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Abstract 
This study examines the consequences of college students pursuing degree programs 
that do not align with the tracks and strands they selected in senior high school. We 
utilize a unique dataset that links admissions and enrollment records from the 
University of the Philippines Diliman to investigate whether this mismatch affects 
students’ academic performance. Using propensity score matching, we do not find 
evidence of a grade penalty for most degree programs. However, we estimate a 
significant grade penalty specifically for mismatch in science and engineering 
programs, where a strong background in the Science, Technology, Engineering, and 
Mathematics (STEM) strand is expected and in fact necessary for academic 
performance; i.e., students who did not come from the STEM strand tend to perform 
worse. These findings suggest that the choice of a SHS strand may maLer in some 
fields more than others, raising important questions about how SHS tracks are offered 
and how college admissions policies take high school backgrounds into account. 

Keywords: college performance, K to 12, mismatch, grade penalty, propensity score 

matching 
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1. Introduction 
 

The K-12 Basic Education reform in the Philippines introduced a sweeping overhaul of 

the Philippines’ education system, extending basic education from a 10-year cycle to 13 

years with the addition of a mandatory Kindergarten and two Senior High School (SHS) 

years. Implemented starting in 2012 and fully rolled out by 2016, the reform restructured 

the curriculum across all levels to align with international standards, promote college 

and career readiness, and offer SHS students specialized tracks in Academic, Technical-

Vocational-Livelihood, Sports, and Arts and Design. This shift was unprecedented in 

scale, affecting millions of students, tens of thousands of teachers, and requiring massive 

investments in infrastructure, curriculum development, and teacher retraining. It also 

redefined the transition from high school to tertiary education or employment, 

fundamentally altering the pathways and expectations for Filipino youth. 

  By adding two years of Senior High School (Grades 11 and 12), the reform aimed 

to decongest the old 10-year curriculum and provide time for deeper learning and 

specialization through academic tracks aligned with prospective college courses. These 

included strands such as Science, Technology, Engineering, and Mathematics (STEM); 

Accountancy, Business, and Management (ABM); Humanities and Social Sciences 

(HUMSS); and General Academic, designed to match the prerequisites and rigor of 

various college programs. One goal of this reform was to improve the readiness of 

students choosing to pursue either higher education or technical-vocational education. 

For those going to college, K-12 education was intended to equip graduates with the 

foundational knowledge, skills, and habits necessary to succeed in a more demanding 

academic environment. The reform was also designed to reduce the need for remedial 

courses in universities, lower first-year college aZrition, and shorten the time students 

need to adjust to higher education expectations. In essence, K-12 sought to bridge the gap 
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between basic education and tertiary education, ensuring that students entered college 

not only with more years of schooling but also with more relevant and targeted 

preparation. 

  However, to this day, no empirical evidence exists to suggest that K-12 made 

college-bound students more ready for tertiary education. A major hurdle is that many 

degree programs do not strictly screen applicants based on the tracks and strands they 

took in Senior High School. For instance, students from the HUMSS strand have been 

observed enrolling in science-intensive programs, such as engineering or biology, despite 

lacking the foundational math and science subjects—such as calculus, chemistry, or 

physics—that are crucial for success in these fields. Conversely, students from the STEM 

strand sometimes pursue degrees in the humanities or social sciences, where they may 

struggle with philosophical reasoning, literature analysis, or extensive writing, which 

were not emphasized in their SHS training. Graduates of the Technical-Vocational-

Livelihood (TVL) strand, whose curriculum is designed for employment or 

entrepreneurship, occasionally enter professional programs like nursing or accountancy 

without the academic foundation required in subjects such as algebra, biology, or 

English. Despite these track-to-degree misalignments, most universities admit students 

based on entrance exams or predictive grades, without strictly screening for SHS tracks 

or strands. This results in cohorts with widely varying levels of preparedness, pushing 

colleges to provide remedial instruction that the K-12 reform was supposed to make 

unnecessary. 

  In this paper, we use a new administrative dataset from the University of the 

Philippines Diliman that links students’ anonymized admissions records—including 

their Senior High School (SHS) track and strand, high school type, and University 

Predictive Grade (UPG) or admissions score—with their college grades and degree 

programs. The dataset allows us to examine whether students who enroll in degree 

programs that do not align with their SHS strand perform differently from those whose 
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academic paths are more closely aligned. We apply propensity score matching (PSM) to 

address selection bias and ensure comparability between students with and without 

strand-program mismatches. This method enables us to estimate the effect of mismatch 

on student grades while controlling for key student characteristics. Our findings show 

that, overall, mismatched students do not perform significantly worse than their matched 

peers. However, in science and engineering programs—where foundational knowledge 

in math and science is more critical—we observe a statistically significant “mismatch 

penalty” among students who did not come from the STEM strand.  

