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Abstract

This paper introduces a novel approach to simulation smoothing for nonlinear and
non-Gaussian state space models. It allows for computing smoothed estimates
of the states and nonlinear functions of the states, as well as visualizing the
joint smoothing distribution. The approach combines extremum estimation with
simulated data from the model to estimate the conditional distributions in the
backward smoothing decomposition. The method is generally applicable and can be
paired with various estimators of conditional distributions. Several applications to
nonlinear models are presented for illustration. An empirical application based on a
stochastic volatility model with stable errors highlights the flexibility of the approach.
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1 Introduction

The estimation of variables subject to measurement noise has a long history in statistics,

tracing back at least to Galileo’s concept of random observational errors (Galilei 1632;

Hald 1986). When the data are ordered in time, the problem is often formulated using state

space models (SSMs). These models treat observations as noisy measurements of latent

states, which govern the dynamics of the system under study. Applications of SSMs are

ubiquitous, with numerous examples in economics and finance, neuroscience, epidemiology,

astronomy, target tracking, and many other fields (Durbin and Koopman 2012; Chopin

and Papaspiliopoulos 2020).

Given the SSM, an important objective is to perform inference on the unobserved states.

We focus on simulation smoothing (e.g., De Jong and Shephard 1995; Durbin and Koopman

2002; Godsill, Doucet, and West 2004; McCausland, Miller, and Pelletier 2011), where the

goal is to draw paths of the states conditional on the observed data. The simulated paths

can be used to compute estimates of the states, including their conditional means, quantiles,

and other characteristics of the so-called smoothing distribution. Furthermore, the paths

provide a means to visualize and study the joint behavior of the states given the data. As

noted by Godsill et al. (2004, p.165), “Generating sample realizations is the most efficient,

effective, and intuitive approach to studying complicated multivariate joint distributions.”

This paper introduces a novel approach to simulation smoothing for nonlinear and non-

Gaussian SSMs that is based on extremum Monte Carlo (XMC; Moussa, Blasques, and

Koopman 2023). The method combines extremum estimation (Amemiya 1985) with simu-

lated data from the model to estimate the conditional distributions in the backward decom-

position of the smoothing distribution (Carter & Kohn 1994; Frühwirth-Schnatter 1994).

The approach is generally applicable, with the main requirement being the ability to simu-

late from the SSM of interest. It can be implemented with various estimators of conditional

distributions, each leading to a different version of the simulation smoother with its own

statistical and computational properties.

1



The rest of this paper is organized as follows. Section 2 describes the problem of

simulation smoothing within the SSM framework. Section 3 introduces the XMC simulation

smoother. Section 4 discusses the use of importance sampling to refine the smoothed

estimates and paths. Section 5 presents applications to illustrate the simulation smoother.

Section 6 provides discussion. The appendix contains supplementary material.

2 State Space Framework and Backward Sampling

Using xt ∈ RNx to denote the state vector at time t and yt ∈ RNy for the corresponding

vector of measurements (or observations), we consider the general SSM defined by

xt+1 = st(xt, ε
x
t ), x1 ∼ p(x1),

yt = mt(xt, ε
y
t ), (εxt , ε

y
t ) ∼ p(εxt , ε

y
t ),

(1)

for discrete times t = 1, . . . , T , where T ∈ N is the length of the time series. Here, st and mt

denote the state transition and measurement functions, respectively, and p(z) represents the

probability density or mass function of a random variable z. These functions may depend on

static parameters, which are assumed to be fixed and given. The noise terms εxt and εyt are

assumed to be mutually and serially independent, and independent of the initial state x1.

In this context, simulation smoothing refers to drawing paths of the states conditional

on all available observations,

x1:T ∼ p(x1:T |y1:T ). (2)

This task is often performed by utilizing the following backward decomposition of the

smoothing distribution,

p(x1:T |y1:T ) =
T∏
t=1

p(xt|Ft), Ft =


y1:T if t = T,

(y1:t, xt+1) if t < T.

(3)
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The above factorization follows from Bayes’ rule, where the independence assumptions on

the noise terms ensure that the states follow a Markov process and future measurements can

be discarded given xt+1. As a result, simulation smoothing can be accomplished by sequen-

tially drawing from the components p(xt|Ft), starting at the final time T and proceeding

backward in time. This yields the backward sampling procedure in Algorithm 1.

Algorithm 1 Backward Sampling for Simulation Smoothing

To draw a path x1:T from the joint smoothing density p(x1:T |y1:T ):

1. Draw states at time T .

Draw xT ∼ p(xT |y1:T ).

2. Draw remaining states moving backward in time.
For t = T − 1, . . . , 1:

Draw xt ∼ p(xt|y1:t, xt+1).

