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Abstract

The paper introduces a new type of shrinkage estimation that is not based on

asymptotic optimality but uses artificial intelligence (AI) techniques to shrink the sample

eigenvalues. The proposed AI Shrinkage estimator applies to both linear and nonlinear

shrinkage, demonstrating improved performance compared to the classic shrinkage

estimators. Our results demonstrate that reinforcement learning solutions identify a

downward bias in classic shrinkage intensity estimates derived under the i.i.d. assumption

and automatically correct for it in response to prevailing market conditions. Additionally,

our data-driven approach enables more efficient implementation of risk-optimized

portfolios and is well-suited for real-world investment applications including various

optimization constraints.

Keywords: Covariance matrix estimation; linear and nonlinear shrinkage; portfolio management

reinforcement learning; risk optimization.
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1 Introduction

Financial applications such as portfolio optimization, asset pricing, and risk management rely

heavily on the covariance matrix of asset returns. Markowitz (1952) recognizes it as a central

risk measure in his seminal work, which has since sparked extensive research on estimating

both expected returns and the covariance matrix. While much focus has been placed on

return or variance estimation, our emphasis lies on estimating the covariance matrix.

The most common estimator, the sample covariance matrix, often performs poorly out-of-

sample, especially in high-dimensional settings. When the number of assets N approaches

or exceeds the number of time observations T , the sample covariance matrix becomes ill-

conditioned or even non-invertible. As the concentration ratio c ..= N/T increases, estimation

errors grow and portfolio optimization becomes unreliable, leading to poor performance.

Jobson and Korkie (1980) and Michaud (1989) highlight that the sample covariance matrix

suffers from large estimation errors, often amplifying extreme and unreliable coefficients.

Ledoit and Wolf (2017) reframe this issue as a degrees-of-freedom problem, where estimating

O(N2) parameters from limited data is infeasible. Their work and that of others introduced

linear and nonlinear shrinkage methods to reduce dimensionality and improve estimation; for

an overview see Ledoit and Wolf (2022a).

Linear shrinkage combines the sample covariance matrix with a structured target, reducing

extreme values and improving estimation accuracy. Empirical results show it enhances

information ratios, diversification, and portfolio stability. In constrained settings, shrinkage

can be interpreted as an implied covariance matrix (Roncalli, 2011), and is widely used by

practitioners (Jagannathan and Ma, 2003).

Nonlinear shrinkage, proposed by Ledoit and Wolf, shrinks individual eigenvalues without

a fixed target and is particularly effective in high-dimensional contexts. Both linear and

nonlinear shrinkage estimators remain invertible for c > 1, providing feasible portfolio

solutions. However, their derivations assume i.i.d. returns. Although extensions exist (e.g.,

Sancetta, 2008), they can introduce high bias in small samples (Bartz and Müller, 2014).

The main contribution of this paper is to introduce a data-driven approach to compute

the shrinkage intensity(ies) without any assumption on the data generating process. We

propose a new type of linear and nonlinear shrinkage estimation that is not based on

asymptotic optimality, but uses artificial intelligence (AI) techniques to shrink the sample
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eigenvalues. The new AI Shrinkage estimators deliver improved estimation accuracy, especially

in high-dimensional settings where the sample covariance matrix is ill-conditioned or even

non-invertible. The data-driven AI approach is based on reinforcement learning (RL). Thus,

the shrinkage intensity(ies) is (are) learned from an agent (artificial portfolio manager) that

interacts with its environment (trades based on market observations).

RL is particularly well-suited for applying empirical data analysis methodologies, especially

for estimating covariance matrices. It has emerged as a leading field in artificial intelligence,

revolutionizing the way we approach complex decision-making problems. At the core of RL

is the concept of an agent that learns optimal behaviors by interacting with its environment.

As the agent navigates in an often unknown environment, it collects rewards and strives to

maximize these rewards over time. In recent years, RL has garnered significant attention for

its success in solving non-trivial problems in a variety of tasks. Notable examples include

mastering Atari games from raw pixels (Mnih et al., 2015), defeating world champions in

the game of Go (Silver et al., 2016), and surpassing professional poker players (Brown et al.,

2017; Moravčik et al., 2017). Furthermore, RL techniques are increasingly being applied to

real-world challenges, such as autonomous driving (Pan et al., 2017) as well as to portfolio

management; e.g., see Cong et al. (2021).

The idea of improving shrinkage estimation of the covariance matrix with RL has been

introduced by Matera and Matera (2023) and Lu et al. (2024). Lu et al. (2024) show how RL

based on alternative data and textual analysis can improve the optimal linear shrinkage policy

for correlation matrices. Their focus is on so-called text-based networks (TBN) introduced

by Hoberg and Phillips (2016) to determine the correlation matrix shrinkage target and

to use deep reinforcement learning to compute the shrinkage intensity that maximizes the

expected out-of-sample utility of an investor in line with the theoretical work by Bodnar et al.

(2022). Despite some promising results in their empirical analysis, their approach has some

(practical) limitations. First, the TBN based shrinkage target depends on the Hoberg-Phillips

Data Library and is therefore only applicable to stocks included in the library and not

implementable for real-life trading. Second, it is a shrinkage approach for the correlation

matrix, ignoring the large estimation errors coming from the variances. Third, it is limited to

linear shrinkage. Fourth, the portfolios are rebalanced, respectively the covariance/correlation

matrix is re-estimated, on a yearly basis, which is too infrequent regarding the dynamics
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of the market and of the optimal shrinkage intensity.1 Finally, the data-driven shrinkage

intensity computation can be applied to all shrinkage targets and is not just restricted to

TBN.

A related study of Matera and Matera (2023) uses Fama-French industry portfolio return

data to derive the shrinkage intensity for covariance matrix estimation using RL. For one of

their models they report improved out-of-sample Sharpe ratio numbers. However, the RL

architecture and empirical analysis of Matera and Matera (2023) is insufficient to evaluate

the goodness of a covariance matrix. The review and guide to covariance matrix estimation of

Ledoit and Wolf (2022a), as well as the references therein, show that for financial applications,

the out-of-sample standard deviation of the global minimum variance (GMV) portfolio

should be computed to assess the covariance matrix estimation quality. Estimating the

GMV portfolio is a ‘clean’ problem in terms of evaluating the quality of a covariance matrix

estimator since it abstracts from having to estimate the vector of expected returns at the

same time. Therefore, the approach of Matera and Matera (2023) to implement an RL agent

with maximum Sharpe ratio utility function is misleading for covariance matrix estimation.

Even though their research design is not suitable to assess the power of RL to improve the

shrinkage intensity computation for covariance matrix estimation compared to Ledoit and

Wolf (2004b), it is an interesting alternative to Cong et al. (2021) who use RL to directly

derive portfolio weights with maximal Sharpe ratio without estimating the expected returns

and the covariance matrix. Additionally, the study does not consider daily stock returns

but monthly Fama-French industry portfolio returns instead. This results in a practically

unimplementable portfolio and low-frequency analysis with a very short out-of-sample period

of 3 years, respectively 36 observations, which is far from the literature standard and it is

dangerous to claim (statistically significant) outperformance. Finally, the methodology of

Matera and Matera (2023) is only applicable to linear shrinkage and has been analyzed only

for the most basic (scalar multiple of the) identity matrix shrinkage target, neglecting the

off-diagonal entries of the covariance matrix; see De Nard (2022).

As mentioned above, the main contribution of this paper to the literature is to introduce

a data-driven approach to learn the optimal shrinkage intensity(ies) with RL. The introduced

AI Shrinkage estimator can be applied to linear and nonlinear shrinkage, with improved

1The shrinkage intensity can spike during periods of financial turmoil where more shrinkage is needed;
e.g., see Figure A1. of De Nard (2022).
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performance compared to the classic shrinkage estimators discussed in Ledoit and Wolf

(2022a). The improvement comes from dropping the i.i.d. assumption when computing the

shrinkage intensity(ies) and following a data-driven approach without any assumption on the

data generating process. Note that the proposed AI Shrinkage estimators are based only on

stock return data and do not need, but can easily be extended with, factor or alternative

data signals. We show that an RL agent learns that the i.i.d. derived shrinkage intensity(ies)

is (are) biased (too low), and automatically corrects for this bias (increases the shrinkage

intensity(ies) depending on the market environment). The learned and adjusted shrinkage

intensity(ies) remains stable, intuitive, and correlated with the classic i.i.d. approach. To

assess the quality of our covariance matrix estimators we run an extensive empirical study

in a high-dimensional setting focusing on the out-of-sample standard deviation of GMV

portfolios, where the RL agent has a minimum-variance utility function to learn the shrinkage

intensity(ies). Finally, the AI Shrinkage estimators deliver a more efficient implementation of

risk-optimized portfolios and should be used for real-life investments. However, our goal is to

improve the estimation of covariance matrices in general and our methodology is therefore

not restricted to portfolio selection, or even financial, applications.

