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Abstract

We investigate the conditional tail behaviour of asset price changes at high

(10-second) frequencies using a new dynamic model for integer-valued tick-

data. The model has fat tails, scale dynamics, and allows for possible over- or

under-representation of zero price changes. The model can be easily estimated

using standard maximum likelihood methods and accommodates both poly-

nomially (fat) and geometrically declining tails. In an application to stock,

cryptocurrency and foreign exchange markets during the COVID-19 crisis, we

�nd that conditional fat-tailedness is empirically important for many assets,

even at such high frequencies. The new model outperforms the thin-tailed

(zero-in�ated) dynamic benchmark Skellam model by a wide margin, both in-

sample and out-of-sample.

Keywords: high frequency tick data, polynomial tails, discrete data, Hurwitz

zeta function, score-driven dynamics.
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1 Introduction

Extracting information from high-frequency prices is important for trading and regulation

(Shephard and Yang, 2017). Such high-frequency data are by now abundant and have

spurred a range of new models for granular �nancial time series; see for instance Russell

and Engle (2010) for an overview. Data at very high-frequencies (such as a few seconds)

exhibit at least four important stylized facts: (i) prices are discrete as they are reported in

the nearest so-called tick size, de�ned by the �nest granularity available for price changes,

such as dollar cents ($0.01); (ii) there are many zero price changes, e.g., due to price

staleness ; (iii) the distribution of price changes can be fat-tailed due one-o� events with a

large impact; and (iv) the price changes typically exhibit time-varying volatility.

The literature on models that allow for all four stylized facts is, however, rather limited.

Most of the proposed models have relatively thin tails, hence failing the third empirical

stylized fact listed above. Examples include the Skellam distribution (Skellam, 1946) or the

Negative Binomial (∆NB) distribution introduced by Barndor�-Nielsen et al. (2012), or

the double Poisson model of Holý and Tomanová (2022). To account for stylized fact (iv),

Koopman et al. (2017, 2018) develop dynamic versions of a conditional Skellam distribution

to account for changes in spot volatility across the day. Barra (2016) adopts a similar

approach for the ∆NB distribution estimating and estimates the model using Bayesian

methods. Both models result in tick-changes (stylized fact (i)) that are conditionally

thin-tailed, yet unconditionally fatter-tailed (stylized fact (ii)). Catania et al. (2022),

however, show that conditionally thin tails do not describe the data well enough and

that distributions with conditional fat-tailedness are called for. Their model follows a

general dynamic mixture structure of Skellam distributions. Such mixture constructions

are generally more challenging to estimate than the model proposed here.

In this paper, we introduce a new, simple alternative dynamic model for discrete price

changes that remains easy to estimate, yet allows for all four stylized facts, especially for

conditional fat-tailedness. In particular, we symmetrize and zero-in�ate the so-called Zipf-

Mandelbrot (ZM) distribution and endow it with a dynamic scale. The distribution may

be less familiar in �nancial econometrics, but simpler static versions of the Zipf and Zipf-

Mandelbrot distribution for positive integers have been used, for instance, in economics
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(Axtell, 2001; Bi et al., 2001; Malevergne et al., 2009), genetics (Furusawa and Kaneko,

2003), biology (Ogasawara et al., 2003), and sports (Ramos et al., 2020).1 We construct our

symmetrized ZM (sZM) model directly as a mixture of a positively and negatively valued

(�ipped) ZM distribution rather than as a di�erence between two ZM random variables.

This construction has the distinct advantage that the probability mass function is easily

obtained in closed form and that a time-varying scale parameter for the distribution is easily

introduced using the score-driven dynamics of Creal et al. (2013) and Harvey (2013); see

also Koopman et al. (2018). In addition, we allow for a separate mass correction at zero

to account for zero in�ation or de�ation. Parameter estimation by maximum likelihood

is straightforward, even for dynamic versions of the distribution, as we have an explicit

expression for the likelihood function via a standard prediction error decomposition. The

new model is considerably more �exible than the discrete Student-t distribution of Ord

(1968), which only allows for integer-valued degrees of freedom (DOF) parameters. The

tail-shape parameter in the new model, by contrast, can take any positive real value, similar

to a degrees of freedom parameter for the Student's t distribution for continuously-valued

data.

We study the theoretical properties of the new dynamic sZM model, including explicit

expressions for its moments. As a limiting case of the sZM, we obtain a symmetrized

geometric distribution as the tail-shape parameter diverges to in�nity. The symmetrized

geometric distribution has thin tails, though still fatter than those of the Skellam. Using

simulations, we show that the model is easy to estimate and can detect whether the data

are conditionally fat-tailed or not.

Empirically, we apply the new dynamic fat-tailed sZM model to 10-second price changes

for a variety of assets, including stocks, foreign exchange rates and cryptocurrency rates

during the COVID-19 crisis. Full-sample parameter estimates show that most of the assets

exhibit conditional fat-tailedness, leading to a substantial improvement in the statistical

�t compared to the thin-tailed dynamic and zero-in�ated Skellam model of Koopman

et al. (2017). Out-of-sample density forecasts con�rm this result: the sZM distribution

signi�cantly outperforms the Skellam distribution for almost all assets.

1The Zipf distribution also nests the so-called Zeta or Pareto distribution, which is more widely
used in economics and �nance (see for instance Piketty and Saez, 2003; Jones, 2015; Moscadelli,
2004).
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Most closely related to our paper is the recent work of Catania et al. (2022). They

develop a multivariate fat-tailed conditional distribution for discrete price changes based on

hidden Markov models (HMM) and a discrete mixture of Skellam distributions. We argue

that our dynamic zero-in�ated sZM model provides a simple alternative to their model: it

captures the four main stylized facts of asset price changes at very high frequencies, is easy

to estimate, and allows one to investigate the conditional tail behaviour of discrete price

changes in a direct way.

The remainder of this paper is set up as follows. Section 2 introduces the new dynamic

and zero-in�ated symmetrized Zipf-Mandelbrot model and its statistical properties. Sec-

tion 3 studies the model's properties in a controlled simulation setting. Section 4 presents

the empirical in-sample and out-of-sample results for stocks, cryptocurrencies, and regular

exchange rate changes. Section 5 concludes. The appendix gathers the proofs.

2 The model

2.1 Density speci�cation

Let yt ∈ Z be a time series of discrete data that can take both positive and negative

outcomes. For example, in our application in Section 4, we consider yt to be tick-sized

discrete price changes. Also de�ne the information set Ft−1 = {y1, . . . , yt−1} containing all

past observations. To model the conditional distribution of yt, we consider a symmetrized

and zero-in�ated version (sZM) of the fat-tailed Zipf-Mandelbrot distribution,

p(yt | Ft−1; st, ν, π) = π · 1{yt=0} + (1− π)

(
1 + |yt|

ν·st

)−(ν+1)

2(ν · st)ν+1 ζ(ν + 1, ν · st)− 1
, (1)

where ζ(a, b) for a > 1 denotes the Hurwitz zeta function ζ(a, b) =
∑∞

i=0(b + i)−a, st >

0 denotes a time-varying scale parameter, ν describes the rate of tail decay, and π ∈

[− 1
Ct−1 , 1] with Ct = 2(ν · st)ν+1 ζ(ν + 1, ν · st) − 1, gives the rate of zero in�ation

(π > 0) or de�ation (π < 0). Interestingly, the sZM model in (1) has a very similar

shape as the well-known Student's t distribution. In particular, its tails decline at a rate

of |yt/(νst)|−(ν+1) for large values of |yt|.
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Simpler static, one-sided and non-zero-in�ated versions of the Zipf-Mandelbrot distri-

bution have been used in for instance Axtell (2001); Bi et al. (2001); Malevergne et al.

(2009); Furusawa and Kaneko (2003); Ogasawara et al. (2003); Ramos et al. (2020).