The backward sampling approach is directly applicable when the measurement and

state transition functions mt and st in (1) are linear, and all distributions involved are

Gaussian (Carter & Kohn 1994; Frühwirth-Schnatter 1994). However, for nonlinear and

non-Gaussian SSMs, which are common in practice (e.g., Doucet, De Freitas, & Gordon

2001), it is generally not possible to sample directly from the components p(xt|Ft) in (3).

Consequently, approximations are required.

In this more general setting, simulation smoothing is typically carried out using Markov

chain Monte Carlo (MCMC) or sequential Monte Carlo (SMC) methods. These methods are

widely used, but they can be computationally intensive, particularly when a large number of

state paths is required. For example, most SMC smoothing algorithms have a complexity

of O(M2), with M the number of particles (Chopin & Papaspiliopoulos 2020, Ch.12).

Additionally, both MCMC and SMC methods involve repeated evaluations of the density

functions p(yt|xt) and p(xt|xt−1), which can be computationally expensive or unavailable

in some models (e.g., Lombardi and Calzolari 2009; Chopin and Papaspiliopoulos 2020).

The simulation smoother presented in the following section relies on XMC in order to

address some of these challenges.
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3 Simulation Smoothing by Extremum Monte Carlo

3.1 Background

To settle ideas, we begin by discussing the idea behind the simulation smoother in a simpli-

fied setting. Consider two random variables, X and Y , and suppose our aim is to estimate

the conditional density function p(X|Y ). Assume we can draw N cases of both variables,

X(i), Y (i), i = 1, . . . , N,

Let FN denote a set of conditional densities f(X|Y ) from which sampling is possible, and let

L be a corresponding loss function. The conditional density p(X|Y ) can then be estimated

via the extremum estimator

f̂N ∈ arg min
f∈FN

1

N

N∑
i=1

L
(
X(i), Y (i), f

)
. (4)

As a simple example, consider the parametric space of Gaussian conditional densities

FN =
{
fG
(
X; a+ bY, σ2

) ∣∣ a, b ∈ R, σ2 > 0
}
,

where fG(X;µ, σ2) denotes the Gaussian density with mean µ and variance σ2. If we choose

the loss function to be the negative log density,

L
(
X(i), Y (i), f

)
= − log f

(
X(i)|Y (i)

)
,

then the estimator in (4) corresponds to the maximum likelihood estimator.

Once the conditional density has been estimated, it can be used to generate D draws

conditional on a specific value y of Y ,

X [j] ∼ f̂N(X|y) ≈ p(X|Y = y), j = 1, . . . , D.
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An elementary version of the XMC simulation smoother is obtained by applying the

above procedure for t = T, . . . , 1 with X = xt and Y = Ft to perform backward sampling,

where Ft is the information set at time t defined in (3). However, several key modifications

are necessary to enhance its practical utility. First, the Gaussian conditional density estima-

tor from the example may not be suitable for the given application. To broaden the appli-

cability, the actual simulation smoother employs general (semi-)nonparametric estimators.

Second, since the information set Ft contains the observations y1:t, the approach would be

inefficient when t is large. To address this, the covariates are restricted to a subset Ct ⊆ Ft.

Lastly, when the covariates Ct correspond to rolling windows, it becomes possible to reuse

previously estimated density functions at different time points, which can lead to large com-

putational savings. The details of these modifications are discussed in the next sections.

3.2 Simulation Smoothing Algorithm

Algorithm 2 presents the XMC simulation smoother. The algorithm takes as input a given

SSM, a set FN of conditional densities, and a corresponding loss function L. The set FN

may also include probability mass functions, characteristic functions, cumulative distribu-

tion functions, and other suitable representations of a conditional distribution, in which

case the method remains directly applicable. The output of the algorithm consists of D

paths drawn from the estimated smoothing distribution, which are generated in three steps:

simulation, fitting, and backward sampling.

In the first step, the SSM is used to simulate N paths of the latent states x
(i)
1:T and

corresponding measurements y
(i)
1:T , i = 1, . . . , N . The simulated data are then split into

training and validation samples, with cval ∈ (0, 1) representing the fraction allocated to the

validation sample. In the second step, these data are used to fit the simulation smoother

to the given SSM. This is done by solving the optimization problem in (5), first at times

T and T − 1 for various candidate values of the tuning parameters (regularization), which

are present in most estimators of conditional distributions. Using the selected tuning
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Algorithm 2 Extremum Monte Carlo Simulation Smoother

1. Simulate: Use the SSM in (1) to simulate N paths of the states and observations,

x
(i)
1:T , y

(i)
1:T , i = 1, . . . , N.

2. Fit:

(a) Split data: Set cval ∈ (0, 1) and split the data into training and validation samples
with sizes

Ntr = N −Nval and Nval = [cvalN ].

