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Abstract

We document that inflation risk in the U.S. varies significantly over time and is often asymmetric.
To analyze the macroeconomic effects of these asymmetric risks within a tractable framework, we
construct the beliefs representation of a general equilibrium model with skewed distribution of markup
shocks. Optimal policy requires shifting agents’ expectations counter to the direction of inflation risks.
We perform counterfactual analyses using a quantitative general equilibrium model to evaluate the
implications of incorporating real-time estimates of the balance of inflation risks into monetary policy
communications and decisions.

Keywords: Asymmetric risks, optimal monetary policy, balance of inflation risks, risk-adjusted inflation
targeting, flexible average inflation targeting.

JEL codes: E52, E31, C53.

ECB Working Paper Series No 3028 1



Non-technical summary

We investigate how to design a monetary policy strategy that addresses time-varying inflation risks.
Asymmetric inflation risks are defined as positive (negative) skewness of inflation outcomes, where a longer
or fatter right (left) tail indicates that positive (negative) outcomes are more probable, or equivalently,
that the balance of risks is tilted to the upside (downside). Key insights include:

• Optimal Monetary Policy: Optimal monetary policy requires central banks to actively counteract
inflation risks by adjusting agents’ expectations in the opposite direction of the prevailing risk. For
instance, when inflation risks are tilted downward, optimal policy suggests that the central bank
should deliberately overheat the economy to counteract the deflationary bias associated with these
risks. Conversely, when risks are tilted upward, the optimal monetary policy stance adopts a more
restrictive approach preemptively.

• Empirical Evidence: Using U.S. core PCE inflation data, the study provides robust evidence of time-
varying inflation skewness, often following persistent, regime-like patterns. This empirical finding
underscores the importance of assessing the robustness of a monetary policy strategy to rapid and
unexpected changes to the balance of inflation risks.

• A new monetary strategy: The study proposes a new strategy, the Risk-Adjusted Inflation Targeting
(RAIT), which uses real-time assessments of inflation risks to guide central bank actions and com-
munication. Compared to the Federal Reserve’s Flexible Average Inflation Targeting (FAIT), which
emphasizes past inflation misses, RAIT dynamically adjusts monetary policy stance to counter the
evolving balance of inflation risks. Comparing the implications of these two alternative strategies in
the past 15 years leads to two key conclusions. First, unlike the FAIT, which directed the central
bank to pursue an inflation overshoot owing to the past decade of below-target inflation, the RAIT
would have suggested to look through the deflationary bias. This distinction arises because the RAIT
takes into account the balance of inflation risks, acknowledging that the low inflation volatility of
the past decade muted the challenges posed by asymmetric inflation risks to price stability. Second,
during the recent inflation surge, the RAIT would have recommended a similar magnitude of interest
rate hikes but would have advocated for an earlier start to the tightening process, followed by timely
rate reductions as inflation risks stabilized.

Our work underscores the importance of integrating asymmetric inflation risks into monetary policy design,
alongside the development of models capable of reliably estimating the balance of risks in real time.

ECB Working Paper Series No 3028 2



The pandemic and war have underscored the need for the risk management framework to take full
account of both upside and downside risks to inflation, as well as to the possibility that serious tensions
may arise between the objectives of price stability and employment or growth.

Gita Gopinath, Jackson Hole Symposium, August 26, 2022

1 Introduction

After nearly three decades of taking a backseat, inflation has once again become a significant concern

for market participants and policymakers worldwide. This concern stems not only from the recent inflation

surge observed in many countries but also from a growing perception that geopolitical developments and

changes to international supply chains have increased the likelihood of inflation spikes. Gita Gopinath,

Deputy Managing Director of the International Monetary Fund, captured this sentiment in her remark at

the Jackson Hole Symposium, emphasizing the need for risk management frameworks to account for both

upside and downside inflation risks.

In this paper, we investigate how to design such a framework within a general equilibrium model

featuring skewed distributions of shocks, where the skewness varies over time. Positive (negative) skewness

reflects a longer or fatter right (left) tail, indicating that positive (negative) outcomes are more probable,

or equivalently, that the balance of risks is tilted to the upside (downside). This model serves as a valuable

tool for evaluating the robustness of alternative policy strategies in managing both upside and downside

inflation risks and for deriving the optimal policy in response to a time-varying balance of macroeconomic

risks.

While symmetric changes in risks are well-known to have no first-order effects on equilibrium outcomes,

asymmetric shifts in risks do, as they influence agents’ expectations. Positive (negative) skewness increases

(decreases) expectations by pulling the mean toward the right (left) tail. Consequently, changes in the

skewness of the shocks distribution affect agents’ decisions at first order through their impact on expecta-

tions. In fact, expectations are the only moment of agents’ beliefs that matters for optimal decisions in a

linear model. Therefore, the first-order effects of asymmetric risks can be studied through the log-linear

approximation of the model around its steady-state equilibrium augmented with zero-mean Gaussian an-

ticipated shocks that exclusively serve to tilt agents’ expectations of future shocks, consistent with the

skewness of their distribution. By design, these dummy anticipated shocks never materialize, resembling

noise, sentiments, or shifts in pure beliefs. Hence, we call this framework the beliefs representation of

asymmetric risks.

