1, ** p<0.05,
*** p<0.01.
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A.1 Sensitivity to Definition of SUE

One might be concerned that our baseline S-Shaped response of stock prices to earnings news
is a function of the way we have defined SU E. In this subsection, we show that our baseline
S-shape is present under a variety of alternative definitions of SUE. Further, we show that high
valuation uncertainty companies’ increased sensitivity to small surprises also holds under these
alternative definitions of SUE. Finally, we consider the relationship between post-earnings re-
turns and percentile ranks of SUE, as discussed in Hartzmark and Shue (2018). This approach
could be considered a way to test predictions of models of efficient coding that would predict
a linear relationship if the mass is equally distributed on the x-axis.

The first alternative definition of SUE we consider is the percentage earnings surprise rel-
ative to the magnitude of the consensus earnings estimate. This is how earnings surprises are
defined e.g., on the Nasdaq website.

SU EA1
i,t =

EPSi,t − Et−1[EPSi,t]

|Ei,t−1[EPSi,t]|
(9)

Where Et−1[EPSi,t] is the mean analyst estimate of EPS, and EPSi,t is realized EPS.
The second alternative definition of SUE we consider is the earnings surprise relative to the

standard deviation of analyst estimates. This is the definition of earnings surprise used in e.g.,
Mendenhall (2004).

SU EA2
i,t =

EPSi,t − Et−1[EPSi,t]

SD(Ei,t−1[EPSi,t)
(10)

Where Et−1[EPSi,t] is the median analyst estimate of EPS, SD(Ei,t−1[EPSi,t) is standard devi-
ation of analysts’ estimates of EPS and EPSi,t is realized EPS.32 When computing SU EA2

i,t , we
restrict to earnings announcements covered by at least 3 analysts to ensure we can compute
SD(Ei,t−1[EPSi,t).

The final alternative definition of earnings surprise we consider is a dollar surprise. This is
how earnings surprises are quoted on e.g., Yahoo finance and many large financial news media
websites.

SU EA3
i,t = EPSi,t − Et−1[EPSi,t] (11)

Where Et−1[EPSi,t] is the mean analyst estimate of EPS, and EPSi,t is realized EPS. One down-
side of working with the dollar surprise, relative to other definitions of SU E is that it is less

32We use the median analyst estimate instead of the mean (which we use in all other definitions of SU E) in
SU EA2

i,t for consistency with Mendenhall (2004). Results are similar using the mean estimate of EPS instead.
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directly comparable across stocks e.g., the effect of a 1 cent earnings surprise on a stock with
an EPS of $1 might be very different than the effect of a 1 cent earnings surprise on a stock
with an EPS of $0.

Figure A2 shows the relationship between post-earnings market-adjusted returns and SUE
for each of these alternative definitions. While the strength of the S-shape’s curvature varies
across these alternative definitions, the broad empirical pattern of increased sensitivity around
zero, and decreased sensitivity away from zero is still present.

Appendix Figure A2: S-Shapes for Alternative Definitions of SU E

This figure presents the relationship between the alternative definitions of SU E and market-adjusted post-
earnings announcement returns. In each panel, we truncate the data at the 1st percentile and 99th percentile
of SUE.

Table A7 replicates our main results studying how VU affects the earnings response coeffi-
cients with each alternative definition of SU E in expanding windows of |SU E| around zero. In
our main results, our expanding windows start at absolute values of SUE less than 0.002, then
expand to 0.005, 0.01, 0.025 and 0.05. This roughly corresponds to the 50th percentile, 75th

percentile, the 90th and 95th percentile of SU E. So, to make the results with our alternative
definitions of SU E comparable to our baseline findings, for each definition of SU E, we also
examine expanding windows which contain roughly these fractions of the data. Note that the
number of observations is not exactly the same within each set of columns (i.e., keeping SU Es
less than the median in column 1 versus column 5), because there are exact ties in SUE, espe-
cially in dollar terms. Further, the security fixed effects drop singleton observations, and the set
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of singletons is different across columns. Across all the definitions of SU E, the pattern of high
VU being correlated with increased sensitivity to earnings news for small surprises holds. And,
across all the definitions of SUE, the coefficient on the interaction term shrinks as we expand
the window. Different from the baseline results, however, we do not observe a flipping for the
second and third alternative definitions of SUE, where high VU implies an attenuated response
for extreme SUEs.

Appendix Table A7: Effect of Valuation Uncertainty on Earnings Response Coefficients by Earnings Size

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)
Window Size 50% 75% 90% 95% All 50% 75% 90% 95% All 50% 75% 90% 95% All

SU EA1
i,t 0.415*** 0.168*** 0.109*** 0.0800*** 0.0271***

(0.155) (0.020) (0.012) (0.008) (0.002)
SU EA1

i,t x VU 0.0238 0.0782*** 0.0247* 0.00661 -0.00693***
(0.256) (0.025) (0.013) (0.008) (0.002)

SU EA2
i,t 0.00822 0.00551*** 0.00579*** 0.00519*** 0.00442***

(0.005) (0.001) (0.001) (0.001) (0.000)
SU EA2

i,t x VU 0.0146* 0.0133*** 0.00946*** 0.00897*** 0.00473***
(0.008) (0.001) (0.001) (0.001) (0.001)

SU EA3
i,t 0.668*** 0.336*** 0.192*** 0.155*** 0.107***

(0.182) (0.070) (0.035) (0.028) (0.015)
SU EA3

i,t x VU 0.610** 0.711*** 0.469*** 0.383*** 0.120***
(0.252) (0.084) (0.040) (0.033) (0.016)

Observations 27,261 93,312 134,354 151,318 171,269 34,303 93,870 119,568 126,467 137,620 50,771 91,087 139,193 151,849 173,345
R-squared 0.197 0.125 0.116 0.112 0.088 0.171 0.121 0.125 0.129 0.126 0.143 0.119 0.116 0.116 0.102

Firm-Level Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Fixed Effects YQ YQ YQ YQ YQ YQ YQ YQ YQ YQ YQ YQ YQ YQ YQ

Notes: This table shows data on earnings announcements from 1986-2019. This table studies howmarket-adjusted
returns respond to alternative definitions of standardized unexpected earnings (SUE) and how this varies by
Valuation Uncertainty. Valuation uncertainty is defined as the z-scored dispersion in expectedmarket capitalization
given by a multiples-based valuation method at different points in the industry-year distribution. Our specifications
control for both security (Permno) fixed effects and year-quarter fixed effects. We also control for time since listing
(age), market capitalization, returns from t-12 to t-2, book-to-market, CAPM beta, institutional ownership, total
daily stock volatility over the past 12 months and the level of valuation uncertainty. Clustered standard errors
are reported in parentheses. The window size indicates the percentile of the SUE measure used to filter the data.
Significance levels are denoted as follows: * p<0.1, ** p<0.05, *** p<0.01.

Percentile ranks Another alternative way of measuring SU E is to calculate percentile ranks
of our baseline measure of SU E, as discussed in Hartzmark and Shue (2018). Our comparative
noisy processing framework predicts behavioral responses to both the sign and magnitude of
surprises. However, the use of percentile ranks complicates interpreting the data within the
framework of our model. Specifically, this approach may obscure potential nonlinearities in the
relationship between returns and earnings surprises due to the substantial mass of observations
with a SUE of exactly zero. Instead, percentile ranks are better suited for testing models of
efficient coding, which predict a linear relationship under the assumption of evenly distributed
mass along the x-axis – a condition met when percentile ranks are used.

In fact, when using percentile ranks of SU E, rather than SU E itself, Hartzmark and Shue
(2018) find that earnings responses appear to be linear, rather than S-shaped, consistent with
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models of efficient coding.
Further, we believe that examining the response to percentile ranks can miss the importance

of crossing the boundary of SU E > 0 versus SU E < 0, which is crucial in our theoretical
framework. Specifically, over 10% of the announcements in our data have an SUE of exactly zero,
and almost half the data has an absolute SU E of less than 10 basis points. A graph constructed
based on percentile ranks will spread this half of the data out, and thus even if there is a sharp
jump in returns right at zero, using percentile ranks will make the response appear flatter.
Similarly, less than 15% of the data has an SUE of more than 100 basis points. Using percentile
ranks would tend to pull these data points together (i.e., reduce their spread), making our
observed pattern of attenuated responses in the tails of SU E seem weaker.

Given our theoretical framework, we are especially interested in understanding differences
across the SU E = 0 boundary. To better understand the effect of using percentile ranks of
SU E, but make the effect of crossing zero more clear, we consider the following alternative
percentile rank construction: First, we form 50 buckets based on percentile ranks of SU E but
only for SU E < 0. Then, we have 1 bucket for observations with an SU E of exactly zero. Finally,
we form 50 buckets based on percentile ranks of SU E, but only for SU E > 0.

Figure A3 shows the results. In the left panel, we follow Hartzmark and Shue (2018) and
form 100 bins based on percentile ranks, where the percentiles are formed each quarter. This
panel replicates their result of a linear response of stock prices to percentile ranks of SU E. In the
right panel, however, we use our alternative structure which breaks out the observations with
an SU E of exactly zero into their own bin, and does not form the percentile ranks conditional
on another variable (e.g., each quarter, or at the firm level).33 And, the right panel shows that
there is indeed a sharp jump in returns at the zero-crossing boundary. Overall, these results
imply that our finding of increased sensitivity to SU Es right around zero is not an artifact of
how we constructed SU E (or using SU E itself rather than percentile ranks of SU E), but rather
a robust empirical pattern.

A.2 Robustness to pooled specification

In Table 2, we estimate our main regression specification in expanding windows. This approach
is useful for quantifying how sensitivity to SUE changes over different magnitudes of earnings
news. However, that method has two key limitations: first, the controls and fixed effects are

33The logic is that forming the percentiles conditional on another variable could cloud the effect of crossing
SU E = 0, as SU E = 0 could fall into a different percentile bin each quarter or for each firm. By forming percentiles
unconditionally, we ensure all observations with an SUE of exactly zero are in the same bin.
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Appendix Figure A3: S-Shapes for Percentile Ranks of SU E

This figure presents the relationship between SU E grouped by percentile ranks and market-adjusted post-
earnings announcement returns. Vertical line denotes the bin with an SUE of exactly zero.

re-estimated in each window. Second, it implicitly imposes a linear structure on a relationship
that becomes increasingly nonlinear as we move into the tails of the distribution.

