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Abstract

This paper develops a simple nonparametric test for perfect competition in markets
for homogenous goods. The method only requires data on prices and some aggre-
gate of output. We then generalize the method to account for variable capacity and
intertemporal production decisions. We apply the method to a sample of Swedish
data from the Nordic wholesale electricity market. Main results show that the data
are approximately rationalizable by perfect competition in bidding zones with low
ownership concentration of generation assets, but not in bidding zones character-
ized by high ownership concentration.

Keywords: Competition, nonparametric methods, Nord Pool power exchange, whole-
sale electricity markets
JEL Codes: D22, D43, D44

1 Introduction

Exercise of market power creates welfare losses because of underprovision of goods. Analy-
sis of competition is therefore essential to assess market efficiency. This paper contributes
to the toolbox of empirical analysis of market performance by introducing simple non-
parametric tests for perfect competition in markets for homogenous goods. We illustrate
their usefulness by applying them to data from the Nordic wholesale electricity market.
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The most common way of estimating market behavior is through parametric models.
These models often build on the assumption of a linear demand function and variable pro-
duction costs. One commonly used approach is the Bresnahan-Lau (BL) model (Bresna-
han, 1982; Lau, 1982). In that model, the price-cost margin is related to a parameter that
measures the extent to which companies operate in an imperfectly competitive market.
Based on the estimated parameter values, the effects of market power can be measured by
comparing the actual market outcome with a theoretical scenario of perfect competition.
The quality of such analysis depends fundamentally on how well the specified parametric
demand and cost functions reflect true consumer preferences and the actual production
technology. If the adopted function forms are poor approximations, then the estimated
market parameter is misleading (Kim and Knittel, 2006).

The nonparametric method developed in this paper does not depend on any functional
form of demand and cost functions. The fundamental result holds for arbitrary cost
functions. Hence, the nonparametric tests for perfect competition proposed in this paper
are robust in the sense that they are always consistent with observed data, i.e. how firms
and consumers actually act in the market. The method is based on the nonparametric
production and consumer approach introduced by Afriat (1972), Hanoch and Rothschild
(1972), Diewert and Parkan (1983) and Varian (1984), and later refined by e.g., Chavas
and Cox (1990), Cherchye et al. (2014), Chambers and Rehbeck (2022, 2025). This
literature derives conditions for testing whether an observed amount of inputs that a
firm uses to produce a certain amount of final goods is consistent with the hypothesis
that the firm minimizes its costs.

A basic assumption in the literature is that the firm operates either in a fully compet-
itive market or that the prices of the goods produced are regulated. Instead of assuming
perfect competition to test for cost efficiency, we start from the assumption that firms’
are cost minimizing and proceed to test whether the market is characterized by perfect
competition. Perhaps surprisingly, such analysis does not seem to have been carried out
before.

In his seminal contribution, Varian (1984) stated analysis of competition as an impor-
tant application of nonparametric analysis. An early contribution was Ashenfelter and
Sullivan (1987). The main purpose was to analyze how a change in a firm’s marginal
production cost, specifically an increase in the excise tax, affected imperfect competition.
This work was later generalized by Raper et al. (2007). Carvajal et al. (2013) derived a
nonparametric method to asses whether Cournot competition can explain a given sam-
ple of observed prices and quantities. Notably, their method relies on the assumption
of continuous and convex cost functions at the firm-level. Such regularity assumptions
sometimes are restrictive. A prime example is electricity markets where unit startup
costs and ramping constraints render firm and industry cost functions discontinuous and
non-convex.

The theoretical analysis in Section 2 gives a complete nonparametric characterization
of perfect competition. Part of this characterization is an axiom, which we label the axiom
of perfect competition (APC), that is necessary and sufficient for a data set of price and
output quantity data to be consistent with perfect competition. APC is a generalization
of the well-known law of supply, which states that an increase in price (all other prices
constant) results in higher output. APC simply states that the law of supply holds for
every subset of firms on the market.
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The fundamental assumption underlying our characterization is that firms’ cost func-
tions are invariant across the sample period. However, cost functions may display a lot of
variation even in the very short-term. For example, in electricity markets short-term vari-
ation in the availability of wind power may alter the cost function from one observation
to the next in terms of the available production capacity. We adapt our model to such
an environment by developing a complete characterization of perfect competition under
variable capacity. We derive an axiom, labelled APC-VC, that can be easily implemented
to test whether a data set of prices, output quantities and total capacity to produce green
output are consistent with perfect competition under variable capacity. APC-VC is very
similar to APC, except output is now adjusted to changes in production capacity. We
also show that the two axioms incorporate technologies in which production decisions are
intertemporal, as is the case with reservoir-based hydro power.

A key application of the methods proposed in this paper is to restructured wholesale
electricity markets. These markets offer huge opportunities to exploit market power as:
(i) a small number of firms own most of the production capacity; (ii) bottlenecks in the
transmission network increase local market concentration; (iii) political and economic
barriers prevent large-scale entry into the market; (iv) demand is insensitive to short-
term changes in the price of electricity.

Given the properties of the market, the specific (auction-like) market design and
relatively high data availability, a large literature has developed which investigates com-
petition in electricity markets. Some studies use firm-specific cost data that allow direct
calibration of the industry’s cost function that can then be compared with observed mar-
ket prices (e.g. Wolfram, 1999; Borenstein et al., 2002). Other studies use bid data
from individual producers to evaluate market performance (e.g. Wolak, 2003; McRae
and Wolak, 2014). Such methods can only be applied in those rare circumstances where
individual firm-level data on costs and bidding behavior are made available to outside
observers. The procedures developed in this paper have a much broader application as
they do not require neither firm nor market level cost data.

Recent studies of the specific Nordic electricity market reject the null hypothesis of
perfect competition. Using aggregate bid data from the day-ahead market of the Nord
Pool power exchange, price margins have been estimated at approximately 4% (Tanger̊as
and Mauritzen, 2018; Lundin and Tanger̊as, 2020). However, there is reason to believe
that the problems of imperfect competition are more severe than previous studies indicate.
During peak demand hours, the transmission network has insufficient capacity to handle
the electricity flows necessary to clear the market at an aggregate level. When such
bottlenecks arise, Nord Pool divides the market into multiple bidding zones. Market
concentration then is much higher in the individual bidding zones than in the Nordic
market as a whole. Previous analyses have been carried out at an aggregate level and
therefore cannot capture exercise of local market power.

In Section 4, we apply the methods developed in this paper to test for competition at
the bidding zone level in the Nordic-Baltic wholesale electricity market. We show that
price and aggregated output quantity data from the four Swedish bidding zones in the
period 2012-22 generally provide a high goodness-of-fit of the models in the three north-
ernmost bidding zones. These are characterized by excess production, small ownership
concentration of dispatchable generation assets and a large degree of market integration.
Goodness-of-fit is substantially worse in the southernmost bidding zone where there is
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excess consumption, ownership concentration is large and transmission bottlenecks are
severe, thus indicating a competitive problem. Deeper investigation into this and other
local markets appears warranted.

We collect proofs of all theoretical results in the appendix.

2 Theory

In this section, we present our theoretical results. We begin by giving a complete nonpara-
metric characterization of perfect competition. The characterization contains a condition
that can be easily implemented to test whether a data set can be rationalized by a
model of perfect competition while maintaining minimal assumptions on each firm’s cost
function. In particular, this allows us to test if a market conforms to perfect competition
without having to assume any functional forms for the cost functions. This is particularly
convenient from a practical point of view because the exact form or even the properties of
the cost functions are typically not observed in empirical applications. We also consider
extensions especially relevant for the wholesale electricity market.

2.1 Complete characterization of perfect competition

Assume that an industry consists of I ≥ 1 firms. Each firm i ∈ I := (1, ..., I) produces
a homogenous good in amount qi ∈ [0, bi], where bi > 0 measures the total production
capacity of firm i ∈ I. Each firm’s production cost is a function Ci : [0, bi] 7→ C ⊂ R+.
Let X ⊂ I ∪ ∅ denote a (possibly empty) subset of firms and denote by qX =

∑
i∈X q

i

their joint (subset of) production, where q∅ = 0. Let the price of the good be denoted
p ∈ P ⊂ R++. A market is said to be perfectly competitive if all firms in the industry act
as price takers.