(b) Regularization: For a set of candidate tuning parameters, perform the following
extremum estimation at times t = T and t = T − 1:

f̂Nt ∈ arg min
f∈FN

1

Ntr

Ntr∑
i=1

L
(
x
(i)
t , C(i)t , f

)
, (5)

with covariates C(i)t ⊆ F
(i)
t , where F (i)

t represents the information set in (3) for the i-th
simulated sample, FN is a set of conditional densities f(xt|Ct), and L is a loss function.
Select the tuning parameters that minimize the average loss for the validation sample.

(c) Estimation: Use the selected tuning parameters to perform the estimation in (5) for
all times t = T, . . . , 1 to obtain the function estimates {f̂Nt }Tt=1.

3. Backward sampling: Draw D smoothed paths of the states by using Algorithm 1 with
p(xt|Ft) := f̂Nt (xt|Ct) for t = T, . . . , 1, with covariates Ct based on the actual data:

x
[j]
1:T ∼

T∏
t=1

f̂Nt (xt|Ct) ≈ p(x1:T |y1:T ), j = 1, . . . , D.

parameters, the optimization is performed at all time points to obtain the density estimates

f̂N
t (xt|Ct) ≈ p(xt|Ft) for t = T, . . . , 1. The final step applies backward sampling using these

estimates to generate D smoothed paths. We now discuss some of these steps in more detail.

In the second step, the covariates used in the optimizations, C(i)t ⊆ F
(i)
t , are defined to

include the W ∈ {1, . . . , T} measurements nearest to time t, where the window size W is

considered a tuning parameter. Based on the information sets in (3), we have

Ct =


yt˜:t if t = T,

(yt˜:t, xt+1) if t < T,

t˜= max {t−W + 1, 1}, (6)

for t = T, . . . , 1. The superscripts (i) indicate that the elements of C(i)t correspond to the
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i-th simulated path from the training sample, where i = 1, . . . , Ntr. Thus, C(i)t = y
(i)
t˜:t when

t = T , and C(i)t =
(
y
(i)
t˜:t , x

(i)
t+1

)
when t < T .

The window size is selected in the regularization step, along with other tuning param-

eters specific to the chosen conditional density estimator. This is done by minimizing the

average loss for the validation sample over a set of candidate tuning parameters generated

using a Bayesian optimization procedure (Bergstra, Yamins, & Cox 2013). To save compu-

tations, the tuning parameters optimized at time T − 1 are reused for times t < T − 1, as

the minimization problems in (5) are similar. At time T , however, there is no future state

to condition on, so different tuning parameters may be required.

In the estimation step, the selected tuning parameters are used estimate the conditional

densities for all times t = T, . . . , 1. The resulting estimates
{
f̂N
t

}T
t=1

are then used in the

final step to perform backward sampling, where they are evaluated with covariates Ct

based on the actual measurements, which is indicated by the absence of a superscript.

Specifically, Algorithm 1 is applied with p(xt|Ft) := f̂N
t (xt|Ct) for t = T, . . . , 1, to draw D

paths x
[j]
1:T , j = 1, . . . , D, from the estimated smoothing distribution.

For each choice of conditional density (or distribution) estimator, Algorithm 2 defines

a corresponding version of the simulation smoother. To ensure broad applicability, the

estimator must be sufficiently general to approximate most smoothing distributions of

practical interest. Additionally, it should be capable of handling a potentially large number

of covariates, and sampling from the estimated distributions should be computationally

inexpensive to maintain the efficiency of the simulation smoother. In the applications, the

simulation smoother will be illustrated using the following two widely used estimators.

The first estimator we consider is the mixture density network (Bishop 1994, 2006),

which is a mixture of normal densities where the parameters are the output of a neural

network. In our case, the covariates Ct serve as the input of the network. The universal

approximation properties of neural networks and mixtures of normal densities enable wide

applicability, and sampling from the estimated distribution is straightforward. We allow the
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number of layers to exceed one and treat this as a tuning parameter, consistent with modern

applications (Zen and Senior 2014; Zhang et al. 2020; He and Wang 2020). This results

in the deep mixture density network (DMDN) version of the XMC simulation smoother.

Further background on the DMDN estimator can be found in Appendix A.1.

The second estimator relies on regression forests (RFs), which are ensembles of regres-

sion trees (Breiman 2001; Meinshausen 2006). It builds on the observation by Meinshausen

(2006) that the predictions of a random forest can be expressed as a weighted average of the

response values in the training sample, where the weights enable estimation of the full con-

ditional distribution. In our case, the weight assigned to each response value x
(i)
t represents

the probability P (xt = x
(i)
t |Ct) for i = 1, . . . , N , providing a discrete approximation to the

target distribution when the states are continuous. Simulation is performed via weighted

resampling with replacement. This approach to conditional simulation was recently ap-

plied by van der Westhuizen, Heuvelink, and Hofmeyr (2023) in the context of digital soil

mapping. We use it for estimation and simulation of the conditional distributions in the

backward decomposition in (3), leading to the RF version of the XMC simulation smoother.

Additional details on the RF estimator are provided in Appendix A.2.