To allay these concerns, in Table A8, we pool the full sample and estimate a piecewise linear
specification that allows the response to earnings news to vary flexibly with the magnitude
of the standardized earnings surprise (SUE). The pooled regression resolves issues described
above by incorporating all observations simultaneously and modeling the earnings response as
a series of SUE-magnitude-specific linear segments. In the pooled specification, we find results
broadly similar to those in Table 2, with VU leading to increased sensitivity to small earnings
surprises, and decreased sensitivity to larger earnings surprises, although the latter result is
not statistically significant.
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Appendix Table A8: Pooled Regression: Effect of Valuation Uncertainty on Earnings Responses

(1) (2) (3) (4)

SUE x 1_|SUE|<=0.002 15.35*** 15.63*** 15.90*** 15.78***
(0.638) (0.636) (0.633) (0.647)

SUE x 1_|SUE|>0.002 & |SUE|<=0.005 7.821*** 7.909*** 8.003*** 8.189***
(0.314) (0.316) (0.320) (0.335)

SUE x 1_|SUE|>0.005 & |SUE|<=0.01 4.609*** 4.645*** 4.710*** 4.908***
(0.192) (0.192) (0.190) (0.197)

SUE x 1_|SUE|>0.01 & |SUE|<=0.025 2.352*** 2.377*** 2.423*** 2.577***
(0.125) (0.125) (0.125) (0.132)

SUE x 1_|SUE|>0.025 & |SUE|<=0.05 1.178*** 1.190*** 1.221*** 1.310***
(0.079) (0.079) (0.079) (0.086)

VU x SUE x 1_|SUE|<=0.002 1.980*** 2.096*** 1.905*** 1.950***
(0.416) (0.414) (0.413) (0.419)

VU x SUE x 1_|SUE|>0.002 & |SUE|<=0.005 0.594*** 0.612*** 0.544** 0.642***
(0.207) (0.208) (0.212) (0.213)

VU x SUE x 1_|SUE|>0.005 & |SUE|<=0.01 0.19 0.183 0.165 0.232*
(0.124) (0.124) (0.123) (0.126)

VU x SUE x 1_|SUE|>0.01 & |SUE|<=0.025 -0.101 -0.0991 -0.0923 -0.0658
(0.075) (0.075) (0.075) (0.081)

VU x SUE x 1_|SUE|>0.025 & |SUE|<=0.05 -0.0353 -0.0414 -0.0405 -0.0329
(0.057) (0.056) (0.055) (0.059)

Observations 173,668 173,668 173,668 173,587
R-squared 0.066 0.068 0.077 0.127

Controls No Yes Yes Yes
FE None None YQ Permno + YQ

Ratio 0.002 0.129 0.134 0.120 0.124
Ratio 0.005 0.076 0.077 0.068 0.078
Ratio 0.01 0.041 0.039 0.035 0.047
Ratio 0.025 -0.043 -0.042 -0.038 -0.026
Ratio 0.05 -0.030 -0.035 -0.033 -0.025

Notes: This table shows data on earnings announcements from 1986-2019. This table studies howmarket-adjusted
returns respond to standardized unexpected earnings (SUE) and how this varies by Valuation Uncertainty. SUE
refers to the deviation of a company’s reported earnings per share from the consensus earnings forecast by analysts,
normalized by the last closing price before the earnings announcement. Valuation uncertainty is defined as the z-
scored dispersion in expectedmarket capitalization given by amultiples-based valuationmethod at different points
in the industry-year distribution. Some columns control for security (Permno) fixed effects and year-quarter fixed
effects. Some columns also control for time since listing (age), market capitalization, returns from t-12 to t-2, book-
to-market, CAPM beta, institutional ownership and total daily stock volatility over the past 12 months. Clustered
standard errors are reported in parentheses. Significance levels are denoted as follows: * p<0.1, ** p<0.05, ***
p<0.01. The final rows of the table report the ratios of the coefficients on SU E with the V U interaction terms.
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A.3 Robustness to Firm Size and Time Period

As discussed in Martineau (2022), the post-earnings-announcement drift (PEAD) is no longer
present in recent years, especially among large capitalization stocks. One might be worried,
therefore, if the PEAD is driven by under-reaction to extreme news, and the PEAD has disap-
peared, then the S-shaped response to earnings news has disappeared as well. To test this, first
we replicate our baseline plot of market-adjusted returns against SUE, but we restrict to data
after 2010 (the last period considered in Martineau (2022)). And, we further restrict to stocks
which, within a given quarter, are above the median market capitalization in our sample. Figure
A4 shows that the S-shape is still strong among large stocks in more recent years. This suggests
that the disappearance of the PEAD does not imply that the general empirical pattern of an
S-shaped response of stock prices to earnings news has also gone away.

Appendix Figure A4: S-shaped Response of Market-Adjusted Returns to Earnings Surprises: Post 2010, Large Cap.
Stocks

This figure illustrates the relationship between market-adjusted returns and earnings surprises. The x-axis
represents standardized unexpected earnings (SUE), calculated as the difference between actual earnings per
share (EPS) and mean expected EPS, normalized by the previous closing price (Pi,t−1). The y-axis shows the
cumulative market-adjusted return over the 4 days after the earnings announcement. Restricts to data after
2010, and stocks which are above median market capitalization in our sample each quarter.

Table A9 replicates our main results on the relationship between valuation uncertainty and
earnings response coefficients, again for the large-cap post-2010 sample. Reassuringly, our re-
sults of amplification for surprises around zero, and attenuation for large surprises also holds
on this subsample. Collectively, the evidence in Figure A4 and Table A9 suggest that the disap-
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pearance of the PEAD in recent years does not diminish the strength of our findings.

Appendix Table A9: Effect of Valuation Uncertainty on Earnings Response Coefficients by Earnings Size: Post
2010, Large Cap. Stocks

(1) (2) (3) (4) (5)
SUE Window ≤ |0.002| ≤ |0.005| ≤ |0.01| ≤ |0.025| ≤ |0.05|

SUE 22.18*** 13.37*** 9.212*** 5.980*** 4.611***
(1.168) (0.586) (0.384) (0.345) (0.337)

VU 0.000898 0.0013 0.00145* 0.00197** 0.00275***
(0.001) (0.001) (0.001) (0.001) (0.001)

SUE x VU 4.449*** 1.995*** 0.808*** 0.117 -0.489*
(0.923) (0.456) (0.285) (0.238) (0.263)

Observations 17,745 22,604 24,075 24,591 24,689
R-squared 0.164 0.157 0.152 0.137 0.13

Notes: This table shows data on earnings announcements from 1986-2019. This table studies howmarket-adjusted
returns respond to standardized unexpected earnings (SUE) and how this varies by Valuation Uncertainty. SUE
refers to the deviation of a company’s reported earnings per share from the consensus earnings forecast by ana-
lysts, normalized by the last closing price before the earnings announcement. Valuation uncertainty is defined as
the z-scored dispersion in expected market capitalization given by a multiples-based valuation method at different
points in the industry-year distribution. Our specifications control for both security (Permno) fixed effects and
year-quarter fixed effects. We also control for time since listing (age), market capitalization, returns from t-12 to
t-2, book-to-market, CAPM beta, institutional ownership and total daily stock volatility over the past 12 months.
Clustered standard errors are reported in parentheses. The window size indicates the range of SUE around zero
considered in each regression. Restricts to data after 2010, and stocks which are above median market capitaliza-
tion in our sample each quarter. Significance levels are denoted as follows: * p<0.1, ** p<0.05, *** p<0.01.

A.4 Earnings persistence

One possible alternative explanation for the differences in how valuation uncertainty affects the
response to earnings news for SUEs close to zero versus away from zero is differences in the
persistence of earnings news. For this to explain our results, however, two things would need to
be true. First, small surprises for high valuation uncertainty firms would need to be more per-
sistent than small surprises for low valuation uncertainty firms.3⁴ And second, large surprises
for high valuation uncertainty firms would need to be less persistent than large surprises for
low valuation uncertainty firms.

3⁴More specifically, when we discuss persistence near an SUE of zero, we mean that small positive surprises
are followed by subsequent small positive surprises, and vice versa for small negative surprises.
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We test whether there is differential persistence in earnings surprises for high- versus low-
valuation uncertainty firms and whether this differs for surprises close to zero and far away
from zero. To do so, we test the predictive power of an earnings surprise (SU E) at a given
point in time for earnings growth over the next year. To further make things comparable across
firms and time, we control for lagged earnings growth, and interact that quantity with all the
coefficients of interest.

Table A10 contains the results. Similar to our baseline regression specification, we run these
earnings persistence regressions in expanding windows around zero. The first column uses
all data, while the second column restricts to a small window around zero. Columns 3 to 6
progressively expand the window considered. In the smallest window (column 2), we find that
for high VU firms, earnings growth is negatively related to SUE today. This would work against
finding a stronger S-shape for high VU firms, as if small surprises are less persistent, we would
expect stock prices to react less, rather than more.

Further, in columns 7-12, we add in interaction terms for lagged earnings growth. There,
we find the same pattern: in tight windows around a SUE of zero, there is a negative coefficient
on the interaction term between SUE today and VU when trying to predict future earnings
growth, while for wider windows, the coefficient on the triple interaction term turns positive
and significant. Again, this would exactly work against the stronger S-shaped response for high
VU firms we find in the data. Collectively, the evidence in Figure A5 and Table A10 are further
evidence that differences in earnings manipulation, and earnings persistence are not driving
our main findings.