Let an observation t of the market price for a good be denoted pt and the behavior
at observation t of firm i ∈ I in the industry be denoted qit. We assume that there exist
T <∞ such observations, which are indexed by t ∈ T := (1, ..., T ). The I×T “production

observations” of (pt, q
i
t) form the data set O = (pt, q

i
t)
i∈I
t∈T . We restrict attention to generic

data sets in the sense that pt 6= pτ for all t, τ ∈ T and t 6= τ .
We say that an observation t ∈ T is perfect-competition (PC)-rationalizable if the

behavior of each firm in the industry is consistent with profit maximization contingent
on the assumption that they take output prices as exogenously given.

Definition 1 A generic data set O = (pt, q
i
t)
i∈I
t∈T is PC-rationalizable by I cost functions

(Ci)
i∈I

if for all firms i ∈ I and periods t ∈ T ,

qit ∈ arg max
y
{pty − Ci(y)}

subject to y ∈ [0, bi].

Our goal is to obtain necessary and sufficient conditions for whenO is PC-rationalizable
by I cost functions. Clearly, a necessary condition for PC-rationalizability is that the
law of supply holds for every individual firm. This means that the quantity of output
responds in the same direction as price changes, or in other words, if the price of output
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increases (all other prices fixed) then the quantity produced increases. Indeed, under
the assumption of PC-rationalizability, firm i earns weakly higher profit by producing
quantity qit rather than qiτ in period t:

ptq
i
t − Ci(qit) ≥ ptq

i
τ − Ci(qiτ ).

By the same token, producing qiτ in period τ yields weakly higher profit than producing
qit in period τ :

pτq
i
τ − Ci(qiτ ) ≥ pτq

i
t − Ci(qit).

Adding the two inequalities and simplifying expressions shows that production costs
cancel out and yields the following condition:

(pτ − pt)(qiτ − qit) ≥ 0,

for all i ∈ I and all t, τ ∈ T . Thus, under PC-rationalizability, the law of supply holds
for each individual firm and for all price comparisons. In particular, the law of supply
holds for any cost function Ci. The only restriction is that the firm has the same cost
function for all observations. Summing up the law of supply for every subset of firms
delivers the following condition, which we label the axiom of perfect competition (APC):

Definition 2 Consider a generic data set O = (pt, q
i
t)
i∈I
t∈T . The axiom of perfect compe-

tition (APC) holds whenever∑
i∈X

(pτ − pt)(qiτ − qit) = (pτ − pt)(qXτ − qXt ) ≥ 0,

for all X ∈ 2I and all t, τ ∈ T .

APC provides for all generic data sets a simple combinatorial test that runs in a finite
number of steps. Importantly, APC does not require data on costs, and is implemented by
evaluating the sign of the product of price and quantity differentials.1 Since implementing
APC does not require calculating or solving for any unknown parameters, it can be easily
implemented using any statistical software. As such, it is a computationally simple task
to check if APC holds and it can be applied to large data sets, i.e., O with I or T large.

Having established that APC is a necessary condition for PC-rationalizability, we next
state our main result showing that APC also is a sufficient condition for a generic data
set to be PC-rationalized by I cost functions.

Theorem 1 Consider a generic data set O = (pt, q
i
t)
i∈I
t∈T . The following statements are

equivalent:

1. O is PC-rationalizable by I cost functions.

2. O satisfies APC.

1It is obvious that APC is empirically refutable. For example, with T = 2 and I = 2, it is easy
to verify that the following data set: p1 = 1, p2 = 5, q11 = 5, q12 = 1, q21 = 1 and q22 = 5 violates APC.
Conversely, the data set: p1 = 1, p2 = 5, q11 = 1, q12 = 5, q21 = 1 and q22 = 5 satisfies APC.
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3. O is PC-rationalizable by I cost functions that are continuous, strictly increasing
and strictly convex.

There are several interesting features of this result. First, the equivalence of 1 and 3
shows that if some generic data set can be PC-rationalized by I cost functions at all it
can, in fact, be PC-rationalized by a set of well-behaved cost functions. Or put another
way, violations of continuity, monotonicity and convexity cannot be detected with only a
finite number of production observations.2 The second statement shows that APC gives
the sharpest possible test of PC-rationalizability and fully exhausts the empirical content
of PC-rationalizability. If the researcher only has access to price and quantity data, it is
impossible to test for more than the law of supply without placing additional structure
on the underlying model. Third, the proof of Theorem 1 is constructive and shows that
APC can be used to construct I continuous, strictly increasing and strictly convex cost
functions such that the data O are PC-rationalized.

In Section 2.3, we give some relevant extensions of Theorem 1 to the wholesale elec-
tricity market. But Theorem 1 can be extended in other directions that also should
be relevant to other markets. For example, one particular such extension is to con-
sider PC-rationalizations where each firm’s cost function is differentiable. The necessary
and sufficient conditions for rationalizability guaranteeing differentiability of the cost
functions follows from slightly strengthening the APC. We say that a generic data set
O = (pt, q

i
t)
i∈I
t∈T satisfies the strong axiom of perfect competition (SAPC) if: (i) O satisfies

APC, and (ii) qXt 6= qXτ for all X ∈ 2I and t, τ ∈ T with t 6= τ .

Proposition 1 Consider a generic data set O = (pt, q
i
t)
i∈I
t∈T . The following statements

are equivalent:

1. O is PC-rationalizable by I non-decreasing and C2 cost functions.

2. O satisfies SAPC.

2.2 Market power and the law of supply

Theorem 1 states that a data set O = (pt, q
i
t)
i∈I
t∈T is rationalizable by perfect competition

if and only if O meets the law of supply for every pair of observations and for every
subset of firms. A direct follow-up question is whether O is consistent with other types
of rational firm behavior if those same data violates APC. This is indeed the case under
imperfect competition, as we illustrate by means of a graphical example.

Figure 1 displays a diagram with quantities on the horizontal axis and prices on the
vertical axis. The inverse residual demand function facing the firm equals P1(·) in period
1 and P2(·) in period 2. The firm produces output with the same marginal cost function
MC(·) in both periods. Under competitive supply, the market-clearing output is found
at the point at which price equals marginal cost, marked in the diagram by (q1, p1) in
period 1 and by (q2, p2) in period 2. The pair of observations meet the law of supply
because output is larger when the price is higher, (p2 − p1)(q2 − q1) > 0.

2This result is analogous to the well-known Afriat’s Theorem, from which it follows that continuity,
monotonicity and concavity are nontestable properties in the consumer demand setting with competitive
budgets (See Varian (1982) for a discussion).
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pm1
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MR2(q) MR1(q)

Figure 1: Market power and the law of supply

Suppose instead the firm exercises market power and therefore chooses output to
equate marginal revenue and marginal cost in each period. The two marginal revenue
functions are indicated by MR1(·) and MR2(·) in the figure. Profit-maximization by
the firm yields the quantity-price pair (qm1 , p

m
1 ) in period 1 and (qm2 , p

m
2 ) in period 2.

Exercise of market power causes the firm to reduce output in each period compared to
the competitive outcome, qm1 < q1 and qm2 < q2, resulting in price increases in both
periods relative to the competitive solution, pm1 > p1 and pm2 > p2.

Period 2 represents the high-price period under imperfect as well as perfect competi-
tion. However, the firm now produces less in period 2 than in period 1, thereby causing
a violation of the law of supply (pm2 − pm1 )(qm2 − qm1 ) < 0. This occurs even if the firm
is behaving rationally by optimizing its exploitation of market power. On the one hand,
the upward shift in the inverse demand function between periods 1 and 2 makes it more
profitable to increase production from one period to the next. On the other hand, the
downward rotation in the slope of the inverse demand function makes demand less sensi-
tive to price changes, thereby strengthening the firm’s incentive to exercise market power
by withholding more output from the market in period 2 than period 1.