A further contribution of this paper is the application of RL to constrained portfolio

optimization, recognizing its practical relevance and the flexibility of RL to adapt to

specific investor preferences. Unlike classic shrinkage methods, which are independent

of the optimization step, RL dynamically adjusts shrinkage based on the specific constraints,

risk-return objectives, and thus utility functions of the investor. Most classic shrinkage

methods tend to shrink too aggressively in constrained optimization problems, as they do not

account for the implicit shrinkage impact of constraints, potentially leading to suboptimal

portfolio allocations. This adaptability allows RL to incorporate the interaction between

shrinkage and portfolio performance in a forward-looking manner, making it particularly

well-suited for real-world investment settings where constraints play a crucial role.

The rest of the paper is organized as follows. Section 2 provides a selective overview of

the shrinkage estimation and reinforcement learning literature and presents our methodology

on how to combine them. Section 3 contains the backtest results and empirical analysis.

Section 4 concludes. Appendices contain additional results and auxiliary materials.
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2 Methodology

2.1 Shrinkage Estimation

As the population covariance matrix Σ is not directly observable, it needs to be estimated

using historical data. The most straightforward method to estimate Σ is simply to use the

sample covariance matrix S:

S ..=
1

T − 1
R̃′R̃ , (2.1)

where R̃ denotes the T ×N demeaned asset return matrix, N being the number of assets,

and T the number of time periods (observations).

The sample covariance matrix is an intuitive estimator, easy to compute, and unbiased.

However, we show that it is unsuitable for portfolio optimization, aligning with and extending

the conclusions of Ledoit and Wolf (2022a).

One potential solution to mitigate the impact of estimation error is to impose structure on

the covariance matrix, thereby reducing the large proportion of random noise in the sample

moments. This approach leads to a more parsimonious parametrization of the covariance

matrix, which facilitates the efficient extraction of systematic information from historical

correlations. In turn, this reduces estimation error and enhances forecasting accuracy. A

significant body of research has explored this approach (e.g., Sharpe, 1963; Elton and Gruber,

1963; Jobson and Korkie, 1980). In this paper, we focus specifically on the statistical shrinkage

technique introduced by Stein (1956). Subsequent work by Ledoit and Wolf (2004a, 2017),

Engle et al. (2019), and De Nard et al. (2021, 2022, 2024, 2025) has proposed various linear

and nonlinear shrinkage estimators for the covariance matrix to this end. To readers not

already familiar with these shrinkage estimators, we refer to the overview paper of Ledoit

and Wolf (2022a).

2.1.1 Linear Shrinkage

As discussed above, linear shrinkage combines a highly structured estimator F and the sample

covariance matrix S. Ledoit and Wolf (2003) suggest a convex linear combination of the

form:

Σ̃L
..= δF + (1− δ)S , (2.2)
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where δ is the shrinkage intensity, or shrinkage constant, strictly between 0 and 1, and F

denotes the shrinkage target. The sample covariance matrix is therefore shrunk towards the

structured estimator with an intensity of δ. Ledoit and Wolf (2003) define this shrinkage

constant as the weight that is given to the structured measure and that there should be only

one optimal shrinkage constant that minimizes the expected distance between the shrinkage

estimator Σ̃L and the true covariance matrix Σ. Moreover, they propose a loss function LF

based on the Frobenius norm, a quadratic measure of distance between the true and estimated

covariance matrix, that does not depend on the inverse of the covariance matrix (Frost and

Savarino, 1986) and therefore also works for N > T . The optimal shrinkage intensity is

therefore the constant that minimizes the expected quadratic loss function of the form:

E[LF (δ)] ..= E
[
∥Σ̃L − Σ∥2F

]
= E

[
∥δF + (1− δ)S − Σ∥2F

]
, (2.3)

where ∥ · ∥2F is the (squared) Frobenius norm: ∥A∥2F ..= ⟨A,A⟩ ..= tr(AA′) =
∑N

i=1

∑N
j=1 a

2
ij

for a squared matrix A with entries (aij)i,j=1,...,N .

Under the i.i.d assumption, the literature derives the optimal shrinkage intensity (and

target), and introduces the optimal feasible and consistent linear shrinkage estimator as

Σ̂L
..= δ̂F + (1− δ̂)S , (2.4)

δ̂ ..= min

{
max

{
π̂ − ρ̂

κ̂ · T
, 0

}
, 1

}
, (2.5)

where π̂ ..=
∑N

i=1

∑N
j=1

1
T

∑T
t=1((rit−r̄i.)(rjt−r̄j.)−sij)

2 measures the estimation uncertainty in

the sample covariance matrix, ρ̂ measures the (’combined”) covariance between the shrinkage

target and the sample covariance matrix,2 and κ̂ ..=
∑N

i=1

∑N
i=1(fij − sij)

2 measures how close

the (population version of the) shrinkage target is to the population covariance matrix; see

Ledoit and Wolf (2003, 2004b, 2022a) and De Nard (2022).

A key advantage of Σ̂L is that it remains positive definite and thus invertible, even when

N > T , unlike the sample covariance matrix, which becomes rank-deficient and not invertible

in such cases. This is due to Σ̂L being a convex linear combination of two matrices: F , which

should be positive definite, and S, which is positive semi-definite.

2ρ̂ depends on the choice of shrinkage target and thus requires a case-by-case analysis. For the exact
definition of ρ̂, we therefore reference to the corresponding original paper. Note that the authors show that
the impact of ρ̂ on δ̂ is usually small and can be neglected.
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Therefore, the solution (2.4-2.5) of problem (2.3) depends on the choice of the shrinkage

target. The question arises: what constitutes an effective shrinkage target? Ideally, it should

approximate the true covariance matrix as closely as possible while minimizing the number of

parameters. This presents a delicate ’balancing act’ between accuracy and parsimony. A good

shrinkage target leverages application-specific knowledge, allowing for customization that

enhances its relevance and effectiveness in the given context. For an overview of attractive

(custom-tailored) shrinkage target see Ledoit and Wolf (2022a). In this paper, we focus on

the original proposition of Ledoit and Wolf (2004a) and its generalization of De Nard (2022).

The simplest shrinkage target is to assume that the covariance matrix is a scalar multiple of

the identity matrix FI = η̂I, where I is the N×N identity matrix and η̂ is the estimated scalar

multiple. Note that η depends on the unobservable parameter Σ, which can be consistently

estimated by the sample covariance matrix: η̂ = tr(SI)
N

= 1
N

∑N
i=1 s

2
i = s̄2. Consequently,

FI
..= s̄2I . (2.6)

Therefore, the linear shrinkage to the identity matrix approach, shrinks all the sample

variances towards their grand mean with the estimated (constant) intensity δ̂I. Alternatively,

one can reformulate the problem in the eigenvalue space, where all the sample eigenvalues

λ1, . . . , λN are shrunk towards their grand mean λ̄ ..= 1
N

∑N
i=1 λi with the same intensity δ̂I:

λI
i
..= δ̂Iλ̄+ (1− δ̂I)λi , (2.7)

while the sample eigenvectors remain unchanged.3

A scalar multiple of the identity matrix is a highly structured estimator that generally

exhibits lower estimation error compared to the sample covariance matrix. However, it is

limited in that it only considers the diagonal elements of the covariance matrix, effectively

disregarding the off-diagonal covariance coefficients by setting them to zero. Given that asset

returns typically exhibit positive linear dependence, it is crucial to choose a shrinkage target

that captures this relationship. In this regard, De Nard (2022) introduces a generalization

of the identity matrix shrinkage estimator, which incorporates knowledge of the non-zero

3Therefore, Σ̂I = δ̂Is̄2I + (1 − δ̂I)S is equivalent to Σ̂I = UΛIU
′, where U ..= [u1 . . . , uN ] denotes an

orthogonal matrix whose columns are the sample eigenvectors ui, and ΛI
..= Diag(λI

1, . . . , λ
I
N ) denotes the

diagonal matrix of the N linearly shrunk eigenvalues.
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covariances in asset returns. This is achieved by introducing an additional (off-diagonal)

parameter into the shrinkage target, allowing for a more accurate reflection of the covariance

matrix structure:

FCVC
..= s̄2I + s̄ijJ , (2.8)

where J ..= 11
′ − I is the off-diagonal matrix, 1 denotes a conformable vector of ones, and

s̄ij ..= (N(N − 1))−1
∑N

i=1

∑N
j=1,j ̸=i sij. Thus, De Nard (2022) proposes not only shrinking

the diagonal elements of the sample covariance matrix toward a constant mean variance

level, but also shrinking the off-diagonal elements toward a constant mean covariance level.

