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Abstract. This paper develops a mathematical framework to study signal networks, in which
nodes can be active or inactive, and their activation or deactivation is driven by external signals
and the states of the nodes to which they are connected via links. The focus is on determin-
ing the optimal number of key nodes (= highly connected and structurally important nodes)
required to represent the global activation state of the network accurately. Motivated by neu-
roscience, medical science, and social science examples, we describe the node dynamics as a
continuous-time inhomogeneous Markov process. Under mean-field and homogeneity assump-
tions, appropriate for large scale-free and disassortative signal networks, we derive differential
equations characterising the global activation behaviour and compute the expected hitting time
to network triggering. Analytical and numerical results show that two or three key nodes
are typically sufficient to approximate the overall network state well, balancing sensitivity and
robustness. Our findings provide insight into how natural systems can efficiently aggregate
information by exploiting minimal structural components.
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1. Introduction and background

This paper investigates how to efficiently aggregate nodes in a signal network to accurately
and concisely represent the network’s overall state. Our analysis is motivated by the observation
that, in many cases, a very small number of nodes suffices to capture the essential behaviour of
the entire network, even when the network itself is large. Section 1.1 introduces the concept of
signal networks and outlines the study’s main objectives. Sections 1.2 through 1.4 illustrates
our framework’s relevance through three key examples: brain networks, aging networks, and
friendship networks.

1.1. Signal networks. Consider a network with a large number of nodes. The state of a node
is modeled with the help of a strictly decreasing activation function φ(u), u ≥ 0, as follows. If
at time t a node is triggered by an exogenous signal, then its state at time t′ > t is φ(t′ − t). As
long as the state is larger than or equal to a threshold value, the node is active, while as soon
as the state drops below the threshold value, the node is inactive. The prior information gets
overridden when the node is triggered again at a later point in time, and the triggering process
restarts independently of the past.

We represent large sets of nodes as an aggregated node. We assume that the time instances
of signals at individual nodes form a general renewal process. Under this mild assumption,
the process of active versus inactive states for the aggregated nodes is well approximated by a
Poisson point process with exponentially distributed holding times between active states due to
the superposition principle for a large number of sparse point processes (see [12, Theorem 3.1]).
Our primary focus will be on the subnetwork formed by the aggregated nodes, which we refer to
as the signal network. The network is encoded as ‘triggered’ when a fraction at least γ ∈ (0, 1)
of the aggregated nodes is active. The time-lapse during which an aggregated node stays active
or inactive depends on the state of its neighboring aggregated nodes. We assume that the signal
network is scale-free, meaning that its empirical degree distribution is approximately a power
law, and disassortative, meaning that node degrees tend to be negatively correlated. We assume
that the signal network contains n ≫ 1 aggregated nodes, of which 1 ≤ k ≪ n are key nodes,
i.e., ‘hubs’ in the signal network that play a critical role in the functioning of the network, in the
sense that when they are active the entire network is triggered. See Fig. 1 for an illustration.

................................................................................

Figure 1. An example of a signal network. The aggregated nodes are black and the
key nodes are red. The grey nodes form the background of the aggregated nodes.

Think of the bodily reaction of creating ‘goosebumps’ after an emotional experience. For this
reaction to occur, the network of aggregated nodes has to be triggered across a certain threshold.
Our claim is that this triggering is best organised by aggregating the overall state of the network
into a monitoring of the state of the key nodes. Our main question is: What is the optimal
value for k to do this efficiently?
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• Claim: If the network has k = 2 or 3 key nodes, then the states of these key nodes
capture the overall state of the network sufficiently well. In contrast, for k = 1, the key
node may already be active when far less than γ of the aggregated nodes are active, while
for k ≥ 4, the key nodes may still be inactive when far more than γ of the aggregated
nodes are active.

In other words, it suffices to take a snapshot of a very small number of key nodes’ activity state
to get a fair impression of the overall activity state of a large signal network. (In order for this
claim to be valid, the signal network must avoid absorbing states, for which the distributions of
the active and inactive times have to be chosen appropriately: the more neighbours are active,
the shorter the time of inactivity and the longer is the time of activity.)

