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Improving Score-Driven Density Forecasts with an

Application to Implied Volatility Surface Dynamics

Xia Zou1, Yicong Lin1, and Andre Lucas1

1Vrije Universiteit Amsterdam and Tinbergen Institute

May 27, 2025

Abstract

Point forecasts of score-driven models have been shown to behave at par with those of

state-space models under a variety of circumstances. We show, however, that density

rather than point forecasts of plain-vanilla score-driven models substantially underper-

form their state-space counterparts in a factor model context. We uncover the origins

of this phenomenon and show how a simple adjustment of the measurement density

of the score-driven model can put score-driven and state-space models approximately

back on an equal footing again. The score-driven models can subsequently easily be

extended with non-Gaussian features to fit the data even better without complicating

parameter estimation. We illustrate our findings using a factor model for the implied

volatility surface of S&P500 index options data.

Keywords: implied volatility surface dynamics; score-driven model; state-space model;

dynamic factor model; density forecasting.
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1 Introduction

Implied Volatilities (IV) based on the Black and Scholes (1973) option pricing model can

be computed for every option maturity and strike price. Together, these IVs constitute the

so-called implied volatility surface, which has important applications in pricing, hedging,

forecasting, and risk management (see, for instance, Jorion, 1995). IV surfaces are often

modeled using common factors, such that the dynamics of the entire surface are captured

by a limited set of shared dynamic components. A typical approach for this builds on a

standard state-space framework (see, e.g., Bedendo and Hodges, 2009; Koopman et al., 2010;

Doz et al., 2012; Jungbacker et al., 2014; Van der Wel et al., 2016; Wang et al., 2017). A

natural alternative to the state-space approach would be a score-driven framework using the

methodology proposed in Creal et al. (2013) and Harvey (2013). Score-driven models with

shared dynamic components have also been used successfully for modeling term-structure

dynamics (see, e.g., Creal et al., 2013; Koopman et al., 2017; Quaedvlieg and Schotman,

2022) and mixed measurement non-Gaussian factor models (Creal et al., 2014). Although

an IV surface, unlike a term-structure, has two dimensions rather than one, the modeling

principle remains the same.

An advantage of score-driven models over their state-space counterparts in this context is

that they are observation-driven as classified by Cox (1981) and have an explicit expression

for the likelihood function. This facilitates parameter estimation and inference using standard

maximum likelihood (ML) methods, even when accounting for non-Gaussian error processes.

In contrast, state-space models that deviate from a linear Gaussian set-up quickly become

more challenging to estimate, often requiring Bayesian or other sampling-based methods or

approximate estimation techniques such as the extended Kalman Filter or simulated ML (see,

e.g., Durbin and Koopman, 2012).

Despite their relative simplicity from a computational perspective, score-driven models

perform remarkably well in terms of point forecast quality, even if the true data generating

process is of state-space form. Koopman et al. (2016) compare a range of time-varying

parameter models (volatility, duration, intensity, counts) for univariate time series and show

that point forecasts based on simple score-driven models perform as well as those based on

non-Gaussian state-space models estimated using more complex machinery. The paper is

silent, however, about the quality of the density forecasts. Results in Koopman et al. (2017)

suggest that score-driven models might underperform from a density forecasting perspective

compared to their state-space counterparts. In particular, the typical assumption of an exact

factor structure in score-driven models, where all contemporaneous correlations are captured

by a few common factors, appears too rigid. The origins of the difference between the density
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forecast performance of the two model classes, however, remain largely underexplored.

This paper provides two main contributions. First, we show that standard score-driven

models are outperformed by standard linear Gaussian state-space models in terms of density

forecasts. We further pinpoint how this performance gap can be attributed to an overly

restrictive assumption on the covariance structure of the measurement noise in the score-

driven model. Second, we show how a simple adaptation of the measurement equation of

the score-driven model may bring its density forecast performance again in line with that of

a state-space model, thus largely eliminating the difference in density forecast performance

between the two model classes. The key is to match the covariance structure of the measure-

ment noise more closely with that of the predictive rather than the measurement density of

the state-space model. When implementing this adjustment, the state-space and score-driven

approaches perform almost at par, not only in terms of point forecasts as in Koopman et al.

(2016), but also in terms of density forecasts.

Once we have eliminated the difference in density forecast performance between the score-

driven and state-space approach for the Gaussian case, we can easily extend the score-driven

model with non-Gaussian features without complicating the maximum likelihood estimation

and inference procedures. Such non-Gaussian features may further increase the density fore-

cast quality of the score-driven model beyond that achieved by the linear Gaussian state-space

model. In addition, such non-Gaussian features result in a filtering procedure for time-varying

parameter paths that is more robust to outliers (see Creal et al., 2013; Harvey and Luati,

2014; D’Innocenzo et al., 2023; Gasperoni et al., 2023). While adding non-Gaussian features

to the state-space model is of course also possible, it would entail more challenges for the

estimation procedure.

To illustrate our results empirically, we study the dynamics of IV surfaces for S&P500

index options using daily data from January 2010 to December 2022. We use the factor model

of Goncalves and Guidolin (2006) and include five factors based on moneyness and time-to-

maturity combinations. We find that a linear Gaussian state-space model outperforms a

plain-vanilla score-driven model by a large margin, both in terms of density fit and Value-

at-Risk (VaR) violation rates, even though the point forecasts are quite similar. However,

when we incorporate the adjusted covariance structure for the measurement errors into the

score-driven model as proposed in this paper, the density forecast performance of the score-

driven and state-space models becomes very similar. Adding Student’s t error terms to the

score-driven model further increases its density fit beyond that of its state-space counterpart

and helps us detect directions in which the model can be further improved.

The remainder of this paper is structured as follows. Section 2 presents the different
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modeling frameworks and discusses how to close the gap in density forecast performance

between score-driven and state-space models. Section 3 provides simulation evidence of

the adjusted model’s performance. Section 4 describes the data, while Section 5 provides

the empirical results. Section 6 concludes. Additional empirical and technical results are

available in the appendix.

2 The model

We first introduce the standard state-space and score-driven model set-up for implied volatil-

ity (IV) surfaces in Section 2.1. In Section 2.2, we then investigate the origins of the difference

in density forecast performance between the two model classes and propose a solution to sub-

stantially reduce this disparity.

2.1 Standard state-space and score-driven models

We model a vector of log implied volatilities IVt ∈ RNt for t = 1, . . . , T , over a possibly

time-varying grid of moneyness values Mt ⊂ Rκt and times-to-maturity Tt ⊂ Rτt
+ , where

the IVs may not be observed at each grid point at each time. The total number of IVs

observed at time t is given by Nt ≤ κt · τt. This set-up accommodates a time-varying

number of option contracts and allows for changes in the type of option contracts over time,

in line with typical options’ data characteristics. For instance, because the expiry date of

an option contract is fixed, its time-to-maturity automatically decreases as time progresses,

thus changing its position on the time-to-maturity grid. Upon expiry, the option contract is

completely removed from the dataset.

We assume that log IVt obeys the following factor structure:

log IVt =Mtβt + εt, εt ∼ h (εt | Ht;ν) , (1)

βt+1 = (Ip −B) β̄ +Bβt + ξt. (2)

The measurement equation in (1) consists of the matrix of exogenous, observed factor loadings

Mt ∈ RNt×p, a vector of factors βt ∈ Rp, and an independent innovation term εt with

distribution h( · | Ht;ν), where h denotes a distribution with mean zero, covariance matrix

Ht, and shape parameter vector ν. The state transition equation in (2) has an intercept

vector (Ip−B)β̄ ∈ Rp where β̄ denotes the unconditional mean of βt, autoregressive matrix

B ∈ Rp×p with all eigenvalues inside the unit circle, and ‘state increment’ vector ξt ∈ Rp.

Here, Ip denotes an identity matrix of size p. We gather all static parameters of the model,
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such as ν, β̄, B, as well as any parameters describing the matrices Mt and Ht, or defining

the shape of the distribution or the specification of ξt, into a parameter vector ψ that requires

estimation.

This set-up unifies both state-space and score-driven models, depending on our choice

of ξt. For instance, if
{
(ε⊤t , ξ

⊤
t )

⊤}
t∈Z is an independently and identically distributed (iid)

sequence of innovations with mutually independent components εt and ξt, then Eqs. (1)–(2)

collapse to a standard linear state-space set-up (see Durbin and Koopman, 2012). Con-

versely, if ξt is a measurable function that depends solely on βt and IVt, the model becomes

observation-driven. If, furthermore, ξt is chosen as the derivative (with respect to βt) of the

log predictive density of IVt given βt, we recover the score-driven framework of Creal et al.

