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A Brief Account 
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Abstract 

Technological change, an overwhelming fact in recent socioeconomic history, involves, as Joseph A. 
Schumpeter famously put it, “creative destruction” on a large scale: it gives rise to new goods, 
production methods, firms, organisations, and jobs, while rendering some received ones obsolete. Its 
impact extends beyond the economy and affects society, culture, politics, and the mind-set of 
people. While it allows solving certain problems, it causes new ones, inducing further technological 
change.  Against this background, the paper attempts to provide a detailed, yet concise exploration 
of the historical evolution and measurement of technological change in economics. It touches upon 
various questions that have been raised since Adam Smith and by economic and social theorists 
after him until today living through several waves of new technologies. These questions include: (1) 
Which concepts and theories did the leading authors elaborate to describe and analyse the various 
forms of technological progress they observed? (2) Did they think that different forms of 
technological progress requested the elaboration of different concepts and theories – horses for 
courses, so to speak? (3) How do different forms of technological progress affect and are shaped by 
various strata and classes of society? Issues such as these have become particularly crucial in the 
context of the digitisation of the economy and the widespread use of AI. Finally, the paper explores 
the impact of emerging technologies on the established theoretical frameworks and empirical 
measurements of technological change, points to new measurements linked to the rise of these 
technologies, and evaluates their pros and cons vis-à-vis traditional approaches.  

 

Keywords: technological change, classical economics, neoclassical economics, growth accounting, 
endogenous growth, evolutionary economics, sociotechnical studies, GPTs, digitalisation, AI 
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Executive summary 

This report, authored by Heinz D. Kurz, Rita Strohmaier, and Mark Knell, provides a comprehensive 
historical and analytical account of technological change and its significant impact on economic and 
social structures. Central to the analysis is the principle of "creative destruction," which illustrates 
how innovation not only resolves existing challenges but also disrupts established systems, 
transforming industries, labour markets, and institutional arrangements. A thorough understanding 
of the nature, pace, and consequences of technological change is essential for developing effective 
and forward-looking public policy. 

Purpose and Scope: The report traces the evolution of economic thought on technological change, 
from classical thinkers such as Adam Smith and Karl Marx to contemporary economists. It 
emphasises the necessity of employing diverse analytical frameworks to account for various forms 
of technological progress, particularly distinguishing between radical innovations that 
fundamentally alter industries and incremental innovations that enhance existing processes. 

Summary of Findings: Technological change has historically served as a central force in economic 

transformation. The analysis reveals how innovations have consistently improved labour 
productivity while reshaping patterns of income distribution and social organisation. Contributions 
from classical economists established a foundation for recognising technology’s critical role in 
production; however, the complexities of modern advancements require a more sophisticated 
understanding of their extensive effects. 

The study highlights the concept of pervasive technological change, which fuels long-term economic 
cycles and has historically coincided with industrial revolutions. Key innovations, such as the steam 
engine and electricity, necessitated significant structural adjustments across labour markets, capital 
investments, regulatory systems, and educational frameworks, demonstrating the systemic nature 
of technological revolutions. 

Furthermore, the paper explores how emerging technologies challenge traditional economic theories 
and existing measurement tools. It argues for the development of a renewed empirical foundation 
capable of capturing the complexities of contemporary technological advancements. Schumpeter’s 
theory of long economic waves, driven by radical innovation, is revisited to underscore the cyclical, 
disruptive, and transformative characteristics of technological progress. 

Policy Implications: Policymakers should support the advancements of economic analyses to 
better reflect the varied effects of technological change, particularly concerning labour dynamics, 
productivity, and inequality. Proactive management of disruptions caused by major technological 
innovations is essential; this includes strengthening social safety nets, updating skills training 
programmes, and promoting labour markets adaptability. Additionally, governments should invest in 
developing new statistical measures and indicators to effectively capture the societal and economic 
causes and impacts of emerging technologies. It is also crucial for policymakers to distinguish 
between incremental and radical innovations, creating differentiated strategies that address the 
distinct challenges and opportunities posed by each. Finally, public policy should ensure that the 
benefits of technological change are widely shared, facilitating equitable access to education, 
innovation funding, and digital infrastructure.. 
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1 Introduction 

Innovations, the “realisation of new combinations”, Joseph A. Schumpeter insisted, are “the 
overwhelming fact in the economic history of the capitalist society” ([1912]: 159). He and major 
social scientists such as Adam Smith and Karl Marx also pointed out that technological and 
organisational change do not only revolutionise the economic world in which we live, they also 
affect in fundamental ways society, politics, culture, the distribution of power amongst various 
strata and classes of society, the way we think and feel, and so on. 

Starting with the classical political economists, including Marx, economic thinking has revolved 
around three pivotal questions concerning technological change: 

(1) To understand the causative factors, driving forces, and pace of technological and 
organizational transformations. 

(2)  To classify different forms of technological progress and investigate when and why 
certain forms dominated, what caused their historical sequencing and path 
dependency. 

(3)  To assess and possibly anticipate the diverse effects of technological change on 
employment, income and wealth distribution, power relationships, economic growth, 
foreign trade, and so on. 

While variously seen as a lever of riches, wealth and well-being, ever since the inception of 
systematic economic analysis in the antechamber of the First Industrial Revolution, the 
understanding gradually took shape that technological change is capable of solving pressing 
problems of humankind, but at the same time is often the source of entirely new problems. The 
basic idea underlying this understanding is the doctrine of the unintended consequences of human 
action, advocated inter alia by members of the Scottish Enlightenment and especially Adam Smith, 
who championed the rise of political economy as a new field of scientific inquiry. A main problem 
humankind is facing at present, global warming and climate change, is but the most significant and 
arguably most dangerous case of such unintended consequences. 

The questions that were and are being asked since Smith and social theorists after him up until 
today, living through several waves of new technologies, are the effects these waves had on the 
socioeconomic system, broadly understood, and reverberations from there back to the origins of 
technological change, the economic system. More specifically, these include the following: 

(1) Which concepts and theories did the leading authors elaborate in order to describe and 
analyse the various forms of technological progress they observed? 

(2) Did they think that different forms of technological progress requested the elaboration 
of different concepts and theories – “horses for courses”, so to speak? This problem has 
significantly gained in importance vis-à-vis the digitisation of economy and society and 
the growing employment of AI. 

(3) How do different forms of technological progress affect different strata and classes of 
society? Are there both winners and losers, how large are losses and gains in terms of 
employment, wages, profits, social reputation and so on? Which metrics are available to 
measure such changes and are new metrics to be developed in order to cope with new, 
qualitatively different types of change? 

(4) What can be done to fight undesired consequeneces and promote desired ones? 

These and related questions will be dealt with in this contribution against the background of the 
existing literature pertinent to the theme under consideration. The approach chosen combines a 
historical-cum-analytical outlook, a strong concern with theoretical tools and devices and a rich 
account of empirical findings. While we assess the different forms of technological change, their 
causes and their effects and the instruments forged by scholars to deal with them, what interests 



Technological Change: History, Theory and Measurement 
 

 

5 

us is what we can learn today from them, confronted with new forms in what is variously called the 
“Second Machine” or the “4th and 5th Industrial Revolution” (Kurz et al. 2022). 

The transition from the First to the Second Machine Age, as described by Brynjolfsson and McAfee 
(2014), signifies a profound change. In the First Machine Age durable instruments of production 
depreciated with age. However, in the Second Machine Age, learning machines that enhance 
efficiency over time appreciate in value, unless overtaken in a leapfrogging manner by newly 
invented machines. This transition alters the diffusion pattern of technical devices, moving from a 
sigmoid trajectory to an arguably exponential one, unless surpassed by entirely novel inventions. 
This dynamic shift illustrates in an exemplary way the transformative nature of technological 
change and its far-reaching implications across various domains of socioeconomic life. 

The remainder of the paper is as follows: The first part traces technological change through the 
lenses of classical economists, Karl Marx, early marginalists, Robert Solow's growth accounting, and 
new (endogenous) growth theory. It thereby focuses on the main ideas and strands of thought that 
have been transcending into economic analysis up until today. The second part examines pervasive 
technological change, encompassing its core analytical frameworks – from evolutionary-economic 
concepts over sociotechnical systems to general purpose technologies (GPT) – and illustrates 
empirical approaches that have made use of these concepts. The third part finally analyses the 
impact of new technologies on theoretical frameworks and measurement devices. Identifying the 
Digital Revolution as the Fifth Technological Revolution, we explore successive industrial revolutions, 
the “second deep transition”, and the trajectory towards the quantum age. The paper concludes by 
highlighting the influence of new technologies on economic thought and the emergence of novel 
measurements in the digital revolution.  

2 A summary of some major analyses of technological change  

This part is dedicated to a short history of major attempts to come to grips with various forms of 
technological progress and their effects on labour productivity, the composition of skills, income 
distribution, economic growth and development. The part informs about major differences between 
different forms of technological progress and how later forms grew out of earlier ones. In addition, 
it informs about parallel attempts by economists to grasp these differences analytically and 
identify both the genuine significance of each form and at the same time how it relates to 
preceding and following forms. Digitisation may then be understood as a particular phase in a long 
chain of technological change, where each phase reflects its path-dependent nature. Fascinated by 
the new idea and perceived reality of socio-economic “progress”, economists were keen to express 
the rate of change or rate of progress in terms of some compact measure. The problem of 
measurement was high on the agenda ever since, especially because technological progress 
involved not only  quantitative, but also qualitative change. How to cope with this fact? Was there 
such a thing as an “ultimate measure” of all forms and types of technological change, which 
allowed one to measure these in a meaningful way in terms of a well-defined device across time 
and space, all their heterogeneity notwithstanding? Or did this involve chasing a will-o-the-wisp? 
Were different forms and types of technological change invariably irreducible to some common 
norm and therefore incommensurable and had to be treated differently? 

2.1 In the antechamber of the First Industrial Revolution  

In early pre-First Industrial Revolution contributions to economic development, that is, in the 
mercantile period, the focus is on the role of “demonstration effects” of foreign trade in 
consumption and production on labour productivity and slowly changing consumption patterns and 
lifestyles. With the rate of technological change being small, trade is seen as a device to move 
towards what may be called the “world frontier of technological knowledge” by adopting existing 
technologies experienced abroad and adapting them to domestic needs, wants and capabilities. The 
authors under consideration, including William Petty, François Quesnay, David Hume and Adam 
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Smith saw themselves as the founders of a new science, political economy, that was both empirical 
and theoretical, concerned with providing a quantitative analysis of the productive capacity of a 
nation and the means and ways to increase it. 

2.2 The classical economists 

A significantly more profound analysis of technological change is provided by the Classical 
economists, especially Adam Smith (1776) and David Ricardo (1821), and of Charles Babbage 
(1835), the so-called “father of the computer”, who as early as the 1830s already pointed in the 
direction of a Second Machine Age, that is, machines that are capable of learning and self-
optimising (see Kurz 2022). 

The authors under consideration laid the ground for a modern understanding of technological 
change and also discussed in some depth the problem of how to measure it. Their concern was no 
longer with approaching a given technological frontier but with moving the existing frontier 
outwards. Technological progress was seen to increase the productive powers of society, and the 
main indicator to measure and express this progress was in terms of the rate of growth of labour 
productivity. An increase in labour productivity led to an increase in real income per capita, and the 
economic performance of a nation and how it compared with other nations was henceforth 
measured in terms of differential rates of growth of labour productivity. It was also clear to the 
classical economists that the “productive powers” of society depended crucially on the “quantity of 
science” at its disposal, as Adam Smith stressed verbatim. Hence, attempts were made already at 
an early time to move science and technology as productive forces into the centre of economic 
inquiry. 

Since commodities were produced by means of (direct) labour and other commodities used as 
inputs, these authors suggested to reduce these other commodities also to labour and commodities 
used up in their production, and so on and so forth. By this Method of Reduction they arrived at the 
sum total of labour, which, for a given technological knowledge, was directly or indirectly needed in 
the production of a commodity. 

The characteristic feature of technological progress was seen to consist in reducing this amount, 
that is, it was seen to be labour-saving. Since the direct and indirect amount of labour mentioned 
gives the total (labour) cost of production of a commodity, it was expected to approximate its price 
in the market: the labour theory of value was introduced to explain relative prices. Technical 
progress in the production of commodity j implied that in competitive conditions its price would 
eventually decrease relative to the prices of all other commodities. To the extent to which 
commodity j entered as an input into other commodities, also their prices, measured in labour 
terms, would tend to decrease somewhat because of the decrease in a cost element. Hence the 
classical authors put forward a sophisticated theory of how the system of relative prices would 
change vis-à-vis cases of technological change affecting the various industries of the economy 
differently. 

But they also saw that technological change associated with new means of production does not 
typically leave the dimension of the system of production unaffected: new methods of production 
and new consumables enter the system and some received methods and consumables exit from it, 
with the number of entries typically exceeding the number of exits. Technological progress therefore 
had an important qualitative-cum-quantitative dimension, which poses difficult measurement 
problems. How does the system of social accounting elaborated in a “world of corn and wood” 
perform in a ”world of coal and iron”, not to speak (yet) of a  “world of bits and bytes”? How would it 
have to be changed to provide us with reliable information about the economic process and its 
incessant changes? Early versions of the problem mentioned we encounter in the classical authors, 
for example, in terms of their search for an “ultimate measure of value”. 
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The classical economists proposed a method of measuring technological progress, which is still 
widely used in economics today: they proposed to measure technological progress in terms of the 
rate of growth of labour productivity. Let us denote (net) labour productivity by y, which equals the 
ratio of net social product Y and the labour worked during a year L, then the rate of growth of 
technological progress, gTP, is given by  

gTP = 
Dy

y
. 

The classical authors were fully aware of the problem of the heterogeneity and changing 
heterogeneity of labour as a consequence of technological improvements. They sought to render 
heterogeneous labours homogeneous by using the wages structure as a scale to express the 
different weights of different kinds of labour. If an hour of labour of type i is paid 15 Euros and an 
hour of labour of type j 30 Euros, then one hour of labour of type j is equivalent to two hours of 
labour of type i. The classical authors applied their scheme of rendering different types of labour 
commensurable with one another on the explicit presumption that the wage structure would not 
change much in the period of time considered. In this case, intertemporal and interspatial 
comparisons were taken to be possible. While this might have been an admissible assumption at 
their time, it is no longer one today with wages of skilled and unskilled labour growing at different 
rates. This requires rethinking the way of rendering heterogeneous labour homogeneous. The 
classical economists would at any rate have been surprised by, and opposed to, the contemporary 
procedure in many productivity studies to simply add hours of labour performed without considering 
the heterogeneity of labour and the different wage rates paid. This is like “adding apples and pears”, 
which, first year students of economics are told, must not be done: prices (or wage rates) are to be 
used as aggregators. 

The classical authors also began to distinguish between different forms of technological progress 
and the different effects these had regarding employment, economic growth, income distribution, 
the balance of power in society, the environment and so on. They distinguished between direct 
labour-saving and indirect labour-saving (that is the saving of labour embodied in capital gooods 
alias capital-saving) forms and land-saving forms of technological progress. They also 
contemplated cases in which the saving of some inputs was accompanied by an increase in the use 
of some other inputs. And they showed how these different forms affected the different strata and 
classes of society differently – landlords, capitalists and workers and different subgroups of them. 
Ricardo, for example, was very clear that the replacement of labour power by machine power might 
at least in the short and medium run cause serious problems to the working class in terms of (what 
later was called) “technological unemployment”, declining real wages and worsening working 
conditions, and that therefore the “Luddite movement” and the demolition and destruction of 
machines by infuriated workers was understandable up to a point (but, as he insisted, 
counterproductive). And he also anticipated a problem we are confronted with again today: in the 
case of “full automation”, which he saw as the terminal point of the process of mechanisation that 
had just started, the demand for labour would vanish and nobody who is not possessed of a capital 
would have a right to consume. This he pointed out as early as 1821. The spectre is back again and 
the question will be how to ward it off.   

A major tool of the analysis elaborated in the classical period that has proven its usefulness is what 
is known as the relationship between the distributional variables – the wage rate(s), the general 
rate of profits and the rent rate(s) – corresponding to a given “system of production”. It is also 
known as the “wage-profit curve“ or “wage frontier” (J. R. Hicks) and is represented in the case of 
only labour and capital by an inverse relationship between the real wage rate (or the share of 
wages) and the general rate of profits, or w–r relationship, given the system of production actually 
in use, 
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𝑤 = 𝑤(𝑟), with
𝜕𝑤

𝜕𝑟
< 0 

Different forms of technological progress are reflected in different shifts of the relationship in w–r 
space. In Figure 1 the rate of profits is measured along the abscissa and the real wage rate along 
the ordinate. Different forms of technological progress may now be illustrated in a schematic way. 
Fig. 1a represents the case of pure (direct) labour-saving progress. It moves the intersection of the 
wage frontier with the ordinate upwards, whereas its intersection with the abscissa and thus the 
maximum rate of profits remain constant. An increase in the maximum wage rate reflects an 
increase in labour productivity. The growth of labour productivity equals the ratio of the increase in 
the maximum wage rate, W1 – W0 , and its level prior to the change, W0, that is (W1 – W0 )/W0. Fig. 
1b represents the case of pure capital-saving progress and Fig. 1c the case of labour-saving and 
capital-using progress. The latter is characterised by an increase in labour productivity and a 
decrease in what is called “capital productivity”, that is, the inverse of the capital-output ratio. This 
case played an important role in the analyses of authors such as Ricardo and Marx. It has been 
confirmed empirically in recent studies; see Foley and Marquetti 1999). Fig. 1d depicts the case in 
which both labour and capital productivity increase: the wage frontier shifts outward and is 
accompanied by an increase of both the maximum wage rate and the maximum rate of profit. 

 

Figure 1: Wage-profit curves and forms of technical progress. Source: Own illustration. 
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For a reformulation of the classical theory of value and distribution, which provides the basis for a 
treatment of technological progress, see Sraffa (1960) and Kurz and Salvadori (1995). For a 
summary account of the classical authors’ views on technological progress and economic 
dynamism, see Kurz (2010). 