1.2. Brain network as signal network. A brain network in cognitive neuroscience is an im-
portant example of a signal network that reflects how the brain processes information. A brain
network can be described as a graph, with nodes representing neural elements (e.g., neurons
or brain regions) and links representing anatomical connectivity (e.g., synapses or axonal pro-
jections). Such a network is called a structural brain network. If the links describe dynamic
interactions or statistical dependencies between the nodes, it is called a functional brain net-
work. Signals received by the body are transmitted to the brain directly via cranial nerves or
the spinal cord. Unlike graph theory, which emphasises only connectivity patterns, structural
brain networks are influenced by physical and topological distances. Neurons and brain regions
that are spatially close are more likely to be connected, whereas neurons or brain regions that
are spatially distant are less likely to be connected [10]. In [25], it is argued that the key nodes
of a brain network are highly connected and central (the ‘hubs’ in the network) and that these
nodes serve as primary points for the overall functioning of the network. Several empirical
studies have shown that small-world architectures are present in both structural and functional
brain networks, in humans and other animals, across a wide range of space and time scales
[26, 6, 24, 27, 10]. The small-world architecture ensures short distances for quick signal process-
ing, while sufficient clustering ensures stability (when a node falls out). In addition, the brain
has a strong synchronisation capacity, which the brain modules need in order to be functional,
similar to the firefly synchronisation phenomenon [9].

Regarding the scale-freeness of brain networks, the reports differ depending on the data sets
and the approach taken. Due to physical constraints and the cost of adding connections in
the brain, there are strict upper limits on the number and the density of connections at any
given node. As a result, structural brain networks (even those at a large scale) are unlikely to
exhibit scale-free degree distributions across a broad range of node degrees [2, 25]. However, an
analysis of the degree distribution reveals deviations from a Gaussian or an exponential profile
[25]. Truncated power-law degree distributions have also been reported for humans [17].

Functional brain networks show different degree distributions depending on the scale of ob-
servation. Scale-freeness evidence has been reported in voxel-level analyses [11, 16], while ex-
ponentially truncated power-law distributions have been reported in region-level analyses [1, 5].
Moreover, truncated power-law degree distributions have been reported for cats [28]. Disassor-
tativity is often considered a natural characteristic of biological networks [22]. However, studies
show that the structural brain network exhibits an assortative degree organisation [14, 8], while
the functional brain network is disassortative [7]. These findings are further supported by a
[20]. Disassortativity helps to ensure that if one of the key nodes is damaged, then the im-
pact is restricted to only a small part of the network, which is crucial for overall stability and
functionality.

The centrality of hubs means that they are often part of the shortest paths between other
nodes, which makes their role important. Hubs play a crucial role in the brain by connecting
different signals and controlling the flow of information between separate areas in the brain.
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Because much of the communication between brain regions passes through these hubs, their
function has a significant impact on the overall brain performance. Any perturbation in the
state of a hub may quickly spread throughout the network. Moreover, hubs help conserve wiring
length and volume because they allow information to travel efficiently without needing long-
range connections. As a result, if hubs are damaged or malfunctioning, this can substantially
impact the overall function of the brain [25]. Understanding the optimal number of hubs in a
brain network is therefore crucial, as it provides valuable insight into the overall brain function.
Our main interest will be functional brain networks.

1.3. Aging network as signal network. The body can be seen as a network, where nodes
represent functional units (organs, cells, or health measurements) and links represent interactions
or dependencies between them. Aging can be viewed as the accumulation of damage across this
network over time. Damage can spread when one part of the system fails due to internal
degradation or external signals. This failure increases the risk of damage in neighboring parts.
Some nodes, such as vital organs in the human body, are critical for the overall function, and we
can, therefore, call them the key nodes of the aging network. When these critical nodes fail, the
entire system collapses, leading to death. In 1825, Benjamin Gompertz [13] stated an empirical
relationship for the mortality rate m(t) at time t, given by

m(t) ≈ α eβt, t ≥ 0,

with parameters α,β > 0 (and with ≈ meaning approximately). This relationship is since
referred to as Gompertz law. It shows that, as we age, our death risk increases exponentially.
The Gompertz law works relatively well for adult ages, roughly from 40 to 90 years, but not at
very young or very old ages.