(2013).

Eq. (1) does not yet fully specify the distribution of the error term εt, other than its

mean and covariance matrix. For instance, if (ε⊤t , ξ
⊤
t )

⊤ is normally distributed, we obtain

the linear Gaussian state-space model as used in for instance Goncalves and Guidolin (2006)

for IV surfaces. For such a state-space specification, we can estimate the static parameter

vector ψ by maximizing the log-likelihood function L(ψ), given by

L(ψ) = −1

2

T∑
t=1

(
log |2πFt|+ v⊤t F−1

t vt
)
, vt = log IVt − log IVt|t−1, (3)

where the prediction errors vt and their conditional covariance matrix Ft follow directly

from the Kalman filter. For a non-Gaussian εt, the standard Kalman filter recursions break

down, or more precisely, only provide minimum mean-squared error forecasts of the states.

Other estimation techniques such as simulated maximum likelihood based on importance

sampling or particle filtering can be used in such non-Gaussian and/or non-linear cases (see,

e.g., Durbin and Koopman, 2012, for an overview). Such techniques are typically more

challenging and computationally intensive.

In a score-driven framework, the parameter vector ψ can be estimated by standard

maximum likelihood (ML) techniques, whether εt is normally distributed or not. In an

observation-driven framework, ξt is predetermined such that the log-likelihood function is

known in analytic form through a standard prediction error decomposition. That is, ξt is

Ft−1-measurable, where Ft = {IVt, IVt−1, . . . , IV1}. Define Et [ · ] = E [ · | Ft]. To illus-

trate, consider a normal distribution with covariance matrix Ht for the density h( · |Ht;ν).

Given the conditional normality of εt, the shape parameter ν can be omitted. Defining the

scaled score as st =
[
Et−1

(
∇t∇⊤

t

)]−1

· ∇t with ∇t = ∂ log h(IVt |βt;Ht,ν)/∂β, and letting
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ξt = Ast for a parameter matrix A ∈ Rp×p, we obtain

ξt = A
[
Et−1

(
∇t∇⊤

t

)]−1

· ∇t = A (M⊤
t H

−1
t Mt)

−1M⊤
t H

−1
t εt, (4)

L(ψ) = −1

2

T∑
t=1

(
log |2πHt|+ ε⊤t H−1

t εt
)
, (5)

where εt = log IVt −Mtβt, and where we used inverse information matrix scaling of the

score as defined in Creal et al. (2013). The scaled-score step in Eq. (4) has an intuitive

interpretation: it adjusts the time-varying regression parameter βt using a GLS improvement

step. Moreover, when the errors follow a Student’s t distribution with a degree of freedom

parameter ν > 2 such that ν = ν, the expressions change to

ξt =
1 + (Nt + 2)/ν

1 + ε⊤t H
−1
t εt/(ν − 2)

A (M⊤
t H

−1
t Mt)

−1M⊤
t H

−1
t εt, (6)

L(ψ) = −1

2

T∑
t=1

[
log |(ν − 2)πHt|

+ (ν +Nt) log

(
1 +

ε⊤t H
−1
t εt

ν − 2

)
+ 2 log Γ

(ν
2

)
− 2 log Γ

(
ν +Nt

2

)]
; (7)

see Appendix B for a derivation of the scaled score in (6). Note that as ν → ∞, Eqs. (6)–

(7) collapse to (4)–(5). If ν < ∞, the score in (6) downweights the GLS step for large

incidental outliers via the factor ε⊤t H
−1
t εt in the denominator and thus mitigates their effect

on the dynamics of the time-varying parameter βt; see also, for instance, Harvey and Luati

(2014) and Gasperoni et al. (2023) for the robustness features of score-driven filters based on

fat-tailed observations.

2.2 Adjusted covariance structures for score-driven models

So far, the state-space and score-driven models appear quite similar. The main difference lies

in their choice of the state increment vector ξt, which is random for the state-space set-up and

pre-determined for the score-driven model. This distinction leads to a similar point forecast

quality for both models (Koopman et al., 2016). However, in terms of density forecasts, the

two models behave in markedly different ways, with the state-space specification generally

performing better for the current class of factor models.

To understand this phenomenon, consider a simple version of model (1) with a diagonal

error covariance matrix Ht. Also define the point forecasts for the score-driven (βsd
t ) and

state-space model (βss
t|t−1), respectively, where β

ss
t|t−1 := E[βt | Ft−1]. Assume that the point

forecast quality of both models is similar, such that βsd
t ≈ βss

t|t−1, and both βsd
t and βss

t|t−1 are
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Ft−1-measurable. Note that Model (1) can be equivalently expressed as

log IVt =Mtβ
ss
t|t−1 +Mt

(
βt − βss

t|t−1

)
+ εt. (8)

Conditional on Ft−1, the first component on the right side of the equation is fixed and does

not contribute to the conditional variance. Therefore, for the state-space specification, we

obtain

Var [log IVt | Ft−1] =Mt Var [βt | Ft−1]M
⊤
t +Ht. (9)

Even if Ht is diagonal, the resulting state-space predictive density clearly exhibits a non-

diagonal covariance structure. On the other hand, the predictive density of the score-driven

model in its original specification has a diagonal covariance Ht, as β
sd
t is pre-determined

conditional on Ft−1. Thus, even if the score-driven forecast βsd
t and the state-space forecast

βss
t|t−1 are close, their forecasting or predictive densities are very different.

The non-diagonal covariance specification in the predictive density typically provides a

better fit to real data compared to a diagonal specification. To understand the intuition

behind this, consider a simple one-factor set-up (i.e., p = 1). Assume that Mt consists of a

single column of ones and that B = 1, which models the IV surface using a single (random

walk) level factor. Both state-space and score-driven models assume that for a given βt the

prediction errors around this (common) level are uncorrelated. However, as indicated above,

while the state-space approach assumes that the future value of βt+1 cannot be known with

certainty today and is therefore subject to a prediction error, the score-driven set-up excludes

such a prediction error by assuming βt+1 is pre-determined given Ft. Accordingly, the score-

driven set-up maintains a diagonal structure for the covariance matrix of the prediction

errors, i.e., for the predictive density, while in the state-space framework, prediction errors

are correlated due to the common prediction error in βt+1 given Ft. Although a score-

driven filter can still provide an accurate filtered or predicted value for βt+1, the assumption

that βt+1 is pre-determined in the data generating process (DGP) is typically untenable in

empirical situations and does not fit the empirical correlation structure of the predictive

density in factor model settings.

The solution is straightforward. We can slightly adjust the covariance structure in the

measurement equation of the score-driven model to better reflect the correlation structure of

the prediction errors. More specifically, we propose to replace the measurement equation of
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the score-driven factor model in (1) with

log IVt =Mtβt + εt, εt ∼ h
(
εt

∣∣ Ht +MtCM
⊤
t ;ν

)
, (10)

where C ∈ Rp×p is an additional static parameter matrix to be estimated. With this new

correlation structure for the score-driven modeling framework, the predictive densities of

the score-driven and state-space approaches resemble each other much more closely. In

particular, if the conditional covariance matrix Var [βt | Ft−1] would have a stable limit, e.g.,

in the case of a state-space model with time-invariant parameters, the above adjustment of

the score-driven model would capture the steady state predictive density of the state-space

specification. In such a setting, we expect the adjustment in (10) to largely close the gap in

density fit between the score-driven and state-space model.

The suggested adjustment in (10) also explains improvements in density fit obtained by

Koopman et al. (2017) when modeling international term structures and ad-hoc imposing

an equicorrelation matrix structure in the score-driven specification. In their setting, the

level factor is the most important element in their term-structure factor model. As explained

before, if the DGP is of state-space with time-invariant parameter matrices, the steady state

predictive density has an equicorrelation structure. Imposing this structure on the score-

driven measurement equation therefore leads to a substantial improvement in density fit.