Note that the literature presents even more costumized shrinkage targets; for an overview see

Ledoit and Wolf (2022a).

2.1.2 Nonlinear Shrinkage

The optimal linear combination in Equation (2.4) can be intuitively interpreted as moving each

entry of the sample covariance matrix toward the shrinkage target with a common intensity.

A natural extension of this approach is to allow for different intensities for different entries of

the covariance matrix, or alternatively, shrinking the sample eigenvalues to their grand mean

with individual intensities while keeping the sample eigenvectors; see Equation (2.7). This

latter approach, called nonlinear shrinkage, was introduced and continuously improved by

Ledoit and Wolf (2012, 2017, 2020, 2022b).

Nonlinear shrinkage allows sample eigenvalues to be individually moved up or down by

an individual amount. Note that this means that the individual shrinkage intensities can

be negative, that is, move a sample eigenvalue away from the shrinkage target! Clearly, this

more general approach will outperform the use of a common shrinkage intensity, provided

that the distinct intensities are selected appropriately. Furthermore, this method will yield a

positive-definite estimator, as long as all the transformed eigenvalues remain positive.

The optimization problem for nonlinear shrinkage is as follows:

minΛ̃∥Σ̃NL − Σ∥2F , (2.9)

where Σ̃NL
..= U Λ̃U ′ is the nonlinear shrinkage estimator, U ..= [u1 . . . , uN ] denotes an

orthogonal matrix whose columns are the sample eigenvectors ui, and Λ̃ ..= Diag(λ̃1, . . . , λ̃N)

denotes the diagonal matrix of the N shrunk eigenvalues.
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For the solution of problem (2.9), Σ̂NL
..= UΛNLU

′, and thus on the actual estimation

of the optimal nonlinear shrinkage eigenvalues, ΛNL
..= Diag(λNL

1 , . . . , λNL
N ), we refer to the

overview paper of Ledoit and Wolf (2022a) and the references therein.

2.2 Reinforcement Learning

In a simple reinforcement learning framework, an agent interacts sequentially with an

environment (in our case, a financial market) described by a Markov decision process (MDP).

Formally, an MDP is characterized by a tuple M ..= ⟨S,A,P ,R, ζ⟩, where S denotes the

set of states (in our case, observable stock prices and other factors), A the set of actions

(in our case, the shrinkage intensity), P the state transition probability matrix (in our case,

independent of actions), R the reward function (in our case, the portfolio standard deviation),

and ζ the discount factor (in our case, equal to one for a one-period model).

In RL, actions yield rewards that the agent aims to maximize; in our context, as we are

interested in the optimal shrinkage intensity, we minimize risk measured explicitly by the

(out-of-sample) portfolio standard deviation of the global minimum variance portfolio; see

Section 3.4. The action in our reinforcement learning problem corresponds to choosing a

shrinkage intensity; see Section 2.3.

In financial applications, such as portfolio optimization, the MDP structure simplifies

considerably. Specifically, the environment’s state transitions are independent of the actions

taken, i.e., the actions chosen do not influence the underlying (market) state evolution.

Formally, this can be described as an MDP with state-transition probabilities independent of

actions:

P (st+1|st, at) = P (st+1|st), ∀ at ∈ A . (2.10)

Such a setting naturally reduces the sequential decision-making problem to a series

of independent contextual bandit problems. In other words, each state can be optimized

individually without regard to future states, and the problem naturally reduces to finding

the optimal action for each state separately. More formally, for data comprising state st,

action at, and the observed portfolio (sample) standard deviation σ̂(st, at), our objective is

to directly predict the action that minimizes the observed standard deviation for each state:

y∗(st) = arg min
at∈A

σ̂(st, at) . (2.11)
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Similar approaches have been applied to portfolio selection problems where sequential

decision-making simplifies to context-dependent optimization, demonstrating the suitability

of contextual-bandit frameworks for certain classes of financial problems; see, e.g., Shen et al.

(2015).

We take advantage of this simplified structure by employing a regression-based policy

learning approach, explicitly framing our portfolio optimization as a supervised learning

problem. Thus, our final chosen action for a given state s is obtained by rounding the

regression output to the nearest integer action within our discrete action set A, where actions

are discrete integer actions ranging from 0 to 100. It is important to note that, in this

approach, the regression directly delivers an optimal action (action resulting in the minimal

out-of-sample portfolio deviation) rather than estimating rewards for each possible action

individually. Consequently, we do not explicitly estimate the expected portfolio standard

deviation for each action; instead, our loss function directly penalizes deviations from the

optimal action observed historically. The optimal policy is given by

π∗(s) = argmin
π∈Π

Es

[
(π(s)− y∗(s))2

]
. (2.12)

In our case, the optimal policy is approximated by solving the following regression problem:

π̂(s) = argmin
f∈F

T∑
t=1

(f(st)− y∗(st))
2 , (2.13)

where f(st) denotes the predicted continuous action for state st, y
∗(st) is the historically

observed optimal discrete action minimizing portfolio standard deviation, and F is the

regression model function class, which we use to approximate policies from the broader

policy space Π. Our regression-based policy π̂(s) provides an explicit approximation to the

theoretical optimal policy π∗(s) by minimizing deviations from historically optimal actions

y∗(st).

Although our regression model produces continuous predictions, our action space is

discrete (integer-valued actions). Therefore, we transform the continuous model outputs

into discrete actions by simply selecting the nearest integer action to the model’s predicted

value. Although this rounding step introduces minor approximation errors, empirical analyses

indicate that the effect is negligible in our context, given the granularity of actions.
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2.2.1 RL for Linear Shrinkage

There are (at least) two ways how reinforcement learning can help to improve linear shrinkage

estimation of the covariance matrix. The first approach, and arguably the more natural way

to think about the problem, is to directly learn the optimal linear shrinkage intensity via RL,

that is:

Σ̂δRL-L
..= δ̂RL-LF + (1− δ̂RL-L)S . (2.14)

Therefore, if δ̂RL-L is larger (smaller) than δ̂, our data-driven reinforcement learning approach

shrinks the sample covariances more (less) towards the shrinkage target compared to the

optimal shrinkage intensities from the literature based on the i.i.d assumption. Note that as

long as δ̂RL-L ∈ (0, 1] and iff F is positive definite, also Σ̂δRL-L is positive definite and thus

invertible.

One drawback of this approach is that it is not general enough to be applicable also to

nonlinear shrinkage. Therefore, let us reformulate the problem not as a convex combination

of the sample covariance matrix and a shrinkage target, but as a linear combination of the

classic linear or nonlinear shrunk eigenvalues from the literature and the sample eigenvalues

in the next section.

2.2.2 RL for Linear and Nonlinear Shrinkage

The more general approach of reinforcement learning that is applicable to both linear and

nonlinear shrinkage is to use the spectral decomposition:

Σ̂γRL-∗
..= UΛRL-∗U

′ , (2.15)

where ΛRL-∗
..= Diag(λRL-∗

1 . . . , λRL-∗
N ), and ∗ ∈ {L, NL} denotes if RL is applied to linear (I

or CVC) or nonlinear shrunk eigenvalues. To estimate the optimal eigenvalues ΛRL-∗ of (2.15),

we propose the following convex combination of the sample eigenvalues and the ∗ shrunk

eigenvalues

λ̃RL-∗
i

..= γ̂λ∗
i + (1− γ̂)λi , (2.16)

where γ̂ ∈ [0,∞) is learned by the reinforcement learning agent and λ̃RL-∗ ..= [λ̃RL-∗
1 , . . . , λ̃RL-∗

N ].
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From Equation (2.16) it follows immediately that:

• the base shrinkage adjustment-factor γ̂ is constant;4

• we reduce the estimation problem to O(1), while keeping the flexibility of nonlinear

transformation, namely, learning the optimal convex combination of the sample

eigenvalues and the shrunk eigenvalues proposed by the literature;

• for a ‘well-working’ RL estimator, (i) γ̂ = 1 indicates that the shrinkage estimator

from the literature based on the i.i.d assumption is well-suited for the investigated

data, (ii) γ̂ > 1 indicates that the eigenvalues need to be shrunk even more, (iii) γ̂ < 1

indicates that the eigenvalues need to be shrunk less;5

• λ̃RL-∗ is not guaranteed to be monotonic decreasing in the cases of γ̂ > 1;

• and for too large γ̂, λ̃RL-∗ can have negative entries.