[12] offers a causal mathematical model that explains aging and mortality through network
theory, which offers a novel and mathematical derivation of the Gompertz law. The body is
modelled as a network where each node represents a health indicator, such as blood pressure,
sugar, cholesterol levels, heart rate, physical mobility, etc., and each link represents a channel
for interaction. In this network, two nodes are designated as mortality nodes (most vital nodes),
while the others are designated aging nodes. The network is assumed to be scale-free and disas-
sortative. Each node has a state that is either healthy or damaged. The health network evolves
over time via a Markov process, where nodes can switch between healthy and damaged. Dam-
age to nodes spreads via the links between them. An individual is considered dead when both
mortality nodes become damaged. With the help of a mean-field assumption and a homogeneity
assumption, the mortality rate is shown to be the product of the solutions of two non-linear
differential equations, and this product approximates the Gompertz law in the age range of 40
to 80 years.

The aging network studied in [12] closely aligns with the signal network considered in the
present paper, where active nodes correspond to damaged nodes and passive nodes correspond
to healthy nodes. In [12], the number of mortality nodes is set to two, following the network
description of mortality proposed in [21], which is based on a suitable empirical fit to data.
This choice lacks a theoretical justification, and the preference for two mortality nodes over
other values is primarily based on empirical performance. Investigating the optimal number of
key nodes, as is done in the present paper, provides a deeper insight into the structural and
functional robustness of aging networks.

1.4. Friendship network as signal network. Another example of a signal network is the
friendship network, where nodes represent individuals in the community under consideration,
and links represent their (mutual) friendships. In this context, signals can be understood as the
spread of information, such as news, rumours, or opinions. A node is considered passive when
it is not affected by the incoming information and active when it is and can respond to it.
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Empirically, social networks often follow a scale-free degree distribution. A widely used model
to describe such networks is the preferential attachment model in [3]. This dynamic random
network model assumes that new nodes are more likely to attach to already highly connected
nodes (i.e., nodes with a high degree), which leads to negative degree correlation and a scale-free
topology [3]. While the classical preferential attachment model tends to produce disassortative
networks based purely on degree, [18] proposes more socially grounded mechanisms, which can
result in assortative network structures where individuals tend to connect with other individuals
similar to themselves. However, under certain conditions, particularly when relationships are
hierarchical or are driven by influence rather than mutual friendships, the network may also
exhibit disassortative characteristics. Examples are social media networks (like X-follower net-
works) or advisor-student relationships. Moreover, [23] and [4] find that disassortativity is a
result of an environment in which the growth mechanism depends on the fitness of a node in
competitive dynamics and weight-driven dynamics, respectively.

The analogy to the body evolving from single-celled organisms, incrementally adding body
parts based on fitness criteria, is tempting. With an environment that is changing in time,
different body parts and functionalities become less or more important, and therefore, the fitness
of a node may change with time. During an ice age, for example, functionalities that keep the
body warm would increase fitness, and so, as the body evolves, new nodes that are added will
likely attach to nodes that aid survival in the cold, such as fat cells. The result is a hierarchical
organization, meaning the occurrence of many small densely connected clusters, which combine
to form larger, less densely connected groups, which again combine to form even larger and
even less densely connected groups. Our body also exhibits hierarchical organisation with cells
making up tissue, tissues making up organs, organs making up organ systems, and organ systems
ultimately making up higher-level functionality such as the ability to read. The analogy with
the social context is that the body needs to be efficiently organised.

With the above considerations, our assumption of disassortativity in signal networks is purely
degree-based. Therefore, a friendship network can also be a good signal network example. This
idea is further supported by the well-known friendship paradox, which states that, on average,
our friends have more friends than we do. A mathematical analysis of the friendship paradox
[15] shows that only a small fraction of the nodes may have more connections than their friends
do in large preferential attachment networks, such as worldwide friendship networks. Finding
the optimal number of key nodes (i.e., highly connected and influential individuals) in such
networks is an interesting direction for future research in this context.

2. Model and key assumptions

Section 2.1 formulates the model. Sections 2.2–2.3 state two key assumptions under which
the model can be analysed in closed form.