It is worth noting that the adjusted covariance structure in (10) does not hinge on a

Gaussian distribution. The adjustment is equally applicable for fat-tailed or skewed density

functions h. Therefore, the adjusted score-driven model can easily be extended further to

incorporate non-Gaussian features by modifying the score dynamics accordingly. This can be

achieved without in any way complicating the parameter estimation procedure, which remains

fully feasible using standard maximum likelihood methods based on an analytic expression of

the log-likelihood function. We investigate some non-Gaussian extensions to the score-driven

model in the empirical application in Section 4. In contrast, including such non-Gaussian

features in a state-space setting typically comes with more challenges and usually requires

a more complex estimation methodology based on numerical approximations and simulation

techniques.

3 Simulation study

In this section, we investigate the performance of the different models, adjusted and unad-

justed, in a Monte Carlo study. We simulate a time series of vector observations y1, . . . ,yT

from a state-space data-generating processes (DGPs) and compare the predictive perfor-
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mances of the state-space (SS) model with four different score-driven (SD) models. The

score-driven models assume either a normal or Student’s t distribution for the measure-

ment noise εt, and are implemented both with and without the covariance adjustment in

the measurement equation. We evaluate the performance of these models by comparing

log-likelihoods, mean squared error (MSE), and mean absolute error (MAE) criteria.

We simulate data from a Gaussian state-space model with a factor structure as described

in Eqs. (1)–(2). For the factor loadings M , we use the restricted three factor specification,

where we only include a constant, moneyness, and time-to-maturity as loadings. In the

empirical application in Section 5 we augment this with two further factors in line with Van

der Wel et al. (2016). We use moneyness levelsmt equal to (0.9, 0.98, 1.05, 1.15, 1.3, 1.5) and

time-to-maturity τi (10, 50, 100, 180)/255 to be in line with the empirical application. The

resulting factor loading matrix has dimension 24 × 3. The innovation term is drawn either

from a multivariate normal or a Student’s t(3) distribution, both with covariance matrix

Ht = σ2
εIp for a high signal-to-noise ratio (σ2

ε = 0.05) and a low one (σ2
ε = 0.50). The high

signal-to-noise ratio is closest to the empirical setting. We also set the remaining parameters

in line with the empirical estimation results. For the state equation in Eq. (2), we choose

a diagonal matrix B = diag(0.98, 0.93, 0.90), such that the first factors are most persistent,

and the later factors in the data generating process are somewhat less.

The values for β̄ are randomly drawn from a uniform distribution over the range (0, 1).

The state innovations are drawn from a multivariate normal distribution with a zero mean

and a covariance matrix C = diag(0.001, 0.005, 0.004), which again reflects the empirical

estimation results.

We generate 1000 time series of 2 · T observations for T = 200, 1000. The first T ob-

servations are used to estimate the model, while the remaining T observations are used to

compute the performance criteria. In this way we avoid any potential biases that could be

due to overfitting.

The results are presented in Table 1. The table has six panels, each corresponding to a

different DGP. The left panels correspond to Gaussian measurement errors, while the right-

hand panels are for the Student’s t(3) case. Within each panel, we present the out-of-sample

MSE, MAE, and the average log-likelihood values for all estimated models. All these numbers

are computed at the MLE for the corresponding statistical model and the data IVt.

The left-hand panels for the Gaussian DGPs in Table 1 highlight three key findings.

First, in line with Koopman et al. (2016), we find little difference in terms of MSEs and

MAEs between the different models. All of them perform well and at a similar level. In

particular, the state-space model only performs marginally better, despite it being the true
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Table 1: Out-of-sample performance for simulated data

Model Distr. Adj. Gaussian DGP t(3) DGP

MSE MAE loglik MSE MAE loglik

T = 200, σ2
ε = 0.05

SS N — 0.061 0.197 0.762 0.060 0.169 0.684
SD N — 0.063 0.200 -0.889 0.062 0.172 -0.907
SD N yes 0.064 0.202 0.601 0.064 0.176 0.516
SD t — 0.063 0.200 -0.859 0.065 0.178 3.694
SD t yes 0.065 0.203 0.593 0.065 0.178 7.543

T = 200, σ2
ε = 0.50

SS N — 0.520 0.575 -26.103 0.521 0.469 -26.514
SD N — 0.528 0.580 -26.404 0.535 0.478 -26.888
SD N yes 0.532 0.582 -26.266 0.533 0.478 -26.680
SD t — 0.528 0.580 -26.393 0.526 0.472 -19.582
SD t yes 0.532 0.582 -26.272 0.526 0.473 -19.079

T = 1000, σ2
ε = 0.05

SS N — 0.061 0.197 0.830 0.060 0.168 0.859
SD N — 0.062 0.199 -0.764 0.062 0.172 -0.756
SD N yes 0.063 0.201 0.663 0.063 0.174 0.703
SD t — 0.062 0.199 -0.728 0.063 0.174 4.109
SD t yes 0.063 0.201 0.666 0.063 0.175 7.604

Note: This table presents the MSE, MAE, the average of log-likelihood
(loglik) for a state-space (SS) model and score-driven (SD) models. The
model distribution (Distr.) of the measurement noise εt is either normal
(N ) or Student’s t (t). The covariance structure in the score-driven (SD)
specifications can be either diagonal (no Adj.) or adjusted (Adj.) as in
Eq. (10); see the Adj. column. The table is based on 1000 simulations, and
the different panels are for the different DGPs (small versus large sample
size (T = 200, 1000), high (σ2

ε = 0.05) versus low (σ2
ε = 0.50) signal to noise

ratio , and normal versus t(3) measurement errors (with variance 1) in the
DGP).

DGP. Second, consistent with the arguments of Section 2, the log-likelihood of the Gaussian

score-driven model without covariance adjustment is substantially lower than that of the

linear Gaussian state-space model (0.762 versus −0.889 for (T, σ2
ε) = (200, 0.05)). However,

when the covariance matrix adjustment is introduced, the log-likelihood of the Gaussian

score-driven model aligns much closer with that of the linear Gaussian state-space model.

Similarly, for score-driven models with a Student’s t distribution, the model incorporating

the covariance matrix adjustment exhibits a log-likelihood (0.516) much more comparable to

that of the linear Gaussian state-space model (0.684), whereas the version without adjustment

performs worse (-0.907). The gap cannot be closed completely given that the linear Gaussian

10



state space model is the true DGP here. Still, the results point to the fact that the density

forecasting gap between the state-space and score-driven models can be made much smaller

by the simple covariance matrix adjustment for the measurement errors. It underscores

one of the more implicit conclusions in the original paper of Koopman et al. (2016). Also

in their setting equal point forecasting performance of the Gaussian state-space model and

the score-driven alternatives was only attainable if the measurement density in the score-

driven specification was adjusted to allow for fatter tails than the tails of the conditional

observation density in the state-space DGP. In other words, also in Koopman et al. (2005)

the conditional measurement density for the score-driven model needed to be more flexible

than its counterpart in the state-space DGP. Our result in this paper generalizes that finding

and relates it to the covariance structure. In particular, in our factor model setting the

covariance structure in the score-driven model needs to allow for cross-sectional correlations

between the measurement errors to behave much more in line with the state-space model,

not only in terms of point forecasts, but also in terms of density forecasts. The simulations

show that this objective can indeed be achieved.

A third finding from the left-hand panel in Table 1 is that if we decrease the signal-to-noise

ratio by considering σ2
ε = 0.50, then the density forecasting performance (loglik) is largely

similar for the adjusted and unadjusted models. This again makes sense. If the signal is weak

compared to the noise in the state-space DGP, then there is less cross-sectional correlation

between the forecast errors. This explains why the performance of all score-driven models is

similar. Finally, we see that the sample size hardly affects either the point or density forecast

quality: both for T = 200 and T = 1000 the performance of the point and density forecasts

is very similar for the adjusted score-driven models and their state-space counterparts, even

though the latter is correctly specified. The unadjusted models, however, have a clearly worse

density forecast performance (for instance -0.889 or -0.859 log-likelihood versus 0.762 for the

state-space case for T = 200, σ2
ε = 0.05). Also the Gaussian and Student’s t score-driven

models behave at par: if the true measurement errors are Gaussian, the degrees of freedom

parameter is typically estimated at a high value, rendering the Student’s t and the Gaussian

score-driven models very similar.