A.5 Earnings Manipulation

One concern with our main results is that crossing the boundary from SU E < 0 to SU E > 0

affects how investors’ adjust their expectations of a stock’s value for a reason outside of our
model. For example, one might be worried that managers engage in earnings manipulation to
ensure a small positive SU E. And therefore, when investors observe a small negative surprise,
crossing zero is not actually about moving across a category boundary. Instead, it signals that
managers were unable to manipulate earnings to ensure a positive SU E, which conveys to in-
vestors that either (1) the company’s fundamentals are much worse than previously thought or
(2) management is incompetent. And further, perhaps companies with more valuation uncer-
tainty have a stronger incentive or scope to engage in earnings manipulation, which drives our
results on cross-sectional heterogeneity in the S-shaped response to earnings news.
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If this were the case, however, one would expect two things. First, one would expect differ-
ences in bunching right around the cutoff at SU E = 0 for high and low VU observations. The
logic is that if high VU stocks manipulated earnings more, we would see a greater mass of earn-
ings just above the consensus estimate. Second, if managers of high VU firms engaged in more
earnings manipulation, we would expect differential persistence in their earnings news – as
management cannot manipulate earnings in the same direction forever. Therefore, one might
expect that positive SUEs for high VU firms predict relatively lower earnings growth going for-
ward than for low VU observations. In this section, we show that neither of these patterns hold
in the data, suggesting that differential earnings manipulation by valuation uncertainty is not
driving our main results.

First, we test for differences in bunching just above an SU E = 0 for high versus low VU
observations. To this end, each quarter, we split the data into two groups depending on whether
or not the stock has above or below median VU. Figure A5 plots the fraction of the data in each
VU group in 1 cent bins of dollar earnings surprise, defined as the difference between realized
earnings and the mean estimate of earnings. While there is a large mass of data at a surprise of
almost exactly zero, there is no difference in bunching for high versus low VU observations.3⁵
This is the first piece of evidence suggesting that differences in earnings manipulation do not
drive our results.

Next, we test whether SUE is differentially persistent for high and low VU observations.
Table A10 contains the results. Similar to our baseline regression specification, we run these
earnings persistence regressions in expanding windows around zero. The first column uses
all data, while the second column restricts to a small window around zero. Columns 3 to 6
progressively expand the window considered. In the smallest window (i.e., column 2), we find
that for high VU firms, earnings growth is negatively related to SUE today. This would work
against finding a stronger S-shape for high VU firms, as if small surprises are less persistent, we
would expect stock prices to react less, rather than more.

Further, in columns 7-12, we add in controls and interaction terms for lagged earnings
growth. Including lagged earnings growth is important, as earnings growth is mechanically
correlated with SUE, and earnings growth is persistent (Novy-Marx, 2015). Therefore, not in-
cluding lagged earnings growth could lead to omitted bias. There, we find the same pattern:
in tight windows around a SUE of zero, there is a negative coefficient on the interaction term

3⁵We say almost because the bin at exactly zero includes all surprises greater than or equal to zero, and less
than a full penny per share, i.e., the bins take the floor of the earnings surprise in one cent increments. So there
are some observations in that bin with slightly positive surprises. Results are similar replicating this plot using the
ceiling within each 1-cent increment, as opposed to the floor.
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Appendix Figure A5: Share of the Data Around SU E = 0: High versus Low VU Split

Each quarter, we split the data into two groups depending on whether or not the stock has above or below
median VU. This figure plots the fraction of the data in each VU group in 1 cent bins of dollar earnings surprise,
defined as the difference between realized earnings and the mean estimate of earnings. Each bin takes the
floor of the earnings surprise so e.g., the bin at zero includes all surprises greater than or equal to zero, and
less than a full penny per share. For clarity, we only plot data with earnings surprises between -3 cents, and
3 cents.

between SUE today and VU when trying to predict future earnings growth, while for wider
windows, the coefficient on the triple interaction term turns positive and significant. Again,
this would exactly work against the stronger S-shaped response for high VU firms we find in
the data. Collectively, the evidence in Figure A5 and Table A10 are further evidence that differ-
ences in earnings manipulation, and earnings persistence are not driving our main findings.

A.6 Accruals

One potential concern is that firms with high valuation uncertainty may be more likely to use
accruals to engineer small earnings beats. Accruals on their own, however, are mechanically
correlated with SUE. Specifically, accruals are a component of net income, and net income
underlies EPS and thus SUE. Including raw accruals alongside SUE in a regression creates a
multicollinearity problem, obscuring the true interaction effect. To address this, we construct
a version of accruals that is uncorrelated with SUE and captures abnormal behavior relative
to the firm’s typical accruals pattern. First we construct two measures of accruals: (1) cash
flow accruals defined as net income minus operating cash flows and (2) balance sheet accruals
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Appendix Table A10: Predictive Power of SUE for Future Earnings Growth

4 Quarters Ahead Earnings Growth
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

SUE Window All ≤ |0.002| ≤ |0.005| ≤ |0.01| ≤ |0.025| ≤ |0.05| All ≤ |0.002| ≤ |0.005| ≤ |0.01| ≤ |0.025| ≤ |0.05|

SUE -1.218*** -0.115* -0.330*** -0.366*** -0.463*** -0.634*** -0.802*** -0.0256 -0.254*** -0.304*** -0.431*** -0.608***
(0.190) (0.062) (0.039) (0.035) (0.029) (0.039) (0.212) (0.069) (0.045) (0.037) (0.029) (0.037)

VU 0.00153*** 0.000614*** 0.000708*** 0.00104*** 0.00120*** 0.00136*** 0.00124*** 0.000677*** 0.000742*** 0.00111*** 0.00119*** 0.00130***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

SUE x VU -0.298* -0.101 -0.0907** -0.0314 0.0282 0.0148 0.00427 -0.0815 -0.118*** -0.0535 0.00464 -0.00694
(0.153) (0.066) (0.040) (0.027) (0.027) (0.036) (0.131) (0.086) (0.045) (0.034) (0.027) (0.036)

Lagged Earnings Growth -0.0465 -0.000908 -0.0028 -0.00485 -0.00214 -0.00248 0.019 -0.0621** -0.0621*** -0.0565*** -0.0370*** -0.0449***
(0.048) (0.001) (0.002) (0.004) (0.002) (0.003) (0.049) (0.028) (0.022) (0.020) (0.009) (0.014)

Lagged Growth x SUE 5.539*** 3.759 -1.443 -2.737 -0.573 -1.848***
(2.114) (13.510) (4.782) (3.144) (0.851) (0.587)

Lagged Growth x VU -0.0832*** 0.021 0.0363** 0.0320** 0.0223*** 0.0306***
(0.031) (0.028) (0.016) (0.015) (0.007) (0.009)

Lagged Growth x SUE x VU 0.519 -33.43** -6.374 -5.243 0.673 1.166***
(0.907) (15.680) (5.498) (4.695) (0.566) (0.418)

Observations 143,703 82,184 113,150 128,550 138,489 142,207 143,703 82,184 113,150 128,550 138,489 142,207
R-squared 0.171 0.218 0.176 0.149 0.144 0.135 0.557 0.22 0.178 0.152 0.147 0.139

Notes: This table shows data on earnings announcements from 1986-2019. This table studies how SU E can predict
future fundamentals, as measured by next year’s earnings growth, and how this varies by Valuation Uncertainty.
SUE refers to the deviation of a company’s reported earnings per share from the consensus earnings forecast
by analysts, normalized by the last closing price before the earnings announcement. Valuation uncertainty is
defined as the z-scored dispersion in expected market capitalization given by a multiples-based valuation method
at different points in the industry-year distribution. Lagged earnings growth is the earnings growth over the past
year (i.e., relative to the same quarter the previous year), divided by the pre-earnings announcement price. 4-
quarters ahead earnings growth is defined as year-over-year earnings growth over the next 12 months (i.e., relative
to the same quarter the next year), divided by the pre-earnings announcement price. Our specifications control
for both security (Permno) fixed effects and year-quarter fixed effects. We also control for time since listing (age),
market capitalization, returns from t-12 to t-2, book-to-market, CAPM beta, institutional ownership and total daily
stock volatility over the past 12 months. Clustered standard errors are reported in parentheses. The window size
indicates the range of SUE around zero considered in each regression. Significance levels are denoted as follows:
* p<0.1, ** p<0.05, *** p<0.01.

calculated as the change in non-cash current assets minus the change in non-debt, non-tax
current liabilities, minus depreciation expense Sloan (1996). Both measures are normalized by
total assets to make them comparable across firms and across time. We then residualize each
accruals measure by regressing it on SUE and including firm and year-quarter fixed effects. The
“Residualized” accruals used in Table A11 reflect these orthogonalized, abnormal components
of accruals.

At a high level, the results in Table A11 suggest that the empirical evidence is inconsistent
with this story. In particular, the interaction between accruals and earnings surprises is negative,
consistent high accruals signaling lower earnings quality and thus dampening the market’s
reaction to news. Further, our results on the interaction between SUE and VU are unchanged
by including accruals.
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Appendix Table A11: Accruals, Dispersion, Valuation Uncertainty and Earnings Responses

Cash Flow Accruals/Total Assets Balance Sheet Accruals/Total Assets
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

SUE 17.74*** 10.68*** 7.117*** 4.180*** 2.729*** 17.38*** 10.31*** 6.786*** 3.913*** 2.539***
(0.664) (0.377) (0.253) (0.161) (0.120) (0.672) (0.395) (0.266) (0.173) (0.129)

SUE x VU 1.879*** 0.214 (0.243) -0.599*** -0.558*** 2.655*** 0.927*** 0.279* -0.311*** -0.392***
(0.481) (0.240) (0.150) (0.091) (0.066) (0.440) (0.239) (0.156) (0.101) (0.073)

SUE x Accruals (Residualized) -15.98 2.92 0.694 -1.094 0.101 -21.48** -4.999 -0.365 -0.605 0.359
(10.360) (4.357) (2.342) (1.069) (0.715) (9.447) (3.724) (2.014) (1.145) (0.715)

SUE x Dispersion -2.297*** -0.833*** -0.429*** -0.166*** -0.0546 -2.269*** -0.790*** -0.450*** -0.160*** -0.0565
(0.417) (0.190) (0.104) (0.057) (0.035) (0.426) (0.191) (0.106) (0.057) (0.034)