Model (1) extends this distribution to both positive and negative integers, and in ad-

dition adds dynamics to it in the form of a time-varying scale parameter st, as well as

the possibility of zero in�ation or de�ation. This makes the model particularly suited to

describe fat-tailed discrete data that can take both positive and negative outcomes and

can have an excess of zeros, such as the tick-sized price changes in Section 4. Note that

the tails of yt in (1) decline polynomially rather than exponentially towards zero. This

gives the sZM model above a much fatter-tailed behaviour than the Skellam (1946) model

and its ∆NB generalization of (Barra, 2016). We discuss the tail behaviour of yt and the

existence of moments in more detail in Section 2.3.

For large values of ν, the sZM model collapses to a symmetrized thin-tailed zero-in�ated

geometric distribution, as shown by the following result, the proof of which can be found

in Appendix A.

Proposition 1. For ν → ∞, the sZM pmf in (1) collapses to the symmetrized, zero-in�ated

geometric or Pascal distribution

p(yt | Ft−1; st, π) = π · 1{yt=0} + (1− π)
p(st) (1− p(st))

|yt|

2− p(st)
, (2)

with success probability p(st) = 1− exp(−1/st).

Even though this limiting zero-in�ated symmetrized geometric distribution has thin, ex-

ponentially declining tails, its tails are still heavier than those of the Skellam (1946) dis-

tribution. The latter decline at both a geometric and an inverse factorial rate in yt due to

the underlying Poisson random variables. This is much faster than a geometric rate only.

As we see in the empirical application in Section 4, the sZM still substantially outperforms

the zero-in�ated, thin-tailed Skellam distribution, even in cases where ν is large.

2.2 Scale dynamics

To describe the dynamics of st, we introduce the time-varying parameter θt with st =

exp(θt), such that, by construction, st is always positive. We follow the score-driven
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approach of Creal et al. (2013) and Harvey (2013) to capture how θt evolves using the

following result.

Proposition 2. The score-driven dynamics for the sZM model in (1) are given by

θt = log(st), θt+1 = ω + βθt + α∇t, ∇t = ∂ log p(yt | Ft−1; st, ν, π)/∂θt, (3)

∇t = w1t ·
(
w2t ·

|yt|
st

− 2(ν + 1)
(ν · st)ν+1ζ(ν + 1, ν · st)− (ν · st)ν+2 ζ(ν + 2, ν · st)

2(ν · st)ν+1ζ(ν + 1, ν · st)− 1

)
,

w1t =
(1− π)p(y | st; ν, 0)

π · 1{y=0} + (1− π)p(y | st; ν, 0)
, w2t =

1 + ν−1

1 + |yt|/(ν · st)
,

where ∇t is the so-called score of the predictive density.

For a proof of the result, see the Appendix A. The recursion in (3) adjusts the time-

varying parameter θt in a steepest-ascent direction to improve (in expectation) the local

Kullback-Leibler divergence (see Blasques et al., 2015; Creal et al., 2024; De Punder et al.,

2024). Furthermore, Beutner et al. (2023) prove for continuously-valued data that score-

driven dynamics yield consistent estimates of the true time-varying parameter path, even

if the model is misspeci�ed.

The scale st in (3) reacts in an intuitive way to the data. Large values of |yt|/st result

in an increase of the scale st. The e�ect is mitigated, however, by the two weights w1t and

w2t in (3). The �rst weight (w1t) corrects for the zero-in�ation feature of the model: the

occurrence of a zero should only a�ect the scale if it emanates from the Zipf part of the

pmf and not if it is due to the excess occurrence of zeros. The second weight (w2t) is due

to the fat-tailedness of the sZM distribution: large values of |yt|/st can either result from

a recent increase in the scale st or from the fat-tailed nature of the sZM distribution. The

weight w2t takes this into account, partially down-weighting the impact of outlying values

of |yt|/st on the scale as they may be attributable to the fat-tailedness. This mechanism

causes the model to be robust to incidental large observations and outliers; see also Harvey

and Luati (2014) for a comparison to models for continuous data.

The di�erences are visualized in Figure 1 using the News Impact Curve (NIC). The left

and right-hand panels give the NIC for the sZM and Skellam model, respectively, where the

Skellam (1946) model is used as a typical benchmark to model positively and negatively

valued integers (see, e.g., Koopman et al., 2017; Catania and Sandholdt, 2019). Both

6



Figure 1: News Impact Curves for the sZM-GAS (left panel) and Skellam-GAS
models (right panel)
Note: Responses of the scores ∇θ w.r.t. the log-scale parameter θt. The NICs are constructed for
the setting where the Skellam and sZM models have the same model-implied variance E[y2t | Ft−1].
Note that the variance is not de�ned for ν = 1.

models are scaled in such a way that they produce the same model-implied conditional

variance E[y2t | Ft−1]. The di�erences between the sZM and Skellam models are clear. The

sZM has a bounded NIC in |yt|. For low values of ν, i.e., for very fat-tailed versions of the

sZM, the boundedness is especially clear. For larger values of ν, it takes quite some time

for the bound to set in, and the NIC appears rather linear in |yt| before levelling o�. Only

for the limiting case of ν → ∞, the NIC of the sZM model becomes convex and linear

on both sides, as the weight w2t in (3) collapses to w2t ≡ 1. The NIC for the Skellam

model, by contrast, is convex in |yt| for all values of the conditional variance, and increases

more than linearly towards in�nity. This results in substantial sensitivity to outliers and

incidental large values of |yt|, something we do not encounter for the sZM model. The

sensitivity of the dynamic Skellam model to large observations also a�ects the numerical

stability of the Skellam model in the empirical application in Section 4.

The sZM model can easily be extended in several directions. For instance, HAR-

type long-memory dynamics can be incorporated by re-specifying the �ltering equation in

Eq. (3) as

θt+1 = ω + βθt + α1∇F1
t + α2∇F2

t + α2∇F3
t , (4)

where ∇F
t = F−1

∑F−1
j=0 ∇t−j . Fractionally integrated dynamics can also be incorporated

in (3). We can also allow for asymmetry of the sZM by letting the tail-shape parameter
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di�er between positive and negative outcomes yt (cf. Harvey and Lange, 2017), or by

letting the dynamic scale for negative outcomes be a (possibly �xed) multiple of the scale

for positive outcomes (compare the use of di�erent Poisson means in the construction of the

mixture of Skellams in Catania et al., 2022). Finally, one can include exogenous regressors

xt into the �lter to test for the e�ect of observed covariates on scale dynamics, as in

θt+1 = ω + βθt + α∇F1
t + γ′xt, (5)

where γ is a vector of static slope coe�cients.

2.3 Tail behaviour and moments

The sZM distribution is characterized by fat tails, as the pmf decreases polynomially to

zero at a rate |yt|−ν+1 for large values of |yt|. By contrast, the Skellam distribution of

Barndor�-Nielsen et al. (2012) is characterized by thin tails, as it is the di�erence of two

Poisson random variables. Its tails decline more than exponentially fast due to the presence

of yt! in the Poisson pmf. Also the ∆NB (as the di�erence of two Negative Binomials, see

Kozubowski and Inusah, 2006) and the double Poisson distribution (Efron, 1986, and used

by Holý and Tomanová, 2022) have lighter tails than the polynomial tails of the sZM.

The number of �nite moments for the sZM distribution in Eq. (1) is directly bounded by

ν, similar to the bound for the Student's t distribution for continuously valued observations.

We have the following result.

Proposition 3 (moments). Let yt have the conditional pmf given in Eq. (1). For ν > k

and k ∈ N+, we have

(i) E[ykt | Ft−1] = 0 for k is odd;

(ii) E
[
|yt|k

∣∣ Ft−1

]
= 2(1− π)

Mk(ν + 1, ν · st)
2M0(ν + 1, ν · st)− 1

,

where M0(a, b) = ba ζ(a, b) and Mk+1(a, b) = b · (Mk(a− 1, b)−Mk(a, b)) .