If we move to the Student’s t(3) DGPs in the right-hand panels of Table 1, the results

are even more pronounced. Again, the point forecast quality is roughly similar for all models

in the experiment. The density forecast performance, however, differs considerably across

the different score-driven specifications. The unadjusted Gaussian score-driven model clearly

has worse density forecast results in terms of log-likelihood for σ2
ε = 0.05. Its Gaussian

adjusted counterpart already closes much of the performance difference with the state-space

11



model. Once we allow for non-Gaussian error terms in the measurement equation, the score-

driven density forecasts clearly outperform those of the state-space model. Even though non-

Gaussian error terms could in principle also be included in a state-space set-up, this would

come at a substantial increase in computational costs (see, e.g., Durbin and Koopman, 2012).

By contrast, the computational load for the score-driven models is rather insensitive to the

use of a normal versus a Student’s t distribution.

Interestingly, the density forecast performance of the score-driven Student’s t model is

improved further by including the covariance adjustment. The improvement is non-negligible,

for instance, from 3.694 to 7.543 if the signal-to-noise ratio is sufficiently high (T = 200,

σ2
ε = 0.05). Given that the high signal-to-noise ratio is closest to the empirical setting, we

expect similar gains to be possible in the empirical application if we use the covariance-

adjusted non-Gaussian score-driven factor model specification.

4 Empirical data and model specification

4.1 Descriptives

Our dataset comprises European call options on the S&P 500 index and encompasses all

call and put options traded on the Chicago Board Options Exchange (CBOE). The dataset,

retrieved from OptionDX, spans the period from January 1, 2010, to January 1, 2022. It

includes the daily closing price of the index, as well as the strike prices, expiration dates,

option deltas (∆), and implied volatilities of each option contract.

We apply the filtering procedures of Barone-Adesi et al. (2008) and Van der Wel et al.

(2016) to clean the data. Initially, we restrict our analysis to out-of-the-money options,

defined by a ∆ less than 0.5 in absolute value, because out-of-the-money options typically

have higher trading activity than their in-the-money counterparts. Moreover, focusing solely

on out-of-the-money options is conceptually equivalent to studying only in-the-money options

under the assumption of put-call parity. For example, a call option with a ∆ of 0.1 should

possess the same implied volatility as an out-of-the-money put with a ∆ of -0.9. We exclude

observations with more than 360 days or less than 7 days to expiration, as these options

are typically characterized by lower liquidity levels. Additionally, we discard options with

implied volatilities greater than 0.7 or less than 0.05 to mitigate the effect of potential data

errors. The final dataset comprises a total of 7,739,265 observations, with an average of 2,722

observations per day.

Table 2 provides some summary statistics. Following Van der Wel et al. (2016), we divide

the sample into 24 distinct groups based on time-to-maturity and moneyness. Specifically,
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the maturity component is partitioned into four groups with breakpoints at 45, 90, and 180

days-to-maturity, while moneyness is split into six groups with breakpoints at ∆ values of

-0.375, -0.125, 0, 0.125, and 0.375.

We classify options with ∆ values ranging from -0.125 to 0 as deep out-of-the-money puts

(DOTM puts). Options with ∆ from -0.375 to -0.125 are classified as out-of-the-money puts

(OTM puts), and options with ∆ values between -0.5 and -0.375 are classified as at-the-

money puts (ATM puts). Calls are classified as deep OTM, OTM, and ATM, using the same

cutoffs, but with positive ∆ values.

For each of these 24 groups, we present the time series average and standard deviation of

the implied volatility, days-to-maturity, moneyness (the strike price divided by the index),

∆, and trading volumes (Trading Vol) for each bucket. The percentage of trade volumes

represents the average daily number of contracts traded within a group relative to the total

trading volume across all contracts.

Table 2 highlights some of the stylized facts about the implied volatility surface. First, the

implied volatilities decrease as moneyness increases for each of the four maturity groups, a

phenomenon commonly known as the volatility smile or smirk. Second, the implied volatilities

increase as the time-to-maturity increases, known as the volatility term structure. Finally,

we see that shorter-term or deeper out-of-the-money options have higher trading volumes

than longer-term or at-the-money products.

4.2 Restricted factor representation

A common approach when modeling the IV surface is to express it as a function of moneyness

(mi,t, defined as the ratio of the strike price to the underlying index level) and time-to-

maturity (τi,t, expressed in year) for option contract i = 1, . . . , Nt at time t = 1, . . . , T .

Goncalves and Guidolin (2006) compare various parametric specifications as proposed by

Dumas et al. (1998) and Pena et al. (1999). They conclude that a simple model, which

linearly combines polynomial terms and interactions of moneyness and time-to-maturity,

achieves a good fit to the S&P 500 IV surface. We adopt their set-up to illustrate the effect

of using our adjusted covariance structure in the score-driven factor model for the IV surface.

We therefore specify the following five-factor specification (Goncalves and Guidolin, 2006):

log IVi,t = β1,t + β2,tmi,t + β3,tm
2
i,t + β4,tτi,t + β5,tmi,tτi,t + εi,t =:m⊤

i,t βt + εi,t, (11)

where m⊤
i,t =

(
1,mi,t,m

2
i,t, τi,t,mi,tτi,t

)
and βt = (β1,t, . . . , β5,t)

⊤. Here, β1,t represents the

time-varying level of the log implied volatility; β2,t and β3,t capture the slope and curvature
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Table 2: Summary Statistics

7 – 45 days 45 – 90 days 90 – 180 days 180 – 360 days

Mean SD Mean SD Mean SD Mean SD

DOTM put IV 0.32 0.13 0.33 0.11 0.35 0.11 0.35 0.10
DTM 24.51 10.68 64.36 12.25 125.59 26.40 265.68 51.93
Moneyness 0.84 0.09 0.76 0.12 0.68 0.14 0.57 0.15
∆ -0.03 0.03 -0.04 0.03 -0.04 0.04 -0.04 0.04
Trading Vol (%) 22.83 11.52 7.74 5.62

OTM put IV 0.20 0.09 0.21 0.08 0.23 0.08 0.24 0.07
DTM 26.39 10.21 65.31 12.44 129.17 26.85 270.38 52.54
Moneyness 0.96 0.02 0.94 0.03 0.91 0.04 0.87 0.06
∆ -0.23 0.07 -0.23 0.07 -0.23 0.07 -0.23 0.07
Trading Vol (%) 6.42 4.47 4.26 2.60

ATM put IV 0.18 0.10 0.17 0.07 0.19 0.07 0.19 0.05
DTM 26.29 10.18 65.48 12.50 130.22 27.14 270.39 52.98
Moneyness 0.99 0.01 0.99 0.01 0.98 0.01 0.98 0.02
∆ -0.44 0.04 -0.44 0.04 -0.43 0.04 -0.44 0.04
Trading Vol (%) 1.81 1.24 1.27 0.76

ATM call IV 0.17 0.10 0.16 0.07 0.18 0.06 0.18 0.04
DTM 26.21 10.22 65.39 12.48 129.92 27.05 271.89 52.81
Moneyness 1.01 0.01 1.01 0.01 1.02 0.01 1.03 0.02
∆ 0.44 0.04 0.44 0.04 0.44 0.04 0.44 0.04
Trading Vol (%) 1.59 1.08 1.09 0.66

OTM call IV 0.15 0.09 0.14 0.06 0.15 0.05 0.15 0.04
DTM 25.96 10.35 65.23 12.42 127.47 26.77 271.51 52.34
Moneyness 1.03 0.02 1.04 0.02 1.06 0.03 1.09 0.04
∆ 0.24 0.07 0.24 0.07 0.25 0.07 0.25 0.07
Trading Vol (%) 3.33 2.19 1.90 1.31

DOTM call IV 0.16 0.09 0.14 0.06 0.15 0.05 0.15 0.04
DTM 23.89 10.41 64.01 12.30 125.64 26.34 266.00 52.26
Moneyness 1.10 0.08 1.13 0.10 1.20 0.13 1.30 0.16
∆ 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04
Trading Vol (%) 8.80 3.50 2.28 1.74

Note: This table presents summary statistics for the option data, including the mean and standard
deviation (SD) over time for implied volatility, days to maturity (DTM), moneyness (the strike price
divided by the index), option ∆, and trading frequency across four maturity groups and six moneyness
groups. The maturity groups are 7-45, 45-90, 90-180, and 180-360 days. The six moneyness groups
are defined as deep out-of-the-money put (−0.125 < ∆ < 0, DOTM put), out-of-the-money put
(−0.375 < ∆ < −0.125, OTM put), at-the-money put (−0.5 < ∆ < −0.375, ATM put), and
similarly for call options (with positive ∆s). Each day, we identify all contracts that fall within each
maturity-moneyness group, and the numbers represent averages over time and across contracts for
each group.
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of log implied volatilities in the moneyness dimension (i.e., the volatility smile), respectively;

β4,t reflects the slope of log implied volatility in the time-to-maturity dimension (i.e., the

implied volatility term structure); and β5,t captures the interaction between moneyness and

time-to-maturity. The model can be expressed in the form (1), withMt =
(
m1,t, . . . ,mNt,t

)⊤
.