In empirical studies, using input-output tables for consecutive years, the movements of the w–r 
relationship over time have been documented for numerous countries (see, for example, Schefold 
2013, Mariolis and Tsoulfidis 2016, Mariolis 2015, Strohmaier and Rainer 2016, Zambelli et al. 
2017). Different patterns of technological change giving rise to different development and growth 
regimes have been distinguished and their properties discussed.1 Figure 2 illustrates the wage 
frontiers of several countries in the year 2009 based on national input output tables. We could also 
plot the wage frontiers belonging to a single country across several years, using the national input-
output database, tracing the impact of technological change on the position and curvature of the 
frontier. 

 

Figure 2: Wage frontiers derived from input-output tables. Source: Schefold (2013). 

Charles Babbage and his group, which included the mathematician Ada Lovelace, the daughter of 
the poet Lord Byron (the programming language ADA is named after her), already glimpsed aspects 
of an entirely new age characterised by “intelligent machines”; see Babbage (1835). He stressed 
that machinery is invented and applied in order “to supersede the skill and power of the human 
arm”. The question that is close at hand is, of course: Can it also supersede the power of the human 
brain – can the division of labour “be applied with equal success to mental as to mechanical 
operations”? If the answer is in the positive, and Babbage clearly was convinced that it is, what are 
the implications for humankind? Is there the danger of the majority of humans losing their 
employments and the rest becoming mere appendages to machines? Babbage therefore as early as 
the 1830s put forward a principle of inclusion of how to go about technological progress and its 
effects: “every person employed should derive advantage from the success of the whole”. This 
implied that only innovations were acceptable from a social and inclusive point of view whose social 
benefits exceeded their social costs. He proposed inter alia the instalment of a scheme of profit-
sharing which would allow workers to benefit from the prosperity of technologically innovating 
businesses without affecting their daily wages. Such a scheme, he was convinced, would get 

                                                 

1 It deserves to be mentioned that in neoclassical analyses with their different analytical framework, wage frontiers and 
their shift due to technological progress also play an important role; see, for example the recent analysis of Korinek and 
Stiglitz (2021) of Artificial Intelligence and globalisation. See also Kurz (2020) for a treatment of the problem in terms of 
a classical multi-sector approach and unequal rates of profit of a monopolistic and a competitive sector, the former being 
subject to dynamically increasing returns to scale.  
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workers directly interested in the success of their firms and spur their diligence and inventiveness. 
Similar proposals heave repeatedly been put forward ever since and are high on the agenda vis-à-
vis AI-based technological progress and its various impacts on different social classes. The co-
existence of the deskilling of significant parts of the labour force and of the up skilling of other 
parts is a major concern, because it has the potential of further undermining social cohesion and 
destabilising the socio-political system. 

Whilst it would be wrong to exclaim that “there is nothing new under the sun,” it may come as a 
surprise that certain spectres that haunt us today do have precursors that haunted our ancestors. 
The problems then and today are clearly different, but share some similarities, and so are the 
remedies proposed then and now. 

2.3 Karl Marx on technological change and the fate of capitalism 

Karl Marx ( [1867] 1954, [1890] 1959) largely built upon what he had inherited from the classical 
authors and was keen to classify the socioeconomic history in distinct phases, such as “Cooperation 
and the division of labour” (the transition from handicraft production to manufacturing), or to 
“Machinery and large industry” (the  transition from manufacturing to the production of machines 
by means of machines, also called machinofacture). As Marx made clear, in the short and medium 
run these transitions were a blessing to some people, but for some time a burden to many others 
and caused serious social conflicts and tensions.  

Marx’s main aim was to identify and reveal the “law of motion” of modern society. To achieve this 
challenging task, he elaborated what he called an “economic interpretation of history”. In a first step 
this consisted in a careful specification of the “mode of production” of the society under 
consideration – in our case in particular the properties of the capitalist mode of production and the 
relations of production that correspond to it. In a second step he sought to derive from these 
properties and relations the forces, economic and other, that would shape the society’s further 
development. An important part of this task was to find out whether the capitalist mode of 
production was the hotbed of a particular form of technological progress that shaped its 
development and eventually fate. Marx was convinced that capitalism generates from within a 
particular form of technological change that is labour-saving and at the same time capital-using: it 
reduces the amount of labour needed directly and indirectly in the production of the majority of 
commodities by simultaneously increasing the amount of capital employed per unit of output. In 
terms of the concept he used, this form is reflected in a growing “organic composition of capital”, or, 
expressed in terms of conventional economic analysis, by a growing capital-output ratio, 𝑣 = 𝐾/𝑌  
(𝐾 = capital stock; 𝑌 = social product). Assuming that wages are paid post factum, that is, at the 
end of the production period, the general rate of profits, 𝑟, is given by 

𝑟 =
𝑃

𝐾
=

𝑃/𝑌

𝐾/𝑌
=

𝜋

𝑣
 

where 𝑃 denominates profits and 𝜋 is the share of profits in national income. With 𝑣 rising without 
upper boundary and 𝜋 constrained from above by unity, the rate of profit is bound to fall from a 
certain point onwards. This is, in a nutshell, Marx’s “law of the tendency of the rate of profit to fall”. 
A falling tendency of the rate of profit, Marx was convinced, showed that capitalism was a transient 
mode of production and not an eternal one, as some of its advocates argued. Eventually it had to 
give way to socialism, which, Marx thought, would fundamentally change the relations of production 
amongst the different strata of society by abolishing “exploitation” and establishing a “classless” 
society.  

Marx’s economic interpretation of history apparently hinges crucially on whether or not his 
attempted derivation of the form of technological progress dominating capitalism from the 
characteristic features of the capitalist mode of production stands up to close scrutiny. While 
historically there have been phases in which the general rate of profit fell in certain capitalist 
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economies, there is no evidence that this fall is a persistent phenomenon, as Marx assumed. There 
have been numerous studies that investigated the empirical validity, or otherwise, of Marx’s “law”. 
Moreover, the impact of different waves of technological progress on income distribution and the 
rate of return on capital (and its dispersion within and between different sectors of the economy) 
have been studied quite independently of Marx’s doctrine in numerous works dealing with advanced 
and developing capitalist economies. See, in both cases, in particular Shaikh (2016), Schefold 
(2016), and Mariolis and Tsoulfidis (2016). 

Box: Causes, forms and effects of technological progress 

The classical political economists, including Marx, were concerned with the following problems: 

 What causes technological (and organisational) change, what are the driving forces   behind it, 
and what determines its pace? 

 What forms or types of technological can be distinguished and which forms dominate when and 
why? 

 Which effects do the different forms of technological change have regarding employment, 
income and wealth distribution, economic growth and development and foreign trade. 

As regards the first problem, these authors emphasized systemic factors such as the intensity of 
competition and rivalry in the capitalist economy and institutional and historical influences on the 
culture of innovation and growth (Mokyr 2017). This is in stark contrast to early neoclassical 
economists like William Stanley Jevons, Carl Menger and Léon Walras who focused on an stationary 
economy. Compared to the allocation of scarce resources under given conditions, the transcendance 
of such conditions through innovations and economic dynamism played a much smaller role. Their 
main focus was what Joseph A. Schumpeter called the “circular flow” of the economy, that is, a 

system that reproduces itself without much technological and structural change.2 Rediscovering the 
problem of economic growth in the mid 20th century, neoclassical economists first treated 
technological change as an exogenous factor increasing labour productivity without causing any 
costs or damage (see Section 2.2 below). Hence, for what Schumpeter considered the most 
important factor responsible for the remarkable restlessness of the capitalist economy, these 
authors had not explanation at all. The restlessness was reflected in a given rate of technological 
progress. It was only in the second half of the 20th century that mainstream (neoclassical) 
economics felt the need to widen the view and take technological progress (more) seriously (see 
Section 2.5 below). 

As regards the second problem, the classical authors deserve to be credited with having 
distinguished between different forms of technological progress. The arguably most important 
author in this regard was David Ricardo, who discussed land saving, direct labour saving, indirect 
labour (or capital) saving forms of technological progress and in the famous Chapter 32 of his 
Principles discussed a form of technological progress that replaces circulating capital (i.e. wages) by 
fixed capital (i.e. improved machines). It matters in which sectors of the economy technological 
progress takes place: while progress in industries producing “luxuries” affects only a small 
subsystem of the economy, progress in industries producing “necessaries” generate ubiquitous 
effects and alter the mathematical properties of the economic system. 

These considerations directly inform the third problem, as different forms of technological progress 
also imply different effects for the economy and society. Historical concerns about "technological 

                                                 
2 This fact is also a reason why Schumpeter, who was initially very fond of Walras’s general equilibrium theory, later 
began to question its explanatory potential. Compared to Marx, it was hardly able to explain what is causing capitalist 
economies to be so dynamic and so incessantly propelled forward: "creative destruction". Technological progress, he saw 
very clearly, was also not a boon to everybody all the time but may at least temporarily be a serious bad to certain strata 
of society.  
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unemployment" during the First Industrial Revolution, impacting certain societal strata, particularly 
workers, still resonate today with fears surrounding the potential job displacement by Artificial 
Intelligence and Smart Machines. Furthermore, there is a growing expectation that these 
technological shifts might exacerbate inequality in income and wealth, leading to societal 
segregation (Kurz 2022). 

2.4 Joseph Schumpeter on innovation and long waves of economic development  

Joseph Schumpeter ([1912]1934, 1939, 1942) was deeply impressed by Marx’s investigation of the 
economic dynamism of capitalism and saw his work to be much superior to that of the neoclassical 
economists in this regard, including Léon Walras. While he credited Walras with having elaborated a 
thorough analysis of the “circular flow” of the economy, that is, a stationary state characterized by 
the absence of any technological and organisational improvements, he had failed to develop a 
theory of economic dynamics. But since its dynamism is the outstanding feature of capitalism, the 
Walrasian theory has little to offer to understand better this mode of production. While he praised 
Marx for his achievements, he was keen to turn upside down crucial elements and propositions of 
Marx’s doctrine, especially the view that profits reflect the “exploitation of workers” and that 
socialism is a superior mode of production which will eventually replace capitalism. 

In nuce, Schumpeter argued as follows. Basically all economic theory up until then had focused 
attention on three social classes of actors – workers, landlords and capitalists – and had missed 
entrepreneurs or “agents of change”. It therefore missed the source of the restlessness and 
dynamism of capitalism and its innate drive to innovation and change. This neglect had further 
consequences that undermined the explanatory power of theory. First, by lacking a proper view of 
the salient features of successful entrepreneurship, it did not really understand the roots of 
technological change. It also did not understand that fettering entrepreneurship would suffocate the 
working of the “capitalist machine”. Capitalism, if unfettered, would be superior to all competing 
socioeconomic orders, because it was organised precisely for the purpose to generate and absorb 
novelty in a process of “creative destruction”. Entrepreneurs, Schumpeter insisted, were not the 
enemy of workers: their innovations rather led to an increase in the quality of products and a 
growing labour productivity, which, in the medium and long run, would result in rising real wages 
and improving working conditions. Profits were paid out of a rising labour productivity. In 
Schumpeter’s view, profits were a child of innovations, not of exploitation. 

Innovators in the early phases of capitalist development are typically people that have ideas but no 
liquid funds to realize them. Therefore a banking trade, willing to finance innovative projects by 
providing start-up firms with credit, is badly needed. These projects are often very risky, and 
bankers must be willing to bear the risk, but in case of success they are also extremely profitable. A 
well-functioning banking system with bankers that are able to judge the creditworthiness of 
entrepreneurs are therefore of paramount importance for economic dynamism and growth. 
Schumpeter rejects the marginalist idea that innovations are predominantly financed out of savings 
and insists that they are financed to a large extent by means of credit. The increase of liquid means 
via credit expansion in an economic system with full employment will lead to rising prices and a 
redistribution of productive resources away from static firms to dynamic ones. 

The diffusion of the new and gradual replacement of the old is, however, not smooth but unfolds in 
economic cycles of various kinds and is reflected in crises (see Kurz et al. 2018). The severity of 
crises and the amplitudes of cycles depend not least on the types and magnitudes of technological 
change, its “disruptive” character. Most important according to Schumpeter are long waves of 
economic development, “Kondratievs”, which last for about 50-60 years. He opined that Marx’s “law” 
of the tendency of the rate of profit to fall refers only to the downward part of a Kondratiev and 
misses the upward part. Schumpeter (1939) subdivided the history of economic development since 
the second half of the 18th century in altogether four Kontratievs, with the fourth still under way 
when he was still alive. Each Kondratiev, he was convinced, was triggered by a fundamental 
technological breakthrough in particular industries of the economy and then spread out across the 
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entire socioeconomic system. He explained the world economic crisis in the 1920s and 1930s in 
terms of an unfortunate coincidence of the troughs of three types of economic cycles, the 
Kondratiev, the Juglar (a business cycle) and the Kitchin (an inventory cycle). He insisted on the 
path-dependency of technological change and took pains to study in some detail the characteristic 
features of its various waves. 

Schumpeter still has a tremendous impact on the theory and empirics of technological change. It 
suffices to refer to the recent book by Aghion et al. (2021), who inter alia counterpose the 
neoclassical concept of “total factor productivity” (see the following subsection), a “black box” 
whose explanatory power is very limited, with Schumpeter’s much richer view of the phenomena at 
hand. The metaphor of “creative destruction” captures what is at stake much better than the 
Solovian “manna from heaven”: it emphasizes the heterogeneity, and possibly irreducible 
heterogeneity, of different forms of technological progress. 

In fact, developments in the explanandum and the explanans since quite some time show 
impressively that there is no unanimously accepted analytical device and metric that would allow 
for unambiguous intertemporal and interspatial comparisons of various forms of technological 
change and their effects. The looking glass rather shows a kaleidoscopic landscape and no 
homogeneous and single-valued perspective. (More on this will be presented in Parts 3 and 4).    

2.5 Early marginalist contributions 

Technological and the corresponding structural change have almost entirely been lost sight of at 
the time of the so-called “marginalist revolution”, which saw the introduction of the twin concepts 
of “marginal utility” and “marginal productivity” in economics. The attention then focused on the 
static problem of the optimal allocation of given amounts of productive resources, or endowments, 
given technical alternatives and given preferences of agents. The concern was first and foremost 
with reaching a point on the given and fixed production possibility frontier rather than with shifting 
that frontier outwards by means of technological and organisational progress. In major marginalist 
authors such as William Stanley Jevons (1874), Carl Menger (1871) or Léon Walras (1954), 
technological progress played a limited and frequently even negligible role. The static viewpoint 
adopted effectively crowded out a dynamic one.  

However, there were exceptions to the rule that deserve to be mentioned. Schumpeter is the most 
important case in point. But there are others. Wicksell is one of them. But while towards the end of 
the 19th century he analysed somewhat the role of technological change in order to get hold of the 
dynamic properties of the economic system, his main concern was nevertheless with solidifying the 
production theoretic basis of marginalist theory. He asked in particular whether the information 
contained in a given set of methods of production available to produce a particular commodity 
could perhaps be used to build up a production function for the commodity that contained only 
efficient input-output constellations. In this case, with an infinite number of such methods of 
production at one’s disposal, it was taken for granted that a production function could be 
constructed  

𝑦𝑗 = 𝑓𝑗(𝑎1, 𝑎2, … , 𝑎𝑛) 

where 𝑦𝑗  designates output and 𝑎𝑖 the amount of input 𝑖 needed in the production of that output. 

The highly restrictive assumptions that need to be met for this to be possible, a construction, which, 
in addition, is possessed of certain properties the economists favoured because of their easy 
analytical tractability, were far from clear at first. Scholars like Wicksell (1893) and Wicksteed 
(1894) began to study these conditions. They pointed out that it would be good to have linear 
homogeneous functions that were twice differentiable, with the first derivative positive and the 
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second declining.3 In this case, if the proprietors of the services of the factors of production involved 
are paid the services’ marginal products, the Euler Theorem tells us that the product would be just 
exhausted, neither more nor less. Functions with such properties then became the preferred 
workhorse used by neoclassical authors dealing with technological progress and economic growth. A 
type of production function that became particularly prominent is the Cobb-Douglas function. 
Wicksell already put forward its functional form more than twenty years prior to its alleged 
discoverers Cobb and Douglas. In a neoclassical framework, technological progress implied, as 
Schumpeter emphasised, the “putting up of a new production function”. 

The next question was whether a production function for the economy as a whole could be 
elaborated by aggregating methods of production across all industries of the economy. However, it 
became quickly clear that starting from any given situation at the micro level, no macro production 
function could be derived in terms of a consistent aggregation of the micro-units. Yet this did not 
prevent neoclassical authors to use such functions, and especially the Cobb-Douglas function, 

𝑌 = 𝐴𝐾𝛼𝐿1−𝛼 

with 𝐴 as a shift factor expressing the productivity of the system, 𝐾 as the capital stock employed, 
𝐿 as the work force employed and 𝑎 =  (𝜕𝑌/𝜕𝐾)/(𝑌/𝐾) as the partial elasticity of production with 
regard to capital. If marginal productivity theory of distribution happens to apply then, 𝜕𝑌/𝜕𝐾 =  𝑟, 
and 𝑎 can be interpreted as the share of profits in national income. 

These steps set the stage for neoclassical growth accounting, which was championed by Robert 
Solow in a number of contributions in the 1950s and 1960s and triggered an avalanche of similar 
studies across the world. See Solow (1956, 1957). For a summary account of growth accounting 
studies, see Barro and Sala-i-Martin (2004: chaps 10-12). 