2.1. Model. Recall Figure 1. Labelling the aggregated nodes by 1, . . . , n, we describe the state
of the signal network as a continuous-time stochastic process

X(t) = (X1(t), . . . , Xn(t)), t ≥ 0,

where Xi(t) = 1 when node i is active at time t and Xi(t) = 0 when node i is passive at time
t. We let X(0) = (0, . . . , 0). The stochastic process X = (X(t))t≥0 is a time-inhomogeneous
Markov chain.

We denote the set of neighbours of node i by N(i). For each node i, we assume that the set
N(i) is non-empty. We assume that the rates at time t at which node i transitions to the active
state or the passive state, respectively, are given by

Γ+(i, t) = λ(ai(t)), Γ−(i, t) = µ(ai(t)),
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where λ(·) and µ(·) are decreasing, repectively, increasing functions, and ai(t) is the fraction of
active neighbours of node i at time t, i.e.,

ai(t) =
1

|N(i)|
∑

j∈N(i)

{Xj(t)=1}.

We define the average fraction of active nodes at time t by

a(t) =
1

n

n∑

j=1

{Xj(t)=1}.

Labelling the key nodes by 1, . . . , k, we define

τγ = inf
{
t ≥ 0: a(t) ≥ γ

}

to be the first time when the signal network gets triggered and

τk = inf
{
t ≥ 0: (X1(t), . . . , Xk(t)) ∈ (1, . . . , 1)

}

be the first time when all k key nodes are active. Due to the central role played by the key nodes,
the activation of all key nodes should indicate that most aggregated nodes are active (i.e., the
system is triggered). Therefore, we should expect that E[τγ ] ≈ E[τk] (≈ means approximately)
for suitable values of k. For this purpose, we define

k−c (γ) = sup
{
1 ≤ k ≤ n : E[τγ ] ≥ E[τk]

}
∨ 1,

k+c (γ) = inf
{
1 ≤ k ≤ n : E[τγ ] ≤ E[τk]

}
∧ n,

where we use the convention that sup ∅ = −∞ and inf ∅ = +∞. Since τk is strictly increasing
in k, the optimal value of k is defined to be

kc(γ) =

{
k−c (γ), if

∣∣E[τγ ]− E[τk−c (γ)]
∣∣ ≤

∣∣E[τγ ]− E[τk+c (γ)]
∣∣,

k+c (γ), otherwise,

i.e., the value of k for which E[τk] is closest to E[τγ ].

Remark 2.1. [Activation rate] A key object in analysing kc(γ) is the activation rate at time
t for k key nodes, given by

mk(t) = lim
∆↓0

1

∆
P
{
τk ≤ t+∆ | τk ≥ t

}
= − 1

P{τk ≥ t}
d

dt
P{τk ≥ t}.

We will also look at mk(t) later. ♠

Under a mean-field assumption and a homogeneity assumption (see below), we estimate kc(γ)
for different choices of λ and µ when the number n of aggregated nodes is large. These two
assumptions are reasonable due to the scale-free and disassortative nature of the signal network.
The Pareto principle, popularised by Richard Koch [19], suggests that roughly 80% of effects
result from 20% of causes. Therefore, we consider γ = 0.4 as a conservative estimate of the
fraction of nodes that need to be active to trigger the entire network, regardless of the specific
nature of the signal network. The theory presented in Sections 2–3 works for every choice of
γ ∈ (0, 1), but for the numerics in Section 4 we use the choice γ = 0.4.

2.2. Mean-field assumption. The mean-field assumption is the approximation

ai(t) ≈ a(t) ≈ â(t) = E[a(t)],
in combination with the fact that rates for the transition to the active state or the passive state
are independent of the individual nodes are given by

Γ+(i, t) ≈ λ(â(t)), Γ−(i, t) ≈ µ(â(t)).

We will refer to â(t) as the activation fraction at time t.
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In a large network, the properties of scale-freeness and disassortativity ensure the presence of
many high-degree nodes distributed across the network. This leads to the nodes’ near indepen-
dence and results in them behaving approximately in the same way. It is, therefore, reasonable
to apply the law of large numbers, which suggests that the average state of the nodes is a good
approximation for the state of the entire network in support of the above mean-field assumption.