To guarantee that our RL covariance matrix estimator is well defined, that is, to maintain

the (monotonic decreasing) order of the (shrunk) eigenvalues as well as their sign (only

strictly positive eigenvalues such that the covariance matrix estimator is positive definite and

invertible), we apply a custom variant of isotonic regression. We apply a transformation µ in

the order of i = 1, . . . , N (from largest to smallest eigenvalue):

λRL-∗
i = µ(λ̃RL-∗

i , λi, λ̃
∗) ..=


λRL-∗
1

..= max
[
λ̃RL-∗
1 , λ̃∗

]
max

[
min

[
λ̃RL-∗
i , λRL-∗

i−1

]
, λ̃∗

]
for

λ∗
i

λi
< 1

min
[
max

[
λ̃RL-∗
i , λRL-∗

i−1

]
, λ̃∗

]
for

λ∗
i

λi
> 1

(2.17)

where λ̃∗ denotes the crossing point to the 45-degree line (no shrinkage) in Figure 1, where

we move from increasing the sample eigenvalues towards actually shrinking the sample

eigenvalues. Thus λ̃∗ ..= (λ∗
j + λ∗

k)/2 where j is the smallest (shrunk) eigenvalue that fulfills
λ∗
j

λj
< 1 and k is the largest (shrunk) eigenvalue that fulfills

λ∗
k

λk
> 1.

To visualize the impact of the proposed methodology on actual data, the first two figures

plot the eigenvalues of a portfolio with 100 stocks based on daily stock return data, using

4Our RL approach can be applied also to individual shrinkage adjustments γ̂1, . . . , γ̂N , but the number
of degrees of freedom will increase to N and the probability to end up with an ill-conditioned estimator
increases; e.g., see the last two comments on monotonicity and invertability.

5By a ‘well-working’ RL estimator we mean an improved covariance matrix estimator Σ̂γRL-∗ compared to

Σ̂∗, measured by a lower out-of-sample standard deviation of the global minimum variance portfolio as we
explain later in Section 3.4.
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a lookback window of one trading year. Further details on the data and application are

provided in Section 3.

Figure 1: Illustration of the nonlinear shrinkage eigenvalue transformation shown in
Equations (2.16) and (2.17) for various γ values. The panel on the left shows the raw
transformation, whereas the panel on the right shows the monotonic decreasing shrunk
eigenvalues after applying the function µ. The illustration is based on a representative sample
as of 01/08/2014 for the N = 100 portfolio with T = 252.

In Figure 1 we visualize the impact of γ on the nonlinear shrunk eigenvalues (in black).

A γ ∈ [0, 1) rotates the original nonlinear shrinkage line counter-clockwise at the rotation

point (λ̄,λ̄), resulting in less shrinkage. A γ > 1 rotates the original nonlinear shrinkage line

clockwise at the rotation point (λ̄,λ̄), resulting in more shrinkage. The left panel of Figure 1

shows the raw transformations where the eigenvalues are not strictly monotonically decreasing,

and the right panel shows the (2.17) adjusted transformation. A γ = 0 corresponds to the

45-degree line and therefore no shrinkage is applied. A γ = ∞ corresponds to the horizontal

line and therefore maximal shrinkage to the grand sample eigenvalue mean, resulting in the

identity matrix multiplied by the mean sample variance as covariance matrix estimator.

In Figure (2) we plot various (RL) transformed nonlinear shrinkage eigenvalues divided

by their sample eigenvalues. First, more sample eigenvalues are pulled up than pushed

down. Second, the smallest sample eigenvalues experience the largest impact, being

disproportionately pulled up, whereas the largest sample eigenvalues are only slightly shrunk.

Third, sample eigenvalues near their grand mean tend to be shrunk the least. Fourth, the
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largest and smallest sample eigenvalues are shrunk less than their ‘neighbors’ closer to the

mean.

Figure 2: Illustration of the sorted eigenvalue transformations (2.17) for various γ values. The
illustration is based on a representative sample as of 01/08/2014 for the N = 100 portfolio
with T = 252.

In Appendix A, we prove that for linear shrinkage towards a scalar multiple of the

identity matrix, problem (2.14) is equivalent to problem (2.15–2.17). The intuition is that

shrinking the sample covariance matrix towards the identity matrix (scaled by the average

sample variance) is equivalent to shrinking the sample eigenvalues towards their grand mean.

Consequently, from a mathematical perspective, learning the optimal convex combination

δ̂RL-I—which corresponds to the slope of the straight line passing through the point (λ̄, λ̄),

with the sample eigenvalues on the x-axis and the shrunk eigenvalues on the y-axis, as shown

in Figure 1—is equivalent to learning γ̂ · δ̂I, where δ̂I is the classic slope from linear shrinkage

and γ̂ is the slope adjustment determined by the reinforcement learning agent.

Note that for other (linear) shrinkage targets, such as CVC, the sample eigenvalues are

not shrunk towards their grand mean with the same intensity. As a result, problem (2.14) is

not equivalent to problem (2.15–2.17). In unreported results, we find that both approaches

outperform classic shrinkage based on the i.i.d. assumption. Moreover, we believe that

learning the shrinkage intensity directly is a more natural approach.
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Finally, note that the monotonicity transformation in (2.17) ensures that all shrunk

eigenvalues remain strictly positive. Consequently, the resulting covariance matrix estimator

is positive definite and invertible.

2.3 RL Architecture

The action in our reinforcement learning problem corresponds to choosing a shrinkage

intensity. For linear shrinkage, we discretize the action space in a ∈ AL
..= {0, 1, . . . , 100},

where δ̂RL-L ..= a/100, and thus δ̂RL-L ∈ {0, 0.01, 0.02, . . . , 1}. For nonlinear shrinkage, we

discretize the action space in a ∈ ANL
..= {0, 1, . . . , 30}, where γ̂RL-NL ..= 0.5 + a/20, and thus

γ̂RL-NL ∈ {0.5, 0.55, 0.60, . . . , 2}.
In practice, the state space in a reinforcement learning framework can be flexibly specified.

However, particularly in financial applications, it is crucial to carefully select state features

that balance predictive power and noise. We construct our state space from a set of meaningful

universe-specific signals measured at each trading date, summarized in Table 1.

Feature Description
Average Correlation Average pairwise sample correlation between stocks.

Average Volatility Average one-year sample volatility of all individual stocks.

EWMA Exponentially weighted moving average of previous month
returns (decay = 0.1) of the equally-weighted portfolio.

Lagged Optimal Action Optimal action from previous rebalancing.

Linear Shrinkage Linear shrinkage intensity of Ledoit and Wolf (2004b).

Momentum Fraction of days each stock had positive returns over the
previous month, averaged across all stocks.

Rolling Optimal Action One-year rolling average of optimal action.

Rolling Optimal SD One-year rolling standard deviation of optimal actions.

Trace Trace of sample covariance matrix.

Universe Volatility One-year sample volatility of the equally-weighted universe.

Table 1: Summary of market state features, computed over one-year estimation windows
based on the eligible stock universe.

To approximate the optimal policy, we choose the elastic net (ENet) as a regularized

regression method over more complex deep learning methods due to the relatively small

number of actions and the moderate dimensionality of the state space. ENet provides
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robustness to noise, interpretability, and inherent regularization, which effectively mitigates

overfitting; a common problem of financial backtests. Additionally, its simplicity helps

to avoid the computational complexity and instability often associated with deep learning

methods when applied to limited and noisy financial datasets.

Our model is trained on approximately 40 years of historical financial data, with roughly

half of this dataset (approximately 20 years) used for initial training. For each trading day,

we evaluate all available actions (101 in the L-RL model and 31 in the NL-RL model) by

calculating the 21-days a-head portfolio standard deviation. The optimal action, defined as

the one that minimizes this realized risk measure, becomes our target variable.

We conduct in-sample hyperparameter tuning over the grid summarized in Table 2, noting

that predictive performance remains robust and largely unchanged across this grid. The

optimized ENet hyperparameters are defined as follows:

• α: Controls overall regularization strength. Higher α implies stronger regularization.

• l1 ratio: Controls the balance between L1 and L2 penalties. Specifically, l1 ratio = 0

results in pure L2 regularization, l1 ratio = 1 results in pure L1 regularization, and

intermediate values provide a balance.

• max iter: Maximum iterations allowed for optimization convergence.

• tol: Convergence tolerance; optimization stops once parameter updates become smaller

than this value.