Observations 89,284 123,987 142,317 155,390 161,014 90,751 126,469 145,235 158,584 164,273
R-squared 0.121 0.118 0.118 0.11 0.101 0.12 0.116 0.116 0.108 0.099

Window Size 0.002 0.005 0.01 0.025 0.05 0.002 0.005 0.01 0.025 0.05

Notes: This table shows data on earnings announcements from 1986-2019. This table studies howmarket-adjusted
returns respond to standardized unexpected earnings (SUE) and how this varies by Valuation Uncertainty, Accruals
and Analyst Dispersion. SUE refers to the deviation of a company’s reported earnings per share from the consensus
earnings forecast by analysts, normalized by the last closing price before the earnings announcement.
Valuation uncertainty is defined as the z-scored dispersion in expected market capitalization given by a multiples-
based valuation method at different points in the industry-year distribution. Dispersion is defined as the z-scored
standard deviation of analyst forecasts for the earnings of company i in the last IBES statistical period before the
earnings announcement, normalized by the magnitude of the consensus estimate of earnings per share Ben-David
et al. (2023). Cash Flow Accruals are defined as net income minus operating cash flows. Balance Sheet Accruals
are calculated as the change in non-cash current assets minus the change in non-debt, non-tax current liabilities,
minus depreciation expense Sloan (1996). Both measures of accruals are normalized by total assets. To identify
the piece of accruals uncorrelated with SUE itself, and abnormal relative to a firm’s historical average, we run a
first stage regression of accruals on SUE and firm and year-quarter fixed effects. In each regression in this table,
we include these “Residualized” measures of accruals.
Our specifications control for both security (Permno) fixed effects and year-quarter fixed effects. We also control for
time since listing (age), market capitalization, returns from t-12 to t-2, book-to-market, CAPM beta, institutional
ownership and total daily stock volatility over the past 12 months. Clustered standard errors are reported in
parentheses. The window size indicates the range of SUE around zero considered in each regression. Significance
levels are denoted as follows: * p<0.1, ** p<0.05, *** p<0.01.

A.7 Other measures of Hard to Value

While our main analysis uses valuation uncertainty as a proxy for processing constraints, it is
just one of many possible measures that might capture how difficult it is for investors to interpret
earnings news. In Table A12, we explore a range of alternative proxies drawn from the literature.
These include measures related to cash flow duration (Gormsen and Lazarus, 2023), business
complexity, measured as an indicator variable for whether a single business segment generates
more than 80% of the firm’s total revenue (Cohen and Lou, 2012), idiosyncratic volatility, and
stock turnover, defined as the monthly trading volume scaled by the total shares outstanding
(Ben-David et al., 2023). Broadly, all of which have been linked to uncertainty in how investors
value firms.

For each proxy, we estimate the effect of earnings surprises (SUE) on announcement re-
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turns, and interact SUE with the alternative measure to test whether they also exhibit the same
“flipping” pattern that we observe in Table 2. Further, we include analyst dispersion, as we have
shown in Table A2 that this generally attenuates the response to earnings news. Finally, for each
measure, we fully saturate the regression by including every possible interaction term between
SUE, dispersion and the measure itself (although we only report the interaction terms with
SUE).

The first panel of Table A12 shows that for cashflow duration, the patterns are broadly
similar to VU, with the interaction term being positive for small earnings surprises and negative
for large earnings surprises. Note that inputs to the Gormsen and Lazarus (2023) measure are
“value” (book-to-market), “profit” (operating profitability/book equity), “investment” (annual
growth in total assets), “beta” (market beta) and “payout” (payout ratio). In their calibration,
value, profit and payout tend to decrease duration, while investment and beta tend to increase
duration. Therefore, the result in the first panel of Table A12 that high duration firms have a
more S-shaped response to earnings news is likely related to the results in Skinner and Sloan
(2002) that low book-to-market firms i.e., growth firms have a more S-Shaped response to
earnings news. However, in our sample (which extends well beyond the original sample in
Skinner and Sloan (2002)), we find that growth firms generally have an amplified response
to earnings news at all points in the SUE distribution, but that effect is strongest for earnings
surprises near zero.

The second panel shows a similar pattern of a decreasing interaction term for complicated
firms, although the interaction term in each case retains the same sign.3⁶ Results are similar
when replicating the second panel using geographic segments, instead of business segments.
The third panel shows that having more volatile stock returns also generates the flipping pattern
observed in Table 2. Finally, the fourth panel shows that increased trading volume leads to a
decreased interaction term as the windows expand, but the interaction term in each window is
positive.

3⁶Recall that the measure in Cohen and Lou (2012) is whether a single business segment accounts for 80% or
more of total revenue. And, firms with a single business segment are arguably simpler to value. So, in Table A12,
we have flipped the indicator to be whether there is no business segment accounting for 80% or more of total
revenue
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In Table A13, we report the correlations between valuation uncertainty, dispersion in analyst
estimates and the proxies of hard to value in Table A12.

A.8 Differences in Pre-Announcement Information Acquisition

Motivation Suppose that, owing to the increased ex-ante uncertainty, investors learn rela-
tively less about high valuation uncertainty stocks pre-announcement – and thus less of the
earnings information is incorporated into prices before it is formally released. This might specif-
ically apply to small earnings surprises, because as shown in Figure 1, prices are very responsive
to earnings surprises just around zero – and thus being wrong in this region could be extremely
costly to investors.3⁷ And, if this channel applies differently to small versus large surprises, one
might be concerned that it is driving our results on valuation uncertainty.

Approach To test for differences in pre-announcement information acquisition, we run re-
gressions of the form:

Outcomei,t = βVUi,t−1 +δX i,t +φt +ψi + εi,t , (12)

where Outcomei,t is a measure of how much information was incorporated into prices after
the earnings information was made public i.e., larger values denote that less information was
incorporated ahead of time. We include the same controls and fixed effects as in Equation 5.

In column 1, we examine the absolute earnings day return normalized by the standard de-
viation of pre-announcement returns. The logic is that large earnings-day returns are evidence
that less information was incorporated into prices before the announcement (Frazzini, 2006).
There are, however, unconditional differences in volatility between high and low valuation un-
certainty stocks. To account for this, we normalize the earnings-day return by the standard
deviation of returns over the month before the announcement itself (Sammon, 2024). Here,
we find a negative coefficient, suggesting that relatively more information is incorporated into
prices pre-announcement for high valuation uncertainty stocks.

In column 2, we examine the price jump measure of Weller (2018), which is designed to
capture the fraction of earnings information incorporated into prices after the announcement
information was made public. Here, we see no relationship between valuation uncertainty and

3⁷This is just one reason for why high valuation uncertainty stocks might have a different amount of information
incorporated into prices pre-announcement e.g., it could also be that stocks with high valuation uncertainty have
different disclosure strategies (Dye, 1985; Huang et al., 2025).
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Appendix Table A12: Alternative Measures of “hard-to-value”

Duration
(1) (2) (3) (4) (5)

SUE 16.58*** 9.900*** 6.541*** 3.683*** 2.305***
(0.674) (0.395) (0.265) (0.158) (0.108)

SUE x Measure 1.306*** 0.533*** 0.321*** -0.0109 -0.111**
(0.376) (0.182) (0.117) (0.066) (0.045)

SUE x Dispersion -1.819*** -0.631*** -0.402*** -0.197*** -0.0934***
(0.415) (0.173) (0.098) (0.053) (0.033)

Observations 95,059 133,019 153,175 167,457 173,538
R-squared 0.116 0.112 0.112 0.103 0.095

SUE x Measure / SUE 0.079 0.054 0.049 -0.003 -0.048

Indicator: Largest Biz. Segment < 80%
(6) (7) (8) (9) (10)

SUE 16.45*** 9.932*** 6.614*** 3.721*** 2.307***
(0.573) (0.332) (0.217) (0.128) (0.089)

SUE x Measure 3.298*** 2.070*** 1.469*** 0.871*** 0.534***
(0.399) (0.199) (0.122) (0.068) (0.053)

SUE x Dispersion -1.748*** -0.664*** -0.459*** -0.281*** -0.155***
(0.386) (0.172) (0.099) (0.052) (0.033)

Observations 94,783 132,557 152,575 166,722 172,720
R-squared 0.117 0.114 0.114 0.105 0.097

SUE x Measure / SUE 0.200 0.208 0.222 0.234 0.231

Idiosyncratic Volatility
(16) (17) (18) (19) (20)

SUE 16.82*** 9.915*** 6.525*** 3.721*** 2.311***
(0.661) (0.389) (0.267) (0.172) (0.116)

SUE x Measure 2.650*** 0.971*** 0.366** -0.146 -0.0919
(0.525) (0.250) (0.145) (0.095) (0.059)

SUE x Dispersion -2.358*** -0.767*** -0.414*** -0.166*** -0.0938***
(0.408) (0.162) (0.091) (0.051) (0.033)

Observations 95,059 133,017 153,172 167,454 173,534
R-squared 0.117 0.112 0.112 0.103 0.095

SUE x Measure / SUE 0.158 0.098 0.056 -0.039 -0.040

Turnover
(21) (22) (23) (24) (25)

SUE 16.55*** 9.982*** 6.611*** 3.688*** 2.271***
(0.613) (0.353) (0.237) (0.143) (0.097)

SUE x Measure 3.863*** 1.887*** 1.048*** 0.434*** 0.246***
(0.524) (0.224) (0.130) (0.072) (0.053)

SUE x Dispersion -2.091*** -0.709*** -0.436*** -0.223*** -0.120***
(0.388) (0.171) (0.100) (0.052) (0.033)

Observations 95,055 133,011 153,164 167,443 173,522
R-squared 0.117 0.113 0.113 0.104 0.095

SUE x Measure / SUE 0.233 0.189 0.158 0.118 0.108

Window Size 0.002 0.005 0.01 0.025 0.05

Firm-Level Controls YES YES YES YES YES
Fixed Effects Permno + YQ Permno + YQ Permno + YQ Permno + YQ Permno + YQ