Richer factor structures can easily be specified by adding more terms to the right-hand side

of Eq. (11). Alternatively, the factor loadings could be estimated rather than pre-specified,

as is done in for instance the unrestricted specification in Van der Wel et al. (2016). This,

however, does not alter any of the results that are the main focus of this paper, namely how

to close the gap in density forecast performance between the state-space and score-driven

approaches using an adapted covariance structure. We thus stick to the specification in (11)

in our baseline analysis and investigate an additional factor with estimated factor loadings

in the robustness analysis in Section 5.2.

5 Empirical results

In this section, we present our main empirical results. All of our analyses are performed

out-of-sample. We use a rolling window of 500 observations (about 2 years) to forecast

the next 250 observations (1 year). This gives us T ⋆ = 2, 588 out-of-sample observations

from January 1, 2012, to January 1, 2022. We focus on the one-step-ahead forecasts of the

log implied volatilities. The benchmark results are presented in Section 5.1, followed by

robustness checks in Section 5.2.

5.1 The benchmark analysis

In our benchmark analysis, we compare the state-space (SS) model with four different score-

driven (SD) models. The score-driven models use either a normal or Student’s t specification

for the measurement noise εt, as described in Eqs. (4)–(5) and (6)–(7), respectively. For both

distributional assumptions, we consider a version of the score-driven model with and without

the covariance adjustment of the measurement equation as proposed in Eq. (10). In our first

analysis, we use the non-bucketed option dataset. Therefore, the number of option contracts,

and thus the dimension Nt of log IVt, changes over time.

We evaluate the performance of the different models in both statistical and economic

terms. For the statistical measures, we compute the usual log-likelihoods, AIC criteria, mean
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squared error (MSE), and mean absolute error (MAE) criteria. The latter are defined as

MSE =
1

T ⋆

T ⋆∑
t=1

1

Nt

Nt∑
i=1

(log IVi,t − log IVi,t|t−1)
2,

MAE =
1

T ⋆

T ⋆∑
t=1

1

Nt

Nt∑
i=1

∣∣ log IVi,t − log IVi,t|t−1

∣∣,
respectively, where log IVi,t|t−1 denotes the one-step-ahead forecast of log IVi,t. Second, for

the economic evaluation, we conduct an out-of-sample Value-at-Risk (VaR) analysis at a 99%

confidence level (1− α = 99%). We concentrate on a setting where not only the conditional

mean of log IVt matters, but where the whole forecasting density inclusive of its correlation

structure plays a role. For this, we consider the unweighted overall cross-sectional average

Pt = N−1
t

∑Nt

i=1 log IVi,t of the log IVts and consider the one-step-ahead risk quantiles of

Pt. This provides a true density forecast performance contest for the different methods in

economic terms. The one-step-ahead risk quantiles or Value-at-Risk for the score-driven

specifications are straightforward to compute due to the observation-driven nature of the

score-driven model. For a (1− α) confidence level, the Value-at-Risk is given by

V̂ aRt+1|t = Pt|t−1 +
Q(α)

Nt

√
ı⊤Nt
F̂t ıNt , (12)

where Q(α) is the α-quantile of the normal or unit-variance Student’s t distribution, Pt|t−1 =

N−1
t

∑Nt

i=1 log IVi,t|t−1, and F̂t = Ht for the standard score-driven model, and F̂t = Ht +

MtCM
⊤
t for the adjusted model. For the state-space specifications, the predictions Pt|t−1

and forecast error variances F̂t = Ft follow directly from the Kalman Filter recursions.

Table 3 presents the out-of-sample MSE, MAE, log-likelihood, and AIC, for both the

state-space and score-driven models based on Eqs. (1)–(2). The MSE and MAE numbers are

presented as ratios vis-à-vis the MSE and MAE of the linear Gaussian state-space benchmark

model. As a second (more naive) benchmark, we also implemented a static factor model

with βt ≡ β. This static model, however, significantly underperformed all of the other

specifications in all settings and is therefore left out of the discussion. Results are shown

for the entire sample period and for two sub-periods: the pre-COVID period (2012-2020)

and the COVID period (2020-2022). The latter period, marked by the COVID-19 pandemic,

exhibits significantly higher volatility compared to the former. To quantify the statistical

significance of performance differences, we use the Diebold-Mariano (DM) test, with the

state-space model each time serving as the benchmark (Diebold and Mariano, 2002).

Table 3 highlights three main findings. First, the log-likelihood values indicate that

the linear Gaussian state-space model significantly outperforms the Gaussian score-driven
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Table 3: Out-of-sample performance for non-bucketed data

Model Distr. Adj. MSE MAE loglik AIC #Par.
×10−3 ×10−3

Full sample (2012-2022)

SS N — 1.00 1.00 1557.08 -3114.12 16

SD N — 0.99∗∗∗ 0.99∗∗∗ 1273.70∗∗∗ -2547.37 16
SD N yes 1.00 1.01∗∗∗ 1554.78∗∗∗ -3109.52 21

SD t — 1.02 1.01 1537.55 -3075.07 17
SD t yes 0.99 1.00 1927.21∗∗∗ -3854.38 22

Pre-COVID period (2012-2020)

SS N — 1.00 1.00 1095.66 -2191.29 16

SD N — 0.99∗∗∗ 0.99∗∗∗ 922.00∗∗∗ -1843.96 16
SD N yes 1.01∗∗∗ 1.01∗∗∗ 1093.44∗∗∗ -2186.84 21

SD t — 1.00 1.00 1141.53 -2283.02 17
SD t yes 1.00 1.01 1355.34∗∗∗ -2710.63 22

COVID period (2020-2022)

SS N — 1.00 1.00 461.41 -922.79 16

SD N — 1.00 1.00 351.70∗∗∗ -703.37 16
SD N yes 0.96∗∗∗ 0.99∗∗∗ 461.34∗∗ -922.63 21

SD t — 1.11 1.05 396.03 -792.02 17
SD t yes 0.98 0.99 571.88∗∗∗ -1143.71 22

Note: This table presents the MSE, MAE, log-likelihood (loglik), AIC, and
BIC, for a state-space (SS) model and a score-driven (SD) factor model for
the log implied volatilities of S&P500 index options as given in Eqs. (1)–
(2). The distribution (Distr.) of the measurement noise εt is either normal
(N ) or Student’s t (t). The covariance structure in the score-driven (SD)
specifications can be either diagonal or adjusted as in Eq. (10), as indicated
by the column Adj. The last column specifies the number of parameters
in each model. The out-of-sample period covers January 1, 2012, through
January 1, 2022. The log implied volatilities are forecast for each option
contract. For the DM test (with the state-space models as benchmarks),
∗∗∗, ∗∗, and ∗ denote significance at the 1%, 5%, and 10% level, respectively.

model without covariance adjustment. The log-likelihood is about 1557k for the state-space

specification, whereas it only reaches 1273k for the score-driven model. However, when the

covariance adjustment is applied to the score-driven model as suggested in this paper, the

log-likelihood increases to 1554k, closely aligning with that of the linear Gaussian state-space

model. This same pattern is also reflected in the AIC results, which reveal that the density

forecasting gap between the state-space and score-driven model is nearly eliminated after

introducing the simple covariance adjustment of the measurement equation in the score-
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driven model.

Second, the relative ratios of MSE and MAE suggest that the state-space and score-driven

approaches, whether with or without covariance adjustment, perform similarly in terms of

point forecasts. This supports the findings of Koopman et al. (2016). For both the full sample

and the pre-COVID period, the Gaussian score-driven model without covariance adjustment

slightly outperforms the state-space model in terms of point forecasts as measured by the

lower MSE and MAE. The differences, however, are small, though sometimes statistically

significant. Conversely, the score-driven model with covariance adjustment exhibits a slightly

higher MAE compared to the state-space model, while the MSE values are nearly identical.