Hyperparameter Values
α 0.5, 1.0, 1.5, 2.0, 5.0
l1 ratio 0.1, 0.25, 0.5, 0.75, 0.9
max iter 500, 1000, 1500, 2000
tol 10−3, 10−4, 10−5

Table 2: Hyperparameter grid for ENet regression.

Additionally, we employ a rolling-window retraining scheme, updating our model every 21

trading days, corresponding to each rebalancing period, by incorporating the most recent 21

observations and discarding the oldest 21 observations. This rolling-window approach ensures

that our model adapts continually to the latest market conditions, providing predictions

closely aligned with current market regimes. This is another benefit of employing a simpler,

less computationally intensive model.
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Remark 2.1 (Adjustments for Long-Only Portfolios). As we point out later, long-only

portfolios need less shrinkage. This is why in the RL-NL long-only case we extend the

action space by a ∈ ANL-long-only
..= {0, 1, . . . , 40}, where γ̂RL-NL-long-only ..= a/20, and thus

γ̂RL-NL-long-only ∈ {0, 0.05, 0.10, . . . , 2}.
In our long-only portfolio context, we additionally employ a cost-sensitive learning

approach, biasing the model toward predicting lower actions and thereby less shrinkage. In

our case, this is an inverse logarithmic weighting 1
log(1+a)

of the actions in the training set,

weighting lower actions, and therefore smaller shrinkage intensities, more. This is based on

our in-sample findings indicating that lower actions generally yield lower standard deviations.

This empirical evidence aligns with prior research, which indicates that long-only portfolios

generally require substantially less regularization compared to their unconstrained (long-short)

counterparts; see, e.g., Jagannathan and Ma (2003) and Dom et al. (2025).

3 Empirical Analysis

3.1 Data and General Portfolio-Construction Rules

We download daily stock return data from the Center for Research in Security Prices (CRSP)

starting on January 1, 1980 through January 31, 2022. We restrict attention to stocks from

the NYSE, AMEX, and NASDAQ stock exchanges.

Roughly half of the data is allocated for training our AI Shrinkage estimators, with the

remaining half used for evaluation. Hence, our out-of-sample period spans from 12/18/2000

to 01/31/2022. This results in a total of 253 months or 5,313 trading days for evaluation.

All portfolios are updated monthly.6 For simplicity, and in line with much of the literature,

we adopt the common convention that 21 consecutive trading days constitute one (trading)

‘month’. This implies that the covariance matrix must be estimated every 21 trading days,

i.e., every rebalancing date h = 1, . . . , 253. At any investment date h, a covariance matrix is

estimated based on the most recent 252 daily returns, which roughly corresponds to using 1

year of past data.

We consider the following portfolio sizes: N ∈ {30, 50, 100, 225, 500}. For a given

6Monthly updating is common practice to avoid an unreasonable amount of turnover and thus transaction
costs. During a month, from one day to the next, we hold number of shares fixed rather than portfolio
weights; in this way, there are no transactions during a month.
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combination (h,N), the investment universe is obtained as follows. We find the set of stocks

that have an almost complete return history over the most recent T = 252 days as well as a

complete return ‘future’ over the next 21 days.7

From the remaining set of stocks, we then pick the largest N stocks (as measured by their

market capitalization on investment date h) as our investment universe. In this way, the

investment universe changes relatively slowly from one investment date to the next.

There is a great advantage in having a well-defined rule that does not involve drawing

stocks at random, as such a scheme would have to be replicated many times and averaged

over to give stable results. As far as rules go, the one we have chosen seems the most

reasonable because it avoids so-called ’penny stocks” whose behavior is often erratic; also,

high-market-cap stocks tend to have the lowest bid-ask spreads and the highest depth in

the order book, which allows large investment funds to invest in them without breaching

standard safety guidelines.

3.2 Competing Covariance Matrix Estimators

We now detail the various covariance matrix estimators included in our empirical analysis.

• L: the linear shrinkage estimator of Ledoit and Wolf (2004a); that is, we use the scalar

multiple of the identity matrix (I) shrinkage target.

• NL: the nonlinear shrinkage estimator of Ledoit and Wolf (2022b), that is, we use the

quadratic-inverse shrinkage (QIS) estimator.

• RL-L: the linear shrinkage estimator of Ledoit and Wolf (2004a), but with data-driven

shrinkage intensity computed via reinforcement learning as described in Section 2.2.1.

• RL-NL: the nonlinear shrinkage estimator of Ledoit and Wolf (2022b), but with

data-driven shrinkage intensities computed via reinforcement learning as described in

Section 2.2.2.

It is of interest to include the sample covariance matrix and other linear and nonlinear

shrinkage estimators from the literature to compare their performance. However, as

summarized in Ledoit and Wolf (2022a), nonlinear shrinkage estimators tend to perform

7The first restriction allows for up to 2.5% of missing returns over the most recent 252 days, and replaces
missing values by zero. The latter, ‘forward-looking’ restriction is not feasible in practice but is commonly
used in the literature. Although it might affect (in a minor way) absolute performance due to survivorship
bias, it does not systematically affect relative performance of various methods.
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similarly, whereas the sample covariance matrix is consistently outperformed by both linear

and nonlinear shrinkage estimators. We confirm these findings and, to save space, do not

report (all) results for the sample covariance matrix, instead focusing on the QIS nonlinear

shrinkage estimator. For linear shrinkage, we present results only for the identity-based

shrinkage target (I), as it is the only case where both reinforcement learning approaches yield

identical results: (i) learning the optimal convex combination δ of the sample covariance

matrix and the shrinkage target, as detailed in Equation (2.14), or (ii) learning the optimal

convex combination γ of the sample eigenvalues and the shrunk eigenvalues, as described in

Equation (2.16); see Appendix A. Nonetheless, in unreported results, we find that for more

sophisticated linear shrinkage targets—such as the constant-variance-covariance shrinkage

target of De Nard (2022) in Equation (2.8)—the results discussed in Section 3.5 hold as well

and generally show improved performance for both approaches.

3.3 Performance Measures

• AV: We compute the average of the 5,313 out-of-sample returns as geometric mean,

and then multiply by
√
252 to annualize.

• SD: We compute the standard deviation of the 5,313 out-of-sample returns, and then

multiply by
√
252 to annualize.

• SR: We compute the annualized Sharpe ratio as the ratio AV/SD.

• TO: We compute average (monthly) turnover as 1
252

∑252
h=1 ||ŵh+1− ŵhold

h ||1, where || · ||1
denotes the L1 norm and ŵhold

h denotes the vector of the ‘hold’ portfolio weights at the

end of month h.8

• GL: We compute average (monthly) excess gross leverage as 1
253

∑253
k=1 ||ŵh||1 − 1.

• PL:We compute average (monthly) proportion of leverage as 1
253×N

∑253
h=1

∑N
i=1 1{ŵi,h<0}.

8The vector ŵhold
h is determined by the initial vector of portfolio weights, ŵh, together with the evolution

of the various prices of the N stocks in the portfolio during month h.
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3.4 Global Minimum Variance Portfolio

We consider the problem of estimating the global minimum variance (GMV) portfolio in the

absence of short-sales constraints. The problem is formulated as

argmin
w

w′Σw (3.1)

subject to w′
1 = 1 , (3.2)

where 1 denotes a vector of ones of dimension N × 1. It has the analytical solution

w =
Σ−1

1

1′Σ−11
. (3.3)

The natural strategy in practice is to replace the unknown covariance matrix Σ by an

estimator Σ̂ in formula (3.3), yielding a feasible portfolio

ŵ ..=
Σ̂−1

1

1′Σ̂−11

. (3.4)

Estimating the GMV portfolio is a ‘clean’ problem in terms of evaluating the quality of a

covariance matrix estimator, as it abstracts from having to estimate the vector of expected

returns at the same time. In addition, researchers have established that estimated GMV

portfolios have desirable out-of-sample properties not only in terms of risk but also in terms

of reward-to-risk, that is, in terms of Sharpe and information ratios; for example, see Haugen

and Baker (1991), Jagannathan and Ma (2003), and Nielsen and Aylursubramanian (2008).

Following the advice of Dom et al. (2025) and focusing on more practically relevant

portfolios, we also include an analysis of long-only minimum variance portfolios for investors

who cannot take short positions. Notably, although the covariance matrix estimator in classic

shrinkage is independent of the specific investment problem, for RL shrinkage, it plays a

crucial role. The RL agent learns the optimal shrinkage intensity based on the investment

environment and portfolio constraints, which means that the intensity for long-short and

long-only portfolios can differ. As we will demonstrate, they indeed do.