In Figure 1, the market power effect dominates the direct price effect causing the firm
to produce less output when the price is high compared to when the price is low. Hence,
price and quantity combinations that are inconsistent with perfect competition (and
therefore violate APC) are consistent with exercise of market power. This illustration
shows that APC has power against a wide range of different types of rational firm behavior
(other than perfect competition).

2.3 Extensions to the wholesale electricity market

In this section, we consider extensions of the model that are especially relevant for the
wholesale electricity market, but may also be applicable to other markets. In particular,
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we pay special attention to short-term variability of production capacity of firms and
intertemporal production decisions.

2.3.1 Variable capacity

The characterization of perfect competition in Theorem 1 relies on the assumption that
cost functions are constant across the sample period and that all sources of price variation
stem from exogenous changes in demand. As such, firms move up and down their fixed
marginal cost curves when choosing output. One possible source of error would be to
mistake exogenous changes of the cost functions for non-competitive market behavior.
Holding demand constant, changes in the marginal cost curve can yield price and output
changes as firms move up and down the demand curve. This would generate a negative
relationship between prices and output in a competitive market and thus cause a violation
of APC even if the market was indeed competitive. A standard solution is to partition
the data set into sufficiently narrow subsamples such that the cost functions are likely
to remain constant within each subsample, and then apply APC to every subsample.
However, this approach is likely to fail in important applications of the theory, since there
is no empirically consistent and simple way of determining the range of the subsamples.

Let us consider wholesale electricity markets. Over the last two decades many jurisdic-
tions have implemented support schemes to increase the amount of renewable electricity
production. These support schemes have mainly lead to an increase in variable renewable
energy (VRE) such as solar and wind power. These technologies have two fundamental
properties. First, they produce electricity with zero marginal cost. This means that cost-
minimizing firms will dispatch such units for any positive price. Second, available VRE
capacity is likely to vary from one dispatch period to the next depending on changes in
predicted weather conditions. These two factors jointly imply that the cost of incremental
production also is likely to be subject to short-term variation.

To address variable capacity in the context of wholesale electricity markets, we extend
the characterization in Theorem 1 by relaxing the assumption that cost functions are con-
stant across all periods. In particular, we assume that there are two types of technologies,
black (b) and green (g) that differ in terms of their production cost and available capacity
within the sample period. In electricity markets, we can think of black technologies as
dispatchable thermal generation such as nuclear power or fossil-fueled generation such as
coal and gas power. Wind and solar power represent green technologies.

Suppose that firm i ∈ I produces black output in quantity qit (b) ∈ [0, bi] in period
t ∈ T , where bi ≥ 0 measures the firm’s total capacity to produce black output. The
associated production cost for a firm with bi > 0 is a strictly increasing function Ci :
[0, bi] 7→ C ⊂ R+. This cost function is invariant across the sample period. Assume
that firm i ∈ I produces green output in quantity qit (g) ∈ [0, git] in period t ∈ T , where
git ∈ [0, ḡi] measures the total capacity to produce green output in period t ∈ T , and
ḡi ≥ 0 is firm i’s installed capacity of the green technology. The production cost of the
green technology is zero. We assume that bi + ḡi > 0 for all i ∈ I, so that each firm
has the capacity to produce some output, although not all firms necessarily produce both
types of output. We denote firm i’s total output in period t by qit = qit (b) + qit (g). Black
and green output are sold at the same price pt > 0 per unit of output. In addition, green
output may receive a subsidy that amounts to at ≥ 0 per unit of output in period t.
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We define an extended generic data set by ÕG = (pt, at, q
i
t (b) , qit (g) , git)

i∈I
t∈T such that

pt 6= pτ for all t, τ ∈ T with t 6= τ . For every period t ∈ T , ÕG contains information
about the market price pt, the subsidy at per unit of green output, and in addition, for
every firm i ∈ I, the quantity qit (b) of black and qit(g) of green output as well as green
production capacity git. Recall the definition of qXt as the joint production in period t ∈ T
of the subset X ⊂ I ∪ ∅ of firms. Define gXt =

∑
i∈X g

i
t as those same firms’ aggregate

capacity to produce green output in period t ∈ T , where we define g∅t = 0.
We now turn to the issue of rationalizability. We first show that any firm i ∈ I that

maximizes profit and treats (pt, at) as exogenously given, will utilize the green technology
to its full extent, i.e. set qit (g) = git. Let (qit (b) , qit (g)) be firm i’s profit-maximizing
production vector, and suppose qit (g) < min{qit; git}. This output vector results in the
profit

ptq
i
t + atq

i
t (g)− Ci(qit − qit (g))

of firm i ∈ I.
Consider an alternative production plan (q̃it (b) , q̃it (g)) in which green production is set

to q̃it (g) = min{qit; git} and black production to q̃it (b) = max{qit− git; 0}. Total production
is still given by q̃it (g) + q̃it (b) = qit, so firm i ∈ I earns

ptq
i
t + at min{qit; git} − Ci(max{qit − git; 0})

under the alternative plan. Subtracting the first profit expression from the second yields

at(min{qit; git} − qit (g)) + Ci(qit − qit (g))− Ci
(
max{qit − git; 0}

)
> 0.

This expression is strictly positive because at ≥ 0, and the cost of producing the black out-
put is strictly increasing. This result contradicts the assumption that qit (g) < min{qit; git}
maximizes firm i’s profit. For any qit, it is therefore optimal for firm i ∈ I to pro-
duce green output in quantity qit (g) = min{qit; git} and black output in quantity qit (b) =
max{qit − git; 0}. The firm maximizes green output because it has zero production cost
and is potentially associated with a production subsidy.

If qit < git, then the firm has operating profit (pt + at)q
i
t − Ci(0), which is strictly

increasing in output. Hence, the profit-maximizing output choice of firm i ∈ I satisfies
qit ≥ git, in which case the firm produces green output at full capacity, qit (g) = git, and
black output in quantity qit (b) = qit − git at resulting profit

ptq
i
t + atg

i
t − Ci(qit − git).

We can treat atg
i
t as a negligible constant. Thus, PC-rationalizability under variable

capacity is defined as follows:

Definition 3 A generic data set ÕG = (pt, at, q
i
t (b) , qit (g) , git)

i∈I
t∈T is PC-rationalizable

under variable capacity by I strictly increasing cost functions (Ci)
i∈I

if for all firms i ∈ I
and periods t ∈ T ,

qit ∈ arg max
y
{pty − Ci(y − git)}

subject to y ∈ [git, g
i
t + bi].
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The cost function of firm i ∈ I varies across observations if the available capacity git
of green output varies across observations. However, PC-rationalizability under variable
capacity relies only on observability of each firm’s total output (qit)

i∈I
t∈T and green capac-

ity (git)
i∈I
t∈T , instead of amounts of output produced under black and green production,

(qit (b) , qit (g))
i∈I
t∈T , respectively. Green capacity and green production will be identical un-

der profit maximization since the production cost of green output is zero. The subsidy
(at)t∈T does not matter for allocations because the revenue from the subsidy is indepen-
dent of total output subject to firms producing green electricity a full capacity. Under
perfect competition, observation of ÕG does not provide any useful information beyond

what can be deduced from the more restricted data set OG = (pt, q
i
t, g

i
t)
i∈I
t∈T . This result

is useful because plant level output data often are unobservable to outsiders.
Our next result shows that PC-rationalizability does not imply the law of supply if

the firm has variable production capacity. Under PC-rationalizability, firm i earns weakly
higher profit by producing green output in quantity git and black output in quantity qit−git
in period t rather than green output in quantity git and black output in quantity qiτ − giτ :

ptq
i
t − Ci(qit − git) ≥ pt(g

i
t + qiτ − giτ )− Ci(qiτ − giτ ).

Likewise, the profit of producing green output in quantity giτ and black output in quantity
qiτ − giτ in period τ is at least as high as producing green output in quantity giτ and black
output in quantity qit − git in period τ :

pτq
i
τ − Ci(qiτ − giτ ) ≥ pτ (g

i
τ + qit − git)− Ci(qit − git).