  This paper contributes to a slim literature on educational pathways and college 

readiness in several ways. First, it provides the first empirical assessments of the impact 

of SHS strand-program alignment on college academic performance in the Philippine 

context. This topic has remained underexplored despite the scale of the K-12 reform. By 

applying a quasi-experimental method to rich administrative data, this study also 

extends beyond descriptive accounts and contributes to the international evidence on 

how the alignment between secondary preparation and college programs affects student 

performance (Long, Conger, & Iatarola, 2012; Dougherty, 2018). Finally, the results have 

practical implications for both basic and higher education policy. They underscore the 

need for stronger curricular articulation between senior high school (SHS) and tertiary 

education, particularly in science and engineering fields, where prior preparation in 

mathematics and science is essential. This study offers new evidence on the consequences 

of curricular misalignment and contributes a Philippine case to global discussions on 

postsecondary readiness and equity. 
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2. Review of literature 
 

The consequences of high school readiness on subsequent performance in higher 

education have been the subject of many studies. Long, Conger, and Iatarola (2012) 

examine the impact of rigorous high school course-taking on academic and 

postsecondary outcomes using propensity score matching on administrative data from 

Florida. They find that taking Level-3 courses (e.g., honors, AP) significantly improves 

10th-grade test scores, graduation rates, and college enrollment, with the largest gains 

from the first rigorous course taken. Effects are especially pronounced for disadvantaged 

students, suggesting that access to rigorous coursework can help reduce educational 

inequalities. Meanwhile, Dougherty (2018) investigates whether students who take 

Career and Technical Education (CTE) courses in high school perform beZer 

academically and in the labor market. Using data from Arkansas and a difference-in-

differences design, the study finds that CTE participation improves high school 

graduation rates, increases employment and earnings after high school, and does not 

negatively affect college enrollment. The benefits are particularly strong for lower-

achieving students, suggesting that CTE can be a viable pathway to both academic and 

labor market success.  

  There are fundamental differences in the pre-tertiary tracks in the US and the 

Philippines. In the Philippines, the K-12 Basic Education Reform of 2012 established 

tracks and strands for senior high school students to help them prepare for the rigors of 

higher education or technical-vocational education. To this day, however, there are 

limited studies on the effectiveness of this policy on academic performance, let alone 

labor market outcomes. This is a major concern (and policy interest) because there 

remains a strong demand for college education in the Philippines, and there are also 

concerns among employers that K-12 graduates are not adequately prepared to enter the 



6 

labor market. Orbeta et al. (2018) examine the perceptions of Grade 12 students and 

human resource (HR) officers regarding the K-12 reform, with a focus on the alignment 

between Senior High School training and labor market needs. Based on survey and focus 

group data, they find that while Senior High School students generally value work 

readiness, most still prefer pursuing college. Employers, meanwhile, are skeptical of 

hiring SHS graduates directly, citing concerns about maturity and skills. The study 

highlights the limited labor market impact of SHS and raises questions about the 

effectiveness of its tracks in preparing students for employment. 

  If most K-12 graduates still prefer going to college, there ought to be interest in the 

way that K-12 prepares its graduates for the rigors of higher education. Of particular 

concern is track-to-degree mismatch, which can manifest in many ways. For instance, a 

student who completed the Accountancy, Business, and Management (ABM) strand in 

SHS may pursue a BS Civil Engineering degree in college. However, without a strong 

foundation in advanced math and science—typically covered in the STEM strand—they 

may struggle with calculus, physics, and engineering courses. Similarly, a student from 

the Humanities and Social Sciences (HUMSS) strand might enroll in BS Biology, where 

laboratory skills and intensive scientific training expected of STEM strand students can 

put them at a disadvantage. In contrast, students from the TVL (Technical-Vocational-

Livelihood) track who transition to academic degree programs, such as a BA in 

Communication,  may lack exposure to research writing, theoretical frameworks, or other 

college-preparatory skills. To date, no empirical study investigates the impact of track-

to-degree mismatch in the Philippine context—a gap that this paper fills. 

 

3. Analytical framework 
This study is anchored on the premise that the alignment—or lack thereof—between a 

student’s Senior High School (SHS) track and their chosen college degree program affects 
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their academic performance, particularly in the early years of tertiary education. To 

explain this relationship, we draw on Conley’s (2008) expanded framework of college 

readiness, which proposes a multidimensional understanding of what it means to be 

prepared for postsecondary education. He defines college readiness not solely in terms 

of eligibility or high school graduation but as the degree to which students are equipped 

to succeed in credit-bearing, college-level courses without remediation. He identifies four 

interconnected dimensions: 

 

1. Key cognitive strategies – Analytical reasoning, problem-solving, precision, and 

argumentation. 

2. Key content knowledge – Mastery of subject-specific concepts and frameworks 

foundational to college coursework. 

3. Academic behaviors – Self-regulation, time management, study skills, and 

academic persistence. 

4. Contextual skills and college knowledge – Understanding of institutional norms, 

navigation of college systems, and engagement with the academic culture. 

 

These dimensions interact in shaping students’ transitions from high school to college. 

Students entering a degree program that aligns with their SHS strand are more likely to 

be adequately prepared across all four dimensions. For instance, STEM strand students 

who proceed to engineering or science degrees benefit from prior exposure to 

mathematical and scientific thinking; similarly, HUMSS strand students entering social 

science or communication-related programs may be more familiar with discursive 

writing and critical analysis. 

In contrast, mismatched students—those whose SHS preparation does not 

correspond to their chosen college field—may face deficits in foundational knowledge 

and discipline-specific academic habits. These gaps can undermine their capacity to 
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perform well in demanding first-year coursework, especially in programs with high 

cognitive and content expectations. The likelihood of academic struggle may be further 

compounded by underdeveloped self-regulation skills or unfamiliarity with the 

expectations of college academic culture. 