For real-valued a and b, the Hurwitz zeta function requires a > 1 for ζ(a, b) to be

�nite (see Johnson et al., 1992). The condition ν > k then follows automatically from

the recursion for Mk(a, b). In particular, for the kth moment we need the existence of
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Mk(ν + 1, ν · s), which requires the computation of M0(ν + 1 − k, ν · s) via the recursion

for Mk(a, b) in Proposition 3. The latter requires ν + 1− k > 1, or equivalently ν > k, to

produce a �nite result. For instance, for the �rst absolute moment and for the variance,

we obtain the explicit expressions

E [|yt| | Ft−1] = 2(1− π)
s−1
t ζ(ν, ν · st)− νζ(ν + 1, ν · st)
2ζ(ν + 1, ν · st)− (ν · st)−(ν+1)

· st, (6)

E
[
y2t
∣∣ Ft−1

]
= 2(1− π)

s−2
t ζ(ν − 1, ν · st)− 2 (ν/st)ζ(ν, ν · st) + ν2ζ(ν + 1, ν · st)

2ζ(ν + 1, ν · st)− (ν · st)−(ν+1)
· s2t ,

(7)

thus requiring ν > 1 and ν > 2 for a �nite �rst and second moment, respectively. Eqs. (6)

and (7) are written as a multiplication of the scale st and squared scale s2t , respectively,

by some factor that depends on both ν and st. This multiplication factor stabilizes quite

quickly as st or ν (or both) increase. The scale parameter st thus plays its usual intuitive

role in the pmf expression as a scale-up factor for |yt| or for its square y2t .

2.4 Parameter estimation

Model (3) is observation-driven in the de�nition of Cox et al. (1981). It therefore has an

explicit expression for the likelihood function through a standard prediction error decom-

position, and parameter estimation is straightforward using standard maximum likelihood

methods. The log-likelihood is given by

L(ψ) :=
T∑
t=1

lt (yt|Ft−1;ψ) =
T∑
t=1

log p (yt|Ft−1; st(ψ), ν(ψ), π(ψ)) , (8)

where ψ contains all static parameters of the model, i.e., ψ = (ω, β, α, ν, π)′, and the pmf

is taken from (1). Note that we have written st(ψ) as an explicit function of the static

parameters, as the �ltering equation (3) depends on ω, α, and β as well as π and ν via the

expression for ∇t. Changes in any of these parameters thus also change the values of the

dynamic scale parameter st(ψ). The Maximum Likelihood Estimator (MLE) is obtained

as ψ̂T = argmaxψ L(ψ).

When maximizing the likelihood, one has to take care of the numerical stability of the

non-standard Hurwitz zeta function. Particularly for large values of ν and/or st(ψ), the
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implementation of the Hurwitz zeta function ζ
(
ν + 1, ν · st(ψ)

)
in standard software such

as Python, R or Matlab becomes unstable, particularly when multiplied by a large number(
ν · st(ψ)

)ν+1
. In those cases, we can use the simple approximation

log
(
(ν · st)ν+1 ζ(ν + 1, ν · st)

)
≈ log

(
m∑
i=0

1

(1 + i
ν·st )

ν+1

)
, (9)

for su�ciently large m, which follows immediately from the de�nition of the Hurwitz zeta

function as given below (1). Typically, a value ofm = 1000 already ensures stable likelihood

surfaces for optimization, even for large ν and st.
2 Alternatively, a more sophisticated

asymptotic expansion can be used, as in for instance Hu and Kim (2024). Similar words of

caution on the numerical stability of non-standard functions apply to the modi�ed Bessel

function of the �rst kind, which is required for the benchmark Skellam (1946) model. We

refer to Appendix B for further details and numerical solutions.

2.5 Numerically checking �lter invertibility

Gorgi (2020) formulates conditions for consistency and asymptotic normality of the MLE

for count data models with time-varying parameters. Key conditions relate to the existence

of moments (see also Proposition 3) and to contraction properties of the �lter, such that

initial conditions of the �lter vanish su�ciently fast. The latter property is also called

�lter invertibility and is particularly important for the convergence of the �ltered paths

of θt (and thus of st) to their stationary and ergodic limits (see also Wintenberger, 2013;

Blasques et al., 2018). Invertibility thus allows us to consistently recover the paths of the

time-varying scale st from the observed data.

Invertibility conditions are typically hard to check analytically, except in special cases.

Particularly if the dynamics of the time-varying parameter involve non-standard functions,

such as in our case the Hurwitz zeta function ζ(ν + 1, ν · exp(θt)), an analytical check of

invertibility is hard to impossible. We therefore follow a di�erent approach and check the

contraction condition numerically to guarantee the convergence of the �ltered paths as

suggested in Blasques et al. (2021).

2One can also set m = m⋆ such that the last term in the sum in (9) is su�ciently small, e.g.,
smaller than some constant ϵ, in which case m⋆ = ν · st · (ϵ1/(ν+1) − 1). Such an m⋆ can be
considerably smaller than 1000.
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Figure 2: Contraction conditions for the sZM∅-GAS model (without zero in�ation)
Note: the sample averages of the r-fold contractions are computed using T = 1000 random samples
(yt, yt−1, . . . , yt−r+1) from the empirical data. The contractions are evaluated at the MLEs from
Tables 3 and 4. The r-fold iterations are presented on the horizontal axis in terms of minutes (r/6)
given the 10-second frequency of the data.

From Bougerol (1993) and Straumann and Mikosch (2006) we know that the key con-

traction condition for invertibility for the model at hand is given by

E

[
sup
θ

log

∣∣∣∣∣∂φ(r)
t (θ)

∂θ

∣∣∣∣∣
]
< 0, (10)

φt(θ) = ω + βθ + α
∂ log p(yt | Ft−1; exp(θ), ν, π)

∂θ
,

where φ
(r)
t (θ) = φt ◦ φt−1 ◦ · · · ◦ φt−r+1(θ) denotes the r-fold composite function of φt(θ);

see also Blasques et al. (2022). Following Blasques et al. (2021) and under the assumption

that the data yt are stationary and ergodic, we can obtain a consistent estimate of the

left-hand side of (10) by replacing the expectation by a sample average.

Figure 2 shows the sample analogue of (10), T−1
∑T

t=1 supθ log
∣∣∂φ̂(r)

t (θ)/∂θ
∣∣, plotted

as a function of the composition order r expressed in minutes (r/6), where φ̂t(·) equals

φt(·) evaluated at the MLE of ω, α, and β. The di�erent curves are for the di�erent assets

considered in the empirical application in Section 4 and their respective MLEs from Tables 3

and 4. The sample averages are computed by subsampling each series (with replacement)

for 1,000 possibly overlapping sequences of observations (yt, . . . , yt−r+1) needed for the

evaluation of each φs(·) for s = t− r + 1, . . . , t.
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The contraction condition is satis�ed if the curve crosses the zero axis for some value of

r. For all series, we clearly see that the invertibility restriction is satis�ed empirically. For

many series, the e�ect of the initial condition wears o� quickly, as the curve quickly crosses

the horizontal axis. For other series, it takes somewhat longer for the contraction to set

in, given the higher estimated persistence of the model for those data. Nevertheless, all

series cross the axis within 300 iterations (or 300/6 minutes). Following Gorgi (2020), we

conclude that the model is invertible and that the time-varying parameter paths converge

exponentially fast to their limiting counterparts at the MLE estimates.

3 Simulation Study

We conduct a small-scale simulation experiment to study the small-sample properties of

the MLE for the dynamic sZM model. For this, we simulate time series for sample sizes

T = 500, 2000 and for di�erent degrees of zero in�ation rates π = 0, 0.05, 0.1, 0.4. In our

empirical setting, we have 2340 observations per trading day. Hence, the sample sizes

in the simulation re�ect those in the empirical analysis, or are considerably smaller. We

consider a fat-tailed (ν = 3) and a relatively thin-tailed (ν = 20) case. The relatively

thin-tailed case is more challenging, particularly for smaller samples, as there is typically

less information to identify subtle di�erences in extreme tail behaviour (ν) for discrete

data. As a result, the likelihood is typically �atter in ν for thinner-tailed data.