In the long-only case, the weights of the global minimum variance portfolio need to be

derived numerically. This is a constrained quadratic optimization problem, which we solve

with the python package CVXPY.
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In addition to Markowitz portfolios based on formula (3.4), we also include as a simple-

minded benchmark the equal-weighted portfolio promoted by DeMiguel et al. (2009), among

others, as it has been claimed to be difficult to outperform. We denote the equal-weighted

portfolio by EW. We also include the value-weighted portfolio, denoted by VW, which

is sometimes favored over the equal-weighted portfolio, for example because it incurs less

turnover and ‘controls’ for small-cap biases.

Our stance is that in the context of the GMV portfolio, the most important performance

measure is the out-of-sample standard deviation, SD. The true (but unfeasible) GMV

portfolio is given by (3.3). It is designed to minimize the variance (and thus the standard

deviation) rather than to maximize the expected return or the information ratio. Therefore,

any portfolio that implements the GMV portfolio should be primarily evaluated by how

successfully it achieves this goal. A high out-of-sample average return, AV, and a high

out-of-sample Sharpe ratio, SR, are naturally also desirable, but should be considered of

secondary importance from the point of view of evaluating the quality of a covariance matrix

estimator.

We also consider the question of whether one estimation model delivers a lower out-

of-sample standard deviation than another estimation model. To avoid a multiple testing

problem and as a major goal of this paper is to show that using a data-driven reinforcement

learning approach to obtain the shrinkage intensities improves the estimation of (large-

dimensional) covariances matrices, we restrict attention to two comparisons: (i) L with RL-L,

and (ii) NL with RL-NL. For a given universe size, a two-sided p-value for the null hypothesis

of equal standard deviations is obtained by the prewhitened HACPW method described in

Ledoit and Wolf (2011, Section 3.1).9

3.5 Empirical Results

3.5.1 Main Results

The main results are presented in Table 3 and can be summarized as follows. Unless stated

otherwise, the findings are with respect to SD as the performance measure.

• All models outperform EW and VW by a wide margin. This also holds for Sharpe ratio

9As the out-of-sample size is very large at 5,313, there is no need to use the computationally more involved
bootstrap method described in Ledoit and Wolf (2011, Section 3.2), which is preferred for small sample sizes.
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comparisons.

• Each RL-L and RL-NL model consistently—and often markedly—outperforms its

respective classic L and NL base model. Moreover, the outperformance of RL-L over L,

and RL-NL over NL, is both statistically significant and economically meaningful.

• There is a consistent ranking across smaller portfolio sizes N ∈ {30, 50, 100} (from best

to worst): RL-L, RL-NL, NL, L. For larger portfolio sizes N ∈ {225, 500}, the ranking

shifts to (from best to worst): RL-NL, NL, RL-L, L, VW, EW.

• In terms of SR, the results for linear shrinkage are mixed. However, for nonlinear

shrinkage, RL-NL consistently outperforms NL. With the exception of N = 500, RL-NL

achieves the highest SR.

Global minimum variance portfolio

L RL-L NL RL-NL EW VW

SD

N = 30 13.50 13.41 13.45 13.42 18.72 19.13

N = 50 13.64 13.28∗ 13.32 13.25∗ 18.86 19.04

N = 100 13.26 12.57∗ 12.68 12.62∗ 19.51 19.20

N = 225 12.64 11.45∗ 11.42 11.35∗ 19.87 19.32

N = 500 11.21 10.45∗ 10.38 10.36 20.62 19.52

SR

N = 30 0.84 0.79 0.82 0.83 0.52 0.52

N = 50 0.80 0.79 0.80 0.80 0.52 0.53

N = 100 0.56 0.68 0.65 0.68 0.51 0.52

N = 225 0.78 0.83 0.86 0.86 0.55 0.54

N = 500 0.95 0.88 0.91 0.92 0.58 0.55

Table 3: Annualized out-of-sample performance measures for the competing estimators of
the GMV portfolio, in percentage. All measures are based on 5,313 daily out-of-sample
returns from 12/18/2000 until 01/31/2022. For any performance measure (SD and SR), the
best estimator is indicated in bold blue font. In the columns RL-L, respectively RL-NL,
significance at the 0.01 level of outperformance in SD over L, respectively NL, is denoted by
an asterisk *.

To sum up, the proposed reinforcement learning approach for computing shrinkage

intensity(ies) outperforms classic linear and nonlinear shrinkage estimators based on the
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i.i.d. assumption.

We also report a comparison over time of the classic linear shrinkage intensity estimates

and those learned by RL in Figure 3 for N = 500. For other portfolio sizes, see Figure B.1.

For L, the shrinkage intensity is very low and stable, with an average shrinkage intensity of

0.07. This is due to the fact that the scalar multiple of the identity matrix as a shrinkage

target has very high bias but very low estimation error.10 In contrast, the purely data-

driven RL-L approach yields much higher and more adaptive shrinkage intensities, with an

average shrinkage intensity of 0.43. Comparing these shrinkage intensities with the (one-year

moving average of the) Oracle—defined as the best ex-post monthly shrinkage intensity that

minimizes monthly out-of-sample SD—we observe that RL-L successfully learns a higher

level of shrinkage, closely aligning with the smoothed Oracle (average shrinkage intensity of

0.42). Overall, we find that classic linear shrinkage based on the i.i.d. assumption results in a

substantially lower shrinkage intensity, which can be consistently improved by RL-L.
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Figure 3: Comparison of the monthly Oracle, RL-L and L estimated linear shrinkage intensities
over time for N = 500. For the smoothed Oracle we use a one-year moving average smoothing.

10See De Nard (2022). Note that for other linear shrinkage estimators, bias can be reduced by incorporating
a more realistic shrinkage target, which increases the optimal shrinkage intensity. However, more realistic
shrinkage targets require estimating additional (and more complex) parameters, leading to higher estimation
errors. As a result, the estimated optimal shrinkage intensities become more volatile.
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A similar but less extreme pattern can also be observed for nonlinear shrinkage. In

Figure 4, we plot the adjustment of nonlinear shrinkage intensities over time for N = 500; for

other portfolio sizes, see Figure B.2. Since γ̂ = 1 corresponds to classic nonlinear shrinkage,

we find that RL-NL consistently exhibits substantially higher shrinkage intensities. This

suggests that sample eigenvalues require even greater adjustment.

This observation is further supported by the Oracle nonlinear shrinkage intensities, which

are generally well above 1. In particular, their smoothed version (with an average adjustment

of 1.26) closely aligns with the RL-NL values (average adjustment of 1.28).

Notably, RL shrinkage intensities spike during periods of financial turmoil—such as the

dot-com bubble, the global financial crisis, and the COVID-19 pandemic—indicating that

the need for shrinkage is highest when market volatility is elevated.
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Figure 4: Comparison of the Oracle and RL-NL estimated nonlinear shrinkage intensities
adjustment over time for N = 500. For the smoothed Oracle we use a one-year moving
average smoothing.
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To visualize the monthly out-of-sample shrinkage intensity estimation errors, we present

the mean, mean absolute, and mean squared deviations of the oracle intensities minus the

estimated intensities in Table 4 and Figure 5. The estimation error results can be summarized

as follows:

• For any portfolio size and deviation metric, RL shrinkage intensities exhibit consistently

and significantly lower estimation errors compared to classic shrinkage intensities.

• The positive mean error values for L and NL indicate a substantial negative bias in

shrinkage intensities due to the i.i.d. assumption.

• In contrast, the mean errors of the data-driven RL shrinkage intensities are close to

zero.

Monthly shrinkage intensity estimation errors of GMV portfolios

Mean error Mean absolute error Mean squared error

L RL-L NL RL-NL L RL-L NL RL-NL L RL-L NL RL-NL

N = 30 0.21 −0.01 0.35 0.04 0.25 0.24 0.65 0.58 0.13 0.08 0.52 0.40

N = 50 0.25 0.00 0.37 0.00 0.28 0.24 0.63 0.56 0.15 0.08 0.51 0.37

N = 100 0.29 0.02 0.41 0.06 0.30 0.23 0.67 0.57 0.16 0.08 0.54 0.39

N = 225 0.36 0.02 0.43 0.07 0.37 0.23 0.60 0.49 0.20 0.08 0.47 0.30

N = 500 0.35 −0.01 0.26 −0.02 0.36 0.23 0.53 0.49 0.20 0.08 0.37 0.30

Table 4: Monthly shrinkage-intensity estimation errors of the GMV portfolio. All numbers
are based on 5’313 daily out-of-sample returns, respectively 253 monthly predicted shrinkage
intensities vs. the oracle intensities, from 12/18/2000 until 01/31/2022.
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Figure 5: Violin plots of monthly Oracle vs. estimated optimal shrinkage intensity differences
(panels on the left) and absolute differences (panels on the right) for the N = 500 GMV
portfolio. The upper panels show the differences for linear shrinkage and the lower panels
for nonlinear shrinkage. A violin plot visually summarizes the distribution of a data set by
combining the corresponding box plot with a (rotated) kernel density estimator; note that
within the box of the box plot the sample median is indicated by a horizontal line whereas
the sample average is indicated by a diamond.