Notably, Algorithm 2 can be applied with other estimators of conditional distributions,

including parametric approaches, kernel density estimators (KDEs), Gaussian processes

(Williams & Rasmussen 2006), normalizing flows (Kobyzev, Prince, & Brubaker 2020),

and other methods that allow for simulation.

3.3 Steady State Approach

In many cases, the density estimates can be reused for simulation at different time points,

allowing the estimation costs to be amortized (Stuhlmüller, Taylor, & Goodman 2013).

This can lead to substantial computational savings, particularly for long time series. By

analogy to the XMC filter (Moussa et al. 2023), we refer to this extension of Algorithm 2

as the steady state approach to simulation smoothing.
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As shown in Appendix B.1, the range of time points at which density functions can be

reused is given by

W ≤ t ≤ T − 1. (7)

The upper bound reflects the requirement of a future state for conditioning, while the lower

bound ensures that W past observations are available. A suitable time tss for the density

function f̂N
tss to be reused can be determined in several ways. The choice tss = T − 1

minimizes computations, but it assumes that the density estimate at time T −1 generalizes

well to the previous time points. Alternatively, the validation sample can be used to

iteratively evaluate the suitability of the density estimates during the estimation step in

Algorithm 2. Further details can be found in Appendix B.2.

3.4 Computational Considerations

The runtime of Algorithm 2 can be reduced by parallelizing the computations in the estima-

tion step, as the minimizations in (5) can be carried out simultaneously for different times.

However, the sequential approach can be useful when the function estimates are memory-

intensive. In such cases, the sampling step in Algorithm 2 can be performed immediately

after the estimation step for each time t, discarding the function estimates directly after

each draw. This approach requires storing only a single density estimate at a time.

Table 1 presents current estimates of the computational complexity for the XMC simula-

tion smoother in Algorithm 2, where N denotes the number of simulated paths used for fit-

ting and D the number of draws from the estimated smoothing distribution. The complex-

ities labeled “Estimation” and “Sampling” correspond to a single time iteration in the esti-

mation and backward sampling steps, respectively. The complexity estimates for the esti-

mation step are based on Chapters 9.7 and 11.10 of Hastie, Tibshirani, and Friedman (2009).

For the RF estimator, a single draw at time t has a complexity of O(N), corresponding

to resampling from a multinomial distribution (e.g., Li, Bolic, & Djuric 2015). For t < T ,

each of the D draws is based on a different multinomial distribution, as the j-th draw is

9



Table 1: Current estimates of the computational complexity for the XMC simulation smoother
in Algorithm 2, where N denotes the number of simulated paths used for fitting and D the number
of draws from the estimated smoothing distribution. The complexities labeled “Estimation” and
“Sampling” correspond to a single time iteration in the estimation and backward sampling steps.

Version Estimation Sampling Simulation smoother

DMDN O(N) O(D) O
[
T (N +D)

]
RF O

[
N log (N)

]
O(ND) O

[
TN(log (N) +D)

]
conditional on the future state x

[j]
t+1, j = 1, . . . , D. Thus, the complexity at a single time

step is O(ND), and the overall complexity is O
[
TN(log (N) +D)

]
.

In contrast, for the DMDN estimator, the costs of sampling are independent of N

because the training data are used solely for estimating the neural network. Consequently,

simulation has a complexity of O(D), resulting in an overall complexity of O
[
T (N+D)

]
for

the DMDN-XMC simulation smoother. This makes large values of both N and D feasible,

enabling accurate simulation smoothing in a broad range of practical applications.

4 Importance Sampling

For conciseness, let x = x1:T and y = y1:T denote the full paths of the states and mea-

surements. Suppose the joint density p(x, y) can be evaluated for any pair (x, y), and the

estimated smoothing density

f̂(x|y) =
T∏
t=1

f̂N
t (xt|CNt ), N ∈ N,

is positive on the support of p(x|y) = p(x, y)/p(y). In this case, importance sampling

techniques (e.g., Durbin & Koopman 2012, Ch.11) can be used to refine the smoothed

estimates and paths. When the focus is on estimating some function g of the states,

importance sampling is based on the identity

E[g(x)|y] =

∫
g(x)p(x|y)dx =

∫
g(x)

p(x|y)

f̂(x|y)
f̂(x|y)dx ∝

∫
g(x)

p(x, y)

f̂(x|y)
f̂(x|y)dx.
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Thus, the expectation can be estimated via Monte Carlo integration using D draws from

the importance density f̂ ,
D∑
i=1

w̃i g
(
x[i]
)
≈ E[g(x)|y], (8)

where x[i] ∼ f̂(x|y), i = 1, . . . , D, and the normalized importance weights w̃i are given by

w̃i =
wi∑D
j=1wj

, with wi =
p(x[i], y)

f̂(x[i]|y)
. (9)

Under the mild assumption that the expectation E[g(x)|y] and the marginal likelihood

p(y) exist, Theorem 1 in Geweke (1989) ensures that the estimator in (8) based on D

independent draws converges almost surely to the target expectation as D →∞.