Notes: This table shows data on earnings announcements from 1986-2019. This table studies how market-adjusted returns respond to stan-
dardized unexpected earnings (SUE) and how this varies by different measures of processing constraints. SUE refers to the deviation of a
company’s reported earnings per share from the consensus earnings forecast by analysts, normalized by the last closing price before the
earnings announcement. Duration is defined as cashflow duration from Gormsen and Lazarus (2023). The indicator for the largest business
segment accounting for more than 80% of sales is from Cohen and Lou (2012). The measures of idiosyncratic volatility and turnover are
from Ben-David et al. (2023). Turnover is defined as the monthly trading volume scaled by the total shares outstanding. Dispersion is the
standard deviation of analyst forecasts for the earnings of company i in the last IBES statistical period before the earnings announcement,
normalized by the magnitude of the consensus estimate of earnings per share Ben-David et al. (2023). Our specifications control for both
security (Permno) fixed effects and year-quarter fixed effects. We also control for time since listing (age), market capitalization, returns from
t-12 to t-2, book-to-market, CAPM beta, institutional ownership and total daily stock volatility over the past 12 months. Clustered standard
errors are reported in parentheses. The window size indicates the range of SUE around zero considered in each regression. Significance levels
are denoted as follows: * p<0.1, ** p<0.05, *** p<0.01.
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Appendix Table A13: Correlation Between Proxies for Hard to Value

Variables Valuation
Uncer-
tainty

Dispersion Cashflow
Duration

Indicator:
1 Biz.
Seg.>80%
Revenue

Indicator:
1 Geo.
Seg>80%
Revenue

Idiosyncratic
Volatility

Turnover

Valuation Uncertainty 1
Dispersion 0.3 1
Cashflow Duration 0.326 0.304 1
Indicator: 1 Biz. Seg.>80%
Revenue

0.034 0.064 -0.024 1

Indicator: 1 Geo. Seg>80%
Revenue

0.084 0.078 0.039 0.481 1

Idiosyncratic Volatility 0.462 0.351 0.441 0.058 0.063 1
Turnover 0.15 0.108 0.28 0.16 0.234 0.342 1

Notes: Valuation uncertainty is defined as the interquartile range of market capitalization implied by a multiples-
based valuation method at different points in a given industry-year distribution (Golubov and Konstantinidi, 2023).
Dispersion is the standard deviation of analyst forecasts for the earnings of company i in the last IBES statistical
period before the earnings announcement, normalized by the magnitude of the consensus estimate of earnings per
share Ben-David et al. (2023). Duration is defined as cashflow duration from Gormsen and Lazarus (2023). The
indicator for the largest business segment accounting for more than 80% of sales is from Cohen and Lou (2012).
The measures of idiosyncratic volatility and turnover are from Ben-David et al. (2023).

the price jump measure, evidence that high and low valuation uncertainty stocks are similar on
this dimension.3⁸ Overall, the results in Table A14 suggest that, if anything, more information
is incorporated into prices ahead of time for high VU stocks – which would work against our
main finding. We conclude, therefore, that differences in the incorporation of information pre-
announcement are unlikely to be driving our baseline results.

A.9 Trading Volume

One possible mechanism through which valuation uncertainty may affect the response to earn-
ings surprises relates to attention. In particular, it is conceivable that there are differences in
attention between high and low VU observations. Specifically, high VU stocks may receive rela-
tively more attention for less extreme earnings surprises, and therefore respond more to earn-
ings news that are close to zero surprise.

In this section, we aim to test for differences in attention between high and low VU observa-
tions – depending on the size of the earnings surprise – around earnings announcements. We
follow Hou et al. (2009) and use turnover around earnings announcements, defined as trading

3⁸Column 2 has significantly fewer observations than column 1 because of the “non-event filter,” which removes
observations where the total return around the earnings announcement is close to zero, see Weller (2018) for
details.
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Appendix Table A14: Relationship between Valuation Uncertainty and Information Incorporated Into Prices Be-
fore Earnings Announcements

|RET |/SD PJ
(1) (2)

VU -0.0413*** -0.00261
(0.013) (0.003)

Observations 168,061 63,752
R-squared 0.22 0.17

Firm Level Controls YES YES
FE Permno + YQ

Notes: This table contains the results from a regression of measures of the amount of information incorporated
into prices before the earnings announcement itself on valuation uncertainty. Our specifications control for both
security (Permno) fixed effects and year-quarter fixed effects. We also control for time since listing (age), market
capitalization, returns from t-12 to t-2, book-to-market, CAPM beta, institutional ownership and total daily stock
volatility over the past 12 months. Clustered standard errors are reported in parentheses. The window size indi-
cates the range of SUE around zero considered in each regression. Significance levels are denoted as follows: *
p<0.1, ** p<0.05, *** p<0.01.

volume divided by shares outstanding, as a proxy for investor attention. Specifically, to match
our baseline specification in Table 2, we calculate cumulative turnover from t = 0 to t = 4

around the earnings announcement i.e., we match the horizon we use to compute returns.
The results are in Table A15. Column 1 shows that there is no level effect of valuation

uncertainty. In other words, valuation uncertainty is not related to the trading volume. The table
shows that, in general and across all specifications, earnings surprises are negatively associated
with trading volume. For small surprises this means that there is a lot less trading volume for
positive than for negative surprises, consistent with higher attention paid to earnings misses.
For small earnings surprises, there is no interaction effect between valuation uncertainty and
SUE. As we widen the distribution of SUEs we consider, we find a positive coefficient on the
interaction term between VU and SUE. This suggests that, if anything, high VU stocks may
receive more attention around earnings announcements when the surprises are bigger. This
runs contrary to the alternative story that differences in attention are driving our main results.

A.10 Contemporaneous Guidance

One potential concern with our finding of an S-shaped return response to SUE is that it may not
reflect a nonlinear reaction to earnings news per se, but rather could arise mechanically due
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Appendix Table A15: Effect of Valuation Uncertainty on Turnover Around Earnings Announcements

(1) (2) (3) (4) (5)
SUE Window ≤ |0.002| ≤ |0.005| ≤ |0.01| ≤ |0.025| ≤ |0.05|

SUE -1.861*** -0.495*** -0.194*** -0.0754** -0.0378
(0.255) (0.104) (0.058) (0.038) (0.028)

VU 0.000429 0.000677 0.000543 0.00053 0.000447
(0.000) (0.000) (0.000) (0.000) (0.000)

SUE x VU 0.109 0.158** 0.156*** 0.127*** 0.0781***
(0.203) (0.078) (0.047) (0.029) (0.021)

Observations 95,081 133,062 153,221 167,506 173,587
R-squared 0.546 0.529 0.516 0.505 0.498

Notes: This table shows data on earnings announcements from 1986-2019. This table studies how cumulative
turnover responds to standardized unexpected earnings (SUE) and how this varies by Valuation Uncertainty. SUE
refers to the deviation of a company’s reported earnings per share from the consensus earnings forecast by analysts,
normalized by the last closing price before the earnings announcement. Valuation uncertainty is defined as the
z-scored dispersion in expected market capitalization given by a multiples-based valuation method at different
points in the industry-year distribution. Our specifications control for both security (Permno) fixed effects and
year-quarter fixed effects. We also control for time since listing (age), market capitalization, returns from t-12 to
t-2, book-to-market, CAPM beta, institutional ownership and total daily stock volatility over the past 12 months.
Clustered standard errors are reported in parentheses. The window size indicates the range of SUE around zero
considered in each regression. Significance levels are denoted as follows: * p<0.1, ** p<0.05, *** p<0.01.

to the presence of other contemporaneous disclosures that are themselves nonlinearly related
to SUE. As a specific example, if managerial EPS guidance is issued contemporaneously with
earnings announcements and if the guidance itself has a S-shaped relationship with SUE, then
the observed S-shaped return response may be due to market reactions to guidance rather than
to the SUE news alone.

To investigate this possibility, we restrict our sample to earnings announcements that have
no contemporaneous management EPS guidance, identified using guidance data from IBES. If
the S-shaped return pattern is primarily driven by managerial guidance that co-varies nonlin-
early with SUE, we would expect the S-shape to attenuate or disappear when we exclude these
events.

Figure A6 shows that the S-shaped relationship between returns and SUE remains nearly
unchanged on the no-guidance subsample. Further, Table A16 shows that our main results on
the interaction between VU and SUE are also unchanged on this subsample. This suggests
that the S-shaped return pattern is not an artifact of contemporaneous managerial guidance
but rather reflects a genuine nonlinear reaction to earnings surprises. And further, that our
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results on the sharper S-shaped response for high VU firms is also not explained bymanagement
guidance.

Appendix Figure A6: S-shaped Response of Market-Adjusted Returns to Earnings Surprises: Excluding Announce-
ments with Contemporaneous Management Guidance

Notes: This figure illustrates the relationship between market-adjusted returns and earnings surprises. The x-
axis represents standardized unexpected earnings (SUE), calculated as the difference between actual earnings
per share (EPS) and mean expected EPS, normalized by the previous closing price (Pi,t−1). The y-axis shows
the cumulative market-adjusted return over the five 5 trading days following an earnings announcement. We
exclude all announcements with contemporaneous management guidance on earnings per share, identified
using the IBES Guidance data.
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Appendix Table A16: Effect of Valuation Uncertainty on Earnings Response Coefficients by Earnings Size: Exclud-
ing Announcements with Contemporaneous Management Guidance

(1) (2) (3) (4) (5)

SUE 15.86*** 9.113*** 5.982*** 3.447*** 2.252***
(0.638) (0.354) (0.236) (0.157) (0.114)

VU 0.000796 0.000692 0.000754 0.00109* 0.00124**
(0.001) (0.001) (0.001) (0.001) (0.001)

SUE x VU 2.252*** 0.857*** 0.274* -0.196** -0.272***
(0.434) (0.225) (0.145) (0.096) (0.068)

Observations 78,740 112,122 130,863 144,630 150,634
R-squared 0.122 0.115 0.115 0.107 0.101

Window Size 0.002 0.005 0.01 0.025 0.05

Firm-Level Controls YES YES YES YES YES
Fixed Effects Permno + YQ Permno + YQ Permno + YQ Permno + YQ Permno + YQ

Notes: This table shows data on earnings announcements from 1986-2019. We exclude all announcements with
contemporaneous management guidance on earnings per share, identified using the IBES Guidance data. This
table studies how market-adjusted returns respond to standardized unexpected earnings (SUE) and how this
varies by Valuation Uncertainty. SUE refers to the deviation of a company’s reported earnings per share from the
consensus earnings forecast by analysts, normalized by the last closing price before the earnings announcement.
Valuation uncertainty is defined as the z-scored dispersion in expected market capitalization given by a multiples-
based valuation method at different points in the industry-year distribution. Our specifications control for both
security (Permno) fixed effects and year-quarter fixed effects. We also control for time since listing (age), market
capitalization, returns from t-12 to t-2, book-to-market, CAPM beta, institutional ownership and total daily stock
volatility over the past 12 months. Clustered standard errors are reported in parentheses. The window size indi-
cates the range of SUE around zero considered in each regression. Significance levels are denoted as follows: *
p<0.1, ** p<0.05, *** p<0.01.