We extend this framework by distinguishing between types of mismatch, as 

reflected in the dataset: 

 

1. Weak Mismatch: The student did not take the ideal SHS strand for their current 

degree program. 

2. Strong Mismatch: The student took the strand deemed least relevant to their 

current program. 

3. STEM Overshoot/Undershoot: Students may gain or lose performance advantages 

based on whether they took STEM despite not needing it, or failed to take STEM 

when it was essential. 

 

These distinctions serve as operational proxies for the degree of preparedness mismatch 

and are expected to correlate with differential academic outcomes. Specifically, we 

hypothesize that students experiencing a weak mismatch may exhibit minor performance 

penalties due to partial misalignment in content or skills. Meanwhile, strong mismatches 

are more likely to result in substantial academic underperformance due to deeper 

misalignments across multiple readiness domains. Moreover, students lacking a STEM 

background for STEM-intensive degrees—known as STEM undershoots—will perform 

significantly worse due to cognitive and content gaps. Conversely, STEM overshoots—

students taking STEM courses for non-STEM degrees—may perform beZer than their 

peers due to the general rigor and transferability of STEM preparation skills. 

In sum, Conley’s framework provides the conceptual scaffolding to interpret 

mismatch not merely as a categorical variable but as an indicator of multidimensional 
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readiness gaps. By linking the degree of alignment to the four readiness domains, we gain 

a beZer understanding of why mismatches maZer and under what conditions their effects 

are most pronounced. 

  

5. Data and empirical strategy 
 

A. Data 

 

We use anonymized student registration data from the University of the Philippines 

Diliman, the flagship university of the University of the Philippines System. Specifically, 

we analyze data for cohorts of students admiZed during Academic Year 2020-2021 and 

2021-2022, and this is the first dataset from UP Diliman that contains information about 

students’ Senior High School tracks and strands. Specifically, we have data on 2,671 

students from the 2020-2021 academic year and 2,419 students from the 2021-2022 

academic year. Table 1 shows a breakdown of the observations in the various academic 

years in the sample period. Note that the vast majority of students (97-98%) take the 

academic track, while 67-80% of those students take the STEM strand. Meanwhile, nearly 

three-quarters of those who took the academic track underwent the STEM strand. Note 

that the vast majority of UP students are admiZed partially based on their performance 

in the UP College Admission Test (UPCAT), which includes sections on science and math. 

 

Table 3.1. Breakdown of observations by SHS track, strand, and year of admission in UP Diliman 
Track Strand 2020 2021 Total 

Academic 

No strand                         
10  

                          
3  

                       
13  

ABM                     281                      442                      723  
HUMMS                     182                      260                      442  
STEM                2,062                 1,607                 3,669  
General                        

51  
                       

69  
                    120  
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TLE/TVE 

Home economics                           
1  

                          
2  

                          
3  

Industrial arts                          -                             -                             -    
ICT                           

4  
                          

9  
                       

13  

Arts & design Design                        
10  

                       
21  

                       
31  

Not indicated or from 
foreign school 

N/A                        
70  

                         
6  

                       
76  

Total                 2,671                 2,419                 5,090  
 
Note: This table shows the frequency of SHS tracks and strands taken by UP Diliman students by their year of 
admission. 
 

We broadly define mismatch as a discrepancy between a student’s senior high school 

track and strand and the track and strand that is ideal for their degree program. We 

consider two basic types of mismatch: weak and strong. “Weak mismatch” occurs when 

a student did not take the prescribed strand corresponding to their degree program. For 

instance, if an engineering student failed to take up the STEM strand, there is a weak 

mismatch. “Strong mismatch,” meanwhile, occurs when a student takes up the least 

prescribed strand corresponding to their degree program (i.e., the one that is deemed to 

have the least value-added to their current degree program). For instance, if an arts 

student took up the STEM strand, which is considered to have the least value-added to 

an arts degree compared to the Arts and Design strand, then there is a substantial 

mismatch. Appendix 1 shows the assignment of most-preferred and least-preferred 

tracks for all the UP Diliman degree programs in the sample dataset. These assignments 

were done by the authors based on the degree program descriptions, select interviews 

with UP Diliman administrators, and our judgment. Our analysis yields 1,340 instances 

of weak mismatch (26.8% of the total sample) and only 187 instances of strong mismatch 

(2.4%). Because of this, we consider a weak but not strong mismatch in the analysis. 

Another indication of mismatch is a student’s shifting into another degree program 

at some point in their college life. In our sample, we observe that nearly 18% of students 

shifted to another degree program. The definition of weak mismatch is not clear-cut in 
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the case of shiftees; for instance, the recommended strand for BS Economics students may 

not necessarily be ABM, because they initially took another degree program. As a result, 

we also conduct the analysis exclusively for non-shiftees. 

Finally, for our purposes, another possibly important type of mismatch centers on 

taking the STEM strand in Senior High School. In our sample, we note that 3,669 or nearly 

74% of our sample students took the STEM strand, which can be considered the most 

challenging strand and best equips students for the analytical rigor of tertiary education. 