2.3. Homogeneity assumption. For i ∈ {0, 1, . . . , k}, we define

Si =
{
(z1, . . . , zn) ∈ {0, 1}n : #{1 ≤ j ≤ k : zj = 1} = i

}
.

We assume that the states of the signal network in S0, S1, . . . , Sk are further aggregated into
k + 1 distinct states. See Fig. 2 for an illustration. In that case (k − i)λ(â(t)) and iµ(â(t)) are
the transition rates out of state Si and into state Si+1, respectively, Si−1. These transition rates
are depicted in Figure 2. In fact, if Q(t) = (qi,j(t))0≤i,j≤k−1 denotes the infinitesimal generator
(transition rate matrix) of the inhomogeneous continuous-time Markov chain X at time t, then

qi,j(t) = lim
∆↓0

P
{
X(t+∆) ∈ Sj | X(t) ∈ Si

}
− δi,j

∆

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(k − i)λ(â(t)), if 0 ≤ i ≤ k − 1, j = i+ 1,

iµ(â(t)), if 1 ≤ i ≤ k, j = i− 1,

−[(k − i)λ(â(t)) + iµ(â(t))], if i = j,

0, otherwise,

where δi,j is the Kronecker delta (which is 1 if i = j and 0 otherwise).

! ! !✇ ✇ ✇ ✇ ✇
S0 S1 S2 Sk−1 Sk

kλ(â(t))

µ(â(t))

(k − 1)λ(â(t))

2µ(â(t))

λ(â(t))

kµ(â(t))
<

> >

<

>

<

Figure 2. The transition rates between distinct states in the aggregated time-
inhomogeneous Markov chain.

3. Mathematical results

In Section 3.1, with the help of the mean-field assumption and following a similar approach
as in [12], we derive a mathematical expression for the activation fraction â(t) at time t as
the solution to an autonomous differential equation, and for the hitting time τγ , representing
the first time when the network is triggered. In Section 3.2, with the help of the mean-field
and homogeneity assumptions, we derive a mathematical expression for the expectation of the
hitting time τk, defined as the first time when all k key nodes get active, and in Section 3.3 for
the activation rate of the k key nodes. We use the symbol ≈ to emphasise that the expressions
are obtained under the two assumptions. Our key results are Theorems 3.3 and 3.6 below.
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3.1. Evolution of the activation fraction.

Lemma 3.1. [Evolution of the activation fraction] The activation fraction at time t is the
solution to an autonomous differential equation

d

dt
â(t) ≈ (1− â(t))λ(â(t))− â(t)µ(â(t)), â(0) = 0. (3.1)

Proof. Since all nodes are initially passive, we have â(0) = 0. Moreover, the rate at which one of
the n(1− â(t)) passive nodes at time t becomes active equals n(1− â(t))λ(â(t)), while the rate
at which one of the nâ(t) active nodes at time t becomes passive equals nâ(t)µ(â(t)). Therefore,
n(1− â(t))λ(â(t))−nâ(t)µ(â(t)) describes how the number of active nodes evolves (increases or
decreases) at time t. Divide this value by n to get the fraction of active nodes at time t. !
Remark 3.2. [Link to the trigger time] Under the mean-field assumption, τγ is deterministic
and is equal to

τ̂γ = inf
{
t ≥ 0: â(t) ≥ γ

}
,

i.e., the first time the system reaches the threshold level γ. Therefore, we analyse τγ by solving
the equation in (3.1) and then looking at the first time t at which

â(t) ≥ γ.

♠

3.2. Expected activation time of the key nodes.

Theorem 3.3. [Expected time for key nodes activation] For k ≥ 1,

E[τk] ≈
∫ ∞

0
(1− pk(t)) dt,

where pk(t) is obtained from the following system of coupled ordinary differential equations:

d

dt
p0(t) = p1(t)µ(â(t))− p0(t)kλ(â(t)),

d

dt
pj(t) = pj−1(t)(k − j + 1)λ(â(t)) + pj+1(t)(j + 1)µ(â(t))

− pj(t)
[
(k − j)λ(â(t)) + jµ(â(t))

]
, 1 ≤ j ≤ k − 2,

d

dt
pk−1(t) = pk−2(t) 2λ(â(t))− pk−1(t)

[
λ(â(t)) + (k − 1)µ(â(t))

]
, k > 1,

d

dt
pk(t) = pk−1(t)λ(â(t)),

with the following initial conditions:

p0(0) = 1 and p1(0) = · · · = pk(0) = 0.