The importance weights can also be used to resample the paths with corresponding

probabilities w̃i, a technique known as sampling importance resampling (SIR; Rubin 1987).

Under the same assumptions as above, letting D → ∞ ensures that the SIR paths are

consistent with the smoothing density p(x|y), as shown by Smith and Gelfand (1992). This

approach was also considered by Kim, Shephard, and Chib (1998) for refining posterior

draws of the states in Bayesian inference for a stochastic volatility model.

5 Applications

This section presents several applications of the XMC simulation smoother to illustrate its

main features. The validation sample fraction is set to cval = 0.1 throughout.

5.1 Simulation Smoothing for a Nonlinear Model

We consider the nonlinear model given by

xt+1 =
1

2
xt +

25xt
1 + x2t

+ 8 cos
[
1.2(t+ 1)

]
+ εxt , εxt ∼ N(0, σ2

x),

yt =
x2t
20

+ εyt , εyt ∼ N(0, σ2
y),

(10)
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with x1 ∼ N(0, 1). The parameters are set to σ2
x = 0.1 and σ2

y = 1 as in Kitagawa (1996).

This model serves as a common test case for filtering and smoothing methods (e.g., Gordon,

Salmond, and Smith 1993; Kitagawa 1996; Doucet, Godsill, and Andrieu 2000).

Figure 1 (a) shows a simulated path of the measurements from the nonlinear model

in (10). Figure 1 (b) presents estimates of the corresponding smoothing means E[xt|y1:T ]

based on the DMDN and RF-XMC simulation smoothers with N = D = 104. For compari-

son, the figure also includes estimates based on particle smoothing, obtained using forward

filter backward smoothing (Doucet et al. 2000) with 104 particles. The close agreement

among the three methods supports the accuracy of the XMC simulation smoothers.

For further analysis, we examine the simulated paths and their distributions. Figure 2

displays the true path of the states (indicated by dots) that was used to generate the mea-

(a)

(b)

Figure 1: Simulated measurements and estimates of the corresponding smoothing means
E[xt|y1:T ] based on the nonlinear model in (10): (a) simulated path of the measurements; (b)
estimates of the smoothing means based on particle smoothing (PS) with 104 particles, and the
RF and DMDN versions of the XMC simulation smoother with N = D = 104.
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Figure 2: True states (dots) used to generate the measurements in Figure 1, shown alongside
D = 105 smoothed paths from the DMDN-XMC simulation smoother with N = 106 (blue lines),
as well as 105 draws from the unconditional distribution of the states (gray lines).

surements in Figure 1 (a). Based on these measurements, the DMDN-XMC simulation

smoother was applied with N = 106 to generate D = 105 smoothed paths of the states,

shown in blue. For comparison, an equal number of paths drawn from the unconditional

distribution of the states are shown in gray. Unlike the unconditional paths, the smoothed

paths are tightly concentrated around the true trajectory, reflecting the information con-

tained in the observations about the latent states.

At several time points, the paths suggest that the marginal distributions are multi-

modal, which is a known characteristic of the nonlinear model (Doucet et al. 2001, Ch.1).

This presents challenges for several established approaches to simulation smoothing. For

instance, Gaussian approximations to the smoothing distribution (Durbin & Koopman

1997; Shephard & Pitt 1997) are not suitable in this setting, as they neglect one or more

modes of the target density, while MCMC methods are prone to becoming trapped in one

of the modes (e.g., Hoogerheide, Van Dijk, & Van Oest 2009). Notably, the XMC simu-

lation smoother generates independent samples, and a sufficiently flexible estimator could

be used to account for the modes of the target distribution.

For illustration, Figure 3 shows the marginal densities p(xt) and p(xt|y1:T ) at t = 9

and t = 58. These densities are estimated using a Gaussian KDE based on the simulated

paths shown in Figure 2. At t = 9, the smoothing density exhibits a large shift in the

modes relative to the unconditional density. At t = 58, the marginal smoothing density is
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Figure 3: Marginal density estimates at t = 9 and t = 58, based on the nonlinear model in (10)
and the simulated measurements shown in Figure 1 (a). Estimates are shown for the unconditional
density and the smoothing density based on the paths in Figure 2, and the density corresponding
to the SIR extension of the simulation smoother described in Section 4.

bimodal, while the unconditional density is unimodal. These examples highlight the value

of smoothing for accurate estimation of the states and their distributions.

Figure 3 also displays the KDE based on the SIR extension of the simulation smoother

described in Section 4. At both times, the SIR correction is small and has little impact on

the location of the modes. This pattern holds at other time points (not shown), supporting

the accuracy of the basic version of the simulation smoother.