B Post-Earnings Announcement Drift (PEAD)

Our main results in Table 2 show that when valuation uncertainty (VU) is high, investors appear
to react relativelymore to small earnings surprises, and relatively less to large earnings surprises
compared to when VU is low. This could be consistent with – in the face of valuation uncertainty
– investors systematically over-reacting to small earnings beats/misses and under-reacting to
large earnings beats/misses. If this were true, however, when VU is elevated we would expect
to observe return reversion after the small earnings surprises, and return continuation after
the large earnings surprises. In this section, we test for this type of systematic over and under
reaction, and how this depends on valuation uncertainty.

To quantify post-earnings announcement return reversion and continuation, we build on
the pooled specification in Appendix A.2. Specifically, we re-run the pooled regression in Table
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A8, but use the cumulative market-adjusted returns from 5 days after the earnings announce-
ment to 29 or 59 days after the earnings announcement as the left-hand-side variable. We start
these windows 5 days after the earnings announcement, as this is when our baseline earnings
response regression windows in Table 2 end. To reduce the influence of outliers, we Winsorize
these returns at the 1% and 99% levels. Given that the right-hand-side variables are interac-
tion terms with SUE, positive coefficients are evidence of return continuation, and thus under-
reaction to the initial news. On the other hand, negative coefficients are evidence of return
reversal, and over-reaction to the earnings release.

Table A17 contains the results. The first thing that stands out about the table is that all of
the interaction terms between SUE and the indicator variables for particular SUE ranges (i.e.,
the first 5 coefficients in each column) are positive and statistically significant. This is broad ev-
idence of continuation, and is consistent with the existence of the post-earnings announcement
drift (PEAD).

The first column presents results for market-adjusted returns from 5 days to 29 days after the
earnings announcement. The interaction term for the smallest window, V U xSU Ex1|SU E|<=0.002

is negative, evidence of over-reaction to small earnings beats when valuation uncertainty is
elevated. The magnitude is also large, at over 40% of the baseline responsiveness to news, as
reported in the “Interaction/ Baseline” column. The interaction term is not statistically signif-
icant, although this may be because the dispersion in returns at such long horizons is high,
lowering the power of this test.

The interaction term between the next largest window and VU, V U×SU E×1|SU E|>0.002&|SU E|<=0.005

is also negative, but the magnitude is significantly smaller, at only 8% of the baseline effect. This
is consistent with less over-reaction in the presence of high VU in this range, relative to the ob-
servations with SUE closest to zero. The next interaction term, V U×SU E×1|SU E|>0.005&|SU E|<=0.01

is negative and even smaller in magnitude.
The next interaction term, V U×SU E×1|SU E|>0.01&|SU E|<=0.025 is positive, flipping the sign rel-

ative to the first three interaction terms. Further, the magnitude is large at over 15% of the base-
line effect. This is consistent with under-reaction to news in the presence of high VU for these
relatively large earnings surprises. The last interaction term V U ×SU E×1|SU E|>0.025&|SU E|<=0.05

is large and negative, however, there are only ≈ 5,000 observations with a SUE in that range,
so we do not wish to draw too many conclusions from the point estimate, which we believe is
likely noisy.

The next column of Table A17 presents the results for returns from 5 days to 59 days after the
earnings announcement. Broadly, the results are consistent with the first column: It appears that
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there are reversals for SUE close to zero, and increasingly large (in magnitude) continuation
in the windows further from zero. Collectively, the evidence in Table A17 is consistent with
the story outlined above: when VU is high, investors appear to over-react to small earnings
beats/misses, leading to reversion, and appear to under-react to large earnings beats/misses,
leading to continuation.
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Appendix Table A17: Pooled Regression: Effect of Valuation Uncertainty on PEAD

[5,29] [5,59]
(1) Interaction/

Baseline
(2) Interaction/

Baseline

SUE x 1_|SUE|<=0.002 1.392** 4.379***
(0.537) (0.923)

SUE x 1_|SUE|>0.002 & |SUE|<=0.005 1.115*** 1.816***
(0.268) (0.444)

SUE x 1_|SUE|>0.005 & |SUE|<=0.01 0.788*** 1.452***
(0.148) (0.255)

SUE x 1_|SUE|>0.01 & |SUE|<=0.025 0.425*** 0.641***
(0.090) (0.147)

SUE x 1_|SUE|>0.025 & |SUE|<=0.05 0.404*** 0.701***
(0.092) (0.126)

VU x SUE x 1_|SUE|<=0.002 -0.608 -0.437 -0.519 -0.119
(0.560) (0.857)

VU x SUE x 1_|SUE|>0.002 & |SUE|<=0.005 -0.0931 -0.083 0.0171 0.009
(0.205) (0.321)

VU x SUE x 1_|SUE|>0.005 & |SUE|<=0.01 -0.0127 -0.016 0.0757 0.052
(0.139) (0.229)

VU x SUE x 1_|SUE|>0.01 & |SUE|<=0.025 0.0677 0.159 0.236* 0.368
(0.083) (0.131)

VU x SUE x 1_|SUE|>0.025 & |SUE|<=0.05 -0.102 -0.252 -0.113 -0.161
(0.071) (0.129)

Observations 172,526 172,526
R-squared 0.098 0.118

Controls Yes Yes
Fully Saturated with Interaction Terms Yes Yes

FE Permno + YQ Permno + YQ

Notes: This table shows data on earnings announcements from 1986-2019. This table studies how the relationship
between long-run post-earnings announcement returns and SUE varies by Valuation Uncertainty. The left-hand-
side variable in each column is the market-adjusted return from 5 days after the earnings announcement, to 29
or 59 days after the earnings announcement. SUE refers to the deviation of a company’s reported earnings per
share from the consensus earnings forecast by analysts, normalized by the last closing price before the earnings
announcement. Valuation uncertainty is defined as the z-scored dispersion in expected market capitalization given
by a multiples-based valuation method at different points in the industry-year distribution. All columns control
for security (Permno) fixed effects and year-quarter fixed effects. All columns also control for time since listing
(age), market capitalization, returns from t-12 to t-2, book-to-market, CAPM beta, institutional ownership and
total daily stock volatility over the past 12 months. Clustered standard errors are reported in parentheses. The
column “Interaction/ Baseline” reports the ratio of the interaction term, divided by the baseline responsiveness to
SUE in the same SUE range. Significance levels are denoted as follows: * p<0.1, ** p<0.05, *** p<0.01.

C Additional exhibits for experimental data
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Appendix Table A18: Dependent variable: Normalized predictions

(1) (2) (3) (4) (5)
SUE Window ≤ |0.0001| ≤ |0.0005| ≤ |0.001| ≤ |0.005| ≤ |0.01|

SUE 3754.4∗∗∗ 1527.8∗∗∗ 1027.9∗∗∗ 400.0∗∗∗ 236.7∗∗∗
(224.1) (82.47) (34.58) (15.82) (11.29)

SUE x HC 1745.6∗∗∗ 305.6∗∗ 138.8∗∗ -83.33∗∗∗ -55.38∗∗∗
(390.4) (119.2) (55.61) (23.94) (14.33)

HC 0.0746∗∗ 0.0694∗ 0.0971∗∗∗ 0.0833 0.113∗∗
(0.0350) (0.0374) (0.0335) (0.0508) (0.0508)

Constant -0.0246 0.0139 -0.0138 4.97e-09 0.0333
(0.0211) (0.0219) (0.0171) (0.0218) (0.0275)

Observations 900 1813 2677 3557 4483
R-squared 0.0641 0.103 0.157 0.183 0.208

Notes: This table shows the results of regressing normalized predictions on SUE, an indicator for the High Con-
straints treatment (HC), and the interaction of both (SUE x HC) in the experimental data using median regressions.
The results are shown for expanding windows around zero SUE. Regression (1) contains rounds for SUE in the
window [-0.0001, 0.0001], Regression (2) for SUE in [-0.0005, 0.0005], Regression (3) for SUE in [-0.001, 0.001],
Regression (4) for SUE in [-0.005, 0.005] and Regression (5) for SUE in [-0.01, 0.01], where the latter window
corresponds to the full sample. Clustered standard errors are reported in parentheses. The window size indicates
the range of SUE around zero considered in each regression. Significance levels are denoted as follows: * p<0.1,
** p<0.05, *** p<0.01.
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Appendix Figure A7: Notes: This figure is constructed in the same way as Figure 4a but excluding observations
reflecting predictions with a sign that is opposite to that of the earnings surprise.
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b) Using interaction coefficients not normal-
ized by the SUE slope of Baseline condition.
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c) Using conditional means instead of medi-
ans and winsorized at normalized predictions
of +/-3.
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d) Excluding observations in the High Con-
straints group that timed out.
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e) Excluding observations from subjects who
indicated that they looked up additional infor-
mation on any company online.
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f) Excluding observations reflecting predic-
tions with a sign that is opposite to that of
the earnings surprise.