Interestingly, in the COVID period the patterns reverse: the score-driven model with co-

variance adjustment now outperforms the state-space model, while the score-driven model

without covariance adjustment yields MSE and MAE values that are nearly identical to those

of the state-space specification. In all cases, however, the density forecast performance of the

adjusted score-driven model outperforms that of the unadjusted score-driven model.

Third, the results for score-driven models that use the Student’s t distribution indicate

that incorporating non-Gaussian features further improves the density forecast performance

beyond that of the linear Gaussian state-space models. Specifically, the full-sample log-

likelihood and AIC of the Student’s t score-driven model without covariance matrix adjust-

ment already closes most of the gap vis-à-vis the Gaussian state-space model and performs

similarly to the Gaussian score-driven model with covariance matrix adjustment. It thus

appears that both features can substantially improve density forecast performance. This is

confirmed if we consider the Student’s t score-driven model with covariance matrix adjust-

ment: the out-of-sample log-likelihood for this model (1927k) is substantially larger than that

of its Gaussian state-space counterpart (1557k) as well as that of the other score-driven speci-

fications (1554k and 1537k). This is true for both tranquil and turbulent sub-periods. In sum,

the unadjusted Gaussian score-driven model performs badly for density forecasts (though not

for point forecasts), the covariance matrix adjustment largely remedies this problem, and the

subsequent non-Gaussian model enhancements and covariance matrix adjustments further

boost the density forecast performance of the score-driven model specification.

In Table 4, we evaluate the different models in economic terms by presenting the results

for the 99%-Value-at-Risk (VaR). In terms of violation rates, we find that the score-driven

models without covariance adjustment perform very badly. The predicted densities lie far

from the true densities, as signaled by the VaR violation percentages above 47% for a nominal

level of 1%. This holds for both the Gaussian and Student’s t distributions, and for both the

full sample and both sub-samples. As we are considering the quantiles of a sum Pt|t−1 of log
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Table 4: 99% Value-at-Risk backtesting outcomes using non-bucketed data

Model Distr. Adj. loglik Viol rate Tick loss
×10−3 ×103 ×103

Full sample (2012-2022)

SS N — 1557.08 0.43 3.46

SD N — 1273.70∗∗∗ 470.66 11.78∗∗∗

SD N yes 1554.78∗∗∗ 0.43 4.19∗∗∗

SD t — 1537.55 492.93 14.07∗∗∗

SD t yes 1927.21∗∗∗ 0.00 4.91∗∗∗

Pre-COVID (2012-2020)

SS N — 1095.66 0.51 2.98

SD N — 922.00∗∗∗ 485.23 12.18∗∗∗

SD N yes 1093.44∗∗∗ 0.51 3.56∗∗∗

SD t — 1141.53 518.33 15.23∗∗∗

SD t yes 1355.34∗∗∗ 0.00 4.23∗∗∗

COVID period (2020-2022)

SS N — 461.41 0.00 6.04

SD N — 351.70∗∗∗ 393.53 9.65∗∗∗

SD N yes 461.34∗∗ 0.00 7.55∗∗∗

SD t — 396.03 358.49 7.94∗∗

SD t yes 571.88∗∗∗ 0.00 8.55∗∗∗

Note: This table presents the out-of-sample log-likelihood
(loglik), including the violation ratio (Viol ratio) and tick
loss, for both the state-space (SS) and score-driven (SD)
model applied to the log implied volatility model from
Eqs. (1)–(2). The distribution (Distr.) of the measure-
ment noise εt is either normal (N ) or Student’s t (t). The
covariance structure in the score-driven (SD) specifications
can be either diagonal or adjusted as in Eq. (10), as indi-
cated by the column Adj. The out-of-sample period covers
January 1, 2012, through January 1, 2022. The log implied
volatilities are forecast for each option contract. For the
DM test (with the state-space models as benchmarks), ∗∗∗,
∗∗, and ∗ denote significance at the 1%, 5%, and 10% level,
respectively.

IVs, the correlation structure of the data matters substantially. As explained in Section 2, the

unadjusted score-driven model assumes all forecast errors to be uncorrelated. This results

in a relatively small VaR, as the forecast errors are assumed to cancel against each other

given the uncorrelatedness assumption. In reality, of course, it is much more likely that the

model makes an error in forecasting the level component (β1,t). If, for instance, the level

of the IV surface is forecast too low, the forecasts of all IVs are too low on average and all
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forecast errors are correlated. Due to this, the VaR should be much higher than assumed by

the unadjusted model, which results in a high violation rate for the unadjusted score-driven

model.

If we use the covariance matrix adjustment for the score-driven model, the VaR violation

rates of the Gaussian score-driven model immediately behave at par with those of the state-

space model, or are even somewhat more conservative if the Student’s t distribution is used for

the predictive density and the score. Also, the tick loss functions for the adjusted score-driven

models are much closer to the state-space model, signaling that the adjustment succeeds in

making the density forecast performance of the score-driven and the state-space approach

more similar. It underlines again that the uncorrelatedness assumption that is typical in

state-space factor model specifications cannot simply be imposed in a score-driven setting,

and that the covariance matrix adjustment for the measurement equation of the score-driven

model is indispensable to make the models more competitive, not only in terms of point

forecasts, but also in terms of density forecasts.

5.2 Robustness check with bucketed data

To verify the robustness of our previous findings for individual options’ data, we also apply

our analysis to bucketed data. This follows the approach of for instance Van der Wel et

al. (2016), Bollen and Whaley (2004), and Barone-Adesi et al. (2008). Like these previous

papers, we divide the data into four maturity groups, separated by maturities of 45, 90, and

180 days, and six moneyness groups, separated by ∆s of -0.375, -0.125, 0, 0.125, and 0.375, as

shown in Table 2. For each maturity-moneyness group, we select the contract closest to the

mid-point. Stacking the log IVs into a vector for the different groups leads to a 24-dimensional

vector at all times.

Tables 5 and 6 present the results for the bucketed data. Table 5 shows that the plain-

vanilla, unadjusted score-driven models again have a significantly lower log-likelihood than

the state-space models. The log-likelihoods of the score-driven models with covariance ma-

trix adjustment are again significantly higher than their unadjusted counterparts. For the

bucketed data, the adjusted score-driven model even has a higher out-of-sample likelihood

than the state-space model. This result is robust for both the full sample and the two sub-

samples, providing even stronger evidence in favor of the adjustment than the unbucketed

results in Table 3. For the second sub-sample, which includes the COVID period, the Gaus-

sian score-driven model behaves significantly better than its state-space counterpart in terms

of log-likelihood.

In terms of point forecasts, the Gaussian score-driven models perform better than or at
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Table 5: Out-of-sample performance using bucketed data

Model Distr. Adj. MSE MAE loglik AIC #Par.
×10−3 ×10−3

Full sample (2012-2022)

SS N — 1.00 1.00 62.18 -124.33 16

SD N — 0.97∗ 0.98∗∗∗ 54.41∗∗∗ -108.8 16
SD N yes 0.93∗∗ 0.97∗∗∗ 64.01∗∗∗ -127.97 21

SD t — 3.33 1.25 55.73∗∗∗ -111.42 17
SD t 1.32 1.03 66.34∗∗∗ -132.63 22

Pre-COVID (2012-2020)

SS N — 1.00 1.00 53.62 -107.21 16

SD N — 0.94∗∗∗ 0.98∗∗∗ 48.20∗∗∗ -96.36 16
SD N yes 0.96∗∗∗ 0.99∗∗ 55.18∗∗∗ -110.31 21

SD t — 1.21∗ 1.04∗ 50.41∗∗∗ -100.79 17
SD t 1.06 1.00 57.27∗∗∗ -114.49 22

COVID period (2020-2022)

SS N — 1.00 1.00 8.56 -17.08 16

SD N — 1.00 0.98 6.22∗ -12.40 16
SD N yes 0.90∗∗∗ 0.94∗∗∗ 8.83∗∗ -17.62 21

SD t — 5.67 1.81 5.32 -10.60 17
SD t 1.61 1.11 9.07∗∗ -18.10 22

Note: This table presents the MSE, MAE, log-likelihood (loglik), AIC,
and BIC, for a state-space (SS) model and a score-driven (SD) model
factor model for the log implied volatilities of S&P500 index options
as given in Eqs. (1)–(2). Individual options data are grouped into 24
(time-to-maturity, moneyness) bins and represented by the log IV for
the option closest to the midpoint of each bucket. The distribution
(Distr.) of the measurement noise εt is either normal (N ) or Student’s t
(t). The covariance structure in the score-driven (SD) specifications can
be either diagonal or adjusted as in Eq. (10), as indicated by the column
Adj. The last column specifies the number of parameters in each model.
The out-of-sample period covers January 1, 2012, through January 1,
2022. The log implied volatilities are forecast for each option contract.
For the DM test (with the state-space models as benchmarks), ∗∗∗, ∗∗,
and ∗ denote significance at the 1%, 5%, and 10% level, respectively.

par with the state-space specification, whether with or without the covariance adjustment.