An important feature of simulation smoothers is that the state paths allow for visualiza-

tion of the joint smoothing distribution. To illustrate this, the left pane of Figure 4 presents

Figure 4: Visualization of the joint smoothing distribution based on the nonlinear model in (10)
and the simulated measurements shown in Figure 1 (a). Left: scatter plot of the variates x9 and x10
from the DMDN-XMC simulation smoother. Right: contour plot of the density f̂(x14, x15|y1:T ).
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a scatter plot of the variates x9 and x10 from the DMDN-XMC simulation smoother, reveal-

ing that the smoothing distribution is multimodal and non-elliptical. For a more detailed

view, contour or surface plots could be used. The right pane of Figure 4 shows a con-

tour plot of the joint density f̂(x14, x15|y1:T ), which is bimodal, with a global mode around

(x14, x15) = (−12.8,−2.7) and a local mode around (x14, x15) = (−13,−3.5).

5.2 Empirical Application: Smoothing Time-Varying Volatility

This section applies the XMC simulation smoother to estimate the time-varying volatility

of daily stock prices for Tesla. Our analysis is based on the stochastic volatility (SV) model

(Lombardi and Calzolari 2009; Vankov, Guindani, and Ensor 2019) given by

xt+1 = µx + φx(xt − µx) + σxε
x
t , εxt ∼ N(0, 1),

yt = exp(xt/2)εyt , εyt ∼ S(α, β),

(11)

with x1 ∼ N
[
µx, σ

2
x/(1− φ2

x)
]

and parameters µx ∈ R, |φx| < 1, and σx > 0. The observa-

tion yt represents the return on a financial asset at time t, and xt determines its scale (or

volatility). Additionally, S(α, β) denotes the first parameterization of the stable distribu-

tion as in Nolan (2009), with tail index α ∈ (0, 2] and asymmetry parameter β ∈ [−1, 1].

The stable distribution has heavy tails for α < 2, and the above model has been used in

applications characterized by extreme movements, including currency crises (Lombardi &

Calzolari 2009), propane spot prices (Vankov et al. 2019), and Bitcoin (Blasques, Koopman,

& Moussa 2024). We consider its application to the daily log returns of Tesla, defined as 100·

log(Pt/Pt−1), where Pt is the closing price of Tesla stock at day t, adjusted for stock splits.

The observations correspond yt to the centered log returns shown in Figure 5, ranging from

January 4, 2021, to January 3, 2022. The data were obtained from WRDS (ticker: TSLA).

A complicating factor is that, apart from a few specific parameter choices, such as

α = 2, which yields the normal distribution, the stable density p(εyt ) does not have a

closed-form expression. This precludes the direct use of many standard smoothing methods.
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Figure 5: Centered daily log returns of Tesla stock from January 4, 2021, to January 3, 2022.

An important feature of the XMC simulation smoother is that it can be applied when the

SSM allows for simulation. Generating draws from the stable distribution is straightforward

using the method of Chambers, Mallows, and Stuck (1976), which makes the proposed

simulation smoother directly applicable to the SV model in (11).

For illustration, the DMDN-XMC simulation smoother was applied to the SV model

and Tesla data set described above, with N = 106 and D = 104. The static parameters

were determined via indirect inference (Gourieroux, Monfort, & Renault 1993), using the

estimator from Blasques et al. (2024) based on an extended sample (June 30, 2010 - March

28, 2025). The estimates are given by α = 1.819, β = −0.050, µx = 1.632, φx = 0.989,

and σx = 0.140. Figure 6 (a) shows the estimated 10%, 50%, and 90% smoothing quantiles

corresponding to p(xt|y1:T ). The state quantiles are higher near the ends of the sample, in

line with the log returns in Figure 5, which display a relatively calm middle region.

Figure 6 (b) presents the corresponding estimates obtained using the steady state version

of the DMDN-XMC simulation smoother, as described in Section 3.3. The steady state

was reached at the first opportunity (tss = 252), which allowed for bypassing 91.3% of the

optimizations in the estimation step of Algorithm 2. The estimates from the steady state

simulation smoother closely match those from the basic version, demonstrating that the

computational savings did not come at the expense of accuracy.

Simulation smoothing also enables the estimation of nonlinear functions of the states.

As illustration, the DMDN and RF versions of the steady state XMC simulation smoother

were applied with D = 104 and N = 106 (DMDN) or N = 105 (RF) to estimate the
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(a)

(b)

Figure 6: Marginal smoothing quantiles corresponding to p(xt|y1:T ) for cumulative probabilities
10%, 50%, and 90% based on the SV model in (11): (a) estimates from the DMDN-XMC simula-
tion smoother with N = 106 and D = 104; (b) analogous estimates from the steady state version
of the simulation smoother. The steady state was reached at time tss = 252, selected using the
validation sample approach from Appendix B.2 with css = 0.

volatility of the log returns, defined as

σt = exp(xt/2).