To simulate from the sZM pmf, we construct the probabilities P[yt = k] for k =

−K, . . . ,K, directly from the pmf using a su�ciently large value of K. We normalize these

probabilities to sum to one and use them to obtain a draw of yt. For the zero in�ation

models, we draw from a mixture, where we draw 0 with probability π0 and otherwise draw

from the sZM distribution as described above. For each of the simulated time series, we

estimate the sZM model from Eq. (1).

Table 1 presents the results for a set of parameters that is representative of the empirical

estimates in Section 4, i.e., high values of β and modest values of α. There are two main

takeaways from the table. First, the parameters ω, β, and particularly α that govern

the dynamics of the sZM scale st can be estimated accurately already in relatively small

samples of size T = 500 observations. There is a slight upward bias in ω and a downward
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bias in β, which largely o�set each other such that the unconditional mean ω/(1 − β) of

the time-varying scale is estimated at its correct position. If the sample size increases, the

accuracy in terms of RMSE increases and the bias further decreases for all parameters and

any of the zero-in�ation scenarios considered in the experiment.

Second, for fat tails (ν0 = 3), the tail-shape parameter ν can be estimated accurately.

Only if the number of tail observations becomes very small with T = 500 and π0 = 0.4,

such that only about 300 or 60% of T = 500 observations are non-zero, the tail parameter

is biased upward. In all other cases, the estimate is very close to its true value of 3.

For the moderate tail case with ν0 = 20, the tail-shape parameter is somewhat harder

to estimate reliably, particularly in smaller samples of T = 500, resulting in an upward

bias, i.e., tail behaviour is estimated as too thin-tailed. This upward bias goes hand in

hand with a persistent downwards bias in the estimated zero in�ation probability π. For

larger samples of 2000 observations, it appears that there is enough information to back

out ν (and π) more reliably. This is in line with expectations: estimating the rate of tail

decay for discrete data requires more tail observations, as each separate tail observation

only carries limited information on the rate of tail decay given the rounded, discrete nature

of the data. Because of this, models with di�erent, large estimated values of ν provide a

similar �t to the data. Given the large sample sizes in the empirical application, we expect

no issues here.

Density plots in Figure 3 of the ML estimates support the above �ndings. We use a

value of ν between the two previous extremes of 3 and 20, namely ν = 7. The distribution

of the estimates appears to be well approximated by a normal distribution for larger sample

sizes. The parameters ω and β have opposite forms of skewness for small sample sizes,

o�setting each other such that the estimated unconditional mean ω/(1−β) remains rather

stable. For larger sample sizes, the skewness grows less, and the normal approximation

becomes even better.

Also, for ν we see some right-skewness for smaller sample sizes. This is in line with our

earlier �ndings: the tail shape for DGPs with thinner tails is more challenging to back out

from discrete data due to the log-likelihood function being relatively �at in those cases,

unless the sample size is larger. Overall, we conclude that the static parameters can be

estimated with su�cient accuracy in typical sample sizes as encountered in Section 4 and
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Table 1: MLE simulation results for the sZM model

T = 500 T = 2000

ω β α ν π ω β α ν π

Fat tails: ν0 = 3

True 0.02 0.98 0.10 3 0.02 0.98 0.10 20

π0 = 0 π0 = 0

Mean 0.039 0.961 0.100 3.027 −0.010 0.022 0.977 0.101 2.821 −0.003
Bias 0.019 −0.019 −0.000 0.027 −0.010 0.002 −0.003 0.001 −0.179 −0.003
RMSE 0.035 0.034 0.042 1.033 0.031 0.009 0.009 0.016 0.348 0.014

π0 = 0.05 π0 = 0.05

Mean 0.047 0.954 0.097 2.978 0.038 0.023 0.976 0.102 2.827 0.047
Bias 0.027 −0.026 −0.003 −0.022 −0.012 0.003 −0.004 0.002 −0.173 −0.003
RMSE 0.082 0.076 0.052 0.728 0.034 0.010 0.010 0.017 0.355 0.014

π0 = 0.1 π0 = 0.1

Mean 0.046 0.955 0.097 2.991 0.089 0.024 0.975 0.103 2.840 0.098
Bias 0.026 −0.025 −0.003 −0.009 −0.011 0.004 −0.005 0.003 −0.160 −0.002
RMSE 0.068 0.068 0.064 0.769 0.037 0.010 0.011 0.019 0.380 0.014

π0 = 0.4 π0 = 0.4

Mean 0.056 0.938 0.066 4.274 0.389 0.030 0.970 0.103 2.862 0.399
Bias 0.036 −0.042 −0.034 1.274 −0.011 0.010 −0.010 0.003 −0.138 −0.001
RMSE 0.176 0.211 0.111 6.786 0.038 0.031 0.030 0.037 0.459 0.016

Moderate tails: ν0 = 20

True 0.02 0.98 0.10 20 0.02 0.98 0.10 20

π0 = 0 π0 = 0

Mean 0.036 0.963 0.099 25.984 −0.010 0.023 0.977 0.100 21.561 −0.001
Bias 0.016 −0.017 −0.001 5.984 −0.010 0.003 −0.003 0.000 1.561 −0.001
RMSE 0.028 0.030 0.031 18.384 0.031 0.008 0.007 0.013 12.054 0.011

π0 = 0.05 π0 = 0.05

Mean 0.036 0.964 0.098 27.219 0.042 0.023 0.976 0.100 21.965 0.049
Bias 0.016 −0.016 −0.002 7.219 −0.008 0.003 −0.004 0.000 1.965 −0.001
RMSE 0.031 0.031 0.032 21.272 0.025 0.008 0.008 0.013 12.005 0.011

π0 = 0.1 π0 = 0.1

Mean 0.039 0.961 0.100 28.074 0.093 0.024 0.976 0.101 23.071 0.100
Bias 0.019 −0.019 0.000 8.074 −0.007 0.004 −0.004 0.001 3.071 0.000
RMSE 0.040 0.038 0.034 23.099 0.029 0.009 0.009 0.015 15.855 0.012

π0 = 0.4 π0 = 0.4

Mean 0.039 0.959 0.089 26.584 0.390 0.026 0.974 0.101 23.239 0.401
Bias 0.019 −0.021 −0.011 6.584 −0.010 0.006 −0.006 0.001 3.239 0.001
RMSE 0.047 0.051 0.061 19.869 0.033 0.011 0.011 0.020 14.345 0.015

Note: average simulation results over 100 Monte-Carlo simulations of the MLE estimates of the
sZM model in Eq. (1). Results are obtained for a fat-tailed (ν0 = 3) and moderately fat-tailed
(ν0 = 20) data-generating process and for di�erent degrees of zero in�ation π0. Note that the
estimate of π can also be negative, as we allow for zero-in�ation as well as zero-de�ation in the
sZM model.

that the asymptotic normal distribution provides a good approximation for inference.
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Figure 3: Kernel densities for the static parameters of the sZM distribution.

For sample sizes T = 500, T = 2000 and T = 5000, we run N = 100 simulations and estimate the
parameters (ω, β, α, ν) by means of Maximum Likelihood estimation. True parameter values are
(ω0, β0, α0, ν0) = (0.02, 0.98, 0.1, 7).

4 Empirical Study

4.1 Data description and benchmark model

To investigate the relevance of conditional fat-tailedness for discrete data at very high

frequencies and to study the usefulness of the sZM model, we apply the model to tick data

from three di�erent types of markets. In particular, we consider developed foreign exchange

(FX) markets (Euro (EUR), Japanese Yen (JPY), Australian Dollar (AUD)) vis-a-vis the

US Dollar, three cryptocurrencies (Ethereum (ETH), Cardano (ADA), and Ripple (XRP)),

and two liquid US stocks (Bank of America (BAC) and Coca Cola (KO)). We consider

tick data for 10-second price changes for each of these eight assets, which alleviates the

problems of micro-structure noise, while leaving the challenges of discreteness in place.