In Figure 6, we plot the correlation of linear shrinkage intensities across all models and

find that they are positively correlated. Notably, we observe two distinct clusters of models

with high correlations: (i) The classic L models across N , and (ii) the new RL-L models

across N . The correlations between L and RL-L are substantially lower, indicating that the

data-driven approach not only increases the level of shrinkage but also alters its dynamics.

This is further evident in Figures 3 and B.1.
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In unreported results, we find that the added value of RL extends beyond merely reducing

the negative bias of the estimated shrinkage intensities (i.e., increasing the shrinkage level). It

also enhances the shrinkage dynamics. To test this, we adjust the linear shrinkage intensities

by adding the bias term (first L column of Table 4).

Figure 6: Correlation matrix of L and RL monthly shrinkage intensities across GMV portfolio
sizes. All numbers are based on 253 monthly shrinkage intensities from 12/18/2000 until
01/31/2022.

To illustrate the impact of the shrinkage level, we also report the standard deviation of

the GMV portfolio for constant shrinkage intensities in Table 5:

• All classic and RL shrinkage models consistently outperform the sample covariance

matrix S (i.e., δ = γ = 0). The SD of S increases with N due to greater estimation error

in higher dimensions, whereas shrinkage models reduce SD by improving estimation

accuracy and enhancing diversification in higher dimensions.

• Total shrinkage results in the identity matrix as the covariance matrix estimator, which

is equivalent to the EW portfolio (δ = 1 or γ = ∞).

• Consequently, both excessively small and excessively large shrinkage levels are
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suboptimal. We find that the optimal constant linear shrinkage intensity increases with

N due to the curse of dimensionality.

• For linear shrinkage toward the identity matrix, the optimal constant shrinkage intensity

consistently outperforms L and is comparable to RL-L. This suggests that L can be

improved by increasing its shrinkage intensity. However, since the optimal constant

shrinkage intensity is determined ex post, it is not directly applicable, whereas RL-L is.

• For nonlinear shrinkage, we observe that the shrunk eigenvalues require even stronger

shrinkage, as optimal γ values are greater than one. However, the optimal constant γ

adjustment decreases with N .

• The SDs of the ex post evaluated optimal constant γ adjustments are comparable to

those of RL-NL.

Linear shrinkage

δ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N = 30 13.64 13.35 13.36 13.49 13.70 13.99 14.37 14.88 15.59 16.68 18.72

N = 50 13.96 13.35 13.24 13.29 13.42 13.64 13.94 14.37 15.04 16.19 18.86

N = 100 14.27 12.80 12.60 12.62 12.73 12.91 13.19 13.59 14.23 15.49 19.51

N = 225 26.50 11.75 11.41 11.39 11.48 11.67 11.93 12.32 12.91 14.08 19.87

N = 500 NA 10.73 10.46 10.43 10.50 10.65 10.89 11.24 11.79 12.87 20.62

Nonlinear shrinkage

γ 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0

N = 30 13.53 13.50 13.49 13.47 13.46 13.45 13.42 13.42 13.38 13.38 13.39

N = 50 13.52 13.46 13.41 13.38 13.37 13.32 13.27 13.24 13.20 13.19 13.18

N = 100 13.00 12.90 12.83 12.76 12.72 12.68 12.64 12.61 12.62 12.63 12.65

N = 225 11.88 11.72 11.61 11.52 11.46 11.42 11.36 11.34 11.34 11.36 11.42

N = 500 10.62 10.53 10.47 10.43 10.40 10.38 10.37 10.39 10.46 10.54 10.62

Table 5: Annualized out-of-sample standard deviations of the GMV portfolio for the linear (I)
and nonlinear (QIS) shrinkage estimators with fixed δ respectively γ. All measures are based
on 5,313 daily out-of-sample returns from 12/18/2000 until 01/31/2022. For both estimators
and for any portfolio size the best fixed δ, respectively γ, is indicated in bold blue font.
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Additionally, we report results on average turnover and leverage. The results, presented

in Table 6, can be summarized as follows. Note that our optimization does not impose

constraints on leverage or turnover.

• For linear shrinkage, RL consistently and significantly reduces turnover. Overall, RL-L

exhibits the lowest turnover across all models.

• For linear shrinkage, RL also results in lower leverage for larger portfolio sizes.

• Turnover and leverage values are comparable between NL and RL-NL.

Global minimum variance portfolio

L RL-L NL RL-NL EW VW

TO

N = 30 0.61 0.09 0.80 0.80 0.06 0.07

N = 50 0.94 0.16 0.86 0.86 0.06 0.07

N = 100 1.60 0.29 1.02 1.11 0.06 0.07

N = 225 3.03 0.54 1.90 1.79 0.05 0.06

N = 500 3.10 1.07 3.55 3.59 0.05 0.06

GL

N = 30 2.05 3.82 2.20 2.15 1.00 1.00

N = 50 2.61 3.86 2.36 2.30 1.00 1.00

N = 100 3.62 3.62 2.67 2.60 1.00 1.00

N = 225 5.59 3.25 4.02 3.97 1.00 1.00

N = 500 5.67 2.96 4.99 5.09 1.00 1.00

PL

N = 30 0.35 0.41 0.33 0.33 0.00 0.00

N = 50 0.38 0.41 0.35 0.34 0.00 0.00

N = 100 0.43 0.41 0.38 0.37 0.00 0.00

N = 225 0.45 0.39 0.42 0.42 0.00 0.00

N = 500 0.44 0.38 0.43 0.43 0.00 0.00

Table 6: Monthly average portfolio metrics for the the competing estimators of the GMV
portfolio. All measures are based on 253 monthly out-of-sample weight vectors from
12/18/2000 until 01/31/2022. The best estimator for any measure (TO, GL and PL)
is indicated in bold blue font. The EW and VW portfolio are not considered in this
comparison.
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3.5.2 Robustness Checks

Table 3 presents the ‘single’ results over the entire out-of-sample period from 12/18/2000 to

01/31/2022. A natural question arises: is the relative performance of the various models stable

throughout this period, or does it change during certain subperiods, such as periods of ‘boom’

or ‘bust’ compared to normal conditions? To investigate this, we conduct a rolling-window

analysis based on shorter out-of-sample periods.

The results for out-of-sample standard deviations using a one-year rolling window are

displayed in Figure 7. The figure shows results for linear shrinkage GMV portfolios with a

universe size of N = 500. The relative performance appears remarkably stable over time,

with RL-L consistently performing best across all subperiods. Specifically, RL-L outperforms

L in 95% of trading days based on one-year rolling SDs. Moreover, RL-L remains very close

to the Oracle performance for most of the period, whereas L consistently performs markedly

worse than the theoretical optimum.

Interestingly, the advantage of RL over classic shrinkage intensities remains largely time-

invariant: we do not observe systematic differences in RL’s outperformance during periods

of ‘boom’ or ‘bust’ compared to normal periods. This finding reinforces the robustness and

stability of RL’s improvements.

To save space and avoid redundancy, we do not report results for nonlinear shrinkage.

However, the same pattern of robust outperformance over time is observed for RL-NL versus

NL. That said, the relative improvement of RL is smaller for nonlinear shrinkage, as also

shown in Table 3.
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Figure 7: One-year rolling-window of out-of-sample standard deviations (SD) for linear
shrinkage models based on the N = 500 GMV portfolio.

For linear shrinkage, we also examine alternative shrinkage targets proposed in the

literature, such as CVC. In unreported results, we find that the RL version consistently

improves upon classic linear shrinkage across various shrinkage targets. Although the

reduction in SD is statistically significant, the relative improvement tends to be smaller

for more sophisticated shrinkage targets. This is because their shrinkage intensity is often

substantially larger due to their enhanced accuracy; see De Nard (2022).11

Additionally, we conduct various robustness checks on the number of stocks in the

portfolio (N), the number of observations in the estimation window (T ), and, consequently,

different concentration ratios. The results confirm that our findings are robust and not driven

by specific parameter choices.