Figure 7 displays the first 10 smoothed volatility paths, along with estimates of the

corresponding smoothing means E[σt|y1:T ] based on all D = 104 paths. The estimated

smoothing means are similar for both versions of the simulation smoother, supporting

their accuracy. Volatility is estimated to be higher near the ends of the sample, which is

consistent with the pattern in the absolute values of the log returns shown in Figure 7.
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(a)

(b)

Figure 7: Paths of the volatility σt = exp(xt/2) from the XMC simulation smoother based on
the SV model in (11) and the Tesla data: (a) mean volatilities and first 10 out of D = 104 paths
used to compute them for the DMDN-XMC simulation smoother; (b) analogous quantities for the
RF version. The steady state approach was used in both cases, with times tss = 252 (DMDN) and
tss = 230 (RF) selected using the validation sample approach from Appendix B.2 with css = 0.

6 Discussion

This section provides a discussion of related work and extensions of the proposed method.

The simulation smoother builds on the XMC filtering method for SSMs introduced in

Moussa et al. (2023), which uses regression with simulated data to predict latent states.

The focus of that method is on computing point estimates of the states, such as the filtering

or smoothing means. In contrast, this study addresses the simulation of paths from the

smoothing distribution of the states. As illustrated in the applications, these paths enable

the simultaneous computation of multiple smoothing estimates of interest. Moreover, they

allow for visualization of the joint behavior of the states conditional on the observed data.

The XMC simulation smoother has a natural connection to the literature on Monte

Carlo methods for smoothing in SSMs; see Durbin and Koopman (2012, Ch.11) and Chopin
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and Papaspiliopoulos (2020, Ch.12), as well as the references therein. Additionally, the

steady state approach from Section 3.3 links the simulation smoother to amortized inference

(Stuhlmüller et al. 2013; Gershman and Goodman 2014), where Bayesian inference is based

on posterior densities estimated using neural networks that are trained with simulated

data from a prior distribution. In this approach, the computational cost of estimation is

amortized by reusing the estimated posterior density across multiple data samples. Notably,

the steady state simulation smoother amortizes costs by reusing estimated densities at

different time points within the same sample.

Two related amortized inference approaches are proposed by Paige and Wood (2016),

who explore its use in Bayesian networks, and Lin and Eisner (2018), who apply it to natural

language processing. Both focus on constructing importance samplers for SMC. Unlike

these approaches, the present work focuses on simulation smoothing for SSMs, and the

estimation approach is either direct or based on pathwise importance sampling, as described

in Section 4. Special attention is given to data reduction through the use of selected

measurements as covariates—an aspect not discussed in the aforementioned works, but

crucial for maintaining computational feasibility in medium-to-long time series. Another

distinguishing feature of the simulation smoother is that Algorithm 2 can be paired with

various estimators of conditional distributions, allowing for customization based on specific

preferences or the application at hand.

This paper presents a novel approach to simulation smoothing for nonlinear and non-

Gaussian SSMs. One of the key strengths of the proposed method is that it does not

require redesigning for specific models. Furthermore, it is generally applicable, with the

main requirement being the ability to simulate from the SSM of interest. Future work could

explore whether the approach can be leveraged for parameter estimation. For example, the

method might be used to construct importance samplers for simulated maximum likelihood

or to provide candidate densities for MCMC. Such extensions could further broaden the

applicability of the XMC simulation smoother.
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Appendix

A Conditional Distribution Estimators

A.1 Deep Mixture Density Network

We start by discussing the single-layer mixture density network (Bishop 1994, 2006), after

which the deep mixture density network (DMDN) is considered. The goal is to estimate the

conditional density p(X|Y ), where X ∈ RNX and Y ∈ RNY are random vectors. Consider

the mixture of C Gaussian densities given by

f(X) =
C∑

j=1

ωj fG(X;µj, σ
2
j INX

),
C∑

j=1

ωj = 1, ωj ≥ 0,

where fG(X;µ, V ) denotes the Gaussian density with mean vector µ and variance matrix V .

The mixture components are parameterized by ωj = ωj(y), µj = µj(y), and σj = σj(y),

which are the outputs of a neural network (Hastie et al. 2009, Ch.11) with inputs y ∈ RNy .

This results in a conditional density, which can be estimated via maximum likelihood given

a sample
(
X(i), Y (i)

)
, i = 1, . . . , N . The conditional density estimator is then obtained as

f̂N ∈ arg min
f∈FN

− 1

N

N∑
i=1

log f
(
X(i)|Y (i)

)
,

where FN is the set of mixture density networks considered. The above minimization is

performed using the ADAM optimizer (Kingma & Ba 2015).

The DMDN extends the mixture density network by introducing multiple hidden layers

in the neural network that maps the inputs y ∈ RN to the parameters of the mixture density.