2.6 Robert Solow’s growth accounting and after 

Solow (1957) started from the premise that the rate of growth of the social product of an economy 
can be explained in terms of the rates of growth of the factors of production cooperating in its 
generation, that is, capital and labour. (Solow boldly subsumed land under capital, whereas other 
neoclassical authors such as James E. Meade did not.) Differentiating the Cobb-Douglas function 
above with regard to time and expressing the result in terms of proportional growth rates and 
confronting the result with time series of output and capital and labour inputs resulted in a huge 
surprise: the growth rates of output predicted by the model was significantly smaller than the 
empirically estimated growth rates. Depending on countries and time periods chosen, the 
differences amounted variously to 30 or 40 per cent and in some cases even much more. (See 
Barro and Sala-i-Martin 2004: chaps 10-12.) This was a sobering result. Looking for the cause of 
the disappointment, it was quickly maintained that the Solow model missed out the important role 
of technological progress.  

The conclusion was swiftly drawn by Solow that the “unexplained rest” or “Solow residual” was 
entirely due to technological progress and to nothing else. For example, if the production function 
would exhibit increasing or decreasing rather than constant returns to scale, the residual would be 
smaller or larger. But how could one discriminate in the given framework between the effect of 
technological progress and, for example, that of increasing returns (which were soon to become a 
major theme in growth economics)? The given explanation was, of course, no explanation at all; it 
was rather, as Abramovitz (1956) put it, a “measure of our ignorance”. A huge literature on growth 
accounting burgeoned (see again the summary account in Barro and Sala-i-Martin 2004), which 

                                                 
3 Starting from a set of methods of production it can be shown when a production function exists, and when not, and what 
its properties are (see Kurz and Salvadori 1995: chap. 2). In each production function is “embodied”, so to speak, a 𝑤– 𝑟 
frontier as the outer envelope of all 𝑤– 𝑟 relationships of those methods of production that contribute to the efficient set. 
The 𝑤– 𝑟 frontier plays an important part also in neoclassical analyses of technological change.  
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tried to reduce the unexplained rest and eventually make it vanish by bringing in new factors of 
production, such as schooling and education, research and development expenditures and so on and 
so forth. In more recent times, and not necessarily tied to the growth accounting literature, cultural 
differences got in the focus of attention and in the tradition especially of Max Weber the question 
was raised whether different religions and ethics played a role and engendered different “cultures” 
of innovation and economic growth (see Mokyr 2017). 

New measures of technological change were suggested, the most widespread of which is the 
concept of total factor productivity. It is used in numerous contemporary empirical studies but 
carries with it all the blemishes affecting the concept of a macroeconomic production function and 
the treatment of technological progress as a residual. The growth accounting literature turned out 
to be highly problematic, because it failed to cogently explain technological progress as generated 
from within the economic system by the purposeful activities of agents and because it employed 
concepts, especially the production function, which was severely under attack. Technological 
progress was portrayed as a purely external factor, mysteriously shifting the macro production 
function. For a critical examination of the use of the concept, see Felipe and McCombie (2013), who 
maintain that no convincing explanation at all is given in terms of it. 

Before we continue, the attention ought to be drawn to studies of the diffusion of new methods of 
production in the economic system. A major author in this regard was Dale W. Jorgenson, who from 
an early time onwards investigated diffusion patterns of new techniques in various industries and 
confirmed that they typically exhibit a sigmoid or S-type form. In Jorgenson (2001) he studied 
information technology in the US economy. Sigmoid diffusion patterns of new technical devices 
were also assumed, for example, in dynamic input-output studies dealing with the introduction and 
diffusion of early forms of automation in manufacturing and offices; see, e.g., Kalmbach and Kurz 
1990). 

2.7 Endogenous theories of technological progress and economic growth 

In the neoclassical literature up until recently, and very different from the approach of the classical 
authors and later theories (see Section 2.4), technological progress was essentially given from the 
outside of the economic system, which means it was largely treated as an exogenous factor – as 
“manna from heaven” – rather than an endogenous one generated from within the system. It was 
only in the 1980s that things began to change, and technological change began to be modelled as 
the outcome of actions of economic agents. The literature under discussion is known as “new” or 
“endogenous growth theory”, with Romer (1986, 1994; 1990), Lucas (1988), Aghion and Howitt 
(1992, 1998) and Acemoglu (2009) as main representatives. The characteristic feature of this 
literature is a new take on technological progress within a neoclassical analytical framework. It is 
worth mentioning that there are also Schumpeterian elements brought up in what is known as neo-
Schumpeterian theory. And there are also numerous non-neoclassical approaches with endogenous 
technological progress. For a lack of space, we refrain from discussing them in any depth. However, 
in the following chapters we will touch upon some of them, especially agent-based models (see 
Section 4.4).  

In these theories, that growth is conceptualised as essentially intensive rather than merely 
extensive, that is, the focus is on why rising levels of income per capita. Another property is that the 
rate of return on capital is prevented from falling, which is brought about by means of various 
devices. The first generation of such models defined the confines within which subsequent 
contributions were carried out. We focus attention on the first generation and especially on the 
treatment of the problem of technological progress. For a more detailed treatment of these models, 
see Acemoglu (2009), Aghion and Howitt (1998), Barro and Sala-i-Martin (2004), Jones (1998), and 
Kurz and Salvadori (1998, 1999). 

One class of models preserve the usually postulated dualism of accumulable and non-accumulable 
factors of production but restrict the impact of an accumulation of the former on their returns by a 
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modification of the macroeconomic production function. Jones and Manuelli (1990), for example, 
allow for both labour and capital and even assume a convex technology, as the Solow model does. 
However, a convex technology requires only that the marginal product of capital is a decreasing 
function of its stock, not that it vanishes as the amount of capital per worker tends towards infinity. 
As capital accumulates and the capital-labour ratio rises, the marginal product of capital will fall, 
approaching asymptotically its given lower boundary. With a given propensity to save (and invest) 
and assuming that capital never wears out, the steady-state growth rate is endogenously 
determined. Assuming, on the contrary, intertemporal utility maximization, the rate of growth is 
positive provided the lower boundary is larger than the rate of time preference.  

Then there is a large class of models contemplating various factors counteracting any diminishing 
tendency of returns to capital. Here we shall be concerned only with the following two sub-classes: 
human capital formation and knowledge accumulation. In both kinds of models, positive external 
effects play an important part; they offset any fall in the marginal product of capital. 

Models of the first sub-class attempt to formalize the role of human capital formation in the 
process of growth. Elaborating on some ideas of Uzawa (1965), Lucas (1988) assumed that agents 
have a choice between two ways of spending their (non-leisure) time: to contribute to current 
production or to accumulate human capital. With the accumulation of human capital there is said to 
be associated an externality: the more human capital society as a whole has accumulated, the more 
productive each single member will be. This is reflected in the following macroeconomic production 
function 

𝑌 =  𝐴𝐾𝛼(𝑢ℎ𝑁)1−𝛼ℎ∗𝛾, 

where the labour input consists of the number of workers, 𝑁, times the fraction of time spent 
working, 𝑢, times ℎ which gives the labour input in efficiency units. Then there is the term ℎ∗. This is 
designed to represent the externality. The single agent takes ℎ∗ as a parameter in his or her 
optimizing by choice of 𝑐 and 𝑢. However, for society as a whole the accumulation of human capital 
increases output both directly and indirectly, i.e., through the externality. 

Lucas's conceptualizes the process by means of which human capital is built up by 

ℎ̇  =  𝑣ℎ(1 − ℎ) 

where 𝑣 is a positive constant.  

It can be shown that if there is no externality, that is, if  equals zero, and returns to scale are 
constant and the Non-substitution Theorem holds, endogenous growth in Lucas’s model is obtained 
in essentially the same way as in the models of Rebelo (1991) and King and Rebelo (1990): the rate 
of profit is determined by technology and profit maximization alone; and for the predetermined 
level of the rate of profit, the saving-investment mechanism determines the rate of growth. Yet, as 

Lucas himself pointed out, the endogenous growth is positive independently of the fact that  here 

is the above-mentioned externality, i.e., independently of the fact that  is positive. While 
complicating the picture, increasing returns do not add substance to it: growth is endogenous even 
with constant returns to scale. In case returns are not constant, the Non-substitution Theorem does 
not apply, implying that neither the competitive technique nor the associated rate of profit are 
determined by technical alternatives and profit maximization alone. However, these two factors still 
ascertain, in steady states, a relationship between the rate of profit and the rate of growth. This 
relationship and the relationship between the same rates pertaining to the saving-investment 
mechanism determines both variables.  

Models belonging to the second sub-class conceive technological change as generated from within 
the economic system, i.e. endogenously. The proximate starting point of this kind of models in 
modern times was Arrow's (1962) paper on “learning by doing”. Romer (1986) focuses on the role 
of a single state variable called “knowledge” or “information” and assumes that the information 
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contained in inventions and discoveries has the property of being available to everybody at the 
same time. Information is therefore regarded as a non-rival good. Yet, it is not ipso facto also 
totally non-excludable, that is, it can be monopolized at least for some time. It is around the two 
different aspects of publicness – non-rivalry and non-excludability – that the argument revolves. 
Discoveries are made in R&D departments of firms. This requires that resources be withheld from 
producing current output. Therefore, as Romer (1986: 1015) put it, “there is a trade-off between 
consumption today and knowledge that can be used to produce more consumption tomorrow”. He 
formalizes this idea in terms of a “research technology” that produces “knowledge” from forgone 
consumption. Knowledge is assumed to be cardinally measurable and not to depreciate: it is like 
perennial capital. 

Since the publication of the papers mentioned, an enormous literature has built up in which the 
several aspects dealt with have been studied and new aspects added. It must suffice to provide 
some examples. Romer (1990) tried to enrich the model by introducing a “product-diversity” 
specification of physical capital: in a research sector “new designs” for intermediate products are 
being invented, which are then used in another sector by monopolistic firms to produce these 
intermediate products. The sector producing the final product employs the latter and is taken to be 
the more productive, the greater is the product diversity of its capital inputs. Aghion and Howitt 
(1992) and Grossman and Helpman (1991) incorporate (Petralia 2020; Calvino et al. 2023) 
imperfect markets and R&D in the model. They seek to formalize what Joseph A. Schumpeter 
famously called “creative destruction” (see also Kurz 2017). A different route was taken by Martin L. 
Weitzman (1998) who took his inspiration from agricultural research stations, in which new “hybrid 
ideas” are generated by cross-breeding known ideas. The economic historian Joel Mokyr (1990) 
used arguments partly forged in the recent growth literature to interpret economic history and 
especially the origins and consequences of the First Industrial Revolution for the growth 
performance of industrialising countries; see also more recently Mokyr (2017). 

The interesting thing to note is that notwithstanding the models’ occasionally great complexity, in 
the steady state they all replicate in one form or another a characteristic feature of linear growth 
models. As Romer (1990: 84) put it: “Linearity in [the number of intermediate products] is what 
makes unbounded growth possible, and in this sense, unbounded growth is more like an assumption 
than a result of the model.” And Weitzman (1998: 345) concluded that in his model “everything 
comes full circle to steady-state growth rates being linearly proportional to aggregate savings’, just 
as in the models of Harrod and Domar long ago.” 

These findings ought to be remembered when turning to most recent technological developments: 
an accelerating growth in technological and economic knowledge due to AI, Smart Machines and so 
on must not be mistaken to mean a proportional corresponding acceleration in the rate of exploiting 
the opportunities the new knowledge offers. As Weitzman’s model shows, while the growth rate of 
new opportunities may speed up, not all of them can actually be adopted. Because of the growing 
autonomy of machines, we can expect to see an increase in the rate of adoption of novelty, but not 
pari passu with the rate of their creation.  

2.8 In a nutshell: the evolution of technological change in economic thought 

Authors in the mercantile period in which long-distance trade and the colonisation of newly 
discovered continents and countries played an important role, the “demonstration effect” with 
regard to new, hitherto unknown methods of production (and consumption patterns) invited 
imitation processes and moved domestic technological knowledge towards the frontier of 
knowledge worldwide. In the classical authors from Adam Smith to David Ricardo and Charles 
Babbage the perspective changed considerably. The focus was henceforth on the domestic 
inventions of new methods of production and organisation and their labour-saving properties. 
However, technological progress was not only seen as a boon, but also as a bane: it reduced the toil 
and trouble to be mustered per unit of output, but it also unleashed the spectre of technological 
unemployment. It was understood that different forms of technological change affect the lives and 
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wellbeing of different strata of society differently, and those who suffer from technological change, 
or expect to do so, will try to fight it – landlords who feared that land-saving innovations would 
diminish the rents of land and workers who experienced unemployment and falling real wages. 
David Ricardo distinguished between different forms of technological progress and argued that 
certain types of machinery were detrimental to the interests of workers. He even contemplated the 
case of a fully automated system of production. He was the first to clearly establish an inverse 
relationship between the general rate of profits in the economy and the share of wages in national 
income – viz. his “fundamental law of distribution”. Charles Babbage began to investigate the 
fascinating question whether the division of labour can be generalised from mechanical to mental 
operations and whether eventually machine power can also in this respect replace labour power. 
Marx developed the classical approach to technological progress and its labour-saving tendency into 
a theory of the self-transformation of the socioeconomic system that reflects fundamental changes 
in the mode of production. Classical concepts were and still are being used in modern times and 
employed to distinguish between different kinds of technological change and the accompanying 
growth in labour productivity. The tool used is the relationship between the real wage rate (w) and 
the rate of profit (r), that is bound to move in w-r space as innovations shake up and change the 
system. Adam Smith’s conceptualization of the division of labour as a process that exhibits 
dynamically increasing returns to scale was early on seen to be very important, but also very 
difficult to deal with analytically, not least because it raises the tricky issue to decide how much of 
an increase in output is due to scale economies and how much to technological progress.  

Early marginalist authors generalised the idea of the substitutability of factors of production for 
one another. This led to the elaboration of a tool that became very prominent in the economics of 
technological change: the production function whose technical parameters express inter alia the 
ease or difficulty with which factors of production can be substituted for one another. There was 
also the idea that it was possible to aggregate across micro units of production and build up a 
production function for the economy as a whole, or aggregate production function (although no 
process of consistent aggregation was ever carried out). Technological change was then conceived 
as the quantitative change in total output brought about for given amounts of labour, capital and 
land. It was seen as a kind of “manna from heaven”. As regards the functional form of the 
production function adopted, economists for a long time and even today are particularly fond of the 
so-called Cobb-Douglas function, because its linear-homogeneous variant invites one to interpret 
the partial elasticities of production as factor income shares. Since these elasticities are given and 
constant, they were seen to mimic a stylised fact of economic history up until a few decades ago: 
relatively constant shares of profits (and wages). In more recent times this is no longer the case: 
the share of wages has declined and the share of profits increased. Some neoclassical authors have 
therefore replaced the Cobb-Douglas function by more general functions. 

The growth accounting literature that began to boom in the 1950s with contributions by Robert 
Solow ironically started by testing explanations of economic growth in which technological change 
played no role whatsoever, but only the growth of factors of production actually employed, labour 
and capital, did. This left a substantial part of actual economic growth experienced in numerous 
countries unexplained. In response to this sobering finding, many authors were inclined to attribute 
the “unexplained rest” to the beneficial working of technological change. Technically speaking, this 
led to the addition of a time factor in production functions, which over time shifted the function 
upwards. It has the effect of preventing the marginal productivity of capital from falling (or at least 
from falling swiftly and without lower boundary as capital intensity increases), and therefore of 
stabilising the propensity to accumulate capital. The attribution of the unexplained rest of actual 
growth to technical progress without further ado was however quickly seen to be unsatisfactory. A 
huge research industry began to burgeon in which additional factors were introduced next to labour 
and capital that were taken to promote productivity (schooling, health, etc). Important 
representatives of such extensions of the approach, which aimed at reducing the unexplained rest, 
were Edward Denison and John Kendrick (Nelson 1981). However, also these attempts shared the 
same feature as their precursors: they did not explain the increase in the productiveness of a socio-
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economic system by tracing it back to individual, purposeful actions. In short, they lacked “micro-
foundations”, that is, did not meet a requirement typically imposed in neoclassical contributions. 
(Things are different, for example, in Keynesian economics, which is to a considerable extent 
concerned with providing macro-foundations of microeconomic behaviour.)  

While in early neoclassical growth accounting, technological progress was essentially seen as an 
exogenous force that increases the productivity of some other forces whose quantitative change 
over time could be measured, since the 1980s the focus of attention switched to explaining 
technological progress in terms of profit-seeking activities of agents, that is, of rendering it 
endogenous. This was done along different lines of thought, each one of which had been discussed 
in the literature since quite some time. What was new was the attempt to formalise the respective 
core ideas in models of constrained optimisation. For example, an echo of Adam Smith’s 
observation that a deepening of the social division of labour will result in the emergence of what 
today is called an R&D sector is to be found in contributions by Romer and Weitzman. They also 
entertain versions of the idea that new, economically useful knowledge results from the 
combination of reconfigured particles of already known knowledge. The idea that schooling and 
educating people has a positive impact on labour productivity, because it involves the accumulation 
of human capital, is an old idea entertained, for example, by Smith and especially Friedrich List. In 
many ways the horizon regarding the factors affecting technological change and economic growth 
and development has increased quite a bit and has brought back the richness of the studies of 
major social scientists, such as Smith, John Stuart Mill (1848), Karl Marx and Joseph Schumpeter, to 
name but a few. The complexity of the field has risen greatly; it comprises the interrelationship of 
economic, social, cultural, political and historical factors (see also Haas et al. (2016) for a summary 
account on technological change and innovation). 