While focusing on the first-order effects of asymmetric macroeconomic risks limits the types of asymme-
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try we can consider and the number of channels through which risks can influence equilibrium allocations

and prices, we highlight two main advantages. First, the linear-quadratic beliefs representation allows

the characterization of the solution to the optimal policy problem analytically and within a framework

comparable to that employed by the literature on optimal monetary policy under symmetric shocks (Clar-

ida et al., 1999; Woodford, 2003; Galí, 2008). We show that optimal policy requires the central bank

to adopt a strategy that shifts agents’ inflation expectations in the opposite direction of the balance of

inflation risks. For example, if the balance of inflation risks is tilted to the downside, the central bank

should communicate an accommodative path aimed at overheating the economy and counteracting the

deflationary pressures.

Second, the laws of motion in the beliefs representation are linear and all shocks – i.e. the structural

ones and the dummy anticipated ones – are Gaussian. Therefore, this representation of the model can be

solved with extremely fast and accurate off-the-shelf techniques.1 This tractability allows the analysis of

real-time changes in the balance of inflation risks and policy counterfactuals within a quantitative dynamic

general equilibrium framework.

For this normative analysis to have practical implications, there must be sufficient evidence that

shifts in the balance of risks are a relevant feature of the data and that changes in risk asymmetry can be

reliably tracked in real-time. Using data on U.S. core Personal Consumption Expenditure (PCE) inflation,

we provide robust evidence supporting time-varying asymmetry in the predictive distribution of inflation.

Specifically, we propose a time-series model capable of predicting the evolving asymmetry in inflation

risks in real-time. Our analysis identifies statistically significant and frequent shifts in the balance of

inflation risks throughout the postwar period, often following persistent, regime-like patterns. Moreover,

our real-time analysis shows that incorporating time-varying skewness into inflation forecasts significantly

enhances out-of-sample accuracy compared to standard benchmark models (see, e.g., Stock and Watson,

2007), achieving predictive performance on par with the Survey of Professional Forecasters (SPF).

We then map the real-time changes in the balance of inflation risks – implied by the estimated predictive

distributions – to the belief representation of a quantitative Dynamic Stochastic General Equilibrium

(DSGE) model à la Smets and Wouters (2007). Within this quantitative structural framework, we study

the implications of a central bank addressing the unbalanced inflation risks by communicating a temporary

overshoot or undershoot of inflation relative to its target. By issuing this forward guidance, the central

bank adjusts the central inflation scenario to counterbalance asymmetric inflationary risks, ensuring that
1An example of these techniques is Dynare.
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both inflation expectations and average inflation remain anchored at the target.2 We call this approach

Risk-Adjusted Inflation Targeting (RAIT). Our findings suggest that during the recent inflation surge,

when real-time estimates showed inflation risks were heavily skewed to the upside, the RAIT would have

recommended raising rates earlier, reaching a peak similar to the one observed in the data but slightly

sooner. By early 2023, the RAIT would have called for a more rapid unwinding of the prior monetary

tightening.

In contrast to the Flexible Average Inflation Targeting (FAIT) – adopted by the Federal Reserve in 2020

to address deflationary risks arising from the increased likelihood of hitting the zero lower bound (ZLB)

constraint (Clarida, 2022) – the RAIT offers greater flexibility in adapting to changes in the stochastic

properties of inflation. While the FAIT relies on past inflation deviations from the 2% inflation objective

to guide the extent of overshooting, the RAIT is anchored in the central bank’s assessment of the evolving

balance of inflation risks. This feature makes the RAIT more responsive than the FAIT to sudden shifts

in inflation skewness, such as those observed at the onset of the COVID-19 pandemic and again in early

2023.

While the FAIT was introduced to mitigate the deflationary bias observed in the 2010s, the RAIT

would have recommended maintaining the symmetric inflation stabilization strategy without adjustment.

This is because, despite inflation running below target for much of the past decade, inflation volatility

reached historically low levels, making the balance of risks’ effect on inflation expectations negligible.

Consequently, during that period, the RAIT would not have required the central bank to modify its

strategy to address the negative skewness in inflation outcomes.

It is important to emphasize that the proposed approach to modeling asymmetric macroeconomic risks

in a dynamic general equilibrium model and solving for the optimal risk-management strategy is generic.

It can be integrated with various methods for estimating skewness, not limited to the one adopted in this

paper.