We posit that pursuing STEM may result in a grade “bonus” for those pursuing degree 

programs that do not require it; we refer to this as a STEM “overshoot.” On the opposite 

side, not taking up STEM may end up in a grade “penalty” for those taking up degree 

programs that require it; we call this a STEM “undershoot.” We consider this critical 

mismatch typology in the analysis. Table 3.2 summarizes the extent of mismatch based 

on these varying definitions, while Table 3.3 shows the SHS strands  and colleges of those 

with STEM undershoot mismatch (i.e., the 220 students who are in STEM-intensive 

degree programs but did not take up STEM in SHS). Even if one filters out those who 

shifted degree programs, the students in the sample with STEM undershoot mismatch 

were 191. 

 

Table 3.2. Extent of mismatch using varying definitions 
 

Weak mismatch Strong mismatch 
Shiftee 

mismatch 

STEM 
undershoot 
mismatch 

STEM overshoot 
mismatch 

Mismatch 1,340 187 883 220 749 
Match 3,660 4,883 4,117 4,780 4,251 
Total 5,000 5,000 5,000 5,000 5,000 

 
 
Table 3.3. Breakdown of SHS strands and colleges of students with STEM undershoot mismatch 

 College 
 Arch CHE CS Engg Stat Total 
ABM 8 3 36 47 51 145 
Arts and Design 0 3 0 1 0 4 
GAS 3 5 13 14 6 41 
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HUMSS 0 3 7 6 5 21 
TLE/TVE 0 0 0 9 0 9 
Total 11 14 56 77 62 220 

 
 
 
B. Empirical strategy 

  

To estimate the causal effect of strand-program mismatch on college academic 

performance and address selection bias arising from non-random assignment to 

mismatch status, we use propensity score matching or PSM (Rosenbaum and Rubin 

1983). Students who enroll in degree programs misaligned with their SHS track or strand 

may differ systematically from those whose SHS preparation matches their college 

program. These differences—such as academic ability, school quality, and family 

income—can confound naive comparisons of academic performance between the two 

groups. 

Let !! = 1  indicate that the student $  is in a mismatched program, and !! = 0 

otherwise, with varying definitions of mismatch as described in the previous section. Let 

&!(1) and &!(0) denote the potential outcomes for a student $ under mismatch and non-

mismatch, respectively. The estimators of interest are the average treatment effect (ATE) 

and the average treatment effect on the treated (ATT): 

 

!"# = #[&!(1) − &!(0)]. (1) 

!"" = #[&!(1) − &!"|.! = 1] (2) 

 

Since we do not observe both potential outcomes for each student, we estimate the ATE 

using nearest-neighbor matching on the propensity score, defined as: 
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/(0!) = Pr	(.! = 1|0!). (2) 

 

We estimate the propensity score )̂(+!) via logistic regression: 

 

Pr(.! = 1|0!) = /̂(0!) = #$%	((!"))
+,#$%	((!"))

. (3) 

 

and we use the estimated propensity score to produce the sample versions of the 

estimators above: 

 

!"# = +
-∑ &!-

!.+
/!012((!)

12((!)(+012((!))
  (4) 

!"" = +
-∑ &!-

!.+
/!012((!)
+012((!)

. (5) 

 

In all our specifications, covariate vector +! includes a categorical variable on high school 

type (e.g., public, private, science high school); the decile of the student’s University 

Predicted Grade (UPG) or the admissions score that contains information about students’ 

high school average grades and UPCAT performance; the student’s household income 

category (self-reported at the point of admission), the student’s final college and degree 

program, the year of their admission, and their K-12 track and strand. Table 3.4 shows 

the descriptive statistics. 

We implement nearest-neighbor matching with three neighbors and without 

replacement, using the Stata -teffects psmatch- command, where the outcome variable is 

the student’s grade-weighted average. Specifically, we look at two types of grades: their 

grade weighted average in their 1st year and their 2nd year. We expect that if there are any 

grade penalties, they will manifest more in the 2nd year when students typically take up 
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major subjects (in their first year, they spend much of their time on general electives like 

English or Philippine history).  

Propensity score matching relies on the conditional independence assumption 

(CIA)—that conditional on the covariates +! , assignment to mismatch is as good as 

random, and the common support assumption, ensuring sufficient overlap in the 

distribution of propensity scores between the treated and control groups. We verify 

covariate balance and overlap in the results below. 

 

Table 3.4. Descriptive statistics by mismatch type (1st definition) 
 

 Matched Mismatch Total 
N 3,660 (73.2%) 1,340 (26.8%) 5,000 (100.0%) 
1st year GWA 1.413 (0.291) 1.412 (0.256) 1.413 (0.282) 
2nd year GWA 1.690 (0.535) 1.569 (0.481) 1.658 (0.524) 
High school type    
  Private 1,857 (50.7%) 863 (64.4%) 2,720 (54.4%) 
  Public 390 (10.7%) 139 (10.4%) 529 (10.6%) 
  Science 1,207 (33.0%) 243 (18.1%) 1,450 (29.0%) 
  State university 127 (3.5%) 41 (3.1%) 168 (3.4%) 
  UP high school 71 (1.9%) 46 (3.4%) 117 (2.3%) 
  Foreign & others 8 (0.2%) 8 (0.6%) 16 (0.3%) 
UPG quantile (1=best, 
10=lowest) 

   