This is in line with the 15-second frequency in, for instance, Catania et al. (2022). The

sample period is taken during the heat of the COVID-19 pandemic, highlighting the case

of fat-tailedness as best as possible. The sample covers the period Monday, 02 March 2020,

to Friday, 06 March 2020. We obtain the stock price data in 10-second intervals from the

NYSE Trade and Quote (TAQ) database and follow cleaning procedures as described in

Brownlees and Gallo (2006) and Barndor�-Nielsen et al. (2009). Catania and Sandholdt
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(2019) see no reason to deviate from the �lter proposed by Brownlees and Gallo (2006) for

cleaning high-frequency Bitcoin data. Hence, we also apply these �lters to the crypto and

FX price data. The crypto price data is obtained from the free Binance API, and an API

drawing on data from Dukascopy Bank provides the FX price data.3 To deal with extreme

outliers, we delete observations for which

|pt − µpt (k, δ)| > 3σpt (k, δ) + γ, (11)

where µpt (k, δ) and σ
p
t (k, δ) denote the δ-trimmed mean and standard deviation, calculated

over the k surrounding price points, and γ is a tuning parameter that prevents excessive

discarding of data points. Following Catania and Sandholdt (2019), we set γ = 0.02,

k = 60, and δ = 0.05. Any fat-tailedness we �nd is thus not due to such extreme outliers.

For stocks, we limit ourselves to trading hours from 9:30 to 16:00. For FX, we have

trading data from 00:00 to 21:00.4 Cryptocurrency market prices are available around the

clock. Within trading hours, we compute the intraday price changes as the change over the

10-second interval in the cleaned prices. In case the cleaned prices are a weighted average

of two tick prices with the same time stamp, the price change is rounded to the nearest tick

size. These are $0.00001 for AUD/USD, EUR/USD, ADA and XRP, ¥0.001 for USD/JPY

and $0.01 for both stocks and ETH.

Descriptive statistics for all series are provided in Table 2. We see that the number

of observations ranges from more than 10,000 for stocks to more than 43,000 for cryptos.

Even after the initial cleaning procedures, there are still some extreme price changes as can

be seen from the minima and maxima for each series. The interquartile range, however, is

much smaller, with about ±4 ticks for ETH, EUR, and JPY, down to hardly any movement

for Cardano (ADA) with almost 50% zero-price-changes at a 10-second frequency. For some

other series, we see that the number of zero-price changes roughly equals the number of

±1 tick price changes. Finally, we also see that the percentage of larger price movements

(≥ 3) is particularly large for the FX and crypto series, whereas it is much smaller for the

stocks. This suggests that fat-tailedness may be a much more important issue for FX and

3Historical Binance trades can be downloaded from Binance. The FX API node can be found
at Github.

4The Dukascopy (FX) exchange does not report trading between 21:00 and 00:00.
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Table 2: Descriptive statistics of 10-second tick data for price changes

Crypto Foreign Exchange (FX) Stocks

ETH ADA XRP EUR JPY AUD BAC KO

Obs. 43,200 43,200 43,200 37,800 37,800 37,800 11,700 11,700
Mean 0.06 0.01 0.04 0.07 -0.07 0.03 -0.00 0.03
Std 9.43 2.05 8.15 8.28 9.12 5.86 4.48 2.93
Min -235.0 -28.0 -199.0 -112.0 -122.0 -85.0 -216.0 -40.0
25% -4.0 0.0 -3.0 -3.0 -4.0 -2.0 -1.0 -2.0
50% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
75% 4.0 0.0 3.0 4.0 4.0 2.0 1.0 2.0
Max 100.0 23.0 90.0 259.0 186.0 262.0 218.0 57.0
|y|0 11.57% 54.82% 17.95% 16.49% 9.34% 20.78% 33.88% 20.20%
|y|1 13.65% 16.04% 15.89% 17.77% 15.18% 25.70% 33.56% 29.41%
|y|2 10.49% 12.50% 11.12% 10.49% 11.72% 10.50% 18.80% 22.36%
|y|≥3 64.30% 16.64% 55.05% 55.25% 63.75% 43.03% 13.75% 28.03%

Note: The number of observations, mean, standard deviation and quantiles are given, as well as the
percentage occurrence of the absolute return being equal to 0, 1, 2 ticks or ≥ 3 ticks, respectively.
Descriptives are of the 10-second return tick data for March 2�6, 2020.

crypto tick data than for stock data.

As our main benchmark model for the sZM speci�cation, we use the Skellam distribu-

tion (Skellam, 1946) and its dynamic extension of Koopman et al. (2018):

p(yt | θt) = exp(−σ2t ) I|yt|(σ
2
t ), σ2t = exp(θt),

θt+1 = ω + βθt + α · w1t

(
|yt| − σ2t +

σ2t I|yt|+1(σ
2
t )

I|yt|(σ
2
t )

)
, (12)

w1t =
(1− π)p(yt | θt)

π · 1{y=0} + (1− π)p(yt | θt)
,

where I|yt|(σ
2
t ) is the modi�ed Bessel function of the �rst kind of order |yt|. This version

of the model describes σt as a time-varying process using the observation-driven dynamics

of Creal et al. (2013) and Harvey (2013), such that the Skellam and sZM speci�cations are

comparable in that respect and can be estimated in a similar way.5

The left-hand panel in Figure 4 displays the empirical distribution of ticks for Coca-

Cola (KO). This empirical distribution shows a distinct peak at 0 with a relatively quick

drop for larger tick sizes. Similar features characterize most of the other series. The second

panel in the �gure shows the best-�tting static sZM distribution �tted to the same data.

5For a parameter-driven version of the dynamic Skellam model, see Koopman et al. (2017).
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Figure 4: Statically estimated models vs. data

Note: The Left panel contains the empirical distribution of ticks of Coca-Cola (KO). The middle
and right panels contain the best statically estimated sZM and Skellam models, respectively, both
with zero in�ation. The 10-second tick data cover the period from 2020-02-14 to 2020-02-28. Esti-
mates are (σ̂2, π̂) = (3.7966, 0.2457) for the Skellam model and (ŝ, ν̂, π̂) = (0.9134, 5.3883,−0.1679)
for the sZM speci�cation.

The sZM nicely captures the over-representation of zeros as well as the tail decay. The

best �tting static zero-in�ated Skellam model is shown in the third panel in Figure 4 and

serves as our benchmark. We see that the peak of zeros is captured well, but the rate of

tail decay does not match that of the empirical data. The Skellam model apparently has

a hard time trading o� the occurrence of many small tick changes in the range −5 to 5,

versus the less frequent but non-negligible occurrence of large tick changes.

We also see that the static sZM estimate of ν̂ = 5.3883 hints towards fat-tailed be-

haviour of price changes in high-frequency data. We still have to be cautious at this stage,

however, as the tails of the conditional distribution could still be thin-tailed, even though

the tails of the unconditional distribution are fat-tailed; compare the case of standard

conditional volatility models for continuous data, e.g., He and Teräsvirta (1999). The in-

troduction of dynamics for the scale parameter in either the sZM or Skellam model might

therefore mitigate the degree of conditional fat-tailedness needed to replicate the above

unconditional rate of tail decay.

4.2 In-sample results

We estimate the new dynamic sZM model over the entire sample and compare its �t to that

of the dynamic zero-in�ated Skellam model of Koopman et al. (2017, 2018). For the sZM

model, we consider a version with and without zero-in�ation. We initialize the Skellam
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�lter by θ̂0 = log σ̂2, where the variance σ̂2 is computed using the �rst 100 observations. For

the sZM �lter, we �rst estimate a version of the model with arbitrary �lter initialization,

and use the sample average of the �ltered values to initialize the �lter in a second round.

Experiments with alternative initialization methods showed that the results are not very

sensitive to the precise form of �lter initialization, in line with the invertibility result from

Section 2.5. We reparameterize β to lie inside the unit circle, and π to lie in the interval

[−(Ct−1)−1 , 1] with Ct = 2(ν ·st)ν+1 ζ(ν+1, ν ·st)−1, such that we allow for both zero-

in�ation and a moderate degree of zero-de�ation. In particular, we estimate π̄ ∈ [−1, 1],

with π = π̄ if π̄ ∈ [0, 1], and π = πt = π̄/(Ct − 1) for π̄ ∈ [−1, 0). By construction,

the zero in�ation/de�ation parameter then satis�es the appropriate domain restrictions.6

Note that negative values of π̄ can help to bring down the the large peak at yt = 0 for the

sZM model in cases where ν is low.