Literature Review Our work contributes to the relatively sparse literature on risk management ap-

proaches in monetary policy. Dolado et al. (2004) and Surico (2007) demonstrate that asymmetric loss

functions can lead to optimal policy rules incorporating nonlinear terms for inflation and the output gap,

reflecting policymakers’ asymmetric preferences. Kilian and Manganelli (2008) highlight the importance

of balancing upside and downside risks under an asymmetric loss function, while Kilian and Manganelli
2This is just one way to implement this strategy. An equivalent strategy involves communicating a shift in the path of

expected short-term interest rates above or below their long-run neutral level.
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(2007) measure inflation risks under time-varying symmetric volatility. In these frameworks, central banks

may target an average inflation rate different from their stated target when the costs of undershooting

and overshooting are asymmetric. This bias disappears with a symmetric loss function. In this paper, we

always assume that the loss function is symmetric. Our key contribution is to show that when inflation risk

is asymmetric, the optimal response must account for the balance of risks, even under a symmetric target.

Asymmetric inflation risk creates a divergence between the modal forecast and the expected inflation path,

and failure to address this divergence results in systematic deviations from the target on average.

Evans et al. (2020) argue that the ZLB requires a looser monetary policy under uncertainty, leading

to an optimal delay in policy liftoff. Moreover, they provide both narrative and statistical evidence that

the Federal Reserve has frequently employed risk management when setting the policy rate. Bianchi et al.

(2021) show that the deflationary bias caused by the risk of recurrently hitting the ZLB constraint can be

mitigated if the central bank adopts an asymmetric monetary strategy. Such a strategy entails responding

more strongly to inflation deviations below target than to those above target.

Unlike these papers, our work examines the importance of the central bank responding to changes in the

balance of macroeconomic risks beyond those exclusively associated with the ZLB constraint. Furthermore,

none of these studies estimate time-varying asymmetric risks in the data using a new forecasting model

or demonstrate how such estimates can be integrated with a quantitative structural model to explicitly

analyze the implications of monetary policy strategies that target inflation risks.

This paper examines the empirical implications of inflation-targeting measures – specifically the RAIT

– and is therefore connected to the long-standing and extensive literature on optimal flexible inflation

targeting (Svensson, 1997; Giannoni and Woodford, 2004).

Our paper is also related to the literature on inflation forecasting. This literature has largely focused

on the importance of accounting for slow-moving trends in the data and time-varying uncertainty (see,

e.g., Cogley and Sargent, 2005; Stock and Watson, 2007; Faust and Wright, 2013; Ascari and Sbordone,

2014). Far less attention has been devoted to the risks of inflation or deflation. Some recent exceptions

include Andrade et al. (2014); Hilscher et al. (2022). Differently from our approach, that only requires

a single time series to extract predictive inflation distributions, Andrade et al. (2014) rely on survey

data to extract measures of time-varying perceived inflation asymmetry and show that this has predictive

power over future inflation. Hilscher et al. (2022) introduces a methodology to extract market-based tail

probabilities from options data. Their approach relies on the availability and involved manipulations of

inflation derivatives data. However, we find an high correlation between the predicted disaster probabilities
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with the same measures extracted in real-time from our model.3

Only recently the attention has moved to the modeling of the whole density of inflation outcomes

(Manzan and Zerom, 2013, 2015; Korobilis et al., 2021; López-Salido and Loria, 2024). Most of the

previous work rely on quantile regression approaches, popularized by Adrian et al. (2019) in the context

of quantify the effect of macro-financial risks on the distribution of future growth. In contrast, we devise

a parametric model for the whole density of US core PCE. The model allows for asymmetric innovations,

drawn from a Skew-t distribution (see Arellano-Valle et al., 2005), and relies on the score-driven framework

of Harvey (2013) and Creal et al. (2013) to set up laws of motion for the parameters, as in Delle Monache

et al. (2024).4 Following Stock and Watson (2007), we allow time-varying moments to feature trend

components, mainly driven by structural policies, in line with Cogley and Sbordone (2008) and Ascari

and Sbordone (2014), and cyclical variations, aimed at capturing transitory, short-lived factors that can

temporarily affect price dynamics (“cost-push” and demand forces, as in Gordon, 1970; Blanchard and

Bernanke, 2023).

Two recent papers are directly related to ours. First, Le Bihan et al. (2024) introduces a new real-time

measure of underlying inflation that incorporates time-varying changes in asymmetric risks to the inflation

outlook. Their indicator is based on a multivariate regime-switching framework, jointly estimated using

disaggregated sub-components of the Euro Area’s harmonized index of consumer prices (HICP). Second,

López-Salido and Loria (2024) document substantial variability in the tails of inflation, and relates their

dynamics to deteriorating financial conditions and macroeconomic factors. Both papers employ sample

periods that are shorter than ours and do not cover the earlier episode of persistently elevated inflation in

the 1970s. Moreover, whereas López-Salido and Loria (2024) related their findings about tail dynamics to

the model of Gertler et al. (2020), none of the two contributions explore the implications of asymmetric

inflation risks for optimal monetary policy through the lens of DSGE models.