  1 409 (11.2%) 91 (6.8%) 500 (10.0%) 
  2 416 (11.4%) 84 (6.3%) 500 (10.0%) 
  3 387 (10.6%) 113 (8.4%) 500 (10.0%) 
  4 384 (10.5%) 116 (8.7%) 500 (10.0%) 
  5 389 (10.6%) 111 (8.3%) 500 (10.0%) 
  6 368 (10.1%) 132 (9.9%) 500 (10.0%) 
  7 346 (9.5%) 154 (11.5%) 500 (10.0%) 
  8 349 (9.5%) 151 (11.3%) 500 (10.0%) 
  9 310 (8.5%) 190 (14.2%) 500 (10.0%) 
  10 302 (8.3%) 198 (14.8%) 500 (10.0%) 
Annual income category    
  No data 124 (3.4%) 34 (2.5%) 158 (3.2%) 
  P100,000 and below 212 (5.8%) 67 (5.0%) 279 (5.6%) 
  P101,000 to P200,000 436 (11.9%) 164 (12.2%) 600 (12.0%) 
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  P201,000 to P300,000 426 (11.6%) 151 (11.3%) 577 (11.5%) 
  P301,000 to P400,000 310 (8.5%) 103 (7.7%) 413 (8.3%) 
  P401,000 to P500,000 268 (7.3%) 104 (7.8%) 372 (7.4%) 
  P501,000 to P1 million 767 (21.0%) 289 (21.6%) 1,056 (21.1%) 
  P1 million and above 1,117 (30.5%) 428 (31.9%) 1,545 (30.9%) 
Year of admission    
  2020 1,982 (54.2%) 608 (45.4%) 2,590 (51.8%) 
  2021 1,678 (45.8%) 732 (54.6%) 2,410 (48.2%) 
Final college    
  AIT 3 (0.1%) 44 (3.3%) 47 (0.9%) 
  Arch 151 (4.1%) 11 (0.8%) 162 (3.2%) 
  CAL 53 (1.4%) 102 (7.6%) 155 (3.1%) 
  CFA 4 (0.1%) 31 (2.3%) 35 (0.7%) 
  CHE 184 (5.0%) 114 (8.5%) 298 (6.0%) 
  CHK 0 (0.0%) 43 (3.2%) 43 (0.9%) 
  CMC 73 (2.0%) 105 (7.8%) 178 (3.6%) 
  CMu 2 (0.1%) 1 (0.1%) 3 (0.1%) 
  CS 680 (18.6%) 56 (4.2%) 736 (14.7%) 
  CSSP 169 (4.6%) 355 (26.5%) 524 (10.5%) 
  CSWCD 15 (0.4%) 15 (1.1%) 30 (0.6%) 
  Educ 28 (0.8%) 69 (5.1%) 97 (1.9%) 
  Engg 1,781 (48.7%) 77 (5.7%) 1,858 (37.2%) 
  NCPAG 1 (0.0%) 61 (4.6%) 62 (1.2%) 
  SE 118 (3.2%) 95 (7.1%) 213 (4.3%) 
  SLIS 0 (0.0%) 17 (1.3%) 17 (0.3%) 
  Stat 151 (4.1%) 62 (4.6%) 213 (4.3%) 
  VSB 247 (6.7%) 82 (6.1%) 329 (6.6%) 

Note: Includes shiftees and non-shiftees. Not shown: breakdown by final degree program.  
 

 

6. Results 
 
A. Main results 

We begin with the propensity score matching estimates for all the students in the sample, 

with the mismatch defined as not taking the prescribed strand. Table 4.1 shows that when 

it comes to average 1st-year grades, there is no significant treatment effect (grade penalty) 

arising from weak mismatch. However, there is a small but statistically significant grade 
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bonus for mismatch when it comes to average 2nd-year grades (recall that lower grades are 

beZer). Tables 4.2 and 4.3 show that differences in weighted means are minimal while all 

variance ratios are near one, indicating good covariate balance. This is further supported 

by the box and density plots in Figure 4.1. 

 

Table 4.1. Propensity score matching estimates, dependent variable: average 1st year GWA and 2nd year 
GWA 
  ATE ATT 
  Nearest 

neighbor=1 
Nearest 

neighbor=3 
Nearest 

neighbor=1 
Nearest 

neighbor=3 
1st year GWA Mismatch 0.016 

(0.013) 
0.001 

(0.011) 
0.026** 
(0.013) 

0.013 
(0.011) 

 N 4712 4712 4712 4712 
2nd year GWA Mismatch -0.051** 

(0.026) 
-0.068*** 
(0.022) 

-0.040* 
(0.023) 

-0.036* 
(0.020) 

 N 4373 4373 4373 4373 
Standard errors in parentheses 
* p < 0.10, ** p < 0.05, *** p < 0.01 
Results are the same as NN=3 using caliper=0.1 and caliper=0.3. 
 
 
 
Table 4.2. Covariate balance summary: number of observations by group 

 1st year GWA 2nd year GWA 
 Raw Matched Raw Matched 
Total obs. 4712 9424 4373 8746 
Treated obs. 1257 4712 1165 4373 
Control obs. 3455 4712 3208 4373 

 
 
Table 4.3. Covariate balance summary: differences between raw and matched observations   

Standardized differences Variance ratios   
Raw Matched Raw Matched 

1st year GWA High school type -0.2059 -0.0727 1.0886 1.3450  
UPG decile 0.3652 0.0857 1.0114 1.0295  
Income category 0.0590 0.0274 0.9487 1.0013  
Degree program -0.8445 0.0590 2.3782 1.2467  
Year of admission 0.1704 0.0986 0.9999 0.9974 

2nd year GWA High school type -0.2057 -0.0183 1.0627 1.3949  
UPG decile 0.3725 0.1007 1.0140 1.0101  
Income category 0.0519 -0.0113 0.9498 1.0435  
Degree program -0.8527 0.0422 2.3906 1.2357  
Year of admission 0.1720 0.0384 0.9949 0.9989 
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Figure 4.1. Balance analysis: box and density plots (using 1st year GWA as dependent variable) 

 

 

Note: Covariates used are high school type, UPG decile, income category, final degree program, and year of UP 
admission. 