Tables 3 and 4 show the estimation results. All models have a highly persistent es-

timated autoregressive component, i.e., a high value of β. We also see that for both the

sZM and Skellam model, the time-varying parameter reacts positively (α) to the score.

Looking at the log-likelihood and BIC values, the sZM model is much more suitable for

both crypto and FX. It substantially outperforms the Skellam benchmark across the board.

Log-likelihood increases range from in the 100s to more than 5000 points when allowing

for conditional fat tails. For BAC, sZM marginally outperforms the Skellam model. Only

for Coca-Cola (KO), the Skellam provides a better �t to the data. The di�erence with the

sZM speci�cation, however, is small, with about 50 likelihood points.

Not all assets exhibit clear polynomial tail shapes. Given the estimates of ν for the

zero-in�ated sZM model, fat tails appear most important for AUD, BAC, ETH, and XRP

with estimates ν̂ in the range 7�16. For EUR and JPY, tail-fatness seems to be somewhat

less of an issue with estimates around ν̂ ≈ 40. Finally, for KO and ADA, ν is estimated in

excess of 200, illustrating these assets have a conditionally exponential rate of tail decay

in line with the geometric case from Proposition 1. For KO, even geometric tails (ν → ∞)

appear slightly too heavy, resulting in the zero-in�ated Skellam model having a better

6Note that this reparameterization somewhat alters the score expressions as Ct depends on st
if π̄ < 0. We abstract from such additional terms and expect them to only have a minor e�ect on
the �nal dynamics of st, and instead stick to the score dynamics as laid out in Proposition 2. Also
note that for most series π̄ > 0, such that the score dynamics in Proposition 2 are exact.

19



Table 3: In-sample performance of the sZM and Skellam model

ω β α ν π̄ L BIC

EUR/USD

sZM
0.0031 0.9979 0.0388 40.9055 0.0155 -119,888 239.8
(0.0008) (0.0005) (0.0030) (14.0710) (0.0047)

sZM∅ 0.0030 0.9979 0.0393 25.5611 _ -119,915 239.9
(0.0007) (0.0005) (0.0030) (4.7162) _

Skellam
0.0059 0.9983 0.0489 _ 0.0804 -122,168 244.4
(0.0014) (0.0004) (0.0045) _ (0.0151)

USD/JPY

sZM
0.0073 0.9957 0.0417 45.9327 −0.0736 -128,890 257.8
(0.0013) (0.0007) (0.0027) (2.0473) (0.0357)

sZM∅ 0.0072 0.9958 0.0422 45.9288 _ -128,898 257.8
(0.0013) (0.0007) (0.0028) (1.9174) _

Skellam
0.0176 0.9956 0.0558 _ 0.0318 -130,442 260.9
(0.0046) (0.0011) (0.0055) _ (0.0140)

AUD/USD

sZM
0.0042 0.9963 0.0381 11.1968 0.0308 -108,084 216.2
(0.0008) (0.0007) (0.0032) (1.2543) (0.0072)

sZM∅ 0.0040 0.9962 0.0391 7.6947 _ -108,135 216.3
(0.0008) (0.0007) (0.0032) (0.4335) _

Skellam
0.0283 0.9912 0.0651 _ 0.1279 -111,228 222.5
(0.0174) (0.0053) (0.0309) _ (0.0136)

Bank of America (BAC)

sZM
0.0001 0.9973 0.0233 12.0958 −0.5030 -22,343 44.7
(0.0003) (0.0008) (0.0032) (2.9681) (0.1019)

sZM∅ 0.0042 0.9843 0.0603 60.1532 _ -22,464 45.0
(0.0014) (0.0039) (0.0110) (44.6630) _

Skellam
0.0221 0.9767 0.0944 _ 0.0864 -22,424 44.9
(0.0105) (0.0102) (0.0378) _ (0.0430)

Note: Full-sample estimates of the static parameters of the zero-in�ated sZM and Skellam model,
and a non-zero-in�ated version of the sZM model (sZM∅). Results are for three established FX
pairs (EUR/USD, USDJPY, USD/TRY, AUD/USD) and one stock (Bank of America, BAC) for
the �rst week of March 2020 during the volatile period of the COVID lockdowns. For negative
values of π̄, the zero de�ation probability is set to πt = π̄/(Ct − 1) with Ct de�ned below Eq. (1)
to ensure that the probability mass function is never negative. For positive π̄, we have π = π̄.
Robust (sandwich) standard errors are reported in parentheses. BIC values are reported in 1000s.
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Table 4: In-sample performance of the sZM and Skellam model (ctd)

ω β α ν π̄ L BIC

Coca-Cola (KO)

sZM
0.0018 0.9967 0.0234 2164.0866 −0.3981 -27,339 54.7
(0.0006) (0.0009) (0.0028) (404.0775) (0.0506)

sZM∅ 0.0024 0.9965 0.0294 45.9514 _ -27,518 55.1
(0.0007) (0.0010) (0.0034) (2.2363) _

Skellam
0.0076 0.9958 0.0610 _ 0.0340 -27,287 54.6
(0.0030) (0.0017) (0.0127) _ (0.0405)

Ethereum (ETH)

sZM
0.0039 0.9977 0.0426 16.5327 0.0095 -149,319 298.7
(0.0012) (0.0007) (0.0035) (5.5149) (0.0049)

sZM∅ 0.0039 0.9977 0.0426 14.5489 _ -149,336 298.7
(0.0011) (0.0006) (0.0034) (3.5139) _

Skellam
−0.0011 1.0000 0.0461 _ 0.0492 -152,758 305.6
(0.0002) (0.0000) (0.0013) _ (0.0122)

Cardano (ADA)

sZM
0.0020 0.9962 0.0408 239.6816 0.3536 -75,061 150.2
(0.0008) (0.0014) (0.0055) (1251.5779) (0.0195)

sZM∅ −0.0012 0.9934 0.0508 2.5411 _ -75,934 151.9
(0.0003) (0.0012) (0.0039) (0.0407) _

Skellam
0.0107 0.9941 0.0888 _ 0.4540 -75,774 151.6
(0.0040) (0.0020) (0.0095) _ (0.0113)

Ripple (XRP)

sZM
0.0059 0.9960 0.0573 7.7887 0.0563 -139,826 279.7
(0.0014) (0.0009) (0.0044) (0.6093) (0.0050)

sZM∅ 0.0066 0.9952 0.0617 4.9811 _ -140,164 280.4
(0.0014) (0.0010) (0.0049) (0.1926) _

Skellam
0.0020 0.9991 0.0477 _ 0.1141 -144,870 289.8
(0.0014) (0.0003) (0.0018) _ (0.0119)

Note: Full-sample estimates of the static parameters of the zero-in�ated sZM and Skellam model,
and a non-zero-in�ated version of the sZM model (sZM∅). Results are for one stock (Coca Cola,
KO) and three cryptocurrencies (Ethereum (ETH), Cardano (ADA), Ripple (XRP)) for the �rst
week of March 2020 during the volatile period of the COVID lockdowns. For negative values of π̄,
the zero de�ation probability is set to πt = π̄/(Ct−1) with Ct de�ned below Eq. (1) to ensure that
the probability mass function is never negative. For positive π̄, we have π = π̄. Robust (sandwich)
standard errors are reported in parentheses. BIC values are reported in 1000s.
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BIC. Note this is not the case for Cardano (ADA), where the likelihood di�erence with the

Skellam is still about 700 points. ADA tails are thus still substantially heavier than those

of the Skellam; see also the arguments in Section 2.1.