Adding the two inequalities and simplifying the expression delivers a necessary con-
dition

(pτ − pt)(qiτ − qit − giτ + git) ≥ 0 ∀i ∈ I and ∀t, τ ∈ T (1)

for PC-rationalizability under variable capacity. If pτ > pt, then firm i violates the law
of supply under perfect competition if git− giτ > qit− qiτ > 0. Under these conditions, firm
i’s capacity to deliver output at zero marginal cost is so large in period t compared to
period τ that it produces a larger total quantity in period t than τ , although the price
is actually lower in t than τ . A failure to account for variable capacity may thus cause
a false rejection of APC. Aggregating (1) for every subset of firms instead delivers the
following axiom, which we label the axiom of perfect competition under variable capacity:

Definition 4 Consider a generic data set OG = (pt, q
i
t, g

i
t)
i∈I
t∈T . The axiom of perfect com-

petition under variable capacity (APC-VC) holds whenever (pτ − pt)
(
qXτ − qXt − gXτ + gXt

)
≥

0 for all X ∈ 2I and all t, τ ∈ T .

Observe that APC-VC reduces to APC in the special case when git = giτ for all
(i, t, τ) ∈ I × T × T . Our next result gives a complete characterization of PC-rationalizability
under variable capacity.

Theorem 2 Consider a generic data set OG = (pt, q
i
t, g

i
t)
i∈I
t∈T . The following statements

are equivalent:

1. OG is PC-rationalizable under variable capacity by I strictly increasing cost func-
tions.

10



2. OG satisfies APC-VC.

3. OG is PC-rationalizable under variable capacity by I cost functions that are contin-
uous, strictly increasing and strictly convex.

The additional informational requirement of Theorem 2 compared to Theorem 1 is that
one needs access to data on (some aggregate) of the green production capacity (git)

i∈I
t∈T

to test for perfect competition under variable capacity. Theorems 2 and 1 share several
similarities. Most importantly, violations of continuity, monotonicity and convexity in
both theorems cannot be detected with only a finite number of production observations.
Furthermore, as APC gives the sharpest possible test of PC-rationalizability in Theorem
1, APC-VC gives the sharpest possible test of PC-rationalizability under variable capacity.

2.3.2 Intertemporal production decisions

This section explores consequences of resource extraction problems when the opportunity
cost of deferring production to a future date represents a substantial part of a firm’s
optimization problem. This extension is relevant for several markets, for instance the
crude oil market, but we illustrate the model within the context of hydro power production
in the wholesale electricity market. The model and setup should be general enough to fit
other markets with few alterations.

Many countries rely fundamentally on hydro power for electricity supply. Hydro power
has zero marginal production cost, but is largely a predictable source of energy in the
short-run, contrary to solar and wind power. The profit-maximizing dispatch of hydro
power represents an intertemporal problem because reservoir capacity utilized for electric-
ity production in one dispatch period cannot be used for production in a futúre dispatch
period. Hence, the fundamental economic factor that limits hydro power extraction is an
opportunity cost measured by the expected value of storing hydro power for future use.
This water value depends on expectations about the future electricity wholesale prices,
and is likely to be subject to short-term variation because of the variability of electricity
prices on the spot market.

Add hydro production capacity hi ≥ 0 to the generation portfolio of firm i. To
incorporate the dynamic component, let firm i ∈ I have a planning horizon of T ≥ 2
periods, indexed by T := {1, ..., T}. The firm enters period 1 with a reservoir measured
in terms of H i

0 > 0 MWh output, and has decided to maintain reservoir capacity H i
T ∈

[0, H i
0) at the end of period T . We assume no uncertainty, no discounting and that there

are no direct production costs associated with hydro power production. We also ignore
inflow and evaporation, which would affect reservoirs from one period to the next.

Firm i’s additional decision problem is how to allocate the planned productionH i
0−H i

T

across the T periods. Let qit(h) be the quantity of hydro-electric power produced by firm
i in period t ∈ T . Denote by qXt (h) =

∑
i∈X q

i
t(h) the joint hydro production of the

subset X of firms in period t, where we set q∅t (h) = 0. Define the extended generic data

set ÕG = (pt, at, q
i
t (b) , qit (g) , qit (h) , git, H

i
0, H

i
T )

i∈I
t∈T .

Under perfect competition, firm i’s problem is how to choose (qit (b) , qit (g) , qit (h))t∈T

11



to maximize total profit∑
t∈T

[ptq
i
t + atq

i
t (g)− Ci(qit − qit (g)− qit (h))]

subject to the capacity constraint qit (b) ∈ [0, bi] on black output, qit (g) ∈ [0, git] on green
production, and qit(h) ∈ [0, hi] on hydro power for each period t ∈ T , as well as the
resource constraint

∑T
t=1 q

i
t(h) ≤ H i

0 − H i
T . In this maximization program, the firm

produces a total output of qit = qit (b) + qit (g) + qit (h) in period t.
By similar logic as above, any firm i ∈ I that maximizes profit and treats (pt, at) as

exogenously given, maximizes green output by setting qit (g) = git for all t ∈ T . Firm i
can reduce production cost or increase revenue by increasing green output and reducing
black output for all qit (g) < git, while keeping everything else constant. Firm i’s profit
then equals ∑

t∈T

[ptq
i
t − Ci(qit − git − qit (h))] +

∑
t∈T

atg
i
t,

where
∑

t∈T atg
i
t is a constant that can be disregarded. Thus, we define PC-rationalizability

under variable capacity and dynamic production as follows:

Definition 5 A generic data set ÕG = (pt, at, q
i
t (b) , qit (g) , qit (h) , git, H

i
0, H

i
T )

i∈I
t∈T is PC-

rationalizable under variable capacity and dynamic production by I strictly increasing cost
functions (Ci)

i∈I
if for all firms i ∈ I,(

qit, q
i
t (h)

)
t∈T ∈ arg max

(yt,yt(h))t∈T

∑
t∈T

[ptyt − Ci(yt − git − yt (h))]

subject to yt−yt (h) ∈ [git, g
i
t+b

i] and yt (h) ∈ [0, hi] for all t ∈ T , as well as
∑T

t=1 yt (h) ≤
H i

0 −H i
T .

Under PC-rationalizability, firm i earns weakly higher profit in period t by producing
black output in quantity qit−git−qit (h) relative to black output in quantity qiτ−giτ−qiτ (h),
all else equal

ptq
i
t − Ci(qit − git − qit (h)) ≥ pt(g

i
t + qit (h) + qiτ − giτ − qiτ (h))− Ci(qiτ − giτ − qiτ (h)).

The profit of producing black output in quantity qiτ − giτ − qiτ (h) in period τ is at least
as high as producing black output in quantity qit − git − qit (h) in period τ , all else equal:

pτq
i
τ − Ci(qiτ − giτ − qiτ (h)) ≥ pτ (g

i
τ + qiτ (h) + qit − git − qit (h))− Ci(qit − git − qit (h)).

By combining these inequalities, we obtain a necessary condition

(pτ − pt)(qiτ − qit − giτ + git − qiτ (h) + qit (h)) ≥ 0 ∀i ∈ I and ∀t, τ ∈ T (2)

for PC-rationalizability under variable capacity and dynamic production. This condition
does not depend on separate observability of black and green production nor of the
production subsidy.