 

B. Performance of non-shiftees 

A possible reason for the observed grade reward in the second year is that the experiences 

of shiftees may differ from those of non-shiftees. We take note that 17-18% of students 

shifted in the sample period, and the mismatch experience for them may be different from 

those who never shifted. Table 4.5 shows the results restricted to only non-shiftees, and 
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again we see an even more significant grade reward in terms of 2nd year GWA for those 

who are mismatched. 

 
Table 4.5. Propensity score matching estimates for non-shiftees, dependent variable: average 1st year 
GWA and 2nd year GWA 
  ATE ATT 
  Nearest 

neighbor=1 
Nearest 

neighbor=3 
Nearest 

neighbor=1 
Nearest 

neighbor=3 
1st year GWA Mismatch -0.009 

(0.014) 
-0.014 
(0.011) 

-0.026* 

(0.015) 
-0.016 
(0.012) 

 N 3863 3863 3863 3863 
2nd year GWA Mismatch -0.114*** 

(0.030) 
-0.105*** 
(0.027) 

-0.098*** 
(0.029) 

-0.096*** 
(0.024) 

 N 3576 3576 3576 3576 
Standard errors in parentheses 
* p < 0.10, ** p < 0.05, *** p < 0.01 
Results are the same as NN=3 using caliper=0.1 and caliper=0.3. 
 
 
C. STEM-based mismatch 

Next, we consider STEM-based mismatch, examining STEM undershoot and overshoot 

as defined earlier. Table 4.6 shows that across specifications, there is a clear and significant 

grade penalty for those who experienced STEM overshoot, and a significant grade bonus 

for those with STEM undershoot. Table 4.7 shows that the signs are consistent with the 

2nd year GWA, and the magnitudes are much greater, too. These results point to the 

singular importance of the STEM track in affecting the grade performance of UP Diliman 

students, regardless of the degree program they end up with.  

 

Table 4.6. Propensity score matching estimates for STEM-based mismatch, dependent variable: average 
1st year GWA  
  ATE ATT 
  Nearest 

neighbor=1 
Nearest 

neighbor=3 
Nearest 

neighbor=1 
Nearest 

neighbor=3 
1st year GWA STEM 

undershoot 
0.135*** 
(0.035) 

0.116*** 
(0.025) 

0.066** 
(0.030) 

0.077*** 
(0.028) 

 N 3863 3863 3863 3863 
1st year GWA STEM 

overshoot 
-0.069*** 
(0.017) 

-0.068*** 
(0.015) 

-0.028 
(0.018) 

-0.037** 
(0.015) 

 N 3863 3863 3863 3863 
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Standard errors in parentheses 
* p < 0.10, ** p < 0.05, *** p < 0.01 
Results are the same as NN=3 using caliper=0.1 and caliper=0.3. 
 
 
Table 4.7. Propensity score matching estimates for STEM-based mismatch, dependent variable: average 
2nd year GWA  
  ATE ATT 
  Nearest 

neighbor=1 
Nearest 

neighbor=3 
Nearest 

neighbor=1 
Nearest 

neighbor=3 
2nd year GWA STEM 

undershoot 
0.273*** 
(0.051) 

0.243*** 
(0.047) 

0.139** 
(0.067) 

0.199*** 
(0.055) 

 N 3576 3576 3576 3576 
2nd year GWA STEM 

overshoot 
-0.168*** 
(0.038) 

-0.216*** 
(0.027) 

-0.080*** 
(0.029) 

-0.139*** 
(0.024) 

 N 3576 3576 3576 3576 
Standard errors in parentheses 
* p < 0.10, ** p < 0.05, *** p < 0.01 
Results are the same as NN=3 using caliper=0.1 and caliper=0.3. 
 
 

To parse this important result, we conduct PSM by college using the same vector of 

covariates for the calculation of the propensity scores. We group together students from 

Science-oriented colleges (Engineering, Science, Home Economics, Statistics, and 

Architecture) and call them the Science cluster; the rest of the colleges are in the Others 

category.3 In our sample, 2,880 students are in the Science cluster while 1,237 are in 

Others. When it comes to STEM undershooting, we take note that 191 non-shiftee 

students in the Science cluster took non-STEM strands; no one from the Others category 

experienced STEM undershooting (everyone took non-STEM tracks). Meanwhile, as for 

STEM overshooting, we take note that 484 students in Others took STEM, while 67 

students in the Science cluster (all from the College of Home Economics) took non-STEM 

tracks.  

Table 4.8 shows that for students in the Science cluster who didn’t take up STEM, 

there’s a significant grade penalty in 1st year GWA across all specifications, and an even 

 
3 Note that this is a simplifica;on, because, for example, not all degree programs in the Science cluster require STEM 
strictly; the same goes for those in Others. 