The result holds both in terms of MSE and MAE. In several cases, the improvement is even

statistically significant.

For the bucketed data, the Student’s t distribution appears to have two different effects.

When we compare the out-of-sample log-likelihoods of the adjusted Gaussian score-driven
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model with that of its Student’s t counterpart, we see that the out-of-sample log-likelihood

increases by about 2300 points. The MSE and MAE results for the Student’s t specification,

however, are worse than those of the Gaussian model. The differences appear largest during

the COVID period (lower panel). To understand the latter, Appendix C gives some more

background. Particularly the rapid upward level shifts in the implied volatility surface during

the early stages of the COVID-19 period is picked up better (out-of-sample) in terms of MSE

and MAE by the Gaussian than the Student’s t model. The Student’s t based score-driven

model makes a trade-off for every new observation, whether to ascribe it to a change in the

factor loadings βt or to the fat-tailedness of the error process. This is done through the

weights (1 + ε⊤t H
−1
t εt/(ν − 2))−1 in (6). As a result, the Student’s t based model requires

some more observations to react to a real level shift. The consequence for the sample at hand

is that the Student’s t model fails to fully adapt to the steep level shifts during the COVID

lockdowns, leading to a worse point forecast performance. Our main conclusion, however,

remains: the adjustment of the measurement equation in score-driven factor models seems

indispensable for a good empirical performance of these models and improves both the density

and point forecast quality.

Table 6 presents the Value-at-Risk results for the bucketed data. We confirm our earlier

results. The violation rates near 15% for the unadjusted models are much too high compared

to the 1% nominal level. For the adjusted model specifications, by contrast, the rejection

percentages of 0.5% are only slightly more conservative than the nominal level. We also

see that the state-space and adjusted score-driven models behave similarly in terms of VaR

violations. In addition, the tick-loss functions of the adjusted score-driven models—under

both Gaussian and Student’s t distributions—are better than those of the state-space model.

We again conclude that the simple adjustment of the measurement equation in score-driven

factor models substantially improves their density forecast quality, without affecting their

already adequate point forecast accuracy compared to the benchmark models.

As a final robustness check, we investigate whether a less restrictive factor model spec-

ification alters the results. In our last specification, which we refer to as the four-factor

representation, we replace the interaction term between moneyness and time-to-maturity,

as well as the squared moneyness term introduced in Section 4.2 by a sequence of esti-

mated factor loadings, thus allowing for much more flexibility. We divide the non-bucketed

data into the same 24 groups as before. Define the group membership or bucket numbers

gi,t = g(mi,t, τi,t) ∈ {1, . . . , 24} if contract i at time t belongs to bucket gi,t, based on its

moneyness and time-to-maturity value at time t. The specification then becomes

log IVi,t = β1,t + β2,tmi,t + β3,tτi,t + β4,tω4,gi,t + εi,t, (13)

22



Table 6: 99% Value at Risk performance for bucketed data

Model Distr. Adj. loglik Viol rate Tick loss
×10−3 ×103 ×103

Full sample (2012-2022)

SS N — 62.18 1.71 1.81

SD N — 54.41∗∗∗ 157.17 4.63∗∗∗

SD N yes 64.01∗∗∗ 5.14 1.69∗∗∗

SD t — 55.73∗∗∗ 134.48 4.18∗∗∗

SD t 66.34∗∗∗ 0.43 1.54∗∗

Pre-COVID (2012-2020)

SS N — 53.62 1.02 1.78

SD N — 48.20∗∗∗ 173.12 5.09∗∗∗

SD N yes 55.18∗∗∗ 5.09 1.70∗∗∗

SD t — 50.41∗∗∗ 149.19 4.52∗∗∗

SD t 57.27∗∗∗ 0.51 1.52∗∗

COVID period (2020-2022)

SS N — 8.56 5.39 1.95

SD N — 6.22∗∗∗ 72.78 2.22∗∗∗

SD N yes 8.83∗∗∗ 5.39 1.62∗∗∗

SD t — 5.32∗∗∗ 56.6 2.42∗∗∗

SD t 9.07∗∗∗ 0.00 1.70∗∗

Note: Log-likelihood (loglik), Value-at-Risk, and tick-
loss results for a state-space (SS) model and a score-
driven (SD). Individual options data are grouped into
24 (time-to-maturity, moneyness) bins and represented
by log IV for the option closest to the midpoint of each
bucket. The distribution (Distr.) of the measurement
noise εt is either normal (N ) or Student’s t (t). The
covariance structure in the score-driven (SD) specifica-
tions can be either diagonal or adjusted as in Eq. (10),
as indicated by the column Adj. The out-of-sample pe-
riod covers January 1, 2012, through January 1, 2022.
The log implied volatilities are forecast for each option
contract. For the DM test (with the state-space models
as benchmarks), ∗∗∗, ∗∗, and ∗ denote significance at the
1%, 5%, and 10% level, respectively.

where ω4,g for g = 1, . . . , 24 are group-specific coefficients that need to be estimated. This

specification adds quite some flexibility compared to model (11), as we replace the rigid

specification of the loadings (m2
i,t and mi,t · τi,t) for the last two factors (β4,t and β5,t) by a

single factor (β4,t) with a more flexible, non-parametric specification; compare Van der Wel

et al. (2016).
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The results for this new specification are presented in Tables A.1 and A.2 in the appendix.

The new specification with flexible dynamic levels for each of the buckets clearly provides

a substantial increase in fit for the individual, non-bucketed data. For instance, the out-of-

sample log likelihood increases from a level of around 1500k for the Gaussian state-space and

adjusted score-driven models in Table 3, to a level of around 2500k in Table A.1. This is

mainly due to the new model’s much more flexible factor loadings for the last factor. The

main conclusions of this paper regarding the density forecasting performance between the

state-space and score-driven model specification, however, remain unaltered. Also for this

flexible version of the model, the unadjusted score-driven model performs badly in terms

of density forecasting performance compared to the state-space version of the model. By

contrast, the adjusted score-driven models largely close this gap in terms of both point

and density forecasts. We therefore conclude that the proposed adjustment is useful if not

indispensable when building score-driven factor models for forecasting.

6 Conclusion

Score-driven and state-space models are known to produce similar one-step-ahead forecast

quality. In this paper, we showed that in terms of density forecasts, however, score-driven

models can perform significantly worse. We investigated the origins of this performance

difference in a factor model setting and suggested a simple remedy by adjusting the covariance

matrix structure of the score-driven model to be more in line with that of the predictive rather

than the measurement error density of its state-space counterpart.

Using this adjustment, we showed that the original substantial difference in density fore-

cast quality between the two classes of models can be decreased substantially, or even closed,

and that both model classes are put on an equal footing again in terms of point and density

forecast quality. The advantage of this adjustment is that it can seamlessly be incorporated

into the (adjusted) score-driven modeling approach, which can subsequently be extended

with non-Gaussian features to fit the data even better. Such extensions do not complicate

the estimation approach of score-driven models in any way: estimation can still be based on

an analytic expression of the log-likelihood through a standard prediction error decomposi-

tion. Estimation for non-Gaussian error terms in a state-space context, however, is typically

more challenging, requiring numerical approximations and simulation-based methods.

We applied the new approach to model the implied volatility surface for S&P500 index

options data. We confirmed that a Gaussian plain-vanilla score-driven model has a signif-

icantly worse density forecast performance than a linear Gaussian state-space model. The
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performance difference is substantial, both in statistical and economic terms. However, af-

ter adjusting the score-driven model’s covariance structure as proposed in this paper, this

out-of-sample performance gap vanishes and can even reverse, especially when incorporating

non-Gaussian features.