The number of layers, the number of neurons per layer, the number of mixture components,

as well as the learning rate and the batch size for optimizing the objective function are all

treated as tuning parameters. Once the conditional density has been estimated, sampling

is straightforward: for a given input y, a value is simulated from the j-th density in the

25



mixture with probability ωj(y).

A.2 Regression Forest

The regression forest estimator considered in the applications is based on the random forest

(Breiman 2001), which is defined as an average of a large number of decorrelated regression

trees. The trees are grown using bootstrapped samples of the data. Regression trees

are known to have low bias but high variance; by averaging over many such identically

distributed trees, the random forest retains this low bias while reducing the variance. To

reduce the correlation between the trees, the split decisions are made using a subset of

covariates that are randomly selected at each node.

Random forests are typically used for prediction by providing estimates of the condi-

tional mean. However, Meinshausen (2006) showed that they can also be used to estimate

the full conditional probability distribution. Given a sample
(
X(i), Y (i)

)
, i = 1, . . . , N

from p(X, Y ), the random forest predictions of X can be represented as weighted averages

of the response values,

N∑
i=1

ωi(y)X(i) ≈ E[X|Y = y],
N∑
i=1

ωi(y) = 1, ωi(y) ≥ 0.

The weights are defined as an average over the weights of K regression trees,

ωi(y) =
1

K

K∑
k=1

ωk
i (y),

where each tree predicts the response X by taking the average over the corresponding

variates in the leaf to which y is assigned. The individual tree weights are defined by

ωk
i (y) =

I
(
i ∈ Lk(y)

)
|Lk(y)|

,

where I(A) is the indicator function of the event A, Lk(y) denotes the set of indices j of
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the values Y (j) in the leaf to which y is assigned, and |Lk(y)| is its number of elements.

These weights define a probability mass function given by

f̂N(x|Y = y) =
N∑
i=1

ωi(y) I
(
X(i) = x

)
.

Drawing from this distribution amounts to resampling the variates X(i) with replacement,

using the weights ωi(y), i = 1, . . . , N , as probabilities.

The tuning parameters are the number of covariates considered at each split and the

maximum depth of the trees. In the applications of the simulation smoother, the default

value of K = 100 trees is used. For conditional simulation with vector-valued responses,

a similar approach could be adopted using multivariate regression forests (De’Ath 2002;

Segal and Xiao 2011; Cevid, Michel, Näf, Bühlmann, and Meinshausen 2022; van der

Westhuizen et al. 2023).

B Details on Steady State Approach

B.1 Rolling Window Covariates

Reusing a density estimate f̂N
tss for simulation at times t 6= tss requires that the covariates

follow a rolling window structure, as described below. Let B denote the backshift operator,

defined by Bmzt = zt−m for m ∈ Z and any time series {zt}. Then, with covariates

Ct and Ctss defined via (6), we require that

Ct =
{
B(tss−t)zk

∣∣∣zk ∈ Ctss} , (B.1)

where each element zk either corresponds to the next state, xtss+1, or to an observation at

or before time tss. Thus, the covariates for time t are obtained by shifting each covariate

for time tss backward by (tss − t) time units.

The condition in (B.1) defines the feasible range for t (and tss) as given in (7), where the
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upper bound reflects the availability of a future state for conditioning, while the lower bound

ensures that the observations yt˜:t used as covariates in Ct are consistent with (B.1). The

latter follows from the definition of the covariates in (6), which implies that when t ≥ W ,

it holds for any m ∈ N that

t+m
˜

= max
{

(t+m)−W + 1, 1
}

= t+m−W + 1 = max
{
t−W + 1, 1

}
+m = t˜+m.

This shows that the lower index of the observations used as covariates at any time t + m

equals the lower index at time t, shifted by m time units. Consequently, the observations

(and therefore the covariates) correspond to rolling windows.

B.2 Iterative Procedure for the Steady State Time

The following procedure uses the validation sample to iteratively evaluate whether a given

density estimate is suitable for reuse at earlier time points. Let css ≥ 0 be a chosen tolerance

level, and denote the cases from the validation sample by (x〈i〉, y〈i〉), i = 1, . . . , Nval. At

time t in the estimation step of Algorithm 2, we assess whether the density estimate f̂N
t

generalizes well to time W—the most distant feasible past time—by comparing it to the

corresponding estimate f̂N
W . This yields a conservative estimate of the performance of f̂N

t

at other time points.

Specifically, we check for t = T − 1, . . . ,W + 1 whether the following condition holds,

Nval∑
i=1

L
(
x
〈i〉
W , C

〈i〉
W , f̂N

t

)
≤ (1 + css)

Nval∑
i=1

L
(
x
〈i〉
W , C

〈i〉
W , f̂N

W

)
.

If this condition is satisfied at time t, we say that a steady state has been reached and

set tss := t. The corresponding density estimate f̂N
tss can then be used to circumvent the

optimizations in (5) for the remaining feasible times t = tss − 1, . . . ,W + 1.
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