Appendix Figure A8: Robustness checks for Figure 4b.
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Appendix Table A19: Dependent variable: Normalized predictions - Robustness Check 1

(1) (2) (3) (4) (5)
SUE Window ≤ |0.0001| ≤ |0.0005| ≤ |0.001| ≤ |0.005| ≤ |0.01|

SUE 4000.0∗∗∗ 1600.0∗∗∗ 1166.7∗∗∗ 426.0∗∗∗ 246.7∗∗∗
(240.9) (78.65) (61.56) (16.78) (11.94)

SUE x HC 2666.7∗∗∗ 400.0∗∗∗ 166.7∗∗ -62.34∗∗∗ -46.67∗∗∗
(557.0) (104.8) (76.90) (22.85) (14.47)

HC -7.26e-17 1.09e-16 0.0500 0.00519 -0.0333
(0.0527) (0.0325) (0.0308) (0.0441) (0.0491)

Constant 2.43e-17 -3.82e-17 -0.0167 0.0130 0.0333
(0.0231) (0.0211) (0.0195) (0.0225) (0.0286)

Observations 805 1660 2466 3284 4143
R-squared 0.154 0.212 0.286 0.281 0.283

Notes: This table shows the results of the same regressions as in Table A18 but excluding observations reflecting
predictions with a sign that is opposite to that of the earnings surprise, i.e., a negative predicted price change for
positive SUE and vice versa. Clustered standard errors are reported in parentheses. The window size indicates the
range of SUE around zero considered in each regression. Significance levels are denoted as follows: * p<0.1, **
p<0.05, *** p<0.01.
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Appendix Table A20: Dependent variable: Normalized predictions - Robustness Check 2

(1) (2) (3) (4) (5)
SUE Window ≤ |0.0001| ≤ |0.0005| ≤ |0.001| ≤ |0.005| ≤ |0.01|

SUE 3754.4∗∗∗ 1527.8∗∗∗ 1027.9∗∗∗ 400.0∗∗∗ 236.7∗∗∗
(226.8) (84.51) (34.95) (15.67) (11.46)

SUE x HC 1870.6∗∗∗ 338.9∗∗∗ 149.9∗∗∗ -83.33∗∗∗ -58.89∗∗∗
(406.2) (104.6) (54.16) (23.71) (13.96)

HC 0.0871∗∗ 0.0528 0.0916∗∗∗ 0.0833 0.0778
(0.0364) (0.0330) (0.0323) (0.0521) (0.0483)

Constant -0.0246 0.0139 -0.0138 4.97e-09 0.0333
(0.0214) (0.0222) (0.0173) (0.0216) (0.0277)

Observations 869 1759 2591 3440 4330
R-squared 0.0644 0.101 0.156 0.185 0.208

Notes: This table shows the results of the same regressions as in Table A18 but excluding observations in the
"High Constraints" group that timed out. Clustered standard errors are reported in parentheses. The window size
indicates the range of SUE around zero considered in each regression. Significance levels are denoted as follows:
* p<0.1, ** p<0.05, *** p<0.01.
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Appendix Table A21: Dependent variable: Normalized predictions - Robustness Check 3

(1) (2) (3) (4) (5)
SUE Window ≤ |0.0001| ≤ |0.0005| ≤ |0.001| ≤ |0.005| ≤ |0.01|

SUE 3666.7∗∗∗ 1527.8∗∗∗ 1047.8∗∗∗ 400.0∗∗∗ 243.2∗∗∗
(239.6) (88.32) (34.36) (16.32) (12.46)

SUE x HC 1958.3∗∗∗ 386.5∗∗∗ 201.7∗∗∗ -83.33∗∗∗ -56.09∗∗∗
(404.9) (110.4) (70.78) (24.43) (15.71)

HC 0.0958∗∗∗ 0.0290 0.0553 0.0833 0.0847∗
(0.0367) (0.0348) (0.0349) (0.0520) (0.0492)

Constant -0.0333 0.0139 -0.00478 -2.50e-16 0.0322
(0.0225) (0.0223) (0.0163) (0.0216) (0.0281)

Observations 854 1715 2535 3367 4248
R-squared 0.126 0.162 0.237 0.239 0.241

Notes: This table shows the results of the same regressions as in Table A18 but excluding observations from subjects
who indicate that they looked up additional information on any company online. The window size indicates the
range of SUE around zero considered in each regression. Significance levels are denoted as follows: * p<0.1, **
p<0.05, *** p<0.01.
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Appendix Table A22: Dependent variable: Normalized predictions - Robustness Check 4

(1) (2) (3) (4) (5)
SUE Window ≤ |0.0001| ≤ |0.0005| ≤ |0.001| ≤ |0.005| ≤ |0.01|

SUE 11000.0∗∗∗ 6000.0∗∗∗ 4818.2∗∗∗ 1818.2∗∗∗ 1000.0∗∗∗
(707.4) (302.7) (181.1) (98.28) (30.54)

SUE x HC 11500.0∗∗∗ 1500.0∗∗∗ 481.8 -518.2∗∗∗ -266.7∗∗∗
(1407.5) (461.6) (314.2) (189.1) (48.76)

HC 0.150 0.250∗∗ 0.532∗∗∗ 0.409∗∗ 0.667∗∗∗
(0.127) (0.119) (0.131) (0.205) (0.214)

Constant 0.100 5.55e-17 -0.182∗∗ 0.0909 -1.01e-14
(0.0689) (0.0666) (0.0711) (0.104) (0.138)

Observations 900 1813 2678 3559 4485
R-squared 0.321 0.375 0.436 0.384 0.430

Notes: This table shows the results of the same regressions as in Table A18 but using the raw price change predic-
tions (i.e., predictions not normalized by priors) for completeness. The window size indicates the range of SUE
around zero considered in each regression. Significance levels are denoted as follows: * p<0.1, ** p<0.05, ***
p<0.01.
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Appendix Table A23: Dependent variable: Normalized predictions - Robustness Check 5

(1) (2) (3) (4) (5)
SUE Window ≤ |0.0001| ≤ |0.0005| ≤ |0.001| ≤ |0.005| ≤ |0.01|

SUE 5039.7∗∗∗ 1766.4∗∗∗ 1339.3∗∗∗ 475.4∗∗∗ 292.3∗∗∗
(1413.6) (151.9) (107.7) (30.69) (20.10)

SUE x HC 1345.9 231.2 125.3 -92.30∗∗ -63.14∗∗
(1576.5) (198.7) (142.4) (41.77) (27.22)

HC 0.255∗ 0.144 0.180 0.0939 0.172∗
(0.153) (0.127) (0.116) (0.106) (0.0986)

Constant -0.0727 0.0240 -0.0200 0.00403 -0.0193
(0.142) (0.119) (0.107) (0.0926) (0.0857)

Observations 900 1813 2677 3557 4483
R-squared 0.0656 0.103 0.157 0.183 0.208

Notes: This table shows the results of the same regressions as in Table A18 but using OLS regressions instead
of median regressions. To account for the potential skew in the normalized prediction measure, we winsorize
at normalized predictions of +/-3. The window size indicates the range of SUE around zero considered in each
regression. Significance levels are denoted as follows: * p<0.1, ** p<0.05, *** p<0.01.
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D Competition for Attention

The motivation of our basic framework is that integrating information requires cognitive pro-
cessing, which is a scarce resource. Instead of modeling the competition between categorical
and numerical information for the limited stock of processing capacity, we assume that nu-
merical information has a higher, constant processing cost. If, however, integrating categorical
information requires more processing in a given situation, fewer resources remain to parse the
numerical information.3⁹

A prominent principle in the cognitive sciences is that more surprising information requires
more processing resources (e.g., Friston, 2005; Itti and Baldi, 2009). The special role of sur-
prises for shaping attention has also been studied in economics (Bordalo et al., 2020). In ratio-
nal inattention models (Sims, 2003), Shannon information cost implies that agents’ cognitive
processing effort scales with the informativeness of signals. As a result, more surprising events
are more cognitively costly to process.

Applied to our empirical application, surprising category realizations – e.g., a profit when
a loss was expected – might draw more processing resources, leaving less capacity to integrate
the precise numerical magnitude of EPS and thus reducing the observed earnings response sen-
sitivity. This hypothesis thus introduces direct competition between categorical and numerical
information, leveraging the notion that surprise drives processing load.⁴⁰

Empirical Strategy. We test whether amore surprising category realization given a firm’s con-
sensus forecast is associated with lower sensitivity to variation in the magnitude of surprises. In
particular, we estimate the local sensitivities for a given range of SUE and given category real-
izations, and compare whether these sensitivity estimates systematically depend on whether
the realized category was expected or not. Put differently, we fix realized values (SUE and cat-
egories) and explore variation whether the corresponding category expectations were fulfilled
or not.

This test requires variation in whether a category realization is surprising or not relative to
consensus market expectations. Note that the categorization as a consensus beat or miss – the
focus of our analyses so far – is defined relative to the consensus forecast itself and thus equally

3⁹Our baseline model abstracts from this feature by assuming zero processing noise for categorical information
and fixed processing noise for numerical information.

⁴⁰Note the difference between a surprising realization given the forecast for a specific company and the notion
of globally more or less frequent (and thus more or less globally surprising) events as studied in Section 6.1: the
empirical density argument from before refers to how a realization compares to the historical distribution, while
a surprise characterizes how a realization compares to a firm-specific expectation.

88



surprising by construction. This exercise thus requires commonly used categorizations which
vary in whether they are surprising. As reviewed in Section 1, our analysis ofWall Street Journal
headlines revealed that there are two other highly common categorizations: EPS growth versus
shrinkage year-over-year, and EPS being positive (profits) versus negative (losses).