Here, for t ≥ 0 and j = 0, 1, . . . , k,

pj(t) ∈ [0, 1] and
k∑

j=0

pj(t) = 1.

Proof. Let X̃ be a time-inhomogeneous Markov chain on the state space {S0, S1, . . . , Sk}, with
transition rates identical to those of X, except that the transition from Sk to Sk−1 is removed
and Sk is considered as an absorbing state. Let pj(t) = P{X̃(t) ∈ Sj} for 0 ≤ j ≤ k. Since all
nodes are initially passive, we have p0(0) = 1 and p1(0) = · · · = pk(0) = 0.
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For ∆ ↓ 0 and 0 ≤ j ≤ k − 1 we have

pj(t+∆) =
k∑

i=0

pi(t)P
{
X̃(t+∆) ∈ Sj | X̃(t) ∈ Si

}

=
k−1∑

i=0

pi(t)
(
qi,j(t)∆+ δi,j + o(∆)

)

= pj(t) +
k−1∑

i=0

pi(t) qi,j(t)∆+ o(∆).

Similarly, for ∆ ↓ 0 we have

pk(t+∆) =
k∑

i=0

pi(t)P
{
X̃(t+∆) ∈ Sk | X̃(t) ∈ Si

}

= pk(t) +
k−1∑

i=0

pi(t) qi,k(t)∆+ o(∆).

This implies that, for 0 ≤ j ≤ k,

d

dt
pj(t) =

k−1∑

i=0

pi(t) qi,j(t).

Hence we have

d

dt
p0(t) = p0(t) q0,0(t) + p1(t) q1,0(t) = p1(t)µ(â(t))− p0(t)kλ(â(t)),

d

dt
pk(t) = pk−1(t) qk−1,k(t) = pk−1(t)λ(â(t)),

and, for k > 1,

d

dt
pk−1(t) = pk−2(t) qk−2,k−1(t) + pk−1(t) qk−1,k−1(t)

= pk−2(t) 2λ(â(t))− pk−1(t)
[
λ(â(t)) + (k − 1)µ(â(t))

]
,

and, when k > 2, for 1 ≤ j ≤ k − 2,

d

dt
pj(t) = pj−1(t) qj−1,j(t) + pj(t) qj,j(t) + pj+1(t) qj+1,j(t)

= pj−1(t)(k − j + 1)λ(â(t)) + pj+1(t)(j + 1)µ(â(t))− pj(t)
[
(k − j)λ(â(t)) + jµ(â(t))

]
.

Finally,

E[τk] =
∫ ∞

0
P{τk > t} dt ≈

∫ ∞

0
P{X̃(t) /∈ Sk}dt =

∫ ∞

0
(1− pk(t)) dt.

!

3.3. Activation rates for the key nodes.

Lemma 3.4. [Representation of the activation rate in terms of the pre-trigger prob-
ability] For every t ≥ 0,

mk(t) ≈ λ(â(t))P
{
X(t) ∈ Sk−1 | X(u) ̸∈ Sk, 0 ≤ u ≤ t

}
.
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Proof. In a short time length, X can only reach Sk by going from Sk−1 to Sk in a single jump.
Hence, taking

At = {X(u) ̸∈ Sk, 0 ≤ u ≤ t} = {τk ≥ t},
Bt = {X(t) ∈ Sk−1},

Ct,∆ = {∃ 0 ≤ u ≤ ∆ : X(t+ u) ∈ Sk},
we have, for ∆ ↓ 0,

P
{
τk ≤ t+∆ | τk ≥ t

}
=

P{At ∩Bt ∩ Ct,∆}
P{At}

+ o(∆) = P{Ct,∆ | At ∩Bt}P{Bt | At}+ o(∆)

= P{Ct,∆ | Bt}P{Bt | At}+ o(∆),

where the last equality follows from the Markov property at time t. Noting that the rate of
jumping from Sk−1 to Sk is λ(â(t)), we have

P{Ct,∆ | Bt} ≈ λ(â(t))∆+ o(∆), ∆ ↓ 0,

and hence

mk(t) = lim
∆↓0

1

∆
P
{
τk ≤ t+∆ | τk ≥ t

}
≈ λ(â(t))P{Bt | At}.