We therefore conclude that the proposed adjustment provides a simple fix for the out-

of-sample density forecasting performance of score-driven factor models. The adjustment

approach can also be applied in high-dimensional cases if the number of factors remains

limited. This is due to its parsimonious nature, which is rooted in the underlying factor

model structure. Empirically, we illustrated this in the context of modeling implied volatility

surfaces for individual (rather than bucketed) option contracts, in which case one easily has

more than hundreds of time series observations every single period.

It is interesting of course to further investigate whether similar density forecast perfor-

mance differences exist for other model settings than the factor model context. If so, one

might investigate whether the solution proposed in this paper can also bring the state-space

and score-driven approaches closer together in such an alternative context. We leave this for

future research.
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A Further robustness checks

Table A.1: Out-of-sample performance with a four-factor representation for non-bucketed
data

Model Distr. Adj. MSE MAE loglik AIC #Par.
×10−3 ×10−3

Full sample (2012-2022)

SS N — 1.00 1.00 2529.16 -5058.25 37

SD N — 1.00 1.00 2087.72∗∗∗ -4175.37 37
SD N yes 1.00 1.01∗∗∗ 2526.46∗∗∗ -5052.83 41

SD t — 1.05∗∗∗ 1.02∗∗ 2336.27∗∗ -4672.46 38
SD t yes 1.01∗ 1.02∗∗∗ 2820.04∗∗∗ -5640.00 42

Static N — 2.98∗∗∗ 1.91∗∗∗

Pre-COVID (2012-2020)

SS N — 1.00 1.00 1930.77 -3861.47 37

SD N — 1.00 1.00∗∗ 1649.28∗∗∗ -3298.50 37
SD N yes 1.01∗∗∗ 1.02∗∗∗ 1928.41∗∗∗ -3856.73 41

SD t — 1.02 1.01∗∗∗ 1833.79∗∗ -3667.51 38
SD t yes 1.01∗∗∗ 1.02∗∗∗ 2133.74∗∗∗ -4267.40 42

Static N — 2.01∗∗∗ 1.68∗∗∗

COVID sample (2020-2022)

SS N — 1.00 1.00 598.39 -1196.70 37

SD N — 1.00 1.00 438.44∗∗ -876.80 37
SD N yes 0.97∗∗∗ 0.99∗∗ 598.05∗∗ -1196.02 41

SD t — 1.14 1.05 502.47 -1004.87 38
SD t yes 1.02 1.02 686.30∗∗∗ -1372.51 42

Static N — 6.02∗∗∗ 2.86∗∗∗

Note: This table presents the MSE, MAE, log-likelihood (loglik), AIC, and
BIC, for a state-space (SS) model, a score-driven (SD) model, and a static
(βt ≡ β) factor model for the log implied volatilities of S&P500 index
options as given in Eqs. (1)–(2). This four-factor representation includes
a level factor, slopes in the moneyness and time-to-maturity dimensions,
and a nonparametric factor. The distribution (Distr.) of the measurement
noise εt is either normal (N ) or Student’s t (t). The covariance structure
in the score-driven (SD) specifications can be either diagonal or adjusted
as in Eq. (10), as indicated by the column Adj. The last column specifies
the number of parameters in each model. The out-of-sample period covers
January 1, 2012, through January 1, 2022. The log implied volatilities are
forecast for each option contract. For the DM test (with the state-space
models as benchmarks), ∗∗∗, ∗∗, and ∗ denote significance at the 1%, 5%,
and 10% level, respectively.
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Table A.2: 99% Value at Risk performance with a four-factor representation using non-
bucketed data

Model Distr. Adj. loglik Viol ratio Tickloss
×10−3 ×103 ×103

Full sample (2012-2022)

SS N — 2529.16 0.21 1.75

SD N — 2087.72∗∗∗ 52.59 14.73∗∗∗

SD N yes 2526.46∗∗∗ 0.13 2.15∗∗∗

SD t — 2336.27∗∗ 53.40 16.56∗∗∗

SD t yes 2820.04∗∗∗ 0.86 2.47∗∗∗

Pre-COVID period (2012-2020)

SS N — 1930.77 0.20 1.65

SD N — 1649.28∗∗∗ 53.82 15.17∗∗∗

SD N yes 1928.41∗∗∗ 0.15 1.98∗∗∗

SD t — 1833.79∗∗ 55.55 17.50∗∗∗

SD t yes 2133.74∗∗∗ 0.51 2.41∗∗∗

COVID period (2020-2022)

SS N — 598.39 0.27 2.29

SD N — 438.44∗∗ 46.09 12.40∗∗∗

SD N yes 598.05∗∗ 0.00 3.07∗∗∗

SD t — 502.47 42.05 11.57∗∗∗

SD t — 686.30∗∗∗ 2.70 2.80∗∗∗

Note: This table presents the out-of-sample log-likelihood
(loglik), including the violation ratio (Viol ratio) and tick
loss, for both the state-space (SS) and score-driven (SD)
model applied to the log implied volatility model from
Eqs. (1)–(2). This four-factor representation includes a
level factor, slopes in the moneyness and time-to-maturity
dimensions, and a nonparametric factor. The distribution
(Distr.) of the measurement noise εt is either normal (N ) or
Student’s t (t). The covariance structure in the score-driven
(SD) specifications can be either diagonal or adjusted as
in Eq. (10), as indicated by the column Adj. The out-of-
sample period covers January 1, 2012, through January 1,
2022. The log implied volatilities are forecast for each op-
tion contract. For the DM test (with the state-space models
as benchmarks), ∗∗∗, ∗∗, and ∗ denote significance at the 1%,
5%, and 10% level, respectively.
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B Information matrix for Student’s t distribution

The score for the Student’s t case with ν degrees of freedom and covariance matrix Ht is

given by:

∇t =
ν +Nt

ν − 2

M⊤
t H

−1
t εt

1 +
ε⊤t H

−1
t εt

ν − 2

=
ν +Nt

ν − 2

√
ν − 2

ν
M⊤

t H
−1/2
t

ε̃t
1 + ε̃⊤ε̃t/ν

, (B.1)

where ε̃t = ν1/2(ν − 2)−1/2H
−1/2
t εt such that ε̃t ∼ t(0, I, ν). Therefore,
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where bν,Nt =
(
1+ ε̃⊤t ε̃t/ν

)−1 ∼ Beta(ν/2, Nt/2). Using the expressions for the mean ν/(ν +

Nt) and the second-order uncentered moment ν(ν + 2)/[(ν + Nt)(ν + Nt + 2)] of a beta

distributed random variable, we therefore obtain
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C MSE of the non-adjusted Student’s t model for buck-

eted data

In this section, we examine the high MSE of the non-adjusted Student’s t score-driven model

reported in Table 5. Figure C.1 presents the yearly MSE for both the state-space model

(denoted as SS), the non-adjusted Student’s t score-driven model (denoted as E T) and the

adjusted Student’s t (denoted as EAT) over time. The results indicate that the substantial

discrepancy between the state-space and the Student’s t models is concentrated in the year

2020.

A closer inspection of the 2020 MSE values, shown in Figure C.2, reveals that the poor

performance of the Student’s t model is particularly pronounced during the March–April pe-

riod, which coincides with the onset of COVID-19 lockdowns in most countries. Figure C.3,

which plots the mean level of implied volatility in 2020, highlights several significant upward

shifts in the volatility surface during this time. Due to its heavy-tailed nature, the Student’s t

model tends to interpret such abrupt changes as outliers and therefore responds more conser-

vatively. As a result, the model fails to adjust sufficiently to structural level shifts—especially

when these shifts exhibit momentum—leading to poor forecasting performance during this

period. In addition, we observe that incorporating a covariance adjustment mitigates the

issue to a considerable extent, indicating the importance of accommodating a correlated

covariance structure.

Finally, Figure C.4 shows that the estimated degree-of-freedom parameter remains rela-

tively stable over time, suggesting that the deterioration in performance is not due to changes

in the tail behavior of the fitted distribution itself.
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Figure C.1: Yearly MSE for the state space and non-adjusted Student’s t model

Figure C.2: MSE for state space and non-adjusted Student’s t model in 2020
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Figure C.3: Mean level of log implied volatility in 2020

Figure C.4: Estimated degree of freedom in non-adjusted Student’s t model for different
prediction window
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