Scholars do not only ask what is the productivity of the R&D sector or of the schooling and higher 
education system of a country, but also how effective is the translation of their achievements in the 
manufacturing and other sectors in the form of new methods of production and organisation and 
new and better products, and what is the role of the public administration in all this: does it 
promote the process of modernisation or does it slow it down? Which role is to be attributed of all 
this to the quality of the political system, to corruption in economy and society, to the tax system, to 
fairness and trust? And which impact can be imputed to the different factors at work, what is their 
aggregate effect in regard to technological change and productivity growth? What do we know 
about the interaction of the factors? Which new conceptual and statistical tools and devices have to 
be forged in order to get a clearer picture of what is happening? Do the received economic concepts 
and measurement devices, some of which were elaborated decades if not centuries ago, need a 
fundamental overhaul in order to get attuned to an age of bits and bytes, platforms and Artificial 
Intelligence? The “Second Machine Age” (Brynjolfsson and McAfee 2014) confronts humankind with 
considerable challenges. 
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Table 1: In a nutshell: schools of thought and their empirical application. 
Schools of 
thought 

Data and 
methodology 

Strengths Problems and weaknesses Reference 

Classical 
approach and 
modern 
versions of it 

Focus on the system 
of production as a 
whole and the impact 
of technological 
progress on labour 
productivity and 
vertically integrated 
labour coefficients 

Focus on 
intertemporal and 
interspatial 
comparisons 

Input-output data, 
Econometrics 

General analysis taking into 
account sectoral 
interdependencies 

Taking labour heterogeneity 
seriously  

Tracing shifts in the wage 
frontier  

Qualitative change. Is there 
an “invariable measure” 
(Ricardo) of value, different 
forms of technological 
change etc.? The answer is 
no. 

Recourse to index numbers 

  

Ricardo 
(1821) 

Sraffa (1960) 

Schefold 
(1976) 

Pasinetti 
(1977) 

Kurz and 
Salvadori 
(1995) 

Early 
neoclassical 
studies 

Macroeconomic 
approach 

“Aggregate” 
production function 

Growth accounting 

Diffusion processes 
showing sigmoid 
shapes 

Econometrics 

It is relatively simple and 
conveys the impression of 
moving on solid ground 

Does not explain 
technological change, but 
treats it like “manna from 
heaven” 

Based on problematic 
aggregate production 
functions 

Increasing returns to scale 
vs. technological progress  

Solow (1956, 
1957) 

Felipe and 
McCombie 
(2013) 

Jorgenson 
(2001) 

“New” 
growth 
theories 

Seek to provide 
“micro-foundations” 
of technological 
change within an 
optimizing 
framework 

Econometrics 

 

Return to the broad view of 
technological change of the 
classical authors and widen 
somewhat the perspective 

Provide a version of Adam 
Smith’s concept of cumulative 
and circular causation 

Focus on “knowledge” and 
treat it as an accumulable 
and cardinal factor of 
production; preserve the 
aggregate framework vis-à-
vis a growing heterogeneity 

Focus on numerous factors 
that explain technological 
change; offer a 
“kaleidoscopic” point of 
view 

Romer 
(1986, 1990) 

Lucas (1988) 

Grossman 
and 
Helpman 
(1991) 

Barro and 
Sala-i-Martin 
(2004) 

Schumpeter 
and 
Schumpeter-
ian 
approaches 

Conceive of 
technological change 
as a process of 
“creative 
destruction” 

A blend of different 
kinds of 
methodologies and 
data bases 

Quantitative and 
qualitative studies 

Focus on “entrepreneurship” 
and “agents of change” 

Stress the importance of credit 
and the banking system for 
economic development 

Seek to understand the 
creative-cum-destructive part 
of technological change 

Stress the necessarily cyclical 
character of the absorption of 
new methods of production 

Technological change 
necessitates the 
elaboration of various 
measures, which are bound 
to change over time: 
“horses for courses”, no 
unique and invariant metric  

Concern with long waves of 
economic development 
(“Kondratievs”).  

Schumpeter 
(1912, 1934, 
1939) 

Kurz (2012) 

Kurz et al. 
(2018) 

Aghion et al. 
(2021) 
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3 Pervasive technological change 

Ever since, economic history has been intrinsically interwoven with technological transformation. 
The question to what extent the former is shaped or even determined by the latter, has been at the 
core of a long-standing debate among economic historians, theorists and applied economists. This 
discussion is often linked to the regular occurrence of long waves in economic development (see 
Section 4.1), a phenomenon that had already been pointed out by Jevons and then van Gelderen 
(1913) and became later synonymous with the term of Kondratiev-cycles (see Ayres 1990). 
Schumpeter (1934) identified ‘swarms’ or clusters of innovations as causal for the cyclical pattern 
of economic growth, boosting productivity especially in those sectors most affected by 
technological change, and Mensch (1975) saw that clusters of basic innovations arrive during the 
downswing or at the bottom of each Kondratiev-cycle (see also Ayres 1990 and Coccia 2018). The 
more pervasive thereby the underlying innovations – affecting the production recipe of a wide range 
of sectors – the bigger the impact on economic and social development, and the longer it takes the 
socioeconomic system to readjust to a new technological paradigm.  

The relation between pervasive technological change and long waves of development is empirically 
grounded in the emergence of industrial revolutions: the First Industrial Revolution is inevitably 
linked to the invention and diffusion of the steam engine and the slide rest, and the Second 
Industrial Revolution to the emergence of electricity and the automobile. Each of these technologies 
triggered painful structural adjustments with regard to different aspects of the socioeconomic 
system, such as the workplace, infrastructure, education, among many others. Understanding the 
underlying alignment processes is therefore the ultimate raison d’être and motivation why to study 
pervasive technological change as a genuine phenomenon that involves distinct causes, features 
and consequences different from incremental innovations. 

The interest in this phenomenon was spurred by the emergence of new information and 
communication technologies (ICT) that started out with the invention of the Intel Microprocessor in 
1971 and has since then evolved into the digital revolution (Perez 2010). Particular attention in this 
regard has been paid to phases of temporal or persistent economic slumps, and especially to the 
role of ICT in solving the productivity puzzle (or Solow’s Paradox), whereby “you can see the 
computer age everywhere but in the productivity statistics” (Solow 1987) or in explaining tendencies 
of stagnation (Summers 2014; Gordon 2016). These research questions have experienced an 
additional boost in the context of the “Fourth Industrial Revolution”, whose technological core is 
assumed to be a melting pot of different technological breakthroughs mainly from the physical, the 
digital and the biological sphere (Schwab, 2015) and which should hit the global economy not far 
into the future (see Section 4.3). 

While Schumpeter did not elaborate much on the nature and characteristics of the temporal 
clustering of innovations, various economists have since then argued that innovations within this 
set are usually highly interrelated – they depend on each other for their efficient employment in the 
production system (see, e.g. Dosi 1982; Freeman et al. 1982; Perez 1985; Mokyr 1990; Lipsey et al. 
2005). In fact, it is this “complementarity” between one or several generic technologies and their 
follow-up innovations that, on the hand, warrants the long gestation period of a new technological 
paradigm and, on the other, enables its pervasive diffusion and socioeconomic impact (see, e.g., 
Jovanovic and Rousseau 2005, Bekar et al. 2018, Teece 2018).  

3.1 The notion of pervasiveness 

A technology can be defined as pervasive, if its trajectory persistently affects and responds to its 
technological and socio-economic environment. The class of innovations that (explicitly or implicitly) 
feature pervasiveness as a decisive characteristic are typically known as “generic”, “enabling” or 
“general purpose technologies”. Generic technology refers to a technology “the exploitation of which 
will yield benefits for a wide range of sectors of the economy and/or society” (Keenan 2003, quoted 
in Maine and Garnsey 2006). “All-pervasive” generic technologies are also at the heart of 
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technological and techno-economic paradigms (Dosi 1982, Perez 1985) and facilitate the foothold 
of a technological breakthrough in the economy. They are not necessarily the technological 
revolution itself but play a crucial role in its further development – similar to the concept of 
enabling technologies (Lipsey and Bekar 1995),  which are also characterised by their wide range of 
application and their complementarities. Due to these features, they cause deep structural 
adjustments in the socioeconomic system. As will be discussed below, an approach that has drawn 
much attention in the last ten years is the concept of general purpose technologies (GPTs), 
introduced and originally studied in a microeconomic framework by Bresnahan and Trajtenberg 
(1995). In contrast to generic technologies, that are the pervasive counterpart of the “double nature 
of technological revolutions” (Pérez 2002, p. 9), enabling wide-spread productivity surges in the 
presence of technological breakthroughs, GPTs per se entail the explosive dynamism of brand-new 
innovations – they are themselves “engines of growth” (Bresnahan and Trajtenberg 1995).  

Different types of complementarities arise from the feature of pervasiveness. These are especially 
well defined in the GPT framework. According to Bresnahan (2010), “a GPT (1) is widely used, (2) is 
capable of ongoing technical improvement, and (3) enables innovation in application sectors.” Thus, 
despite its pervasive applicability, each sector has to a certain degree to customize the technology 
to its own production process, and this continuously, as the GPT improves over its lifetime. The 
productivity gains associated with technological progress are covered under the term “innovational 
complementarities”. Teece (1986, 1988) and Lipsey et al. (2005) focus especially on 
complementarities occurring on the microfunctional/technological level. Bekar et al. (2018) have 
further refined the concept, distinguishing different types of technological complementarities: (1) 
complementarities with a cluster of technologies that facilitate the GPT; (2) complementarities with 
a cluster of technologies that are enabled by the GPT; (3) complementarities with a cluster of 
technologies that themselves affect economy, society, policy and institutions. In addition to  
innovational and technological complementarities, the evolution of a GPT also involves, as Teece 
(2018) suggests, several other types of complementarities: production (Hicksian) complementarities, 
where demand in one input increases due to a decrease in the price of another (in this case, the 
GPT), driven by the steep cost degression typically associated with new technologies; consumption 
(Edgeworth) complementarities, where the increased demand for the GPT leads to higher demand 
for related goods or services; asset price (Hirshleifer) complementarities, which create new financial 
arbitrage opportunities arising from the emergence of the GPT; and input oligopoly 
complementarities, where the collusion between two firms (e.g. microprocessors and mainboards), 
results in higher collective profits, as the monopoly power over each input commodity generates 
greater returns than if the firms operated individually. In short, pervasiveness is dependent on the 
extent to which innovational, technological and other socioeconomic complementarities arise and 
interact.  

The analytical concepts presented in the remainder of this chapter have also given rise to empirical 
studies on pervasive technological change. In general, the various approaches employ distinct 
empirical techniques and levels of analysis, including country, industry, firm and individual/worker 
levels. Each approach has its own advantages and disadvantages. These approaches range from 
historical accounts and case studies, including those grounded in cliometrics, to data-heavy 
quantitative-empirical models, such as econometric and input-output analysis. Depending on the 
theoretical background, the research has thereby focused on investigating the causes and 
framework conditions of pervasive technological change, the socioeconomic consequences 
associated with it, as well as the measurement of the microfunctional (i.e. technology-related) 
characteristics of generic technologies. In particular, the theoretical GPT concepts, assessing the key 
characteristics and stylized impact of this type of technology, have led to a series of papers that 
aim at empirically underpinning the analytical findings (Bekar et al. 2018). We therefore 
complement our guided tour into the conceptual frameworks to pervasive technological change with 
a short overview of the empirical techniques applied to each of them and illustrate them with 
representative examples.  
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Sections 3.2 and 3.3 outline important and novel contributions in the field of pervasive 
technological change, both from a theoretical and empirical perspective, with the assessment 
aiming at giving a broad overview of existing works and leverage points for future endeavours in 
this context. 

3.2 Evolutionary-economic concepts 

It was not until the mid-90s that pervasive technologies became a major issue in economics, largely 
due to the growing impact of ICT. Existing theories struggled to explain both the technology’s 
evolving productivity patterns and its diffusion across the economy. The first strand of models, in 
the line of appreciative theorizing from an evolutionary-economic perspective – techno-economic 
paradigms, macro-vs. microinventions, as well as the structuralist-evolutionary model of 
technological change – are all substantiated by the empirical investigation of technological change 
and industrial revolutions. By stressing the ties between technology, economy and society, these 
approaches, all rooted in the “ex-post-rationalisation” of economic history (Lipsey et al. 1998), have 
contributed to a general understanding of how pervasive innovations evolve and impact the 
socioeconomic system.  

Techno-economic and technological paradigms and trajectories 

Developed partly in response to Schumpeter’s “a-historical theory of entrepreneurship” (Perez 
2015), the concept of techno-economic paradigms (TEPs, see, Perez 1985 and Freeman and Perez 
1988) has become a core concept in the field of technological change. Western history from the 
1770s up to now can be described as a succession of such paradigms or technological revolutions, 
each generating a “great surge” of development. Each revolution is driven by a techno-economic 
paradigm (TEP) that creates entirely new industries and organisational forms and guides the 
interplay between technology, the economic structure, management and social institutions. As each 
part advances along a genuine trajectory, the arrival of a new TEP initiates a structural crisis at the 
macro level, necessitating adjustments in capital equipment, work profiles, firm management, 
industrial organisation and institutional landscape. New inputs are required, that feature strong cost 
degression alongside the evolution of the new paradigm. Certain social mechanisms synchronize the 
subsystems again. Each technology lifecycle is characterized by certain phases: the installation 
period, marked by the emergence of a new technology; the frenzy phase, involving substantial 
investments in innovative activities that potentially create a financial bubble if the hyped 
expectations fail to materialise; and the deployment period, where the technology benefits economy 
and society more broadly (Perez 2013). The shift from one paradigm to another thus concerns 
various dimensions, most notably the labour market, leading to increasing unemployment due to 
rationalisation effects, technological replacement and economic stagnation (Perez 2010), and rising 
inequality in skills and wages between new and old industries and across regions and countries.  

Similarly, a technological paradigm, introduced by Dosi (1982) in analogy to Kuhn’s concept of 
paradigm shifts in sciences, signifies a “”model” and a “pattern” of solution of selected technological 
problems, based on selected principles from the natural science and on selected material 
technologies” (p.152). The term encapsulates the fact that among the myriad potential directions 
technological development could follow, only a limited subset is actualized (Verspagen 2007). This 
subset of basic innovations subsequently determines the fundamental course of techno-economic 
evolution over an entire era, continuously sparking and being enhanced by incremental innovations. 
Nevertheless, context-specific factors shape technology development along the way – leading to 
different “technological trajectories” depending, e.g., on societal aspects, economic needs and local 
circumstances (cf. the notion of technological style in the large technical systems literature). Both 
theories, the techno-economic (macro) paradigm and the technological (micro) paradigm, can be 
viewed as being complementary to each other, insofar as the trajectories of the latter must align 
with (and cumulatively shape) the former (Knell and Vannuccini 2022).     
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Figure 2: Phases of the techno-economic paradigm. Source: Knell and Vannuccini (2022), based on 
Perez (2002: 48). 

Empirical application. The historical accounts of the emergence of new technologies by Chris 
Freeman and colleagues have significantly enriched our understanding of the relationship between 
pervasive technological change and long waves of economic development. For instance, Freeman 
and Perez (1988) provide a comprehensive overview of five distinct technological revolutions that 
initiated “great surges” of development, starting with Richard Arkwright’s water-frame of 1771 (see 
also Section 4.3). Freeman and Louçã (2001: 97) propose three methodologies to trace long waves 
of economic development: (1) traditional statistical and econometric methods, (2) simulation of 
formal models and (3) historical narratives. Criticising the strong and unrealistic assumptions that 
often underlie the first two approaches (Knell and Vannuccini 2022), they establish the connection 
between technological revolutions and long waves based on “reasoned history”. This macroeconomic 
perspective on technological change is pivotal for challenging the neoclassical economic paradigm, 
as affirmed by Freeman4. However, innovation research is still largely focusing on micro level 
studies.  

The TEP notion has also been applied in the quantitative-empirical context. Most recently, Espinosa-
Gracia and Sánchez-Chóliz (2023) employ the concept of long waves to analyze the joint 
persistence of economic crises and changes in social inequality since 1929. They identify four 
important subdomains – technology, the economy, science and institutions – that together shape 
income distribution. Using quarterly data of output growth rates, gross investment growth rates and 
industrial production indices for selected industrial countries, they show that income inequality 
cannot be attributed to economic productivity and technological change alone but is the result of 

                                                 
4 “Most of the people working on innovation systems prefer to work at the micro-level. They are a bit 
frightened still of the strength of the neoclassical paradigm at the macroeconomic level. But I think that’s 
where they have to work. You have to have an attack on the central core of macroeconomic theory. It is 
happening but not happening enough.” (Chris Freeman in an interview with Naubahar Sharif, [10/24/2003], 
quoted in Fagerberg et al. 2011) 
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the “global social system”. The non-linear and non-deterministic long-run growth trends they 
detected further support the long-wave theory.  

Other contributions refer to the TEP term at the micro level, without embracing the full concept: 
Based on the analysis of US patents and firm data, Cantwell and Santangelo (2000) discuss how 
innovative profits are increasingly generated through multinational corporations in the ICT-based 
paradigm. As regards qualitative case studies, Daniels (2005) discusses the potential of a green TEP 
for sustainable development in lower-income countries, while Pihkala et al. (2007) explore the 
impact of techno-economic shifts on regions, emphasizing the role of social capital for adjusting to 
a new paradigm.  

Similarly, quantitative-empirical applications of the concept of technological trajectories and 
paradigms have focused on the micro level. They typically use patent citation analysis to trace the 
development path of a specific technology: Verspagen (2007) uses USPTO patent data in the field 
of fuel cells during the period from 1860 to 2002 to investigate if the main research paths (1) have 
been “selective” both in terms of a small set of technology fields and the particular organizations 
involved, and (2) attract cumulative innovations. The study further operationalizes the notion of 
persistence in the main paths versus the exploration of new directions. Fontana et al. (2009) use 
patent citation networks to investigate the main technological trajectories of the Ethernet. Their 
findings support the cumulativeness of innovations around some “milestone inventions”, the 
discontinuities along trajectories, i.e. the exploration of new directions, and the strong 
interrelatedness of technologies within a large technical system. Castaldi et al. (2009) used detailed 
records of tank design from between 1915 and 1945 to investigate the convergence and similarity 
in the evolution of this technology across different countries. The results indicate a significant 
alignment along a main technological trajectory.  