!

Lemma 3.5. [Computation of the pre-trigger probability] For every k ≥ 1,

P
{
X(t) ∈ Sk−1 | X(u) ̸∈ Sk, 0 ≤ u ≤ t

}
≈ pk−1(t)

1− pk(t)
,

where pk−1(t) and pk(t) are defined as in Theorem 3.3.

Proof. Define X̃ as in the proof of Theorem 3.3. Also, let pj(t) = P{X̃(t) ∈ Sj} for 0 ≤ j ≤ k.
Then

P
{
X(t) ∈ Sk−1 | X(u) ̸∈ Sk, 0 ≤ u ≤ t

}
=

P
{
{X(t) ∈ Sk−1} ∩ {X(u) ̸∈ Sk, 0 ≤ u ≤ t}

}

P
{
X(u) ̸∈ Sk, 0 ≤ u ≤ t

}

≈
P
{
X̃(t) ∈ Sk−1

}

P
{
X̃(t) ̸∈ Sk

} =
pk−1(t)

1− pk(t)
.

!

Theorem 3.6. [Activation rate for key nodes] For every k ≥ 1,

mk(t) ≈ λ(â(t))
pk−1(t)

1− pk(t)
,

where pk−1(t) and pk(t) are defined as in Theorem 3.3.

Proof. Combine Lemmas 3.4–3.5. !

4. Optimal number of key nodes

In Section 4.1, we investigate the optimal number of key nodes kc(γ) for five specific choices
of the rate functions λ(·) and µ(·) governing the transitions to the active and to the passive
state, respectively. In Section 4.2, we do the same for the aging network and the rate functions
simulated in [21]. The numerics is based on the approach mentioned in Remark 3.2 and the
choice γ = 0.4 mentioned below Remark 2.1.
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4.1. Optimal number of key nodes for various rate functions. We assume that λ(a) <
µ(a) for all a ∈ (0, 1], which ensures that the system does not exhibit unbounded growth in
activation and, instead, tends to a stable and predominantly passive state. The corresponding
results are presented in Table 1 and Figure 3.

Constant rate functions. As observed in Table 1, numerical estimates for the constant rate
functions λ(a) = 0.45 and µ(a) = 0.65 suggest that the optimal number of key nodes is kc(γ) = 2.
This finding is further supported by the numerical plot of the activation rate for key nodes mk

shown in Figure 3(A). The activation rate mk(t) increases over time for each value of k and
eventually reaches a steady state.

Exponential rate functions. We examine two scenarios: (i) the exponential-constant rate
functions λ(a) = e−a and µ(a) = 1; (ii) constant-exponential rate functions λ(a) = 1 and
µ(a) = ea. As shown in Table 1, numerical estimates suggest that the optimal number of key
nodes is kc(γ) = 2 in both scenarios. Figures 3(B)-(C) illustrate the activation rate mk(t) in
these cases, which further support the conclusion that k = 2 is optimal.

Power rate functions. As observed in Table 1, numerical estimates for the power-constant
rate functions λ(a) = (a + 1)−1 and µ(a) = 1 suggest that the optimal number of key nodes is
kc(γ) = 1. However, due to the closeness of τ̂γ to the numerical estimate of E[τ2], along with
the potential impact of numerical errors, the value k = 2 might also be considered a reasonable
estimate of kc(γ). This observation is further supported by the numerical plot of the activation
rate mk(t) shown in Figure 3(D).

Logarithmic rate functions As shown in Table 1, numerical estimates for the logarithmic
rate functions λ(a) = (log(3 + a))−1 and µ(a) = log(3 + a) suggest that the optimal number
of key nodes is kc(γ) = 2. Figure 3(E) shows the dynamics of the activation rate mk(t), which
further supports that k = 2 is a reasonable choice for the optimal number of key nodes in this
case.