3.5.3 Long-Only Minimum Variance Portfolios

In this section, we present the results for long-only minimum variance portfolios. While

classic shrinkage covariance matrix estimators are independent of the portfolio optimization

step, the ex post optimal shrinkage intensity (Oracle) differs, which also affects the learned

shrinkage intensity of the RL agent. The long-only results are summarized in Table 7 and

visualized in Figures 8 and 9.

11The results are available upon request.
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• All models significantly outperform EW and VW benchmarks, including in terms of

the Sharpe ratio.

• Each RL-L and RL-NL model consistently outperforms its respective classic L and NL

base model. For NL and higher-dimensional settings, RL-NL’s outperformance is both

statistically significant and economically meaningful.

• A consistent ranking emerges for smaller portfolio sizes N ∈ {30, 50, 100}, ordered from

best to worst as: RL-L, L, RL-NL, NL. For larger portfolio sizes N ∈ {225, 500}, the
ranking shifts to: RL-NL, NL, RL-L, L, VW, EW.

Long-only minimum variance portfolio

L RL-L NL RL-NL EW VW

SD

N = 30 13.82 13.81 13.87 13.87 18.72 19.13

N = 50 13.86 13.85 13.91 13.90 18.86 19.04

N = 100 13.49 13.47 13.52 13.51 19.51 19.20

N = 225 12.77 12.76 12.82 12.75∗ 19.87 19.32

N = 500 12.14 12.13 12.24 12.10∗ 20.62 19.52

Table 7: Annualized out-of-sample standard deviations for the competing estimators of the
long-only minimum variance portfolio, in percentage. All measures are based on 5,313 daily
out-of-sample returns from 12/18/2000 until 01/31/2022. The best estimator with the lowest
SD is indicated in bold blue font. In the columns RL-L, respectively RL-NL, significance at
the 0.01 level of outperformance in SD over L, respectively NL, is denoted by an asterisk *.

The outperformance of RL-L over L is again driven by an increased average shrinkage

intensity; see Figure 8. For the N = 500 long-only GMV portfolio, the average shrinkage

intensity of RL-L is 0.2, which is very close to the Oracle’s average shrinkage intensity of

0.21, especially in comparison to L, which has an average shrinkage intensity of 0.07.

However, the outperformance of RL-L is smaller in the long-only setting due to the upper

bounds imposed on portfolio weights, which act as constraints in the optimization. As a result,

less shrinkage is required due to the implicit shrinkage effect described in Jagannathan and

Ma (2003). This reduced need for shrinkage is evident in the lower Oracle and RL-L shrinkage

intensities compared to the unconstrained long-short setting, where shrinkage intensity is

approximately halved; see Figure 3 for comparison.
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Figure 8: Comparison of the monthly Oracle, RL-L and L estimated linear shrinkage intensities
over time for the N = 500 long-only GMV portfolio. For the smoothed Oracle we use a
one-year moving average smoothing.

The reduced need for shrinkage due to the long-only constraint can also be observed for

nonlinear shrinkage; see Figure 9. While in the unconstrained setting, a higher shrinkage

intensity was required, with an average Oracle adjustment of 1.26, the long-only case requires

significantly less shrinkage, with an average Oracle adjustment of 0.68.

RL offers an advantage over classic shrinkage methods by dynamically adjusting shrinkage

intensity based on the specific optimization problem and performance metric of interest.

Unlike classic approaches, which derive a theoretical optimal shrinkage intensity under the

i.i.d. assumption independent of the portfolio optimization step, RL learns to optimize

shrinkage in a forward-looking manner, directly incorporating the interaction between

shrinkage, constraints and portfolio performance. This adaptive approach allows RL to

tailor shrinkage intensity to different portfolio constraints, asset universes, and risk-return

objectives, ultimately leading to more robust and economically meaningful improvements in

out-of-sample performance.
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Figure 9: Comparison of the Oracle and RL-NL estimated nonlinear shrinkage intensities
adjustment over time for the N = 500 long-only GMV portfolio. For the smoothed Oracle
we use a one-year moving average smoothing.

3.6 Future Research

In this paper, we focus on the added value of RL for the computation of shrinkage intensity(ies)

without making any assumptions about the data-generating process. However, RL-L and

RL-NL remain static covariance matrix estimators. It would therefore be of interest to

combine our approach with the dynamic conditional correlation (DCC) model of Engle et al.

(2019), specifically integrating the DCC multivariate GARCH model with RL-L or RL-NL

for correlation targeting.

Another potential enhancement to improve performance is incorporating higher-frequency

data (see, e.g., Callot et al., 2017; De Nard et al., 2022) or factor data (see, e.g., De Nard

et al., 2021; Alves et al., 2023; De Nard and Zhao, 2022, 2023). An alternative approach is to

apply RL not to shrinkage estimators but to other dimensionality reduction techniques such

as principal component analysis (see, e.g., Fan et al., 2013).

Finally, RL could be a powerful tool for learning the optimal time-varying combination

of different covariance matrix estimators. For example, RL could be used to determine the

shrinkage intensities for multi-target shrinkage estimation (see, e.g., Lancewicki and Aladjem,
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2014) or, more generally, to derive the optimal weighting scheme for ensemble methods that

aggregate multiple covariance matrix estimators.

4 Conclusion

The main contribution of this paper is to introduce a data-driven approach to learn the optimal

shrinkage intensity(ies) using reinforcement learning . The proposed AI Shrinkage estimator

applies to both linear and nonlinear shrinkage, demonstrating improved performance compared

to classic shrinkage estimators. The improvement stems from dropping the i.i.d. assumption

when computing the shrinkage intensity(ies) and instead leveraging a data-driven approach

that does not impose any assumptions on the data-generating process. Notably, the AI

Shrinkage estimators rely solely on stock return data but can be easily extended to incorporate

factor or alternative data signals.

Our results show that an RL agent recognizes that the shrinkage intensity(ies) derived

under the i.i.d. assumption are biased downward and automatically adjusts for this bias

by increasing shrinkage depending on the market environment. The learned shrinkage

intensity(ies) remain stable, intuitive, and correlated with the classic i.i.d. approach. To

assess the quality of our covariance matrix estimators, we conduct an extensive empirical

study in a high-dimensional setting, focusing on the out-of-sample standard deviation of

GMV portfolios, where the RL agent optimizes shrinkage under a minimum-variance utility

function.

A further contribution of this paper is the application of RL to constrained portfolio

optimization, recognizing its practical relevance and the flexibility of RL to adapt to

specific investor preferences. Unlike classic shrinkage methods, which are independent

of the optimization step, RL dynamically adjusts shrinkage based on the specific constraints,

risk-return objectives, and utility functions of the investor. Most classic shrinkage methods

tend to shrink too aggressively in constrained optimization problems, as they do not account

for the implicit shrinkage impact of constraints, potentially leading to suboptimal portfolio

allocations. This adaptability allows RL to incorporate the interaction between shrinkage

and portfolio performance in a forward-looking manner, making it particularly well-suited for

real-world investment settings where constraints play a crucial role.

Finally, the AI Shrinkage estimators enable more efficient implementation of risk-optimized

36



portfolios and are well-suited for real-world investment applications. However, our approach is

not limited to portfolio selection or even financial applications; it provides a general framework

for improving covariance matrix estimation across various domains.
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A Proof of Equivalence for Shrinkage Towards the

Identity Matrix

By substituting the definition of λI
i from Equation (2.7) into Equation (2.16) and carrying

out some algebraic manipulations, we obtain:

λ̃RL-I
i

..= γ̂λI
i + (1− γ̂)λi (A.1)

= γ̂(δ̂Iλ̄+ (1− δ̂I)λi) + (1− γ̂)λi (A.2)

= γ̂δ̂Iλ̄+ γ̂(1− δ̂I)λi + (1− γ̂)λi (A.3)

= γ̂δ̂Iλ̄+ (γ̂(1− δ̂I) + 1− γ̂)λi (A.4)

= γ̂δ̂Iλ̄+ (1− γ̂δ̂I)λi . (A.5)

As γ̂δ̂I ≥ 0, and for γ̂ ≤ 1/δ̂I, we can write

λRL-I
i = δ̂RL-Iλ̄+ (1− δ̂RL-I)λi , (A.6)

where δ̂RL-I ..= γ̂δ̂I is the same as in the direct approach (2.14).
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B Additional Figures

Figure B.1: Comparison of the monthly Oracle, RL-L and L estimated linear shrinkage
intensities over time for various portfolio sizes. For the smoothed Oracle we use a one-year
moving average smoothing.

42



Figure B.2: Comparison of the Oracle and RL-NL estimated nonlinear shrinkage intensities
adjustment over time for various portfolio sizes. For the smoothed Oracle we use a one-year
moving average smoothing.
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