The sZM model with and without zero-in�ation often display a similar �t, with modest

likelihood increases. The main exception is ADA with a log-likelihood increase of about

900 points, followed by XRP (340 points), BAC (120 points) and KO (180 points). For

ADA, this is con�rmed by a small standard error of π̂, pointing to the signi�cance of the

zero-in�ation probability estimated to be as high as 35%. This is in line with the empirical

counts of the number of zero price changes in Table 2. Also note that for some assets, we

estimate zero de�ation (π̄ < 0). This is most clear for the two stocks in our sample. The

predicted peak at yt = 0 for the sZM is too high in these cases, and brought down by the

negative value of π̄. This can result in either an upward (KO) or downward (BAC) shift in

the estimated value of ν compared to the sZM∅, depending on the shape of the tails and

the center of the distribution.

4.3 Out-of-sample performance

To compare the out-of-sample forecasting performance of the di�erent models, we use the

Diebold-Mariano (DM) test of Diebold and Mariano (2002). We create one-step-ahead

density forecasts based on a log-scoring rule and construct a DM test statistic similar to

that of Amisano and Giacomini (2007). Due to the observation-driven nature of our model,

our one-step-ahead density forecast is given by

p̂(yt|M) = p(yt|θ̂t,Ft−1;M), (13)

for all models considered. The test statistic is computed as

DM(M1,M0) =
d√

σ̂2HAC/(T − w)
, (14)

where d := (T − T0)
−1
∑T

t=w log p̂(yt|M1) − log p̂(yt|M0) for two models M0 and M1,

and where T0 denotes the �nal time index of the in-sample period, and where σ̂2HAC is a

Heteroskedasticity and Autocorrelation Consistent variance estimate; see e.g. Newey and
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West (1987). Giacomini and White (2006) formulate assumptions for the Diebold-Mariano

statistic to be asymptotically standard normally distributed. They rule out expanding

estimation windows. We therefore use rolling windows to re-estimate the static parameters.

Every trading day, we re-estimate the model to forecast the next trading day.

A large positive value for the DM statistic indicates that model M1 has superior

predictive ability compared to model M0. We use the Skellam model as the baseline

(M0). We consider 10-second discrete price changes from March 6st to May 13th for the

FX pairs and stocks, and March 8st to May 13th for cryptocurrencies, as they also trade

over the weekend. In this way, we have six full trading days to analyze for all assets. Static

parameters are estimated on a particular trading day and are kept �xed when computing

the density forecasts over the next day. Then they are updated, and the procedure is

repeated. This gives us 5 full trading days for our out-of-sample analysis, or a total of

11, 700 observations for stocks, 37, 800 for FX-pairs, and 43, 200 for cryptocurrencies.

Table 5 shows that the dynamic sZM model clearly outperforms the dynamic Skellam

model for both FX and cryptocurrencies. This is clear from the signi�cant DM statistics

at a 0.1% signi�cance level. In line with the in-sample results, we also see strong out-of-

sample outperformance of the sZM over the Skellam for BAC, but not for KO. For KO, the

log-score for the sZM model is also higher than for the Skellam model, but not signi�cantly

so. Overall, the results support the importance of conditional fat tails for out-of-sample

density forecasting for most asset classes.

Table 5 also supports our in-sample �nding that the sZM models with and without zero-

in�ation or de�ation perform similarly in terms of log-scores. Only for BAC, ADA, and

AUD/USD the sZM model signi�cantly outperforms the sZM∅ model with DM-statistics

of 6.75, 11.49 and 2.53, respectively. Finally, when we inspect the cumulative log-scores of

the sZM and Skellam during the course of the day (not shown), we �nd a gradual increase

rather than incidental jumps in their log-score di�erences. This indicates that the better

out-of-sample performance is not due to isolated outliers or extremely volatile sub-periods,

but rather to a gradual and consistent outperformance during the whole day and the entire

forecasting period. This again underlines the need to allow for a fatter-tailed conditional

tail behaviour for price changes, even at the high-frequency tick level, in order to better

�t the data.
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Table 5: Out-of-sample mean log-score comparison

M Score
M
t DM Score

M
t DM Score

M
t DM

Curriencies (FX)

USD/JPY AUD/USD EUR/USD

sZM -4.197 11.25∗∗∗ -3.524 24.30∗∗∗ -3.805 18.59∗∗∗

sZM∅ -4.197 11.03∗∗∗ -3.525 23.41∗∗∗ -3.804 18.81∗∗∗

Skellam -4.291 -3.636 -3.864

Cryptocurrencies

ETH ADA XRP

sZM -4.219 10.32∗∗∗ -2.467 16.56∗∗∗ -4.024 19.64∗∗∗

sZM∅ -4.219 10.25∗∗∗ -2.472 11.49∗∗∗ -4.022 19.35∗∗∗

Skellam -4.245 -2.505 -4.089

Stocks

BAC KO

sZM -2.292 6.85∗∗∗ -2.857 1.33
sZM∅ -2.441 6.30∗∗∗ -2.858 1.22
Skellam -3.825 -2.882

Note: Average out-of-sample log-score statistics Score
M
t and corresponding Diebold Mariano (DM)

statistics. The baseline model in the DM is the Skellam model. sZM and sZM∅ denote the new
sZM model with and without zero in�ation, respectively. Signi�cantly positive values indicate the
alternative model performs signi�cantly better than the dynamic zero-in�ated Skellam in terms
of predictive log-scores. ∗, ∗∗ and ∗ ∗ ∗ respectively denote signi�cance at 1%, 0.5% 0.1% in line
with Benjamin et al. (2017) for new �ndings. HAC standard errors use lag-length 10. The out-
of-sample period consists of 11, 700 observations for stocks, 37, 800 observations for FX-pairs, and
43, 200 observations for cryptocurrencies.

5 Conclusion

In this paper, we investigated the conditional fat-tailedness of discrete price changes at high

(10-second) frequencies. For this, we introduced a new dynamic model for integer-valued

price changes. The model allowed for conditional fat-tailed behaviour, scale dynamics, and

over- or under-representation of zeros. We discussed the model's theoretical tail behaviour

in terms of the existence of moments and invertibility of the �lter. In a simulation ex-

periment, we showed that the model's parameters can be easily estimated using standard

maximum likelihood methods.

In an empirical application to tick-size asset price changes, we showed that fat-tails

are not only a pervasive phenomenon for daily return series. Also at very high (10-second)
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frequencies, many of the assets considered in this paper exhibit fatter conditional tails than

the benchmark model from the literature, the Skellam (1946) distribution. In particular,

the new sZMmodel clearly outperformed the Skellam model for most assets, both in-sample

and out-of-sample. This means that both conditional and unconditional fat-tailedness

are important phenomena at ultra-high frequencies and should be accounted for when

empirically modelling such data.
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A Proofs and derivations

Proof of Proposition 1. Note that as ν → ∞, we have

lim
ν→∞

(
1 +

|yt|
ν · st

)−(ν+1)

= exp (−|yt|/st) = (1− p(st))
|yt| , (A.1)

for p(st) = 1 − exp(−1/st). The integrating constant C is then easily obtained from the

fact that

1 =
∞∑

yt=−∞
π · 1{yt=0} + (1− π) C−1 (1− p(st))

|yt| = π + (1− π) C
∞∑

i=−∞
(1− p(st))

|yt|

= π + (1− π) C

((
2

∞∑
i=0

(1− p(st))
|yt|

)
− 1

)
= π + (1− π) C

(
2

p(st)
− 1

)
⇔ C =

p(st)

2− p(st)
.

Proof of Proposition 2. First we note that ∂ζ(a, b)/∂b = −a ζ(a+ 1, b), which follows

directly from the de�nition of the Hurwitz zeta function. We then get

∂ log p(yt | st; ν, π)
∂ log st

=
(1− π)p(yt | st; ν, 0)

π 1{yt=0} + (1− π)p(yt | st; ν, 0)
∂p(yt | st; ν, 0)/∂ log st

p(yt | st; ν, 0)

= w1(y, st, ν, π)
∂ log p(yt | st; ν, 0)

∂ log st
,

where

∂ log p(yt | st; ν, 0)
∂ log st

=
(ν + 1) |yt|/(ν · st)

1 +
|yt|
ν · st

− (ν + 1)(ν · st)ν+1 ζ(ν + 1, ν · st)− ν st ζ(ν + 2, ν · st)
(ν · st)ν+1 ζ(ν + 1, ν · st)− 1

2

= (ν + 1)

( |yt|
ν·st

1 + |yt|
ν·st

− ζ(ν + 1, ν · st)− ν st ζ(ν + 2, ν · st)
ζ(ν + 1, ν · st)− 1

2(ν · st)−(ν+1)

)
.