Table 1. Numerical estimates of the expected hitting time E[τk] and the trigger
time τ̂γ for various choices of the rate functions and γ = 0.4. The optimal number
of key nodes kc(γ), for which E[τk] is closest to τ̂γ , corresponds to the k-values
indicated in boldface. Recall Remark 3.2.

k
λ(a) = 0.45

µ(a) = 0.65

λ(a) = e−a

µ(a) = 1

λ(a) = 1

µ(a) = ea
λ(a) = (a+ 1)−1

µ(a) = 1

λ(a) = (log(3 + a))−1

µ(a) = log(3 + a)

1 1.37 0.79 0.62 0.78 0.72

2 4.94 3.14 2.22 2.95 2.69

3 9.36 6.19 4.27 5.66 5.22

4 17.48 11.94 8.12 10.61 9.97

5 33.35 23.45 15.84 20.19 19.49

6 65.08 47.34 31.88 39.49 39.30

τ̂γ 3.46 2.79 2.00 1.61 3.11
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(d) λ(a) = (a+ 1)−1, µ(a) = 1.
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(e) λ(a) = (log(3 + a))−1, µ(a) = log(3 + a).

Figure 3. Comparison of the activation rate dynamics for the key nodes under different
choices of the rate functions λ(a) and µ(a) for the choice γ = 0.4. The colours indicate
the number of key nodes. In all panels, mk(t) starts from zero and increases initially, but
the rate and level of this growth depend on how the activation and deactivation rates
vary. When λ(a) is constant or increasing (e.g., panels A and C), activation remains
effective as a grows, and mk(t) reaches higher plateaus (compare panels B and C). In
contrast, when λ(a) decreases with a (e.g., panels B, D and E), activation weakens over
time, resulting in lower plateaus. In all cases, increasing k slows down the growth of
mk(t) and reduces its plateau, since the same activation rate is shared among more key
nodes.
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4.2. Optimal number of key nodes in an aging network. Consider the rate functions
chosen in [21] (and analysed in [12]),

λ(a) = Γ0 e
r+a, µ(a) =

Γ0

R
e−r−a, a ∈ [0, 1], (4.1)

where the parameters are chosen to be r+ = 10.27, r− = 6.5, R = 1.5 and Γ0 = 0.00113.

Table 2. Numerical estimates of the expected hitting times E[τk] for the rate
functions in (4.1).

k E[τk]

1 86.94

2 95.49

3 97.14

4 97.62

5 97.80

6 97.89

7 97.93

Table 3. Numerical estimates of τ̂γ for various values of γ for the rate functions
in (4.1).

γ τ̂γ

0.2 81.79

0.3 91.19

0.4 95.05

0.5 96.69

0.6 97.40

A comparison of Tables 2–3 shows that kc(γ) = 1 for γ = 0.2, 0.3, kc(γ) = 2 for γ = 0.4, and
kc(γ) = 3 for γ = 0.5. For γ = 0.6, although the numerical estimates suggest that kc(γ) = 4, the
small difference of τ̂0.6 from the estimate of E[τ3], along with the potential impact of numerical
errors, indicates that kc(γ) = 3 is also a reasonable and efficient choice. Note that for the
parameter values used in (4.1), the threshold γ = 0.4 is particularly appropriate, as death can
occur when approximately half of the aggregated nodes are damaged. Therefore, the optimal
number of key nodes is kc(γ) = 2. Even for a conservative choice of γ ∈ [0.4, 0.6], it is reasonable
to take kc(γ) ∈ {2, 3}. This provides a mathematical justification for using two mortality nodes
in a health network, as adopted in [21, 12].

We also note that the rate functions in (4.1) fail to satisfy the inequality λ(a) < µ(a) for all
a ∈ (0, 1], which makes it somewhat different from the five choices used in Section 4.1.

5. Conclusion

We have shown that, for large scale-free and disassortative signal networks, only a very small
number of nodes need to be monitored to get a fair impression of the overall state of the network.
This dramatic form of data aggregation is important because for large networks it is difficult,
if not impossible, to monitor the overall state. We have further shown that the reduction
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is universal and is not related to the underlying structure of the network. Three examples
serve as an illustration: brain networks, aging networks, and friendship networks. Based on
two assumptions – mean-field and homogeneity – we have shown how the optimal number of
key nodes can be identified analytically and computed numerically for different activation and
deactivation rates.
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