Macroinventions 

Mokyr’s (1990) distinction between micro- and macroinventions articulates the technological 
complementarity of innovations: The success of a basic innovation (and the related paradigm) 
depends on follow-up innovations that improve upon the initial design and adapt it to local 
circumstances. In this respect, microinventions refer to incremental changes that enhance existing 
techniques, reduce costs, material and energy use, improve form and function, and increase 
durability – in evolutionary terms, they reflect an improvement in the species. On the other hand, 
macroinventions represent per se a new species and cause radical technological change, as they 
emerge ab nihilo without clear antecedent (Mokyr 1990: 13).5 They set the course for subsequent 
technological developments and the trajectories for microinventions. But the relation is mutual, as 
microinventions enhance the viability of macroinventions. Despite them being the result of 
serendipitous discoveries, the selection process of macroinventions hinges upon their technical and 
economic feasibility and their fit into the existing institutional setting. They tend to cluster, following 
a critical-mass logic where one agent after the other joins the wave of innovation. While the right 
social, economic and political framework conditions might foster the emergence of macroinventions, 
microinventions are easier to predict, responding to price and market signals and often being a by-
product of learning-by-doing and learning-by-using (Mokyr 1990: 298).  

Empirical application. The concept of macroinventions has frequently been applied to the case of 
the British Industrial Revolution; this is not surprising, as Mokyr himself has claimed that the 
revolution presents a clustering of macroinventions followed by an acceleration of microinventions. 
In a historical study, Crafts (1995) underscores the significance of macroinventions for economic 
development during this time, referring to them as “exogenous technological shocks”. Using a basic 

                                                 
5 The stochastic nature of macroinventions is challenged by Allen 2009, who suggests that macro-inventions often 
emerge due to economic inducements and are typically conceived by “outsiders” being more receptive to oschmezut-of-
the box thinking.  
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structural model that decomposes industrial production into a trend and a cycle component, Mills 
and Crafts (1996) demonstrate that trend growth in British industrial output accelerated gradually 
over several decades between approximately 1780 and 1840 – coinciding with the rise of 
macroinventions such as the steam engine. The study also supports the concept of serendipity and 
the lagged impact of macroinventions. Recently, Nuvolari et al. (2021) constructed a new composite 
indicator based on historical reference indices for all patents granted in England between 1700 and 
1850 to empirically test the distinction between macro- and microinventions. The findings lend 
support to Mokyr’s idea of the stochastic emergence of macroinventions and the cumulativeness of 
microinventions. They also align with Allen’s (2009) perspective that macroinventions are 
economically incentivized (as evidenced, e.g., by their labor-saving bias) and can be attributed to a 
specific group of actors. 

Enabling technologies  

The notion of enabling technologies (Lipsey and Bekar 1995) was developed simultaneously with 
the concept of general-purpose technologies (GPT). While the authors in their later works refer to 
GPTs when conceptualizing pervasive technological change, we discuss their approach in this 
Section to emphasize the independent development of the theory and its evolutionary-economic 
roots.  

Acknowledging the impact of radical innovations, Lipsey et al. (2005) stress that not all 
technologies impose deep structural adjustments upon the economic system, because they are 
themselves influenced by socioeconomic aspects. Therefore, a systemic view is required in which 
the technology is embedded in a structure of different components that determine its creation, 
adaptation and diffusion. This Structuralist-Evolutionary (SE) approach includes six components 
(Lipsey et al. 2005: 58 et seq.): (1) technological knowledge, i.e. knowledge about and embodied in 
product, process and organizational technologies; (2) the facilitating structure, i.e. the structure of 
the economy (including firms, markets, physical, human, and financial capital, infrastructure, 
education, etc.); (3) public policy objectives (inscribed in legislation, laws, rules, regulations, 
procedures, and precedents); (4) policy structure, comprising all public sector institutions; (5) natural 
endowments; (6) socioeconomic performance, e.g. as measured by GDP or employment. These 
components are interrelated and evolve in concert.  

Empirical application. Lipsey et al. (2005) have applied this SE-concept to model the 
socioeconomic impacts of general-purpose technologies. They conduct a survey on GPTs in Western 
history, starting around the Neolithic Agricultural Revolution and covering the major technological 
and organizational developments up to the mid-2000s, their origins as well as their effects on the 
SE-categories. Their list of transformational technologies includes, amongst others, writing, printing, 
and the three-masted sailing ship.  

Combining index theory with an empirical network model, Strohmaier et al. (2019) operationalized 
the SE-framework to study countries’ readiness to structural transformation as a function of the 
strength and direction of connectivity among the broad components identified within this 
framework. This connectivity is measured by means of composite indicators. Measures derived from 
this network tool inform about the capability of an economy to absorb technological shocks that 
affect one or more components of its underlying SE-structure. The model was applied to a selected 
set of Western and Asian countries over the period 2007 to 2016 to trace the recent effects of the 
digital revolution and Industry 4.0.  

3.3 Theories of sociotechnical change 

The interrelation between structural features and long-term dynamics are also investigated in other 
strands of the literature, such as Large Technical Systems, the Technological Innovation System, the 
Multi-Level Perspective, Strategic Niche Management and Transition Management. These 
approaches have a stronger social science background than the afore-mentioned evolutionary-
economic concepts and are particularly applied in the context of transition studies, to investigate 
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the complex interplay between social, cultural, economic, and political factors in shaping technology 
development and diffusion; see Köhler et al. (2019) for a detailed discussion.  

Large technical systems  

Large Technical Systems (LTS) are characterised by their size, complexity and impact on society 
(Hughes 1983; 1987; Mayntz and Hughes 1988). They typically involve numerous interconnected 
(technical and social) components, requiring extensive coordination between them to achieve 
specific goals. LTS emerge from smaller-scale, local, intra-organizational technical systems and 
undergo characteristic transformations as they grow. The first phase involves the invention, 
development and innovation of the technology, often characterised by high levels of uncertainty. In 
the second phase, the technology is transferred and adapted to different environments, leading to a 
“technological style” that varies, based on geographical, political, legal and historical conditions. The 
third phase is characterised by growth through competition and consolidation, where efficiency and 
capital intensification become dominant system goals. During this phase, engineer-entrepreneurs 
are replaced by manager-entrepreneurs and eventually financier-entrepreneurs. Critical system 
features include reverse salients, load factor, and momentum. Reverse salients are elements 
lagging behind or lying in the dark, constraining the development of the collective system, requiring 
problem identification and solutions by inventors, engineers, managers and investors. The load 
factor refers to the ratio of the average system output to its maximum output over a given period, 
momentum to the structural concept and dynamic inertia related to the evolution of a technological 
system. It reflects the system’s ability to sustain and accelerate its expansion and persistence over 
time. LTS may modify, merge with, or supersede older LTS. Technological path dependence is 
central to understanding the evolution of an LTS, as investments and legacy technologies may lead 
to a lock-in into a particular technological trajectory.  

 

Figure 3: Stylised trajectory of an LTS. Source: Hughes (1987), Sovacool et al. (2018), own 
illustration. Note: The bandwidths represent the level of uncertainties that shape the trajectory in the 

respective phase (see Odenweller et al. (2022). 
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The LTS approach shaped the research strand of social construction of technology. Hughes 
emphasized the importance of distinguishing between technical phenomena – even if they are 
socially constructed – and purely non-technical, social phenomena, such as organisations, 
institutions and interactions, as otherwise the analysis would undermine the material-operational 
aspects of technological transformation. While the process of innovation itself and evolutionary 
theorizing have a less central role, the framework also shares many commonalities with the 
innovation system approaches, in particular, the strong focus on agency.  This is covered by the 
notion of “system builders” – actors and entities that work together, often in a transdisciplinary 
manner, to solve a specific challenge or overcome a barrier.  

Empirical application. The concept itself originated in the comprehensive historical accounts of 
early electrification by Thomas P. Hughes (see, e.g., 1983, 1987). Subsequent studies have honed in 
on specific features of large technical systems. For instance, Hanseth et al. (1996) applied the 
approach to examine the contents and process of standardization of information infrastructure in 
the EU, employing literature and document analysis. While their findings generally align with the 
theoretical framework, they caution against a one-size-fits-all approach to measuring technological 
change and specifically question the empirical validity of the notion of momentum, which suggests 
irreversibility in the technological trajectory after a certain point in time. If changes were genuinely 
not possible, an LTS would be unable to adapt to the inherent dynamics and would simply collapse.  

(Technological) Innovation System 

Innovation systems (IS) are in general defined over a set of organisations (as actors or agents) and 
institutions and the relationships among and between them (Markard and Truffer 2008). They can 
be delineated on a territorial basis (national and regional IS, see, e.g., Lundvall 1992; Edquist 1997), 
on industry structures spanning different geographic regions (sectoral IS, see, e.g., Malerba and 
Orsenigo 1995, Breschi 2000, Malerba 2002), or technology systems, crossing both territorial and 
sectoral boundaries (technological innovation system (TIS), see, e.g., Hekkert et al. 2007, Bergek et 
al. 2008).  

The TIS approach combines elements from the (national) innovation system framework and 
industrial economics (Köhler et al. 2019).  It can be understood as a network of different actors that 
interact with each other for the purpose of generating, diffusing and using a new technology, 
thereby offering a complementary perspective to the evolutionary-economic concepts of national, 
regional and sectoral systems of innovation. The national and regional  innovation system literature 
usually focuses on  weaknesses or failures – i.e., problems or deficits in the interaction between 
actors – and traces them back to the components of the system, such as infrastructure, institutions, 
networks, or lacking capacities and resources on the part of the actors (Klein Woolthuis et al. 2005; 
Wieczorek and Hekkert 2012). In contrast, the TIS approach typically revolves around the system’s 
functions by investigating the key processes that shape an innovation: entrepreneurial activities, 
knowledge creation and diffusion, guidance of search (directionality), market formation, resource 
mobilization, and creation of legitimacy (see, e.g., Hekkert and Negro 2009; Praetorius et al. 2010). 
It therefore seeks to detect the “motors of change” – the catalysts of technological progress. A 
more recent literature stream combines both elements, components and processes of an innovation 
system, through a structural-functional analysis (see, e.g., Oliveira et al. 2020; Kriechbaum et al. 
2018; Turner et al. 2016; Wesseling and van der Vooren 2017). 

Empirical application. Similar to the LTS concept, the TIS concept is employed for in-depth 
analysis of specific technologies rather than whole transition processes (Markard and Truffer 2008). 
The empirical literature primarily comprises qualitative case studies of a technology or sector at the 
country level, often based on document analysis and semi-structured interviews. For instance, Binz 
et al. (2012) use the TIS approach as a conceptual basis for investigating leapfrogging in China, 
examining the case of onsite wastewater treatment. The TIS framework has also been applied in 
comparative, mixed-method studies: Bento and Fontes (2015), for example, explore the spatial 
diffusion of energy technologies, focusing on wind energy growth in Denmark (the core country) and 
Portugal (the follower country). While diffusion is approximated by logistic curves based on 
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renewable energy and wind energy data, the system functions are assessed through document 
analysis.  

The empirical application demands a clear delineation of the technological system under 
examination. This is often done arbitrarily, raising questions about the completeness of the analysis. 
Some studies attempt to address this issue by using technology distance indicators (based on 
patents and bibliometric data) to measure the distance of the TIS to other innovation systems.  

 

Multi-Level-Perspective  

The MLP approach (Rip and Kemp 1998; Geels 2002; Smith et al. 2010) is rooted in the sociology of 
innovation but also includes elements from evolutionary and institutional economics. It operates 
across three levels: 1) the socio-technical regime, a  highly stable and inert rule structure at the 
meso level, associated with established products, technologies, practices, regulations, etc. It 
represents the selection environment (Markard and Truffer 2008) that a radical innovation is 
confronted with;6 2) the landscape, encompassing the external macroeconomic and macro-political 
sphere and normative and cultural patterns that influence technological trajectories; 3) niches, 
representing the micro-level; they play a pivotal role as “incubator rooms” for radical innovations, 
offering a protected space to develop in isolation from the prevailing regime. Changes in the 
landscape create a window of opportunity for these novelties to destabilize the existing 
sociotechnical regime, along various dimensions (e.g. markets, quality infrastructure, technologies). 
The tension between stability and change, on the one hand, and the single level/component and the 
entire system, on the other hand, lead to complex structural dynamics reminiscent of evolutionary 
frameworks.  

 

Figure 4: A multi-level perspective on technological transition. Source: Based on Geels (2002: 1262 
ff.), own illustration. 

 

                                                 
6 Geels (2004) also introduced the ‘sociotechnical system’, which integrates the sociotechnical regime and the material 
infrastructure into a coherent system that governs technology deployment. 
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Empirical application. The MLP approach has arguably generated the most extensive empirical 
literature within sociotechnical studies, often concentrating on niche-regime relations. For instance, 
Smink et al. (2015) delve into the institutional strategies adopted by incumbent firms in the 
Netherlands concerning sustainable energy innovations that challenge their interests (exemplified 
by LED light bulbs and biofuels). This case study is based on semi-structured interviews and 
document analysis. Applying a firm-level survey, Steen and Weaver (2017) investigate how 
incumbents in established energy sectors (oil/gas) in Norway diversify into other (niche) energy 
sectors such as hydropower. The MLP concept has also influenced policy-oriented studies: 
Spickermann et al. (2014), for example, use visioning, Delphi studies and focus group workshops to 
guide cities in Germany in how to develop a long-term future vision of urban mobility systems. 
Finally, the MLP-framework has been applied in quantitative-empirical research. Li and Strachan 
(2017) employ a dynamic, stochastic sociotechnical simulation model of technology diffusion, 
energy and emissions to model energy transitions for the UK under specific climate targets, 
considering landscape and actor inertia. Köhler et al. (2020) conduct qualitative case studies to 
inform simulation models of transition pathways for low-carbon mobility in the Netherlands, 
encompassing technological and behavioural change.  

A common criticism revolves around the difficult empirical delineation of regimes (e.g. on the level 
of industrial sectors, technology fields, etc.) and the lack of insights on how regimes themselves 
change during the transition (see Markard and Truffer 2008). 

Strategic Niche Management 

Similarly to the MLP approach, Strategic Niche Management (SNM) (Rip and Kemp 1998; Geels and 
Raven 2006; Schot and Geels 2008) centers around niches as incubator rooms for nurturing new, 
and potentially transformative, technologies. These protected spaces (e.g. demonstration projects) 
allow dedicated actors – often new entrants –  to jointly develop, refine and test emerging 
innovations and shield them from the dominant market, the inertia and the vested interests 
characterising the prevailing regime.  In this context, three internal processes are pivotal: 1) visions 
and shaping expectations; 2) building social networks; 3) learning processes (Kemp et al. 1998). 
Through recursive loops of experiments and demonstration projects, these processes shape the 
overall innovation trajectory (Geels and Raven 2006; Schot and Geels 2008). The approach thus 
focuses on the supportive environment that makes novel technologies strive, build legitimacy and 
eventually challenge the existing sociotechnical regime.  

Empirical application. Given the niche focus of the concept, studies in this realm typically operate 
at the micro level, honing in on specific transition aspects, often associated with sustainability. 
Seyfang and Haxeltine (2012), for instance, investigate the role of community-based initiatives (as 
a civil-society-based social innovation) in the transition to a low-carbon sustainable economy in the 
UK. This study involves document analysis, a survey, and participant observation. Also for the UK, 
Hargreaves et al. (2013) examines the role of intermediary actors in consolidating, growing and 
diffusing energy community projects, utlizing interviews and content analysis of case studies.  

Transition Management 

In comparison to the MLP and the SNM approach, the Transition Management (TM) framework 
(Rotmans et al. 2001; Rotmans and Loorbach 2009) is more practice-oriented. Accordingly, policy 
can shape transitions through four sequential steps: 1) strategic activities, focusing on vision setting 
and potential transition pathways; 2) tactical activities, developing more concrete roadmaps and 
agendas and supporting actors and networks, e.g. through regulatory measures and investment 
commitments; 3) operational activities, putting these strategies into action (e.g. feasibility studies 
and demonstration projects) with the aim to foster technological learning; 4) reflexive activities 
(evaluation and monitoring of projects), creating feedback loops between visions and 
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implementation. As before, technological change is seen to be characterised by systemic complexity, 
but other evolutionary aspects, such as path-dependence, lock-in and co-evolution are featured less 
prominently.  

Empirical application. Similar to the MLP and the SNM concept, the TM approach has been most 
frequently applied empirically in the context of sustainability, climate change and environmental 
issues, spanning industry/sector, regional, and country levels. Loorbach and Rotmans (2010), for 
instance, showcase recent advances in the TM approach by presenting four case studies at different 
levels of analysis, including the health care sector and sustainable waste and resource 
management. The study illuminates both the advantages and challenges associated with effectively 
managing transitions.  

Sociotechnical studies are a rapidly growing field. Among the many emerging trends, three deserve 
particular attention:   

(1) multi-system multi-technology interaction frameworks for exploring the sectoral 

complementarities and industrial transformative capacity of an emerging technology 

(see Bakhuis et al. 2024 for a comprehensive literature review). Adjacent sectors – 

sectors outside the technology’s immediate value chain – can significantly enhance its 

development (Markard and Hoffmann 2016, Mäkitie et al. 2018), e.g. by providing key 

resources. They often also host valuable knowledge and capabilities that can be 

recombined to support the new technology. The emergence of a new technology can 

thus foster growth or revitalize other sectors (Fontes et al. 2021). 

(2) the rise of integrative analyses, building upon feedback loops between qualitative and 

quantitative empirical research and combining different disciplines to enhance system 

analysis and predictive modeling (see, e.g., Wachsmuth et al. 2023)  

(3) the integration of Knightian or “deep” uncertainty, where agents cannot make informed 

decisions on the probabilities of possible outcomes or the actual outcomes themselves 

(see Haas 2023).  

3.4 General Purpose Technologies 

Introduced by Bresnahan and Trajtenberg (1995), general purpose technologies (GPT) are 
characterised by three main criteria: (i) widespread usage, (ii) the potential for continuous technical 
improvement, and (iii) the ability to foster innovation in application sectors. The initial GPT concept 
focused on the coordination of innovation activities between up- and downstream sectors in a 
partial equilibrium model. The lack of technological information flowing between the GPT-providing 
and the using sectors prevent positive externalities from coming to full play.  