The allocation problem of reservoir capacity is linear under perfect competition so
that firm i produces as much as possible in the periods with the highest price. Partition
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T into a subset T i(h) containing the peak price periods and a subset T i(h) containing
the off-peak price periods from the viewpoint of firm i. Let ti(h) ∈ T i(h) be such that
pti(h) is the smallest peak price contained in T i(h) and allocate the entire production
capacity to the peak periods,

∑
t∈T i(h) q

i
t(h) = min{H i

0−H i
T ;Thi}. Based on (2) and the

definitions of T i(h) and T i(h), we obtain the following condition:

Definition 6 Consider a generic data set OG = (pt, q
i
t, g

i
t, H

i
0, H

i
T )

i∈I
t∈T . The axiom of

perfect competition under variable capacity and dynamic production (APC-VCDP) holds
whenever

(pτ − pt)
(
qXτ − qXt − gXτ + gXt − qXτ (h) + qXt (h)

)
≥ 0,

for all X ∈ 2I and all t, τ ∈ T , and for each firm i ∈ I, (qit(h))t∈T is characterized by:

qit(h) =

{
0 ∀t ∈ T i(h)
hi ∀t ∈ T i(h), t 6= ti(h)

qiti(h)(h) = min{H i
0 −H i

T ;Thi} − (|T i(h)| − 1)hi.
(3)

Firm i produces at full capacity hi in the |T i(h)|−1 periods with the highest price and
allocates the rest of the reservoir capacity to the remaining high price period. Our next
result gives a complete characterization of PC-rationalizability under variable capacity
and dynamic production.

Theorem 3 Consider a generic data set OG = (pt, q
i
t, g

i
t, H

i
0, H

i
T )

i∈I
t∈T . The following

statements are equivalent:

1. OG is PC-rationalizable under variable capacity and dynamic production by I strictly
increasing cost functions.

2. OG satisfies APC-VCDP.

3. OG is PC-rationalizable under variable capacity and dynamic production by I cost
functions that are continuous, strictly increasing and strictly convex.

Theorem 3 shows how to adapt the model with variable capacity to include dynamic
production into firms’ generation portfolio. In deriving this result, we have ignored
several relevant aspects of actual hydro power production that merit comment.

Production possibilities are affected by inflow into and possibly evaporation from the
reservoir. However, such external flow variables do not qualitatively affect the profit
maximizing program, which is to allocate as much production to peak price periods as
possible. Accounting for reservoir inflow would expand the subset of peak price periods
T i(h), whereas evaporation would yield a contraction of T i(h).

Hydro production may also be subject to minimal flow restrictions, which yields min-
imal production of hi ≥ 0 in every period, but without any consequence for the firm’s
desire to allocate as much as possible of the residual production H i

0 − H i
T − Th

i to the
peak price periods. Environmental constraints may restrict a hydro power plant’s ability
to increase or decrease production from one period to the next. Such ramping constraints
εi and ε̄i imply production constraints defined as −εi ≤ qit+1(h) − qit(h) ≤ ε̄i. Serial
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correlation of electricity demand implies that peak price periods tend to cluster. By im-
plication, ramping constraints will be non-binding in the interior of T i(h) and T i(h), and
will affect production only for intermediary prices where the firm ramps up production
from 0 to hi or vice versa.

Finally, uncertainty implies that prices seldom are fully known at the outset of the
planning period. However, linearity of the maximization problem under perfect compe-
tition implies that the hydro producer does not need to form beliefs about price levels.
It is sufficient to know which periods belong to T i(h) and T i(h), respectively. Whether
prices will be higher from one period to the next, is much easier to predict than the level
of those prices. Hence, Theorem 3 is likely to hold also in more uncertain and constrained
environments than the one considered above.

Applying Theorem 3 to test APC-VCDP requires substantially more information than
testing APC-VC. In particular, the initial reservoir capacity H i

0 and the end capacity H i
T

for each individual firm is required in order to derive (qit(h))t∈T over the planning period.
Data at such granularity can be difficult to obtain. However, a necessary condition for
APC-VCDP requires much less information. Note that PC-rationalizability implies:∑

s∈T

[psq
i
s − Ci(qis − gis − qis (h))]

≥
∑
s 6=t,τ

[psq
i
s − Ci(qis − gis − qis (h))] + pt(g

i
t + qiτ − giτ )− Ci(qiτ − giτ − qiτ (h))

+ pτ (g
i
τ + qit − git)− Ci(qit − git − qit (h))

for all i ∈ I and ∀t, τ ∈ T , where the expressions in the second and third rows return
firm i’s profit of producing hydro output qiτ (h) and black output qiτ −giτ − qiτ (h) in period
t and hydro output qit(h) and black output qit − git − qit (h) in period τ . Simplifying the
inequality produces (1). We therefore conclude:

Corollary 1 A generic data set OG = (pt, q
i
t, g

i
t)
i∈I
t∈T is PC-rationalizable under variable

capacity and dynamic production by I strictly increasing cost functions only if:

(pτ − pt)
(
qXτ − qXt − gXτ + gXt

)
≥ 0

for all X ∈ 2I and all t, τ ∈ T .

Thus, a violation of APC-VC implies a violation of APC-VCDP, although the contrary
is not true.

3 Measuring and testing departures

APC (and its extensions) gives a binary response to whether observed market behavior is
consistent with perfect competition. However, even if the data violate APC, it may well
be that industry behavior is sufficiently close to satisfying perfect competition such that
the deviation from APC is negligible in practice. This may arise because of measurement
errors, small optimization error or other types of randomness. In this section, we propose
methods to measure and test departures from perfect competition.
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3.1 Goodness-of-fit

We begin by presenting a measure of goodness-of-fit that provides information about
how close observed market behavior is to satisfying perfect competition. This measure
is related to the nonparametric goodness-of-fit measures proposed by Afriat (1972) and
Varian (1990) for single firms. However, there is one important difference. The models
in Afriat (1972) and Varian (1990) are linear in cost, making it natural to let efficiency
of production be measured in terms of cost in those models. On the other hand, our
model of perfect competition is nonlinear in cost but linear in revenue. Therefore, mea-
suring (market) production efficiency in terms of revenue makes more sense within our
framework.

The APC can be written in the equivalent form:∑
i∈X

pτq
i
τ +

∑
i∈X

ptq
i
t ≥

∑
i∈X

pτq
i
t +
∑
i∈X

ptq
i
τ , (4)

for all X ∈ 2I and all t, τ ∈ T . The left-hand side of this inequality captures the actual
sum of revenues for any subset of firms in any pair of observations t, τ ∈ T , while the
right-hand side are revenues evaluated at the counterfactual prices for the same subset of
firms. Define the vector ei = (ei1, ..., e

i
T ) for every firm i ∈ I, where eit ≥ 1, and multiply

each element with the corresponding revenue in the APC:∑
i∈X

eiτpτq
i
τ +

∑
i∈X

eitptq
i
t ≥

∑
i∈X

pτq
i
t +
∑
i∈X

ptq
i
τ . (5)

When eit = 1 for every t ∈ T and i ∈ I, we obtain the standard form of the APC. If
eit > 1 then 100× (eit − 1) is a percentage measure of the required increase in revenue of
firm i ∈ I at observation t ∈ T for APC to hold. Given this, we can interpret eit as an
(in)efficiency index for firm i ∈ I at observation t ∈ T and the vector ei = (ei1, ..., e

i
T )

as an (in)efficiency vector for firm i ∈ I. Let e = (e1, ..., eI) be the concatenated
T×I−dimensional vector of the efficiency vectors for all firms in the market. As a measure
of goodness-of-fit, we propose the vector e closest to the unit vector in some norm, i.e.,
Ω (e) = infe≥1 ‖e− 1‖, subject to the inequalities (5). Since the data O = (pt, q

i
t)
i∈I
t∈T

satisfies the APC whenever e = 1, it holds that O satisfies the APC if Ω = 0.
Although ‖·‖ may be chosen in many different ways, a natural choice is the Minkowski

norm:

ΩM
ρ (e) =

(∑
i∈I

∑
t∈T

(eit − 1)
ρ

T × I

)1/ρ

,

where ρ ≥ 1. By the properties of the Minkowski norm, we have ΩM
a ≤ ΩM

b for any a ≤ b.
We define the APC deviation index of order ρ (APCDIρ) as the set of efficiency values
closest to the unit vector in the Minkowski norm such that condition (5) holds.