20 

stronger penalty in the 2nd year (although the result is not significant in one specification). 

Meanwhile, for students not in the Science cluster who took up STEM, there is a grade 

bonus, but only significant in one specification, and only in the 2nd year. The results show 

a clear disadvantage for students who should have taken up STEM but didn’t, but no 

clear advantage for students who took up STEM even if not required. The results may 

differ at the level of different colleges, but we skip that analysis because the sample size 

diminishes significantly at the level of individual colleges.  

 

Table 4.8. Propensity score matching estimates based on STEM mismatch 

 1st year GWA 2nd year GWA 
Mismatch in 
college 

ATE ATT ATE ATT 
NN=1 NN=3 NN=1 NN=3 NN=1 NN=3 NN=1 NN=3 

STEM 
undershoot 
in Science 
cluster 

0.088*** 
(0.029) 

0.113*** 
(0.028) 

0.065** 
(0.032) 

0.066** 
(0.029) 

0.202*** 
(0.064) 

0.238*** 
(0.058) 

0.125* 
(0.068) 

0.087 
(0.058) 

N 2686 2686 2686 2686 2494 2494 2494 2494 

STEM 
overshoot in 
non-Science 
cluster 

-0.028 
(0.017) 

-0.019 
(0.017) 

-0.018 
(0.024) 

-0.024 
(0.021) 

-0.028 
(0.026) 

-0.053** 
(0.022) 

-0.015 
(0.036) 

-0.046 
(0.028) 

N 1177 1177 1177 1177 1082 1082 1082 1082 

Standard errors in parentheses 
* p < 0.10, ** p < 0.05, *** p < 0.01 
The science cluster includes Engineering, Science, Home Economics, Statistics, and Architecture. The rest of the colleges are in 
Others. 
 
 
 

7. Discussion 
 

Our key finding is that mismatched students—those whose senior high school (SHS) 

strand does not align with the recommended preparation for their degree program—do 

not perform worse, on average, than matched peers in terms of college grades in the 1st 

and 2nd years. In fact, for non-shiftees, we find a surprising grade “reward” in the second 
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year, suggesting that mismatched students may either adapt well or select into courses 

where their existing skills still prove valuable. 

However, this average finding conceals important heterogeneity. When we focus 

on STEM-based mismatches, we uncover substantial penalties and bonuses depending 

on alignment. Students who pursue science or engineering programs without coming 

from the STEM strand (i.e., “STEM undershoot”) suffer significant grade penalties, 

particularly in the second year when students typically begin major coursework. This 

paZern persists across specifications and holds even when analysis is limited to students 

in science-related colleges. In contrast, students who take the STEM strand but pursue 

non-STEM degrees (“STEM overshoot”) tend to benefit from a small but significant grade 

bonus, especially in their second year. 

These asymmetric effects suggest that the STEM strand provides foundational 

knowledge and study habits that transfer well even to non-STEM degree programs. 

Conversely, students lacking the mathematical and scientific preparation embedded in 

the STEM curriculum are at a marked disadvantage when pursuing STEM-heavy 

programs. These findings align with international evidence showing that prior exposure 

to rigorous high school coursework significantly improves postsecondary outcomes 

(Long, Conger, and Iatarola 2012; Dougherty 2018) and underscore the importance of 

curricular alignment in educational pathways. 

The fact that mismatch yields no observable penalty on average, yet leads to 

pronounced penalties in specific fields, suggests that track-strand alignment maZers 

more in some disciplines than others. In UP Diliman, where the student population is 

highly selected, this could reflect the compensatory abilities of students who manage to 

succeed despite initial misalignment. But in less selective institutions, or in courses with 

steeper learning curves and fewer institutional supports, mismatch penalties could be 

larger and more widespread. 
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Our findings also highlight limitations in current higher education admissions 

practices. Despite the intention of the K-12 reform to streamline educational transitions, 

college admissions at UP—and likely elsewhere—continue to rely solely on entrance 

exam scores or predictive grades, without reference to students’ SHS strand. This 

disconnect undermines the reform’s objective of beZer preparing students for tertiary 

education and places the burden of curricular misalignment on individual students and 

academic units. In light of our findings, there is a strong case for integrating SHS strand 

information into admissions or advising systems, especially in science and engineering 

fields. 

Finally, these results have broader implications for education policy. First, they 

underscore the urgent need to revisit how SHS strands are implemented, offered, and 

communicated. Second, they point to a need for stronger articulation between secondary 

and tertiary curricula. And third, they suggest that blanket assumptions about the 

efficacy of K-12 reforms—without empirical backing—may be misguided. The promise 

of K-12 depends not only on additional years of schooling but also on whether students 

are guided into appropriate and supportive academic pathways. 

 

8. Conclusion 

This paper provides one of the first empirical investigations into the academic 

consequences of strand-program mismatch under the Philippines’ K-12 education 

system. Using detailed administrative data from UP Diliman and propensity score 

matching to address selection bias, we find that while mismatch does not lead to an 

average grade penalty, there are important exceptions. In particular, students who 

pursue science and engineering degrees without a STEM background face consistent and 

significant academic disadvantages. Meanwhile, students with STEM backgrounds 
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enrolled in non-STEM programs tend to perform slightly beZer than their peers, 

suggesting that the STEM strand offers transferable academic advantages. 