We estimate the following type of specification:

ri,(t,t+n) = β1SUEi,t + β21SUEi,t<0 + β31SUEi,t<0 × SUEi,t

+ ζRunningi,t +
3
∑

k=1

δk1(i,t)∈k +
3
∑

k=1

γk1(i,t)∈k × SUEi,t

+ θX i,t +φt +ψi + εi,t

(13)

where 1(i,t)∈k is an indicator variable for firm i’s earnings announcement at time t belonging to
group k. First, we consider four mutually exclusive categories of year-over-year earnings growth,
defined by the sign of actual and expected growth. Specifically, we distinguish between: (1)
cases where both actual and expected earnings growth are negative (Shrink & E[Shrink]), (2)
cases where actual growth is negative but expected to be positive (Shrink & E[Grow]), (3) cases
where actual growth is positive but expected to be negative (Grow & E[Shrink]), and (4) cases
where both actual and expected growth are positive (Grow & E[Grow]). This last category serves
as the omitted reference category. The running variable, Runningi,t , is year-over-year earnings
growth, divided by the pre-earnings announcement price. Therefore, in equation 13, the coef-
ficients δi capture the level effect of belonging to a given category compared to the omitted
category. The coefficients γi capture how different category realizations affect sensitivity to
the size of the SUE. Importantly, because we include SUE in Equation 13, we are effectively
comparing how events with similar SUE respond differently depending on an expected versus
unexpected category realization.

We also consider an alternative set of categorical realizations based on whether profits are
positive or negative, defining four categories by the expected and actual sign of profits. Here,
the running variable, Runningi,t , is earnings per share divided by the pre-announcement stock
price.

Results. Table A24 reports the regression results. We find that, first, surprising category real-
izations have substantial level effects on returns: these additional categorizations do seem to
affect returns, which is a pre-condition for this exercise. Second, and in line with the hypothesis,
more surprising category realizations are associated with lower sensitivity to the magnitude of
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Appendix Table A24: Surprising Categorical Realizations and Earnings Responses

(1) (2)

SUE 2.978*** SUE 3.360***
(0.140) (0.166)

1_SU E < 0 -0.0290*** 1_SU E < 0 -0.0294***
(0.001) (0.001)

1_SU E < 0 x SUE -2.883*** 1_SU E < 0 x SUE -2.729***
(0.154) (0.145)

EPS Growth/Price 0.000 EPS/Price 0.000
(0.000) (0.006)

Shrink & E[Shrink] -0.00511*** Loss & E[Loss] -0.00729***
(0.001) (0.001)

Grow & E[Shrink] 0.0142*** Gain & E[Loss] 0.0251***
(0.001) (0.004)

Shrink & E[Grow] -0.0145*** Loss & E[Gain] -0.0143***
(0.001) (0.003)

(Shrink & E[Shrink]) x SUE -0.101 (Loss & E[Loss]) x SUE -0.805***
(0.077) (0.125)

(Grow & E[Shrink]) x SUE -1.135*** (Gain & E[Loss]) x SUE -2.089***
(0.188) (0.229)

(Shrink & E[Grow]) x SUE -0.265*** (Loss & E[Gain]) x SUE -0.741***
(0.086) (0.139)

Observations 165,018 Observations 165,018
R-squared 0.12 R-squared 0.121

Fixed Effects YQ + Permno Fixed Effects YQ + Permno
Controls ALL Controls ALL

Notes: This table studies how surprising category realizations affect how stock prices respond to standardized
unexpected earnings. The left-hand-side variable is the cumulative market-adjusted returns from the day of the
earnings announcement (t = 0) to the close 4 days after the earnings announcement (t = 4). Both columns
include time-varying firm-level controls, as well as year-quarter fixed effects and firm fixed effects. Clustered
standard errors are reported in parentheses. Significance levels are denoted as follows: * p<0.1, ** p<0.05, ***
p<0.01.

the earnings surprise.
Specifically, in the first column of Table A24, we study categorical realizations with respect

to year-over-year (YOY) earnings growth. We find that companies who report YOY earnings
growth experience a 1.4 p.p. higher market-adjusted return (p < 0.01) when a decline was
expected, relative to when growth was expected (recall that Grow & E[Grow] is the omitted
category). Among observations reporting EPS shrinkage, returns are approximately 1 p.p. (p <
0.01) more negative when EPS growth (rather than shrinkage) was expected. These effects of
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category thresholds are striking as they control for the precise numerical information on SUE
and EPS.

We now turn to the interaction terms between these indicator variables and SUE itself, which
capture the sensitivity to variation in the numerical information about EPS. Consistent with our
hypothesis, the ERC for YOY growth observations is 1.13 p.p. (p < 0.01) lower when a decline
was expected than when growth was expected. This is a sizable drop in sensitivity by 39%.
Conversely, the ERC for observations with YOY earnings shrinkage is significantly lower when
growth was predicted than when a decline was expected (p < 0.05).

Column 2 of Table A24 replicates the analysis from Column 1, instead focusing on expected
versus surprising profits and losses i.e., EPS greater than and/or less than zero. Broadly, we find
analogous patterns to column 1. First examining level effects, we find that average excess re-
turns are significantly higher after reported gains when a loss was expected, rather than a gain
(p < 0.01). Average excess returns after reported losses are lower when a gain (rather than a
loss) was expected (p < 0.01). Next, there are also substantial differences in the correspond-
ing interaction terms between these indicator variables and SUE itself. Consistent with our
hypothesis about the effect of surprises on categorical versus continuous signals, the marginal
response to SUE for positive profits is significantly lower when a loss was expected than when
a gain was expected (p < 0.01). Indeed, sensitivity to quantitative earnings information drops
by almost 65 percent. Our analysis reveals no statistically significant difference in the response
to marginal SUE news between surprising and expected losses. This might be explained by the
very low baseline response to SUE for companies reporting losses to begin with.

Taken together, this additional set of results is compatible with the idea that more surprising
category realizations draw more attention away – and thus distract from – the size of surprises.
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E Screenshots of Experiment

Appendix Figure A9: Instruction Screen 1

This is the main instructions screen in the experiment. This screen is visible to both the Baseline and High
Constraints conditions.

92



Appendix Figure A10: Instruction Screen 2

This is the first comprehension question screen in the experiment. Respondents who do not answer the ques-
tions correctly in the first two attempts are disqualified from the survey. This screen is visible to both the
Baseline and High Constraints conditions. 93



Appendix Figure A11: Instruction Screen 3

This screen elicits respondents’ priors to a positive or negative earnings surprise. This screen is visible to both
the Baseline and High Constraints conditions.

Appendix Figure A12: Instruction Screen 4 (High Constraints)

This instruction screen is visible only to the High Constraints condition.
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Appendix Figure A13: Instruction Screen 4 (Baseline)

This instructions screen is visible only to the Baseline condition.

Appendix Figure A14: Instruction Screen 5

This is the second comprehension question screen in the experiment. Respondents cannot continue to the next
screen until they answer the question correctly. They have unlimited attempts to answer correctly. This screen
is visible to both the Baseline and High Constraints conditions.
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Appendix Figure A15: Decision Screen (High Constraints)

This is a screenshot of the decision screen for the High Constraints condition in the experiment.
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Appendix Figure A16: Decision Screen (Baseline)

This is a screenshot of the decision screen for the Baseline condition in the experiment.
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F Proofs

F.1 Prediction 1

Proof. Let r∗(s) denote the unconstrained best response, strictly increasing and differentiable in
the quantitative signal s. Let rd(s) be the conditional default induced by qualitative categories,
a step function with jumps at the thresholds ck.

Constrained response. A decision maker (DM) observes an unbiased but noisy cognitive signal

rc(s) ∼ N
�

r∗(s),σ2
r (s)
�

,

and forms the constrained response

r(s) = λ rc(s) +
�

1−λ
�

rd(s), with λ=
σ2

d

σ2
r (s)+σ

2
d
∈ (0, 1).

Here σ2
d is the variance of the (Gaussian) conditional prior; λ is strictly decreasing in the pro-

cessing (mapping) noise σ2
r (s).

Sensitivity inside a category (s ̸= ck). Because rd(s) is locally flat away from thresholds,

S(s) :=
∂ E[r(s)]
∂ s

= λ r∗′(s).

If processing noise rises from σ2
r to eσ2

r > σ
2
r , then eλ < λ and hence eS(s) < S(s) for all s ̸= ck.

Thus sensitivity is attenuated between category boundaries.

Sensitivity at a boundary ck. Let

∆k = lim
ϵ↓0

�

E
�

r(ck + ϵ)
�

−E
�

r(ck − ϵ)
��

.

Continuity of r∗(s) implies

∆k =
�

1−λ
� �

rd(c
+
k )− rd(c

−
k )
�

.

A higher processing noise lowers λ, which increases the jump ∆k. Hence sensitivity is amplified
exactly at category boundaries. ■

98



F.2 Prediction 2

Proof. Introduce surprise–coding noise by assuming the DM perceives the zero–surprise thresh-
old with error:

c̃ = 0+ ϵs, ϵs ∼N (0,σ2
s ).

The binary qualitative signal therefore equals

s̃1(s) = 1
�

s > c̃
	

= 1
�

s+ ϵs > 0
	

,

so that the probability of being classified “above forecast” is p(s) = Φ
�

s/σs

�

, where Φ is the
standard normal CDF.

Smoothed default. Let µ+ and µ− denote the average optimal responses when the firm is
perceived to beat or miss the forecast, respectively. Then

rd(s) = µ+ p(s) +µ− [1− p(s)], r ′d(s) =
�

µ+ −µ−
� ϕ(s/σs)

σs
,

with ϕ the standard normal pdf.

Effect of more surprise-coding noise. For any s and for σ̃s > σs,

ϕ
�

s/σ̃s

�

σ̃s
<
ϕ
�

s/σs

�

σs
,

and the proportional decline is maximized at s = 0 (the former jump-point).

Overall sensitivity. Expected local sensitivity now equals

Scoding(s) = λ r∗′(s) +
�

1−λ
�

r ′d(s).

Because r∗′(s) and λ are unaffected by σs, the entire impact runs through r ′d(s) and is therefore
negative for all s, with the greatest absolute reduction at s = 0.

Precise comparative-statics statement. For every surprise satisfying |s| < σs an increase in
surprise-coding noise σs always lowers expected local sensitivity Scoding(s), with the largest re-
duction occurring at the threshold s = 0. For |s| > σs the derivative formally becomes positive,
yet the effect is immaterial because (i) the pdf factor ϕ(s/σs) is already exponentially small
(e.g. ϕ(3) < 4× 10−3), so the upward bump is quantitatively negligible; and (ii) such extreme
surprises represent only a vanishing fraction of the data. ■
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