Definition 7 The APC deviation index of order ρ (APCDIρ) is defined as the set of
efficiency values e solving:

inf
e≥1

{
ΩM
ρ (e) |

∑
i∈X

eiτpτq
i
τ +

∑
i∈X

eitptq
i
t ≥

∑
i∈X

pτq
i
t +
∑
i∈X

ptq
i
τ

}
.
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In our empirical analysis, we report results for APCDI1 and APCDI∞,

inf
e≥1

ΩM
1 (e) = inf

e≥1

∑
i∈I

∑
t∈T

(eit − 1)

T × I
,

inf
e≥1

ΩM
∞ (e) = inf

e≥1
max
i∈I

max
t∈T

{
eit − 1

}
,

for two reasons. First, together they bound the APCDI. Second, calculating APCDI1
and APCDI∞ is an easy task in practice. In particular, calculating APCDI1 is a linear
problem which can be achieved using standard linear programming techniques. APCDI∞
can also be calculated using linear programming techniques by noticing that APCDI∞
can be equivalently defined as:

inf
e≥1

{
e |
∑
i∈X

epτq
i
τ +

∑
i∈X

eptq
i
t ≥

∑
i∈X

pτq
i
t +
∑
i∈X

ptq
i
τ

}
. (6)

Thus, APCDI∞ can be calculated by solving the following linear program (since
∑

i∈X pτq
i
τ+∑

i∈X ptq
i
t > 0):

min
e≥1

{
e |
∑

i∈X (pτq
i
t + ptq

i
τ )∑

i∈X (pτqiτ + ptqit)
≤ e

}
. (7)

Hence, since both APCDI1 and APCDI∞ can be calculated using linear programming
techniques, they are both efficiently solvable in polynomial execution time.

APCDIρ can be easily generalized to give analogous measures of goodness-of-fit for
APC-VC and APC-VCDP. For example, in the case of APC-VC, the analogous expression
of (5) is given by:∑

i∈X

eiτpτq
i
τ +

∑
i∈X

eiτptq
i
t ≥

∑
i∈X

pτq
i
t +
∑
i∈X

ptq
i
τ +

∑
i∈X

(pτ − pt)
(
giτ − git

)
,

for all X ∈ 2I and all t, τ ∈ T . The only difference between this condition and (5) is
the right-hand side which now contains the additive term

∑
i∈X (pτ − pt) (giτ − git) . The

APC-VC deviation index of order ρ is then defined as the set of efficiency values e solving:

inf
e≥1

{
ΩM
ρ (e) |

∑
i∈X

eiτpτq
i
τ +

∑
i∈X

eiτptq
i
t ≥

∑
i∈X

pτq
i
t +
∑
i∈X

ptq
i
τ +

∑
i∈X

(pτ − pt)
(
giτ − git

)}
.

3.2 Measurement errors

In this section we consider the situation when measurement errors in the observed quan-
tity data are causing violations of the APC. Following Varian (1985), we assume that

the observed firm behavior (qit)
i∈I
t∈T and the “true” (unobserved) firm behavior

(
qit
)i∈I
t∈T is

connected through the Berkson multiplicative measurement error model:

qit = qitε
i
t, (8)

where (εit)
i∈I
t∈T are unobserved and random measurement errors.
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The purpose is to test the null hypothesis that the “true data” O =
(
pt, q

i
t

)i∈I
t∈T is

PC-rationalizable against the alternative that O is not PC-rationalizable. Thus, if the
observed data O = (pt, q

i
t)
i∈I
t∈T violates the APC but the null cannot be rejected then

violations are spurious due to measurement errors, and in this case, the “true data” O
satisfies APC. In contrast, if the null is rejected then there are systematic violations of
APC, in which case O violates APC. Suppose that the errors (εit)

i∈I
t∈T are independent

normal random variables with unit mean and variance σ2. Hence, (εit − 1) /σ is standard
normally distributed, implying that:

1

σ2
Mε =

1

σ2

∑
i∈I

∑
t∈T

(
εit − 1

)2
=
∑
i∈I

∑
t∈T

(
εit − 1

σ

)2

,

is distributed chi-square with T × I degrees of freedom where Mε =
∑

i∈I
∑

t∈T (εit − 1)
2
.

Under the null, Mε/σ
2 ≤ cα, where cα is the chi-square critical value at nominal signifi-

cance level α, meaning that the null is rejected if Mε/σ
2 > cα.

In practice, such inference is infeasible since the errors (εit)
i∈I
t∈T are unobserved. To

obtain a feasible test-procedure, consider the following quadratic problem to calculate
the minimal perturbation of the observed quantity data (qit)

i∈I
t∈T such that these data

satisfy the APC:

min
ε≥0

{∑
i∈I

∑
t∈T

(
εit − 1

)2 |∑
i∈X

(pτ − pt)
(
qiτ ε

i
τ − qitεit

)
≥ 0

}
.

Let M̂ε =
∑

i∈I
∑

t∈T (ε̂it − 1)
2

denote the optimal solution to this program. Since this
problem solves for the minimal errors (in the quadratic norm) such that the data satisfies

APC, we have M̂ε ≤ Mε, Thus, under the null, M̂ε/σ
2 ≤ Mε/σ

2 ≤ cα. For a given

variance σ2 the null is therefore rejected whenever M̂ε/σ
2 > cα. This procedure can be

used to test the null assuming that the variance of the “true errors” (εit)
i∈I
t∈T is known,

and in such case, the procedure will have at least the desired nominal size.
If we don’t have any prior knowledge of σ2 then we can rephrase the statistical decision

rule as: for what values of σ2 can the null be rejected? Notice that the decision rule to
reject the null can be equivalently stated as as σ2 < M̂ε/cα. Define the “bound statistic”:

σ2 = M̂ε/cα, which serves as a measure of the smallest σ2 for which the null would be
rejected. In other words, if σ2 is smaller then ones prior belief concerning the largest

possible (allowable) σ2, we may well want to accept that the “true data” O =
(
pt, q

i
t

)i∈I
t∈T

is PC-rationalizable.

4 Empirical application

4.1 The Nordic wholesale electricity market

The Nordic wholesale electricity market covers Denmark, Finland, Norway, Sweden, and
all the three Baltic countries, with a total population of approximately 33.5 million people.
It is partitioned into 16 bidding zones, constituting five zones in Norway, four in Sweden,
two in Denmark, one in Finland, and one for each of the three Baltic countries. Figure
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Figure 2: Bidding zones in the Nordic-Baltic wholesale electricity market

2 illustrates this bidding zone partition. Most of the electricity produced in the region is
sold on the day-ahead market of the Nord Pool power exchange.3 Nord Pool is coupled
with the other power exchanges in continental Europe, and all are cleared simultaneously
using the Euphemia pricing algorithm.

Every day before noon, generation owners submit price-dependent offers of how much
electricity they want to sell in each of the 24 hours the following day. Specifically, they
submit individual offers for each of the bidding zones in which they own generation
capacity. Simultaneously, electricity retailers and large industrial consumers place price-
dependent bids for how much electricity they are willing to purchase every hour the follow-
ing day in each zone in which they own consumption capacity. Producers (consumers)
are not allowed to participate in bidding zones in which they do not own generation
(consumption) capacity. Network owners submit the available transmission capacities
between the different bidding zones. These capacity bids determine the maximal amount
of trade between zones.

All hourly sales bids across all bidding zones are aggregated to create one separate
supply curve for the entire Nordic market for every single hour the following day. A
corresponding demand curve is constructed on the basis of aggregating all individual

3Nord Pool was the single power exchange in the Nordic-Baltic market until June 2021, when EPEX-
Spot started operations, but EPEX is still a fringe power exchange in the market.
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demand bids. The hourly system price is found at the level at which aggregate supply
equals aggregate demand. This is also the equilibrium price of the day-ahead market
that hour if there are no transmission bottlenecks in the system. This clearing procedure
generates 24 system prices every day, one for every hour.