To prove Proposition 3, we �rst establish the following lemma.
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Lemma A.1. Let Mk(a, b) =
∑∞

y=0 y
k(1 + y/b)−a for k ≥ 0, b > 0, and a− k > 1, then

M0(a, b) = ba ζ(a, b) (A.2)

Mk+1(a, b) = b ·
(
Mk(a− 1, b)−Mk(a, b)

)
. (A.3)

Proof of Lemma A.1. The result for M0(a, b) follows directly from the de�nition of the

Hurwitz zeta function ζ(a, b) =
∑∞

y=0(b + y)−a. To obtain the recursion, we di�erentiate

the expression of Mk(a, b) as de�ned above with respect to b to obtain

∂Mk(a, b)

∂b
=

a

b2

∞∑
y=0

yk+1

(1 + y/b)a+1
=

a

b2
Mk+1(a+ 1, b). (A.4)

We also note that

Mk(a, b) = ba
∞∑
y=0

yk(b+ y)−a.

Di�erentiating this expression with respect to b, we obtain

∂Mk(a, b)

∂b
= a ba−1

∞∑
y=0

yk

(b+ y)a
− a ba

∞∑
y=0

yk

(b+ y)a+1

=
a

b

∞∑
y=0

yk

(1 + y/b)a
− a

b

∞∑
y=0

yk

(1 + y/b)a+1

=
a

b
(Mk(a, b)−Mk(a+ 1, b)) .

Equating these two expressions for the derivative and rewriting the result completes the

proof.

Proof of Proposition 3. Using Lemma A.1, note that for k ∈ N\{0} we have

E[yk] = E[yk · 1{y>0}] + (−1)kE[yk · 1{y<0}]

= (1− π)
Mk(ν + 1, ν · s) + (−1)kMk(ν + 1, ν · s)

2M0(ν + 1, ν · s)− 1

= (1− π)
(
1 + (−1)k

) Mk(ν + 1, ν · s)
2M0(ν + 1, ν · s)− 1

,
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which proves the result.

For very high values of ν, we also provide the following asymptotic approximation

result.

Lemma A.2. For ν → ∞ and �xed s and �xed k ∈ N+, we have

(ν · s)ν+1 ζ(ν + 1, ν · s) = p(s)−1 +
a1(s)

ν
+
a2(s)

ν2
+
a3(s)

ν3
+O(ν−4), (A.5)

with ai(s) as given in the proof below, and with p(s) = 1− exp(−1/s).

Proof of Proposition A.2. First, note that

(ν · s)ν+k ζ(ν + k, ν · s) =
∞∑
j=0

(
1 +

j

ν · s

)−(ν+k)

. (A.6)

Taking a series expansion of (1 + j/(ν · s))−(ν+k) around ν → ∞, we obtain after some

tedious algebra

(
1 +

j

ν · s

)−(ν+k)

= p̄(s)j ·
(
1 +

b1j(s)

ν
+
b2j(s)

ν2
+ . . .+

b4j(s)

ν4
+O(ν−5)

)
, (A.7)

where p̄(s) = 1− p(s) = exp(−1/s), and where

b1j(s) =
j(j − 2k s)

2s2
, (A.8)

b2j(s) =
j2
(
3j2 − (8 + 12k)js+ 12(1 + k)k s2

)
24s4

, (A.9)

b3j(s) =
j3
(
j3 − (8 + 6k)j2s+ (12 + 28k + 12k2)js2 − (16 + 24k + 8k2)k s3

)
48s6

, (A.10)

b4j(s) =
j4

5760s8

(
15j4 − (240 + 120k)j3s+ (1040 + 1320k + 360k2)j2s2 (A.11)

− (1152 + 3360k + 2400k2 + 480k3)js3

+ (1440 + 2640k + 1440k2 + 240k3)k s4
)
.
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To obtain the result, de�ne ak(s) =
∑∞

j=0 bkj(s) p̄(s)
j , such that for s > 0 we get

a0(s) =

∞∑
j=0

p̄(s)j = (1− p̄(s))−1 = p(s)−1, (A.12)

a1(s) =
p̄(s)

(
2− p(s)− 2k s p(s)

)
2s2p(s)3

, (A.13)

a2(s) =
p̄(s)

24s4p(s)5

(
3
(
p̄(s)3 + 11p̄(s)2 + 11p̄(s) + 1

)
(A.14)

+
(
p̄(s)3 + 3p̄(s)2 − 3p̄(s)− 1

)
(8 + 12k) s

+ 12
(
p̄(s)3 − p̄(s)2 − p̄(s) + 1

)
k(k + 1)s2

)
,

a3(s) =
p̄(s)

48s6p(s)7

((
p̄(s)5 + 57p̄(s)4 + 302p̄(s)3 + 302p̄(s)2 + 57p̄(s) + 1

)
(A.15)

+
(
p̄(s)5 + 25p̄(s)4 + 40p̄(s)3 − 40p̄(s)2 − 25p̄(s)− 1

)
(8 + 6k)s

+
(
p̄(s)5 + 9p̄(s)4 − 10p̄(s)3 − 10p̄(s)2 + 9p̄(s) + 1

)
(12 + 28k + 12k2)s2

+ 8
(
p̄(s)5 + p̄(s)4 − 8p̄(s)3 + 8p̄(s)2 − p̄(s)− 1

)
(2 + 3k + k2)k s3

)
,

From Proposition 1 it is immediately clear that as ν → ∞ the left-hand side of (A.5)

collapses to p(s)−1. As a result, 2(ν · s)ν+1 ζ(ν + 1, ν · s) − 1 collapses to 2/p(s) − 1 =

(2− p(s))/p(s), which is precisely what we would expect given the result in Proposition 1.

Note also that analogous expansions are required for maximizing the log-likelihood of the

Skellam distribution, as it uses a modi�ed Bessel function of the �rst kind; see Abramowitz

and Stegun (1968) and Appendix B for details.
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B Bessel function approximations

Numerical stability of the modi�ed Bessel function of the �rst kind I|y|(σ
2) is also of concern

for numerically obtaining the MLE of the benchmark Skellam (1946) model. As for fat-

tailed and sometime erratic data, there are several situations in which the behaviour of this

function as implemented in standard packages (such as the python iv( )function) is not

su�ciently accurate. To tackle the numerical instability for the modi�ed Bessel function

for large values of the arguments, we take the following approach using the asymptotic

expansions found in Abramowitz and Stegun (1968).

1. We evaluate the function by the standard implementation of the iv( ) function.

2. If the previous step fails, similar to the case of the Hurwitz zeta function, we set

m = 100 and let

log
(
I|y|(σ

2)
)
≈ |y| log

(
1

2
σ2
)
+ log

(
m∑
k=0

(
σ2/4

)k
k!Γ(|y|+ k + 1)

)
.

3. If the approximation in the previous step still fails, as it can do especially for very

large values of |y|, a low value of σ2, or a combination of both, we check whether

σ2 < |y|. If σ2 is very small, we use the limiting form from Abramowitz and Stegun

(1968) where σ2 → 0 and let

log
(
I|y|(σ

2)
)
≈ |y| log

(
1

2
σ2
)
− log Γ(|y|+ 1).

If this is not the case, and thus |y| is particularly large, we take the limiting from of

the modi�ed Bessel function of the �rst kind where |y| → ∞ and let

log
(
I|y|(σ

2)
)
≈ −1

2
log (2π|y|) + |y|

[
log
(
eσ2
)
− log (2|y|)

]
.

4. If the above conditions in the previous step are not satis�ed and we are unable to

evaluate 1 and 2, this means in practice that σ2 is large. Hence, we take the limiting

form when σ2 → ∞ and get

log
(
I|y|(σ

2)
)
≈ σ2 − 1

2
log
(
2πσ2

)
.
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