First generation models 

Not last in an attempt to explain the productivity slowdown in the U.S. in the 1980s, a “first 
generation” of GPT growth models (Cantner and Vannuccini 2012) were subsequently developed 
around the original notion of GPTs. Key contributions include, in addition to Bresnahan and 
Trajtenberg (1995), Helpman and Trajtenberg (1998a, 1998b), Aghion and Howitt (1998) and 
Petsas (2003). Models in this line view a GPT as a process innovation that triggers product 
innovations in other sectors. In Helpman and Trajtenberg (1998a),  the necessary development of 
complementary components causes resource shifts from manufacturing to R&D and productivity 
slumps before subsequent growth. Helpman and Trajtenberg (1998b) focus on the diffusion process 
of a GPT across sectors, driven by complementary development,  and on its impact on prices, on 
income distribution and GDP. Aghion and Howitt (1998) adapt their Schumpeterian growth model to 
investigate the diffusion of GPTs. A firm adopts a GPT by imitating other firms that have already 
implemented the technology successfully. The likelihood of imitation increases with the pool of 
successful adopters. This results in an S-shaped diffusion path of the new GPT. Social learning may 
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thus cause a slump during the first phase of implementation, depending on the speed of diffusion 
of the new technology and the extent to which resources are re-diverted from the old to the new 
production process. Petsas (2003) focuses on the rising product quality of final goods (rather than 
the expanding variety of components) as impact channel of a new GPT. The GPT affects long-run 
growth by enhancing (1) the scale of future innovations, and (2) research productivity, thus 
accelerating innovation rates. 

Second-generation models 

The GPT growth literature has been further extended by second-generation models (Cantner and 
Vannuccini 2012), each contributing novel aspects to the existing body of work:   

Van Zon and Kronenberg (2005) introduce stochastic R&D processes, distinguishing between “core” 
technologies (GPTs) and “peripherals” (components). The model allows for the possibility of GPT 
failure if insufficient components are developed. Carlaw and Lipsey (2006, 2011) introduce 
uncertainties in the arrival time and the performance of the GPT, also addressing competing GPTs in 
their evolutionary-economic model.  Afonso and Bandeira (2013) use a general-equilibrium model 
to examine how GPT diffusion from the Global North to the Global South affects wage inequality 
both within and between countries. Schaefer et al. (2014) expand on Petsas’ (2003) quality-ladder 
model to examine how successive GPTs, emerging endogenously and at an accelerating pace, affect 
long-term growth. Coccia (2015) stresses the significant role of strategic behaviour of 
organizations, especially of leading nations (i.e. great powers) to stay on top of the GPT race.   

Several papers focus on the effect of GPTs on structural change.  Rainer and Strohmaier (2014) 
develop a multisectoral model of GPT diffusion, combining  evolutionary game theory and input-
output analysis to study skill-biased technical change, wage inequality and GPT co-existence. 
Andergassen et al. (2017) investigate GPT diffusion through “R&D races”, finding that stronger 
linkages between sectors enhance adoption, technological proximity and sustained economic 
growth. Cantner and Vannuccini (2021) model conditions that enable  GPT adoption across vertically 
related and networked industries.  

Empirical application. The empirical GPT literature covers diverse aspects such as the sources of 
pervasive technological change (Coccia 2018), the main characteristics of GPTs (also vis-à-vis 
others; Jovanovic and Rousseau 2005), as well their economic and societal impact (see, e.g., David 
1990, Rosenberg and Trajtenberg 2004).  

The majority of quantitative-empirical studies have focused on knowledge flows between the initial 
technological breakthrough and subsequent innovations. These are typically measured by means of 
patent and patent citations data. The central assumption in this line of research is that a GPT’s 
capacity to spawn innovations can be assessed by measuring the extent to which downstream 
inventions cite the original patent in their applications (i.e. by the number of forward citations). The 
larger the range of technology fields these inventions are assigned to, the bigger the generality, or 
pervasiveness, of the technology. Noteable contributions are Hall and Trajtenberg (2006) and 
Petralia (2018), who develop measures for detecting general purpose technologies in patent and 
patent citation data, and Nicholas (2004), who uses this type of data to track innovational 
complementarities regarding four technology fields (electricity, chemical, mechanical and other). 
Similar studies have been conducted for potential GPT candidates, such as nanotechnology (Youtie 
et al. 2008; Graham and Iacopetta 2014) and biotechnology (Appio et al. 2017; Feldman and Yoon 
2012).  

Some studies revert to input-output models to explore dynamics between the GPT-providing sector 
and application sectors, focusing on complementarities in the marketplace rather than at the 
innovation level. GPTs are analysed as technologies embodied in intermediates and capital goods. 
Verspagen (2004) employs linkage analysis to study the sectoral impact of ICT on the U.S. economy 
in the postwar period. Based on time-series input-output tables (1966-2009) for Denmark,  
Strohmaier and Rainer (2016) show that for ICT this data is able to capture the main characteristics 
of a GPT.  
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Other studies make use of national account data to measure empirically the impact of a generic 
technology on productivity. Castellacci (2010) combines the EU-KLEMS database  with the 
Community Innovation Survey (CIS) to investigate sectoral labour productivity dynamics for 18 
OECD countries over the period 1970–2005. Liao et al. (2016) examine the direct and indirect 
contribution of ICT to productivity dynamics in the US between 1977 and 2005, also using the EU-
KLEMS database.  

The rise of digital technologies has led to a significant increase in the availability of qualitative and 
quantitative indicators for measuring technological and socioeconomic change.  These indicators are 
increasingly used in technology impact studies, such as Harb’s (2017) analysis of the impact of 
Internet penetration on economic growth in Arab and Middle East countries. 

3.5 In a nutshell: analyzing pervasive technological change  

Pervasive technological change is not a novel topic in economic history and the history of economic 
ideas and has garnered significant interest, particularly in the last half century, owing to its 
presumed correlation with economic growth cycles. Nevertheless, the comprehension of the nature 
and evolution of technologies, which induce punctuated equilibria dynamics in the economy, has 
been less prominent than the recognition, conceptualization and empirical identification of the 
regularities behind incremental and localized technical change. It has also received less attention 
compared to the standard modeling of technological change, perceiving the latter as a rather 
homogeneous process (see Section 2.7). This disparity has resulted in a fragmented and parallel 
development of methodological approaches to measuring technological pervasiveness: European 
scholars have predominantly focused on “appreciative theorizing” (Nelson 2018) of discrete 
technological interventions, delving into various qualitative key factors that remain unexplored or 
unexplained by economic models. Studies have typically employed an evolutionary-economic and 
sociotechnical lens. In contrast, American scholars sought to integrate the phenomenon of pervasive 
technological change into endogenous growth modeling.  

The GPT concept centers around market transactions and the economic realm, with a primary focus 
on technological complimentarities and their impact on the rate of economic growth. Since models 
like Helpman and Trajtenberg (1998a) exhibit a similar cyclical growth pattern akin to evolutionary-
economic concepts, Verspagen (2004) refers to them as the “American counterpart of 
Schumpeterian economics”. 

Evolutionary-economic concepts offer a macroeconomic view on technological change. Radical or 
disruptive technological change acts as a catalyst for revitalizing growth, contingent upon the 
adaptability of the socioeconomic system. Examining the interplay between a particular technology 
and the economic and social structure, scholars identify broad patterns of change as characteristics 
of a specific technological paradigm or revolution.  

Sociotechnical studies, also employing a systemic perspective, similarly view radical technological 
change as a necessary but not sufficient condition for transformative change. They typically analyze 
specific technological trajectories, identifying reverse salients (LTS) or blocking mechanisms at the 
functional or systemic level ([T]IS), and explore the relationship between a new technology and the 
prevailing regime (MLP). Investigating disruptive, and not exclusively pervasive, technological 
change, these studies capture transitions to a new technological paradigm – often in the context of 
sustainability – as a co-evolutionary, non-linear and path-dependent process. Many studies delve 
into the direction of technological change, examining both the “direction of search” for new 
technical solutions and the “direction of progress” (e.g., just transition).  

Given the conceptual overlaps between evolutionary-economic and sociotechnical studies, 
integrated approaches have been proposed: Markard and Truffer (2008), e.g, outline an extended 
framework for TIS, where regimes, landscapes (cf. MLP) and other technological innovation systems 
form the environment of the focal TIS. Schot and Kanger (2018) introduce the long-term 
perspective typical of the TEP framework to the MLP concept (see also Section 4.3).  
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Regarding empirical applications, studies measuring pervasive change can be grouped in  the 
following way: (1) historical and cliometric studies, which delve into the characteristics of a specific 
technology and its interaction with the broader socioeconomic environment; (2) data analysis, often 
utilizing statistical models, focusing on R&D expenditures, knowledge flows (patents), national 
account data and input-output tables to detect changes in innovation and economic activities at the 
meso level (technology field, sector/industry); and (3) indicator analysis, often survey-based, 
offering expert insights and tacit knowledge into pervasive technological change. 

Evolutionary-economic concepts have frequently been discussed within, and developed in tandem 
with, historical-descriptive studies (see, e.g., Perez 1985; Freeman and Louçã 2001). This type of 
analysis can capture the long-run perspective inherent in the theoretical frameworks while 
reflecting in detail on country-, region- or industry-specific circumstances. Sociotechnical studies, 
with a stronger focus on the micro level, employ established instruments in qualitative-empirical 
research (document and media analysis, expert interviews, focus group discussions, scenario 
analysis etc.). The emphasis is on understanding current and future technological development, 
particularly in the context of the sustainability agenda.The concept of GPTs has triggered a diverse 
body of empirical work, ranging from historical studies (see, e.g., Rosenberg and Trajtenberg 2004) 
to econometric and network models based on knowledge flows (see, e.g., Hall and Trajtenberg 2006; 
Petralia 2020).  

Patent statistics have been a key resource for studying pervasive technological change at the micro 
level, offering detailed, long-term data on technologies and inventors. However, they also have 
limitations:  Simple patent counts do not adequately capture innovation quality and  many patents 
do not translate into practical technical solutions;  patenting behaviours vary by sector and firm 
(Verspagen 2007);  and language bias and country-specific patenting practices hinder comparability 
(van Raan 2004). Patent citation analysis has been particularly valuable for mapping technological 
trajectories and identifying macroinventions and GPTs. Nevertheless, the method only captures 
technology spillovers; missing broader effects such as when employing basic technologies (e.g., 
microcomputers) enables advancements in  others (e.g. wind turbines) (Bresnahan 2010).  

Other data sources used to measure pervasive technological change include intersectoral 
commodity flows, ), as reflected  in input-output tables (see, e.g., Verspagen 2004, Strohmaier and 
Rainer 2016) and national account statistics (e.g., Liao et al. 2016). These data highlight how 
technology impacts sectors differently. However, they have limitations: they cannot capture 
individual firm dynamics; certain industries may be over- or underrepresented; and some 
technologies may not align neatly with specific sector(s). For example, while ICT can be identified at 
the two-digit level in standard industry classifications, technologies like nanotechnology or 
biotechnology require more granular industry groupings, as their production spans multiple sectors. 

Indicator analysis has also been used to measure pervasive technological change, often drawing on 
R&D and innovation activity surveys (see, e.g., Castellacci 2010) to capture the  tacit knowledge of 
firms and businesses. Standardized surveys, such as the CIS or the U.S. Business R&D and 
Innovation Survey (BRDIS), provide data on innovative activities across major technology fields but 
may lack detailed insights into specific innovations. Consequently, some studies conduct their own 
surveys, tailored to the technology in question. This is typically a costly undertaking and requires a 
robust empirical basis, often challenging to achieve during the early stages of technology 
development. More recently, the expanding array of indicators has enabled more comprehensive 
systemic analyses, allowing for the assessment of technological change within its broader 
socioeconomic context (see, e.g., Strohmaier et al. 2019). 

Quantitative-empirical studies of technological change frequently depend on well-defined model 
specifications. The S-shaped performance and diffusion curve (see, e.g., Aghion and Howitt 1998 in 
the GPT context) is particularly prominent for fitting past patterns of technological development or 
predicting future outcomes (see, e.g. Odenweller et al. 2022). Estimating the sigmoid fuction 
depends on assumptions about the upper limit, inflection point and factors shaping the curve – and 
not least, hinging on the empirical validity of the S-curve itself. Some scientists contest the general 
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applicability of a sigmoid curve, suggesting exponential performance trends over the long term, 
more in line with Moore’s law (see, e.g, Moore 1998).  

Last but not least, the rise of new technologies has influenced the empirical measurement of 
pervasive technological change. Advances in modeling and AI, along with the availability of large 
datasets, have facilitated the prediction of technology performance, enabling the assessment of the 
future importance of specific technologies (Hoisl et al. 2015). For instance, Singh et al. (2021), 
predict the performance improvement rates for almost all technology fields, using a patent-based 
AI algorithm trained with 30 technology domains for which empirical performance data is available. 
Machine learning is also used to study specific effects of pervasive technological change (see, e.g. 
Frey and Osborne 2017 on the susceptibility of jobs to computerisation) or explore hidden thematic 
patterns through topic modelling, based on a large text corpus (see, e.g., Kumar and Ng 2022 on the 
success and growth factors of renewable energy). (For further discussion, see also Section 4.5) 

In summary, the various approaches discussed in this chapter aim to illuminate the black box of 
pervasive technological change, contributing to a kaleidoscopic landscape characterized by 
multifaceted research perspectives and a comprehensive array of empirical measures and 
techniques.  
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Table 2: In a nutshell: concepts of pervasive technological change and their empirical application. 

Concept Focus Data and 

methodology 

Strengths Problems and 

weaknesses 

Reference 

Evolutionary-

economic 

concepts 

Determinants 
of long-term 
economic 
development 
from macro- 
and 
microeconomi
c perspective 

Mostly historical 
studies based 
on document 
and literature 
analysis, 
cliometrics  

Coverage of 
long time 
periods 

 

Holistic view of 
technological 
and 
socioeconomic 
transformation, 
exploring the 
causes, drivers, 
and direction of 
technological 
change  

Overemphasis on 
specific (macro-) 
technologies 

 

Results are 
difficult to 
generalize   

Perez 
(1985) 

Freeman 
and Perez 
(1988) 

Mokyr 
(1990) 

Lipsey et al. 
(2005)  

Socio-

technical 

studies 

Framework 
conditions, 
learning 
processes, 
functioning of 
technical and 
innovation 
systems, 
especially in 
the context of 
sustainability 

Qualitative-
empirical 
studies, based 
on desk 
research, expert 
interviews, 
focus group 
discussions, etc. 

Detailed 
account of the 
factors 
driving/impedin
g technological 
change and 
transitions 

Context-
specifictiy of the 
research question 
usually limits 
generability of 
results. 

 

Difficult 
delineation 
between different 
technologies/tech
nology systems, 
and purely 
technological and 
social aspects  

Hughes 
(1983) 

Hekkert et 
al. (2007) 

Rip and 
Kemp 
(1998) 

Rotmans et 
al. (2001) 

Geels 
(2002) 

General 

purpose 

technologies 

Complementa
rities of 
technological 
change, 
spillover 
effects, 
cyclical 
growth 
pattern 

Economic/stat-
istical modeling 
for impact 
analysis, 
empirically 
often based on 
country-level or 
firm-level data; 
patent analysis 
for measuring 
the importance 
of the GPT and 
compementariti
es 

Macroperspectiv
e on the 
relationship 
between 
technology and 
growth and 
productivity 
differentials 
across time, 
industries or 
countries 

 

Quantitative 
measuremnent 
of pervasive 
technological 
change 

Overreliance on 
one type of data 
(e.g. patents) 

 

Unclear definition 
of pervasiveness 
(direct vs. indirect 
linkage) 

 

 

Bresnahan 
and 
Trajtenberg 
(1995) 

Helpman 
and 
Trajtenberg 
(1998a, 
1998b)  

Aghion and 
Howitt 
(1998) 
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4 Impact of new technologies on theory and measurement of 

technological change 

4.1 Features of industrial modernity 

Schumpeter (1939) argued that clusters of radical innovations drive long waves—extended periods 
of economic expansion and contraction lasting approximately 40 to 60 years—triggering oscillations 
in capital goods (see Section 2.4), investment clustering, and self-reinforcing behaviour. The 
historical narrative from 1790 to 1920 in the U.S., Britain, and Germany illustrates the uneven 
distribution of innovation (McCraw 2007).7 Kurz et al. (2018) describe disruptive innovation and and 
technological revolutions from a post-Schumpeterian perspective, while Perez (1985) and Freeman 
and Perez (1988) introduced the techno-economic paradigm (TEP), linking cyclical technological 
evolution with path dependence, structural changes, and institutional dynamics.  

Freeman and Louçã (2001) associated the TEP with Kondratiev long waves, which describe cyclical 
economic expansions and contractions driven by technological advancements. Pérez (2002) referred 
to them as great surges of development, emphasizing their transformative impact on industries and 
institutional structures. While Kondratiev waves focus on macroeconomic fluctuations, great surges 
highlight the role of technology in reshaping economies and societies. These perspectives highlight 
how institutions, path dependence, and guiding principles shape the historical dynamics and 
economic impacts of technological revolutions. Perez (2010) characterized these revolutions as 
clusters of interdependent technologies—a “system of systems.” 

Perez (1983) emphasized that each TEP includes a dominant low-cost key sector encompassing 
energy sources, materials, technologies, products, and processes with distinctive organizational 
structures. Nelson (2005) stressed that changes in core inputs, physical technologies, and human-
technology interactions are pivotal to the dynamics of each TEP. According to Perez (2002), each 
TEP goes through four distinct phases: (1) irruption, where new technology displaces older systems, 
driving initial economic disruptions and investment surges; (2) frenzy, marked by intense innovation, 
speculative investments, and rapid industry transformations; (3) synergy, during which the 
technology stabilizes, integrates into mainstream economic structures, and fosters widespread 
productivity gains; and (4) maturity, signaling the completion of diffusion and eventual stagnation in 
growth. A modern example of this cycle is the rise of the internet, which initially disrupted 
traditional industries, saw speculative investment bubbles in the late 1990s, integrated into all 
sectors during the 2000s, and is now in a phase of sustained but slower innovation. Perez also 
introduced a gestation period preceding each paradigm, analogous to the “laboratory-invention 
phase” in Freeman and Louçã, which predicts the emergence of the next wave of technological 
change. Perez (2002) conceptualized these stages as part of the S-shaped technology life cycle, 
capturing the dynamic progression of innovation and diffusion (see Section 3.3). 