Bottlenecks sometimes arise when the transmission network does not have sufficient
available capacity to manage all the electricity flows needed to balance aggregate supply
and demand at the system price. The bidding zones are defined to reflect the possibility of
such transmission constraints. In the event of binding transmission constraints, the elec-
tricity price is decreased in export-constrained zones and increased in import-constrained
zones until the point at which local electricity prices are such that total demand equals
total supply, but the associated flow of electricity across zones has been adjusted to the
available capacity of the transmission network. By way of this clearing procedure, the
Nordic day-ahead market can have as many as 15 equilibrium prices for every hour. Im-
portantly, all production (consumption) cleared in the day-ahead market receives (pays)
the zonal price in the bidding zone in which the production (consumption) is located.
Under this market design, consumer expenditures are larger than producer revenue if
there are bottlenecks in the system. The difference between consumer expenditures and
producer revenue goes to the owners of the transmission network as a congestion rent.

4.2 Data and setup

Nord Pool supplies data on the hourly market-clearing prices for each bidding zone as
well as the system price. Nord Pool also reports the hourly import and export capacities
for each bidding zone and the equilibrium volume of electricity purchased and sold within
each bidding zone for every hour. Thus, Nord Pool provides quantity data aggregated to
the bidding zone level, but not firm level data. Nord Pool also publishes data on expected
hourly wind power production for Denmark, Sweden and the Baltic countries aggregated
to the bidding zone level. Wind power data from Sweden are available as of 2016.

We evaluate competition in the four Swedish bidding zones that were introduced in
2012, indicated by SE1 to SE4 in Figure 2. The full data sample contains hourly price
and aggregated quantity data from January 1, 2012 until December 31, 2022 (24 price-
quantity observations for each day). Omitting days with incomplete data leaves us with
data for 3282 days (In total 78768 (= 24× 3282) production observations). Using the
wind power data leaves us with 2779 days in the sample (In total 66696 (= 24× 2779)
production observations).

For each of the four bidding zones and each trading day we calculate the APC and
APC-VC deviation indices for ρ = 1 and ρ =∞. Thus, we calculate the APC deviation
index separately for each of the 3282 days, and the APC-VC deviation index separately
for each of the 2779 days. Note that since we are using aggregated quantity data at the
bidding zone level, a violation of APC(-VC) at the aggregated level is sufficient to reject
APC(-VC) since it must hold for all subsets of firms for the data to be PC-rationalizable.
In other words, the APC and APC-VC deviation indices calculated using aggregated
quantity data are lower bounds on the “true” APC and APC-VC deviation indices.

The fundamental assumption underlying the different axioms of perfect competition
is that the cost function for every firm and bidding zone is invariant across all periods
within a given sample. In the Swedish electricity market, the portfolio of non-intermittent
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Figure 3: Distribution of goodness-of-fit for APC and APC-VC with ρ = 1

production capacity may comprise hydro power, nuclear power, combined heat and power
or fossil-fuel thermal power, depending on the specific firm, time of year or bidding
zone. Fuel input prices and hydro reservoir inflows change at most on a daily basis.
Furthermore, all electricity bids or offers for each of the 24 delivery hours the following
day are submitted simultaneously into the day-ahead market at noon the previous day.
By implication, each firm places all its 24 bid or offer curves for the following day based
on the same information set. These properties imply that the cost function for each
individual firm and bidding zone remains invariant over the sample period since we set
every sample period equal to the 24 delivery hours within the same day.

4.3 Results

Figure 3 plot the distributions of the APC and APC-VC deviation indices for each bidding
zone using ρ = 1, while Figure 4 plot the same distributions for ρ = ∞. As seen from
both figures, the goodness-of-fit is almost uniformly better for APC-VC than APC. Thus,
a model that also accounts for hourly differences in the wind power prognosis provides a
better fit to the data than a model that only accounts for hourly differences in production.
This is clear for all biding zones except possibly for SE3 where the distributions of the
APC and APC-VC deviation indices are almost tangent.

Table 1 gives summary statistics of the distributions in Figures 3 and 4. The table
reports the mean, minimum (min), 25th percentile (P25), median, 75th percentile (P75)
and maximum (max) of every distribution. Recall that numbers closer to 1 indicate better
goodness-of-fit, and that this measure is monotonic so that numbers further away from 1
indicate a worse fit. The goodness-of-fit are, in our opinion, generally low except possibly
for SE4. Looking, for instance, at the mean fit using ρ = 1 for APC-VC in bidding zone
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Figure 4: Distribution of goodness-of-fit for APC and APC-VC with ρ =∞

SE2 shows that the aggregated revenue only need to increase by 0.1 percentage points
for the market to be perfectly competitive (Using ρ =∞ shows that the revenue need to
increase by 0.4 percentage points). This generally holds across all summary statistics.

Hence, although we are effectively only reporting a lower bound of the “true” goodness-
of-fit, we believe that the data are close enough to being rationalized by perfect compe-
tition for a large number of days in the sample period 2012-22. As such, violations of
APC-VC (and to a large extent also APC) could plausibly be the result of noise. These
results are reassuring in the sense that SE1-SE3 have structural properties that charac-
terize markets with competitive pressure, such as excess production, a small degree of
local market concentration and a large degree of market integration.

The summary statistics of goodness-of-fit for the southernmost bidding zone SE4 are
substantially larger in order of magnitude compared to those for SE1-SE3. But in contrast
to the other bidding zones, SE4 has characteristics associated with weak competitive
pressure, such as excess demand, large degree of local market concentration and small
degree of market integration. Of course, the violations of APC-VC could be attributed
to noise also in SE4, but it is unclear a priory why such noise should be systematically
larger in magnitude in SE4 than in the other three Swedish bidding zones. Thus, the
violations of APC-VC in SE4 could well result from imperfect competition. Additional
analysis into market performance in SE4 seems warranted.

5 Conclusion

This paper has developed nonparametric tests for perfect competition in markets for
homogeneous goods. The tests are based only on price and aggregate quantity data and
are easy to implement (No data on firm costs are required). The tests rely on minimal
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assumptions about demand and cost functions. Such flexibility is particularly important
in industries where cost functions are highly non-convex, for instance because of unit
startup costs and ramping constraints. The proposed tests can be easily implemented
to evaluate competition in specific industries. Failure of industry data to meet the tests
should warrant a deeper investigation, for instance by competition authorities or other
agencies with legal authority to collect data at such detailed level that is required to
conduct more sophisticated analyses of market performance in concentrated industries.

Finally, we briefly mention a few extensions of the models and methods. First, it
would be interesting to develop a stochastic framework to implement and test the models.
Such a framework could potentially be based on the moment inequality based tests in
econometrics. Another possible way to incorporate stochastic elements in the analysis
would be to combine parametric production analysis with the methods proposed in this
paper to increase the power of the tests.

The second extension concerns recoverability. Given that a data set satisfies APC,
can we recover or bound the cost functions of the firms? Can we recover other types
of underlying technological constraints from observed market behavior? The third issue
concerns extrapolation. Given observed market behavior in some economic environments
how can we forecast behavior in other environments? To which extent is counterfactual
analysis feasible within our framework?
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A Proofs

A.1 Proof of Theorem 1

The proof 3⇒1 is trivial. We established 1⇒2 in Subsection 2.1.

2⇒3. Our first step is to construct a piecewise linear marginal cost function that is
positive, strictly increasing, and continuous almost everywhere. Rank T in increasing
price order, so that pt < pt+1 for all t ∈ {1, ...T − 1}. By (ii) and the rank-order property
of T , qit ≤ qit+1 for all t ∈ {1, ...T − 1}. The subset T i = {t ∈ T : qit > 0} represents all
periods in which firm i produces positive output. Note that T i = ∅ if qiT = 0. If qiT > 0,
then we let pti be the smallest price in the sample for which firm i produces positive
output: qiti > 0, and qit = 0 for all t ∈ {1, ..., ti − 1} if ti ≥ 2. Hence, T i = {ti, ..., T} if
T i 6= ∅. Let MC i : [0, bi] → R+ be the marginal cost function of firm i. If T i = ∅, then
we set bi > 0 and let MCi(y) = pT +y. If T i 6= ∅, then we set firm i’s capacity to bi > qiT .
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The marginal cost function is defined as follows. First, MCi(y) = p1
y
qi1

for all y ∈ [0, qi1]

if qi1 > 0, whereas MCi(y) = pti−1 + (pti − pti−1) y
qi
ti

for all y ∈ [0, qiti ] if qi1 = 0. For large

quantities, MCi(y) = pT
y
qiT

for all y ∈ (qiT , b
i]. For t ≥ ti, MCi(y) = pt

qit+1−y
qit+1−qit

+pt+1
y−qit

qit+1−qit
for all y ∈ (qit, q

i
t+1] such that qit < qit+1. This marginal cost function is left-continuous,

whereas right-discontinuity possibly occurs for all quantities for which qit = qit+1. For all
such observations, limy→qi+t+1