These findings point to the differentiated impact of mismatch depending on the 

field of study. The negative consequences of curricular misalignment are most severe in 

disciplines where foundational knowledge from SHS is essential, particularly in math- 

and science-intensive courses. Our results highlight both the potential and the limits of 

the K-12 reform. While additional years of high school have expanded academic 

pathways, the continued disconnect between SHS preparation and college program 

demands undermines the reform’s goals of ensuring readiness and reducing aZrition. 

To move forward, policy reforms must consider ways to strengthen the 

articulation between secondary and tertiary education. This may include integrating SHS 

strand information into college admissions and advising systems, re-evaluating how 

strands are assigned and accessed at the SHS level, and ensuring that students receive 

adequate support when transitioning into demanding college programs. By surfacing the 

uneven consequences of track-strand mismatch, this study offers critical insights into 

how the design and implementation of education pathways can beZer support student 

success in higher education. 

  Future research will do well to include more years and, if possible, more 

universities, especially since propensity score matching estimates ideally use large 

datasets. The experience of the University of the Philippines, an elite university, may also 

be different from the experience of other higher education institutions. It would be 

beneficial as well to investigate how junior high school students choose tracks and 

strands in the first place, and the factors that go into that choice (i.e., the endogeneity of 

strand choice in senior high school). Since students self-select into SHS strands based on 

unobserved traits such as motivation, parental support, or junior high school quality, our 

propensity score matching strategy—while accounting for observable covariates—may 

not fully eliminate selection bias. This is particularly relevant in interpreting the apparent 
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grade advantages associated with STEM overshoots or the penalties from STEM 

undershoots. Future work employing alternative identification strategies, such as 

instrumental variables or regression discontinuity designs, could also genertate 

additional insights on the causal effect of strand-program alignment on college 

performance. Finally, an analysis of the labor market impact of high school-college 

mismatches may guide policymakers further on how to beZer guide the choice of tracks 

and strands early on. 
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Appendix 
Table A1. Mapping of UP Diliman degree program to prescribed strands  

Degree program Prescribed strand Degree program Prescribed strand 
AA (Theatre) Arts and Design BA (TA: TM) Arts and Design 
AA (VisComm) Arts and Design BA BC HUMSS 
B EEd HUMSS BA BMAS HUMSS 
B EEd (EEd, K-3) HUMSS BA CommRes HUMSS 
B EEd (Lit Ed) HUMSS BA Fil HUMSS 
B EEd (Math) HUMSS BA Film Arts and Design 
B EEd (SH) HUMSS BA J HUMSS 
B EEd (SpEd) HUMSS BA PhilStud HUMSS 
B FA (ArtEd) Arts and Design BA-MA H (PolSci) HUMSS 
B FA (ArtHist) Arts and Design BS (Geog) HUMSS 
B FA (IndDes) Arts and Design BS (Psych) HUMSS 
B FA (Paint) Arts and Design BS (Stat) STEM 
B FA (VisComm) Arts and Design BS AppPhysics STEM 
B LArch STEM BS Arch STEM 
B LIS GAS BS BA ABM 
B M (Comp) Arts and Design BS BAA ABM 
B M (MuE) Arts and Design BS BE ABM 
B M (Musicology) Arts and Design BS Bio STEM 
B M (Voice) Arts and Design BS CD HUMSS 
B PA GAS BS CE STEM 
B PE Sports BS CN STEM 
B SEd HUMSS BS CS STEM 
B SEd (BioEd) HUMSS BS CT STEM 
B SEd (ChemEd) HUMSS BS ChE STEM 
B SEd (EngLangEd) HUMSS BS Chem STEM 
B SEd (FilLangEd) HUMSS BS CoE STEM 
B SEd (HE) HUMSS BS ECE STEM 
B SEd (MathEd) HUMSS BS EE STEM 
B SEd (PhysicsEd) HUMSS BS EM STEM 
B SEd (SS) HUMSS BS Econ ABM 
B SEd (SpEd) HUMSS BS FLCD GAS 
B SEd (VEd) HUMSS BS FT STEM 
B SS Sports BS GE STEM 
BA (Anthro) HUMSS BS Geol STEM 
BA (ArtStud) Arts and Design BS HE GAS 
BA (CL) HUMSS BS HRIM ABM 
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BA (CL: EL) HUMSS BS ID Arts and Design 
BA (CL: PLE&ET) HUMSS BS IE STEM 
BA (CW) HUMSS BS MBB STEM 
BA (EL) HUMSS BS ME STEM 
BA (EngStud) HUMSS BS MatE STEM 
BA (EngStud: Lang) HUMSS BS Math STEM 
BA (EngStud: Lit) HUMSS BS MetE STEM 
BA (Hist) HUMSS BS Physics STEM 
BA (Ling) HUMSS BS SW HUMSS 
BA (MPF) HUMSS BS Tour HUMSS 
BA (Philo) HUMSS Cross Registrant (UPM) 
BA (PolSci) HUMSS Non-Major (Arch) STEM 
BA (Psych) HUMSS Non-Major (CBA) ABM 
BA (SC) HUMSS Non-Major (CMC) HUMSS 
BA (Socio) HUMSS Non-Major (CS) STEM 
BA (TA) Arts and Design Non-Major (Engg) STEM 
BA (TA: DD) Arts and Design Non-Major (SE) ABM 
BA (TA: P) Arts and Design Non-Major (Stat) STEM 

 