Industrial Revolutions and TEP Transitions 

Table 3 summarizes five TEPs that have shaped industries and economies since Arkwright 
introduced the water frame in 1771. The first TEP, driven by waterpower and mechanical spinning 
machines, initially struggled due to the excessive costs and technical limitations of James Watt's 
steam engines. Later advances in machine tools and precision engineering led to smaller, more 
efficient steam engines, enabling further industrial progress (see also Knell 2013, 2024) on the 
connect between technological revolutions and energy transitions). 

                                                 
7 In The Theory of Economic Development, Schumpeter (1934 [1912]: 229) stated that “every typical economic boom 
originates in one or a few specific industries—such as railway construction, electrical engineering, or the chemical sector—
and derives its distinctive characteristics from the innovations within the industry where it first emerges.” 
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Table 3: Overview of key catalysts in industrial modernity 

TEP Key catalysts Notable developments 

1st TEP 
(1771) 

Waterpower, machine tools, 
precision engineering 

 

High costs and technical limits hindered steam engine 
adoption 

2nd TEP 
(1829) 

Steam-powered mechanization, 
declining resource prices 

Agglomeration, standardization, and infrastructure like 
railways and telegraph networks 

3rd TEP 
(1875) 

Industrial electrification, electrical 
equipment 

Steel advancements, Edison's R&D laboratory, 
networking inventions 

4th TEP 
(1913) 

Declining oil prices, moving assembly 
line 

Mass production, economies of scale, post-WWII 
economic growth 

5th TEP 
(1971) 

Microprocessors, software, and the 
internet 

Integrated circuits, telecommunications, robotics, and 
a lead to "smart systems" 

Source: Own summary based on Freeman and Perez (1988), Perez (2002), and von Tunzelmann (1995).  

The second TEP, characterized by steam-powered mechanization, benefited from declining resource 
prices and key developments like the Rainhill Locomotive trials and the Liverpool-Manchester 
railway. Agglomeration, standardization, and specialization boosted productivity, while railways and 
telegraphs improved connectivity. Nevertheless, working-class repression and inequality marked the 
period. 

Industrial electrification and the expansion of the electrical equipment industry defined the third 
TEP. Advances in steel production and transportation were crucial, with Edison’s New Jersey 
laboratory appearing as a hub for research and collaboration. 

The fourth TEP began with the introduction of the moving assembly line in 1913, enabling mass 
production of goods such as the Ford Model T. Falling oil prices and post-World War II economic 
growth accelerated mass production and consumption, driving industrial expansion and innovative 
product designs. 

Schot and Kanger (2018) define the first four technological paradigms as part of industrial 
modernity, marking the first deep transition. During this phase, machines increasingly 
complemented human labour, enhancing productivity and efficiency across various sectors. The 
second deep transition, associated with the fifth TEP, shifted this dynamic as machines moved 
beyond assisting human labor to automating cognitive functions, particularly symbol processing. 
This transformation redefined the relationship between humans and technology, as machines 
evolved from performing physical tasks to handling complex informational processes. The transition 
from industrial modernity to automation reflects the continuous evolution of technology, reshaping 
economies, labour, and society. 

4.2 The Digital Revolution as the second deep transition 

The second deep transition, encompassing the Digital Revolution (also referred to as the fifth TEP), 
began in the late 20th century with the development of the first electronic computers, such as 
ENIAC and UNIVAC. Based on Turing’s computational principles, this paradigm enabled the rise of 
modern computing, which, in turn, drove the development of artificial intelligence (AI). This 
advancement allowed machines to process information, learn, and make decisions in ways once 
considered uniquely human. Key breakthroughs foundational to this revolution include the 
development of the vacuum tube in 1935 and the transistor in 1947. The transistor, a 
semiconductor device that regulates electronic currents, transformed electrical signal control. Bell 
Labs played a pivotal role in this transformation by developing prototypes and securing patents, 
catalyzing the rise of Silicon Valley (Lécuyer 2006). 
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Box: Digital vs. digitalization. 

Digitization converts analogue data into computer-readable formats. Digitalization employs digital 
technologies to create or alter activities. Digital transformation encompasses the broader economic 
and social implications of these processes (OECD 2019b). 

The Intel microprocessor is essential to the digital revolution 

A key milestone in digital technology occurred in 1969 when Intel announced its plan to develop the 
world’s first commercially viable microprocessor, the Intel 4004, which debuted in November 1971. 
In the same year, the U.S. Department of Defense deployed computers on the Advanced Research 
Projects Agency Network (ARPANET), the precursor to the Internet. Integrating central processing 
unit (CPU) functions into a single chip revolutionized computing, marking a foundational moment in 
the digital era. However, the Apollo 11 moon landing initially overshadowed the microprocessor’s 
debut (Isaacson, 2014). Advances in photolithography and planar technologies made the 
microprocessor possible, fueling the fifth technological revolution, or digital techno-economic 
paradigm. Over the next five decades, this paradigm transformed communication, information 
access, business practices, and societal interactions, driving sustained economic growth and 
innovation (Knell, 2021; Knell and Vannuccini, 2022). 

According to Perez (1983), the diffusion of the Digital Revolution follows a pattern similar to the 
spread of a Technical Innovation System (TIS) (Hughes, 1983). As outlined in Section 3.3, the digital 
revolution has progressed through four phases: early exploration, a financial bubble followed by a 
crisis at the turn of the century, and the eventual widespread diffusion of knowledge across the 
techno-economic paradigm. This transformation began with a prolonged gestation period, often 
referred to as the laboratory-invention phase, followed by a revolutionary breakthrough (or big 
bang) that defined the digital TEP. Over the next five decades, this paradigm gradually reshaped 
communication, information access, business practices, and societal interactions, driving innovation, 
economic growth, and social progress (see Singh et al. (2021), for a patent-based analysis) 

Moore's law as a reflection of the digital revolution 

The evolution of the techno-economic paradigm (TEP) has been shaped by Moore’s Law (Moore, 
1965), which states that transistor density on integrated circuits doubles approximately every two 
years, driving significant increases in computing power and reductions in cost. Advances in 
transistor technology, particularly the development of metal–oxide–semiconductor field-effect 
transistors (MOSFETs) and complementary metal–oxide–semiconductor (CMOS) technology, have 
sustained this rapid progress, enabling faster processing speeds, greater miniaturization, and 
widespread technological innovation (Kahn et al., 2018). Braun and Macdonald (1982) emphasize 
the role of miniaturization in accelerating technological development, while Nordhaus (2007) 
examines its economic implications, showing how the continuous expansion of computing power has 
transformed industries and enhanced global productivity. 

One striking example of Moore’s Law in action is Apple’s introduction of the M3 family of chips in 
October 2023. These chips, built using 3-nanometer process technology, contain up to ninety-two 
billion transistors—a dramatic increase from the original Intel microprocessor, which had only 2,250 
transistors. Such advancements have fueled diverse technological trajectories, fostering dynamic 
clusters of innovations across industries. The resulting developments have not only transformed 
products and services but have also stimulated the emergence of new enterprises, strengthened 
industry networks, and contributed to the expansion of global digital infrastructure. This includes the 
proliferation of the Internet and various electronic services, such as email and cloud computing. 

However, as transistor miniaturization approaches its physical limits, researchers are turning to 
alternative computing paradigms. One promising frontier is quantum computing, which represents a 
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fundamental shift from the classical binary system. Unlike traditional computers that rely on 
electrical signals to represent ones and zeros, quantum computers use quantum bits (qubits), 
derived from subatomic particles, which can exist in multiple states simultaneously. This capability 
allows quantum systems to perform computations at unprecedented speeds, holding transformative 
potential for fields such as cryptography, optimization, and AI (Kaku 2023). 

Digital revolution and artificial intelligence 

While the concept of crafting automatons and artificial entities has ancient roots, the formal start 
of modern robotics and AI predates the digital revolution, emerging in the mid-20th century. A 
pivotal moment occurred in 1961 with the introduction of the first programmable robot, which 
transformed industrial assembly-line applications. Since then, robotic advancements have 
progressed rapidly, leading to increasingly sophisticated machines capable of executing diverse 
tasks (Raj and Seamans 2019). Progress in sensors, actuators, and AI algorithms has enabled 
robots to navigate complex environments, interact with humans, and function across various 
sectors, including manufacturing, warehousing, agriculture, autonomous vehicles, healthcare, and 
education (Hudson 2019, Ford 2021). Despite advancements in AI through statistical learning 
algorithms, robots still face limitations in solving everyday problems (Mitchell 2019) 

The foundational work for AI emerged from a 1956 Dartmouth College conference, where Allen 
Newell and Herbert Simon introduced the term "artificial intelligence" (AI), intertwining logical 
reasoning, problem-solving, symbolic reasoning, and machine learning (ML). Unlike traditional AI 
methods that require extensive datasets, early AI research focused on commonsense intelligence 
(Levesque, 2017). Generative AI, a subfield gaining prominence around 2014, involves AI systems 
that create text, images, or other media in response to prompts (Roser, 2022; Crawford, 2021). 
These models, trained using neural networks and machine learning techniques, can generate new 
data reflecting inherent patterns (Mitchell, 2019; Wooldridge, 2021; Agrawal et al. 2019, 2022; 
Craglia et al. 2018, for a European perspective). 

AI as a General-Purpose Technology? 

There is an ongoing debate about whether AI qualifies as a general-purpose technology. Cockburn 
et al. (2019) and Crafts (2021) argue that AI has the characteristics of a general-purpose 
technology, emphasizing its transformative potential across various sectors, while Knell and 
Vannuccini (2022) question this assertion, highlighting concerns about limitations, ethics, and 
societal implications. The discourse revolves around assessing the true nature and scope of AI's 
impact on diverse domains.  

Over time, digitalization has enabled the development and adoption of innovative technologies, 
including AI, big data analytics, cloud computing, and the Internet of Things (IoT) (Brynjolfsson and 
McAfee 2014, Acemoglu and Johnson 2023). The fusion of robotics and AI has revolutionized 
business operations, prompting fundamental changes in organizational strategies, processes, and 
customer interactions (Isaacson 2014). These technologies have enhanced efficiency, scalability, 
and innovation across diverse sectors, transforming industries, societies, and human-machine 
interactions.  

Technological trajectories and the digital revolution 

Dosi (1982) identified several key technological trajectories relevant to the digital revolution (see 
Section 3.1 and Nordhaus 2007). Within a techno-economic paradigm, multiple technological 
trajectories may coexist, each contributing to broader patterns of innovation and structural change. 
Although the concept of technological trajectories predates this framework, Dosi’s analysis provides 
a systematic understanding of how these pathways influence economic and social structures. The 
following trajectories illustrate distinct evolutionary trends in digital technology: 
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(1) Mobiles, Internet, and Broadband: The rise of mobile telephony, the Internet, and 

broadband networks reshaped global communication, culminating in 5G technology. 
Mobile telephony traces its roots back to 1928 when Detroit police introduced a voice-
based radio system, evolving from one-way paging. The transistor, introduced by Bell 
Labs in 1947, paved the way for cellular networks in the 1960s (Gertner 2012). 
Technological advancements in the 1960s and 1970s furthered the shift toward digital 
communication. Martin Cooper’s groundbreaking call in 1973 led to the launch of 
Motorola’s DynaTAC, enabling portable communication through handheld devices. Key 
milestones like the Nordic Mobile Telephone (NMT) system in 1981 and Global System 
for Mobile communication (GSM) standardization in 1989 contributed to the 
widespread adoption of digital protocols. According to the International 
Telecommunication Union (ITU 2023), global 4G LTE subscriptions surpassed 5.3 billion 
in 2022, with overall mobile cellular subscriptions exceeding eight billion, highlighting 
global connectivity in mobile telecommunications. The adoption of 5G technology since 
2019 has further advanced communication, providing faster data speeds, increased 
capacity, and lower latency. 

(2) Internet of Things (IoT): Building on these advancements, 5G has also facilitated the 
expansion of the Internet of Things (IoT) by supporting low-rate IoT applications 
(Mendonça et al. 2022). Alongside these developments, the internet emerged as a 
transformative force. Originally a collaborative research initiative, the internet has 
profoundly reshaped global communication and economic systems (Bonaccorsi & 
Bonaccorsi, 2020). The late 1990s introduced IoT, enabling physical objects to connect 
to the internet and paving the way for a more interconnected, data-driven environment 
(Li et al. 2015, OECD 2023). 

(3) Big Data and Machine Learning (ML): Advances in data science and predictive 
analytics have transformed various industries. Big data platforms efficiently manage 
extensive datasets, enabling ML to extract valuable features and enhance model 
performance (Mayer-Schönberger and Cukier 2013, Brynjolfsson and McAfee 2014). 
The term "Big Data" refers to an enormous amount of information gathered from 
diverse sources, serving as input for ML algorithms. ML, a subset of AI, improves 
computer performance by analyzing large datasets through algorithms and statistical 
models. Big data also presents challenges in capturing, storing, analyzing, sharing, and 
visualizing data. The introduction of the concept of veracity underscores the importance 
of data quality, with a current emphasis on predictive analytics and advanced methods 
for extracting value from big data. Increased data collection from cell phones and the 
IoT (OECD 2023) provides opportunities for healthcare and government administration 
to use big data creatively and effectively, generating value and cost savings. 

(4) Blockchain Technology: Initially tied to cryptocurrencies, blockchain now facilitates 

secure transactions across multiple sectors. Blockchain acts as a distributed ledger with 
interconnected blocks including transaction data, timestamps, and cryptographic 
hashes, ensuring the integrity of recorded information and resisting retroactive 
alterations. Managed by a peer-to-peer network, blockchain employs consensus 
algorithms for validating and adding new blocks (Narayanan 2016). While its origins 
are in finance, blockchain’s influence now extends to sectors such as supply chain 
management, healthcare, and secure data sharing (Tapscott and Tapscott 2016). 
Blockchain technology has gained attention for enhancing transparency, traceability, 
and security across industries (Smith and Kumar 2018). 

(5) Platform Economy: Digital platforms revolutionize business models, foster network 
effects and reshape global commerce. The platform economy, exemplified by major 
players like Amazon, Airbnb, Uber, and Baidu, heavily relies on online sales and 
technological frameworks (Gawer 2009, Evans and Schmalensee 2016). Apple, 
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Microsoft, Google, and Intel are innovation platforms that contribute diverse 
technological frameworks. Academic interest in economic platforms emerged in the 
1990s, describing the growing influence of major companies on internet-related 
cultural content. The study of platforms captures how communication and expression 
are both enabled and constrained by new digital systems and new media (Plantin et al. 
2018). Whether catering to diverse users like Amazon or focusing on specific types as 
seen on Facebook, the platform business model capitalizes on network effects, 
fostering interactions and shaping complex market dynamics. Highlighting the 
significance of platform architecture, design should center around a core interaction 
that defines the enterprise. Parker et al. (2016) explore the challenges and 
considerations in the "Platform Revolution," addressing aspects such as attracting 
users, monetization, openness, governance, metrics, strategy, and policy. As platform-
based businesses evolve, strategic design has become crucial. 

(6) Automated Systems: Robotics and 3D technology have enhanced operational 

efficiency and production methodologies across various industries (Acemoglu and 
Restrepo 2019, Acemoglu and Johnson 2023). Automated systems integrate sensors, 
controls, and actuators to perform functions with minimal or no human intervention. 
These processes boost operational efficiency, streamline production, and reduce 
manual labor while driving advancements in manufacturing and rapid prototyping. The 
integration of robotics and 3D technology significantly improves industrial workflows, 
influencing production methodologies across sectors for enhanced efficiency, quality, 
and innovation (Ford 2015, Hudson 2019). 

These trajectories, as outlined by Dosi (1982), show how digital innovations align with broader 
techno-economic paradigm shifts, influencing industries, institutions, and societal structures. 

4.3 From the Digital Revolution to the Quantum Age 

While the techno-economic paradigm (TEP) discussed in Section 4.1 and the digital revolution 
outlined in Section 4.2 gradually transformed technology, the economy, and society, recent 
advancements have accelerated these changes at an unprecedented pace. The rapid integration of 
automation, data-driven decision-making, interconnectedness, and robotics has led to what experts 
refer to as the “Fourth Industrial Revolution” or “Industry 4.0.” Coined in 2011, these terms 
encapsulate the transformative impact of digital technologies and emerging breakthroughs, 
including biotechnology, nanotechnology, artificial intelligence (AI), robotics, 3D printing, the Internet 
of Things (IoT), and quantum computing. The World Economic Forum’s 2016 theme, Mastering the 
Fourth Industrial Revolution, contextualized this shift within the broader historical framework of 
industrial transformation, following water- and steam-powered manufacturing, electricity-driven 
mass production, and the digitalization of industry—marking the preliminary stages of a post-Silicon 
revolution.8  

Despite its widespread adoption, the concept of the Fourth Industrial Revolution remains contested. 
Critics such as Schiølin (2020) argue that it reflects “future essentialism” and may function more as 
a strategic narrative than a robust analytical framework. The ongoing debate between techno-
optimists and techno-pessimists highlights divergent perspectives on digitalization and automation. 
Advocates such as Rifkin (2011) foresee a new industrial era driven by green technologies, while 
Brynjolfsson and McAfee (2014) characterize this phase as the Second Machine Age, emphasizing 

                                                 
8 Schwab (2016, 2018) named four long waves of technological change, corresponding to water- and steam-powered 
mechanical manufacturing (first and second TEPs), electricity-powered mass production (third and fourth TEPs), 
digitalization, and cyber-physical systems (fourth and sixth TEPs). In contrast, Freeman and Perez (1988) identified 
Schwab's waves as two distinct techno-economic paradigms, including the anticipation of a sixth wave on the horizon 
(Knell and Vannuccini 2022). 
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digitization and the growing importance of intangible assets. Schot and Kanger's (2018) concept of 
the second deep transition also recognizes profound shifts in skills, organizations, and institutions. 