MC i(y) ≥ pt+1 > pt = MCi(qit) by construction. Hence,

MCi(y) is positive for all y > 0, strictly increasing in the domain [0, ki] and continuous
almost everywhere. Every non-decreasing function defined on an interval is integrable.
For each firm i, we can then define a cost function

Ci(y) =

∫ y

0

MCi(ỹ)dỹ (9)

that has the properties specified in (iii) of the theorem. We finally need to verify that
the chosen function implements the observed quantities given the observed prices. Firm
i maximizes Πi

t(y) = pty − Ci(y) over y ∈ [0, bi]. Let Ti 6= ∅, and assume that t ≥ ti. In
this case,

Πi
t(q

i
t)− Πi

t(y) = ptq
i
t − Ci(qit)− pty + Ci(y)

=

∫ y

qit

(MCi(ỹ)− pt)dỹ =

∫ y

qit

(MC i(ỹ)−MCi(qit))dỹ > 0

for all y 6= qit. Therefore, firm i’s optimal choice is to set y = qit for all t ∈ {ti, ..., T}. The
proof for Ti 6= ∅ is done if ti = 1. Assume next that ti ≥ 2. In this case,

Πi
t(0)− Πi

t(y) =

∫ y

0

(MCi(ỹ)− pti−1 + pti−1 − pt)dỹ > 0

for all t ∈ {1, ..., ti − 1} and y > 0. Therefore firm i’s optimal choice is to set y = qit = 0
for all t ∈ {1, ..., ti − 1}, ti ≥ 2. If Ti = ∅, then

Πi
t(0)− Πi

t(y) =

∫ y

0

(MCi(ỹ)− pt)dỹ =

∫ y

0

(ỹ + pT − pt)dỹ > 0

for all t ∈ T and y > 0. Therefore, firm i’s optimal choice is to set y = qit = 0 for all
t ∈ {1, ..., T} if Ti = ∅. To summarize, qit is the unique optimum for all i ∈ I and for all
t ∈ T under the specified cost function for firm i.

A.2 Proof of Proposition 1

1⇒2. Suppose that the generic data set O = (pt, q
i
t)
i∈I
t∈T is PC-rationalizable. By Theo-

rem 1, we know that this implies that APC holds. Since the cost function for firm i ∈ I
is C1, the marginal cost is unique (at every point), so clearly since O is generic we have
pt 6= pτ for all t, τ ∈ T with t 6= τ , which then implies qt(X ) 6= qτ (X ) for all X ∈ 2I and
t, τ ∈ T with t 6= τ , which is SAPC.
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2⇒1. Since APC holds we can construct the function MC as in the proof of Theorem
1. This function can be regularized by convolution to obtain a C2 function (See e.g.,
Chiappori and Rochet 1987). In particular, define the function:

k (A) =
exp

(
− 1
|A|−1

)
∫
R exp

(
− 1
|A|−1

) if |A| < 1,

k (A) = 0 if |A| ≥ 1.

Let kη (A) = k
(
A
η

)
/η for some η > 0. Then kη is symmetric differentiable and zero for

any value |A| ≥ η. Let:

MC
i
(y) =

∫
R
MCi (y − ε) gη (ε) dε.

This function is positive for all y > 0, non-decreasing in the domain [0, bi], and C1. As in
the proof of Theorem 1, for every firm i, we define the cost function:

Ci(y) =

∫ y

0

MC
i
(ỹ)dỹ.

Thus, the function Ci(y) is non-decreasing and C2. PC-rationalizability then follows as
in the proof of Theorem 1.

A.3 Proof of Theorem 2

The proof 3⇒1 is trivial. We established 1⇒2 in Subsection 2.3.

2⇒3. We can replicate the same steps as in the proof of Theorem 1 by which we first
rank T in increasing price order and then construct for each firm i a positive, strictly
increasing, piecewise linear and left-continuous marginal cost function MCi(·) of black
output that is right-continuous almost everywhere. This marginal cost function has the
property MC i(qit − git) = pt for all t ∈ T i = {ti, ..., T}, i.e. pt for which qit > git, and
MCi(0) = pti−1 for all t ∈ T i = {1, ..., ti − 1}, i.e. pt for which qit = git. From at ≥ 0 and
the zero-cost assumption of green production, it follows that optimal green production
equals git in every period because the firm’s cost function is strictly increasing. It remains
to check that qit maximizes Πi

t(y) = pty − Ci(y − git) for all y ∈ [git, g
i
t + bi] and all

(i, t) ∈ I × T . If t ∈ T i so that qit > git, then

Πi
t(q

i
t)− Πi

t(y) =

∫ y

qit

(MCi(ỹ − git)− pt)dỹ

=

∫ y

qit

(MCi(ỹ − git)−MCi(qit − git))dỹ > 0
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for all y 6= qit. Hence, qit is the unique optimum in this case. If t ∈ T i so that qit = git,
then

Πi
t(g

i
t)− Πi

t(y) =

∫ y

git

(MC i(ỹ − git)− pt)dỹ

=

∫ y

git

(MC i(ỹ − git)−MC i(0) + pti−1 − pt)dỹ > 0

for all y > git.

A.4 Proof of Theorem 3

The proof 3⇒1 is trivial. We established 1⇒2 in Subsection 2.3.

2⇒3. We can replicate the same steps as in the proof of Theorem 2 by which we first
rank T in increasing price order and then construct for each firm i a positive, strictly
increasing, piecewise linear and left-continuous marginal cost function MCi(·) of black
output that is right-continuous almost everywhere. This marginal cost function has the
property MCi(qit − qit(h) − git) = pt for all t ∈ T i, i.e. pt for which qit > git + qit(h), and
MCi(0) = pti−1 for all t ∈ T i, i.e. pt for which qit = git + qit(h). From at ≥ 0 and the
zero-cost assumption of green production, it follows that optimal green production equals
git in every period because the firm’s cost function is strictly increasing. It remains to
verify that (qit, q

i
t (h))t∈T maximizes

Πi((yt, yt (h))t∈T ) =
T∑
t=1

[ptyt − Ci(yt − yt (h)− git)]

for all i ∈ I subject to the production constraints of the respective technologies. After
some manipulation of expressions we can write

Πi(
(
qit, q

i
t (h)

)
t∈T )− Πi((yt, yt (h))t∈T ) =

∑
t∈T i

∫ yt−yt(h)

qit−qit(h)
[MCi(ỹ − git)−MCi(qit − qit (h)− git)]dỹ

+
∑
t∈T i

∫ yt−yt(h)

git

[MCi(ỹ − git)−MCi(0)]dỹ

+
∑
t∈T i

[pti−1 − pt][yt − yt (h)− git]]

+
∑
t∈T

pt(q
i
t (h)− yt (h))

The expressions on the first two rows are non-negative because the marginal cost function
is increasing. The expression on the third row is non-negative because pt ≤ pti−1 for all
t ∈ T i. This leaves the expression on the last row, which we can write as∑
t∈T

pt(q
i
t (h)− yt (h)) =

∑
t∈T

(pt − pti(h))(qit (h)− yt (h)) + pti(h)
∑
t∈T

(qit (h)− yt (h))

≥
∑

t∈T i(h)\ti(h)

(pt − pti(h))(hi − yt (h)) +
∑

t∈T i(h)

(pti(h) − pt)yt (h) ≥ 0
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for arbitrary s ∈ T . The first inequality on the second row follows from the capacity and
resource constraint

∑T
t=1 q

i
t (h) = min{Tki;H i

0 −H i
T} ≥

∑T
t=1 yt (h). This completes the

proof.
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