The late 1990s witnessed the emergence of the IoT, which extended internet connectivity beyond 
traditional computing devices to everyday objects, fostering an increasingly interconnected and 
data-driven environment. However, as the digital revolution matures, a new phase—the Quantum 
Age—is beginning to take shape. Future eras will be characterized by the integration of advanced 
smart technologies, including nanotechnology and nanobiotech-nology, with substantial implications 
for materials science, healthcare, and electronics. 

Distinguishing between cyber-physical systems and the ongoing digital revolution is crucial in 
understanding emerging technologies such as nanotechnology, biotechnology, AI, and quantum 
computing. Lombardi and Vannuccini (2021) propose that the convergence of physical, digital, and 
biological systems will give rise to a “cyber-physical universe,” marking the onset of the sixth 
technological revolution. This concept traces its origins to Richard Feynman’s seminal 1959 lecture, 
There’s Plenty of Room at the Bottom, in which he envisioned the manipulation and control of 
individual atoms and DNA molecules. The subsequent development of transistors and 
microprocessors initiated a trend toward miniaturization, laying the foundation for nanoscience and 
nanotechnology. These advancements have since influenced multiple scientific disciplines, including 
chemistry, biology, physics, materials science, and engineering. Feynman's early insights 
foreshadowed not just the digital revolution, but also the impending quantum revolution, which will 
reshape economies, societies, and frameworks for measuring technological progress. 

According to Kaku (2023), humanity is on the brink of a post-Silicon or Quantum Age, characterized 
by the convergence of nanotechnology, biotechnology, AI, and quantum computing. Unlike 
conventional computing, which relies on binary transistors, quantum computing harnesses quantum 
mechanics to encode information on electrons, exponentially increasing data processing capabilities. 
However, realizing a general-purpose quantum computer remains a formidable challenge, requiring 
breakthroughs in maintaining low temperatures, eliminating electrical resistance, and achieving 
quantum coherence. The potential of quantum computing is immense, particularly in solving 
complex problems in physics, chemistry, engineering, and medicine. For instance, simulating protein 
behavior—critical to regulating all life—could revolutionize healthcare by advancing drug discovery 
and medical research. 

The convergence of independent technological systems into a system of systems could trigger the 
sixth technological revolution (Roco and Bainbridge 2003, Knell 2013, Suleyman and Bhaskar 2023, 
Knell 2024). Foundational elements such as atoms, DNA, qubits, and synapses are expected to 
enhance the integration of emerging technologies, including nanotechnology, biotech-nology, 
quantum biology, information technology, and cognitive science, into multifunctional systems. The 
intersection of AI and healthcare exemplifies the broader transformative potential of this 
integration, underscoring its profound implications for medical innovation, healthcare delivery, and 
the unfolding technological paradigm. 

4.4 New technologies, economic impacts, and models of technological change 

New, innovative technologies have increased the complexity and interconnectivity of systems 
(Arthur 2014). Automation and digitalization play pivotal roles in integrating diverse processes and 
data streams, creating a challenge in assessing individual technology impacts (Acemoglu and 
Johnson 2023). AI and ML systems function differently from conventional software, independently 
adapting and evolving over time (Agrawal et al. 2019). This characteristic poses challenges in 
accurately modelling and predicting their behaviour. These complex interactions and emergent 
behaviours may be difficult to account for in traditional marginalist theoretical frameworks 
(Goldfarb and Tucker 2019). Greenan and Napolitano (2023) provide an alternative perspective. 
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Endogenous Growth Theory and the Digital Revolution 

The modeling of technological change within the digital revolution aligns with endogenous growth 
theory, which emphasizes internal drivers of innovation and economic expansion (Helpman 2004; 
Acemoglu 2009; see also Section 2.7). Human capital plays a fundamental role in the digital era, as 
skill accumulation fosters technological progress and innovation. Unlike traditional neoclassical 
models, endogenous growth theory views innovation as an internal process, highlighting the 
significance of investments in education, research and development (R&D), and entrepreneurship 
within the rapidly evolving digital economy (see Nelson (2018), for an evolutionary perspective). 

Since the onset of the digital revolution, the pace of R&D and knowledge creation has accelerated 
significantly. Digital technologies have facilitated open innovation, challenging the traditional closed 
innovation systems within firms. As new technological trajectories emerge, disruptive innovations 
necessitate models capable of capturing these dynamic shifts. The rise of digital start-ups 
introduces complexities not fully addressed by conventional economic theories. Additionally, 
digitalization has led to intricate intellectual property rights challenges, requiring new economic 
frameworks that balance innovation incentives with the protection of digital assets. 

Data, Modeling, and Economic Implications 

The proliferation of big data and advanced analytics has deepened economists’ understanding of 
technological change. These tools enable analysis of the economic impact of data-driven innovation, 
including privacy concerns, data ownership, and monetization. Data science plays a critical role in 
forecasting by identifying patterns in historical data, corresponding with the rational decision-
making and market equilibrium principles central to economic theory. The concept of data as a 
factor of production has become fundamental to understanding the economics of technology and 
innovation. 

Haavelmo’s (1944) seminal work on the probability approach to econometrics underscored the 
importance of statistical modeling in measuring innovation and technological change. In the early 
twentieth century, economists largely disregarded the relevance of probability theory for economic 
data. The Kondratiev long-wave cycle exemplifies narrative inference in economic analysis (Morgan 
2021). However, Haavelmo’s contribution, highlighted by Morgan (1990) and Hendry and Morgan 
(1995), disrupted this conventional view, influencing applied economists who sought stable and 
generalizable economic laws. Morgan’s (2012) typology of models—including recipes, idealizations, 
visualizations, and analogies—illustrates how modeling has replaced earlier theory-driven economic 
approaches. Economists now employ models in two distinct ways: to investigate theoretical 
economic phenomena and to analyze real-world trends. Tracing the history of economic modeling, 
Morgan (2012) highlights how models evolved from conceptual tools in the early 19th century to 
the dominant form of economic reasoning by the late 19th century. 

The Role of Mathematical Modeling and Simulations 

Mathematical modelling and simulations significantly enhance understanding and forecasting, 
particularly in macroeconomics. However, it is crucial to differentiate between model-land and real-
world values. Decisions grounded in estimating real-world values with clear uncertainty information 
are more dependable than relying solely on "optimal" model-land quantities. Thompson and Smith 
(2019) caution against the challenges of model-land, emphasizing the necessity for adaptable 
models, particularly in complex scenarios such as long-term GDP or localized predictions. In her 
book "Escape from Model Land," Thompson (2022) advocates for a critical examination of the use 
of mathematical models and simulations. Emphasizing the necessity of meticulous analysis of the 
nature and impacts of these models, Thompson proposes five principles for responsible modelling, 
highlighting the critical role of human cognitive abilities in navigating the imperfect knowledge 
within models. 
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Mathematical modeling and simulations have significantly enhanced economic forecasting, 
particularly in macroeconomics. However, it is essential to distinguish between model-land—
theoretical constructs within models—and real-world values. Economic decisions based on real-
world estimations with well-defined uncertainty measures are more reliable than those derived 
solely from “optimal” model-land quantities. Thompson and Smith (2019) highlight the limitations 
of over-reliance on models, particularly in long-term GDP forecasts and localized predictions. In 
Escape from Model Land, Thompson (2022) argues for a critical reassessment of mathematical 
modeling and simulations. She proposes five principles for responsible modeling, emphasizing the 
importance of human cognitive abilities in addressing the limitations of models and managing 
uncertainty. 

Key Challenges in Modeling Technological Change 

Several key issues emerge in the economic modeling of technological change: 

(1) Modeling and simulation techniques: Feynman (1960) underscored the importance 

of modeling and simulation in understanding the diffusion of digital technologies. 
Shubik’s (1960) bibliography demonstrates that by the mid-20th century, simulation 
had become a prevalent concept in the social sciences and statistics. Morgan (2004, 
2012) emphasizes that simulations blend multiple elements—including experiments, 
role-playing, computation, probability setups, statistical data, mathematical models, 
and games—making their precise definition complex. She also highlights the epistemic 
function of narratives in economic modeling, as they can reveal hidden aspects of 
technological change and innovation diffusion. These insights are critical for refining 
economic growth theories to account for the rapid adoption and disruptive impact of 
digital technologies.  

(2) Incorporating uncertainty and innovation: Simulation and agent-based models 
(ABMs) help economists navigate the uncertainty associated with the digital revolution 
(Rosenberg 1998; Arthur 2009). Chiffi et al. (2022) argue that economists must 
distinguish between quantifiable uncertainties and deep uncertainties when modeling 
technological change, aligning their analyses with societal preferences and economic 
contingencies. 

(3) Agent-Based Models (ABMs): ABMs offer a powerful tool for simulating innovation 
by capturing the decentralized and interactive nature of economic agents in the digital 
era. Unlike traditional models that assume homogeneous agents, ABMs account for 
heterogeneous entities, including individuals, firms, and governments (Delli Gatti et al. 
2018). Given that digitalization is characterized by decentralized decision-making and 
dynamic interactions, ABMs provide valuable insights into emergent phenomena, 
innovation diffusion, and network effects. By simulating agent behavior in response to 
technological change, ABMs contribute to a deeper understanding of economic growth 
in the digital age (Watts & Gilbert 2014; Gilbert 2014) 

(4) AI Agents and Economic Thought. AI-driven systems enhance economic modeling by 
enabling autonomous, goal-directed decision-making. Intelligent agents—designed to 
perceive their environment, make decisions, and optimize performance over time—
represent a novel form of digital agency. AI agents exhibit similarities to traditional 
economic agents in various theoretical contexts. 

•  Adam Smith’s principle of specialization and productivity is reflected in AI’s ability to 
automate human tasks, enhancing efficiency (see Section 2.2; Acemoglu and 
Restrepo 2019). 

•  Marx’s concerns about labour displacement (see Section 2.3) are increasingly 
relevant in discussions of AI-driven automation. 



Technological Change: History, Theory and Measurement 
 

 

46 

•  Innovative AI sectors disrupt traditional economic structures in a way similar to 
Schumpeter's concept of creative destruction (see Section 2.4). 

•  Herbert Simon’s (1996) theory of bounded rationality applies to AI agents, which 
approximate solutions rather than optimizing due to computational constraints. AI 
systems mimic satisficing behavior by using heuristics and reinforcement learning in 
decision-making processes across markets, from algorithmic trading to supply chain 
optimization. 

•  Simon (2001) also viewed creativity as a structured problem-solving process, an 
idea relevant to AI-generated content, design, and innovation. 

The ongoing evolution of technological change requires adaptable economic models that integrate 
automation, digitalization, and AI. Traditional economic frameworks are being challenged by the 
rapid pace of innovation, necessitating interdisciplinary approaches that incorporate big data, agent-
based simulations, and probabilistic modeling. As AI systems become more integral to economic 
processes, their role in shaping economic structures and policy considerations will continue to 
expand, reinforcing the need for dynamic and flexible models of technological change. 

4.5 In a nutshell: new technologies and measurement of technological change 

Traditional measures of technological change include patent counts, R&D expenditures, and 
innovation surveys. While these metrics provide valuable insights into innovation and its economic 
effects, they fail to capture the full impact of emerging technologies. This limitation has driven the 
search for alternative measures. Established metrics face increasing challenges in the digital era. 
Patent counts may overlook critical advancements, and innovation surveys may not fully capture 
the effects of disruptive digital technologies. Additionally, conventional productivity measures 
struggle to keep pace with the rapid evolution of AI and automation. Addressing these gaps requires 
exploring alternative methodologies to better understand the transformative effects of 
technological innovation (Mohnen 2019). 

Novel approaches in empirical measurement include: 

(1) Measurement of scientific, technological, and innovation activities. Innovation and R&D 
surveys offer detailed insights into business innovation, technology adoption, and R&D 
activity. The OECD Frascati Manual 2015, now in its seventh edition, ensures 
consistency and international comparability in R&D data. Originally drafted by 
Christopher Freeman in 1963, this manual provides guidelines for collecting and 
processing national R&D data. While the primary R&D definitions remain consistent, 
revisions have enhanced comparability between countries and improved alignment with 
societal developments. As a global standard for R&D studies, the manual fosters a 
common language for discussing research and innovation policy, emphasizing the 
importance of comparable statistics through shared definitions. The evolving metadata 
in the OECD Main Science and Technology Indicators (MSTI) reflects ongoing 
improvements in national R&D statistics. 

The OECD Oslo Manual 2018, now in its fourth edition, guides the collection, reporting, 
and analysis of innovation data through a biennial survey across EU countries (known 
as CIS). This survey covers innovation inputs, outputs, and modalities, defining 
innovation across multiple creative activities, including R&D, engineering, design, and 
marketing. Although challenges exist, such as subjective data and the absence of 
quantitative measures for certain innovations, the survey provides valuable insights 
into factors influencing innovation and its impact on economic performance (Mohnen 
2019). A microeconomic perspective on innovation examines the diffusion and adoption 
of innovations and the effects of digital technology on firms. Innovation surveys 
conducted across twenty OECD countries (2009, 2010) reveal the complexities of 
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technological change, business strategies, and priorities in the digital economy (Gault et 
al. 2023).9 

The OECD (2009) Patent Statistics Manual utilizes new patent statistics to harmonize 
methodologies for patent-related indicators. This manual facilitates the analysis of 
inventive processes, emerging technologies, and innovation networks. By integrating 
patent data with other datasets, researchers can assess the role of intellectual property 
in economic performance, entrepreneurship, and innovation networks. Recent OECD 
(2023) analyses highlight AI-related patents featuring core technologies such as 
general AI, robotics, computer vision, and recognition/detection. Autonomous driving 
and deep learning have gained increasing prominence in recent years. 

(2) Bibliometric analysis. Bibliometric analysis systematically examines large volumes of 
scientific data. The OECD (2016) Compendium of Bibliometric Science Indicators 
presents bibliometric data from Scopus, illustrating trends in scientific production 
across OECD countries and other major economies. Despite its origins in the 1950s, 
bibliometric analysis remains relatively underdeveloped in business, economics, and 
innovation studies (Mukherjee et al. 2022, Donthu et al. 2021, Rossetto et al. 2018). 
Systematic analysis of scientific publications, patents, and academic literature offers 
insights into technology diffusion and impact. Citation patterns and co-authorship 
networks reveal how knowledge flows and collaboration dynamics shape technological 
advancements. Qin's (2023) bibliometric analysis highlights the exponential growth of 
AI research, underscoring the increasing sophistication of bibliometric methodologies. 

(3) Composite indicators. Composite indicators provide a holistic view of technological 
change by integrating multiple measures. The OECD (2008) Handbook on Constructing 
Composite Indicators outlines methodologies such as weighting, normalization, and 
aggregation techniques. The process involves selecting relevant indicators, assigning 
appropriate weights, normalizing values, and aggregating components into a unified 
measure. Multivariate analysis employs dimensionality-reducing techniques, including 
principal component, factor, correspondence, and cluster analysis, to identify correlation 
patterns, assess variable relevance, and decompose variance. These techniques help 
uncover the influence of specific dimensions on aggregate technological change. 

(4) Big data analytics. Big data analytics has transformed the measurement of 
technological change by leveraging vast datasets to provide real-time, granular insights 
into technological dynamics (Mayer-Schönberger and Cukier 2013). Unlike traditional 
metrics, big data approaches track technology adoption rates, user behaviors, and 
diffusion patterns, revealing complexities in speed and breadth. Machine learning (ML) 
and AI enhance this analysis through pattern recognition and predictive modeling, using 
tools such as R and Python (James et al. 2023). Beyond identifying trends, ML and AI 
forecast disruptions and reveal hidden relationships within extensive datasets, 
enriching the understanding of technological innovation and its economic implications. 
Real-time analysis of digital footprints offers further insights into technology adoption, 
user behavior, and societal impact. 

The intersection of big data and ML raises important questions about the role of theory 
in data-driven analysis. Traditional economic models emphasize explicit theoretical 
frameworks, while data science often operates as a predictive black-box approach. 
Neoclassical economics integrates data science techniques to analyze historical 

                                                 
9 Cutting-edge empirical studies increasingly integrate data from multiple datasets. Greenan and Napolitano (2023) 
provide empirical evidence from a unique dataset combining European Union (EU)-wide employer and employee surveys 
at the sector level within each country. This dataset includes the CIS, the Community ICT Usage and E-Commerce in 
Enterprises Survey conducted by Eurostat, and the European Working Conditions Survey by Eurofound. 
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patterns and predict future outcomes, reinforcing rational decision-making and market 
equilibrium. Balancing predictive capabilities with an understanding of causal 
relationships remains a key challenge. Heterodox perspectives critique neoclassical 
models for oversimplifying economic complexity, advocating alternative approaches for 
a more nuanced understanding of technological change (Nelson and Winter 1982, 
Kirman 2011) 

 

Challenges and Ethical Considerations 

Despite offering valuable insights, novel measurement approaches encounter significant challenges. 
The reliance on extensive datasets raises ethical concerns, particularly regarding data privacy. 
Biases in ML models introduce additional complexities, requiring continuous adaptation of 
methodologies to ensure accuracy and fairness. Addressing these challenges remains essential for 
maintaining the reliability of technological change measurements. Ethical and social considerations 
gain importance as emerging technologies integrate further into society, necessitating the evolution 
of existing frameworks to address privacy, bias, and social impact concerns (O'Neil 2016). 
Digitalization creates new opportunities, yet the rise of AI and digital platforms heightens concerns 
about privacy and security (Zuboff 2019). Traditional economic growth models may fail to account 
for the influence of data-driven decision-making, underscoring the need for robust ethical data 
practices (Joque 2022 provides an alternative perspective). As emerging technologies push 
conventional boundaries, integrating insights from diverse disciplines becomes essential for 
developing theoretical models that effectively capture their global impact. 
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