Structure The remainder of the paper is organized as follows. In Section 2, we characterize the optimal

monetary policy within a New-Keynesian model featuring asymmetric macroeconomic risks. To solve this

problem, we show how to obtain the beliefs representation of a model with asymmetric risks. We then

estimate the skewness of US inflation in real-time using an econometric model Section 3. In Section 4 we

calibrate the beliefs representation of a quantitative DSGE model to match the estimates of the balance
3Disaster probabilities are defined as the probability of inflation being above 4% and 5% over the next ten years.
4Score-driven dynamics provide, under some general conditions, optimal updates in the informational theoretic sense

(Blasques et al., 2014).
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of inflation risks coming for the econometric model and conduct a number of counterfactual exercises. In

Section 5, we conclude.

2 Optimal monetary policy with asymmetric inflation risks

In this section, we analyze the implications of time-varying asymmetric macroeconomic risk for optimal

monetary policy in a standard New Keynesian model with sticky prices (Galí, 2008, chapter 3). The model

is shown in Appendix A. We begin by showing the benchmark (well-known) case of optimal monetary policy

in a linear-quadratic model with symmetric macroeconomic risk. Then, we consider the case when risks

are asymmetric within the same linear-quadratic framework. We derive the beliefs representation of the

asymmetric risks, and then we characterize the optimal policy analytically. Finally, we consider the case

where risks are asymmetric but the central bank looks through this feature when deciding its optimal policy.

This last case offers valuable insights into the optimal monetary strategy under asymmetric macroeconomic

risks, which will be further explored through numerical simulations at the end of the section.

2.1 The case of symmetric risks

Let us assume that the central bank can fully commit, with complete credibility, to a policy plan by

selecting a state-contingent sequence of inflation deviations from its target and output gaps, {π̂t, x̂t}∞t=0,

so as to maximize the quadratic approximation of the household’s utility function:

1

2
E0

∞∑
t=0

βt
(
π̂2t + αxx̂

2
t

)
subject to the sequence of constraints given by the Phillips curve

π̂t = βEtπt+1 + κx̂t + ut,

where ut = ρuut−1+ε
u
t and the shock is distributed symmetrically; that is, εut ∼ N (0, σ2u,t). The objective

function is the quadratic approximation of the household’s standard utility function – shown in Appendix A

– and the weight on the output gap is αx = κ/ε, where ε denotes the elasticity of substitution between

differentiated goods produced by monopolistically competitive firms and κ denotes the slope of the Phillips

curve. Agents are rational and, therefore, fully aware of the distributions from which future shocks will

be drawn – that is, they know the sequence of future standard deviations {σu,t+h}∞h=0. All variables are
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expressed in log-deviations from their steady-state value.

It is easy to show that the following optimality condition must hold:

x̂t = − κ

αx
p̄t, (1)

where p̄t = pt − p−1 is the cumulative inflation rate over period 0 through period t, with pt denoting the

log of the price level at time t, and p−1 is the implicit target given by the price level prevailing one period

before the optimal plan is chosen by the central bank. As it is well known, this optimality condition can

be interpreted as a targeting rule that the central bank is required to follow in every period in order to

implement the optimal policy. Under the optimal policy, the central bank sets the sign and the size of the

output gap in proportion to the deviations of the price level from its implicit target (Galí, 2008, chapter

5).

Following Galí (2008), we show that the price level under the optimal policy is: p̄t = ηp̄t−1 + λut and

the optimal monetary rule (under the assumption that ρu = 0) follows:

ît = − (1− η)

[
1− σ

κ

αx

]
p̄t, (2)

where σ denotes the household’s coefficient of risk adversion and the coefficients η and λ are function of

other structural parameters of the New Keynesian model as shown in Appendix A. The appendix also

includes detailed derivations of the equilibrium equations.

2.2 The case of asymmetric risks: the beliefs representation

Let us now introduce asymmetric macroeconomic risks. Specifically, we assume that the stochastic

process driving markups, ut = ρuut−1 + ε̃ut , involves shocks distributed according to a probability density

function ε̃ut ∼ Fu,t, which may be skewed, and the moments are allowed to vary over time. As in the

symmetric case, agents are rational, thus fully aware of the distributions from which future shocks will be

drawn; that is, they know the sequence of future distributions {Fu,t+h}∞h=0. The distributions are assumed

to be unimodal with zero mode at all time.5

In this linear-quadratic framework, expectations are the only moment of agents’ beliefs affecting agents’
5In our framework, risks influence allocations and prices by shifting agents’ expectations away from the most likely

scenario. While we focus on asymmetric risk in a unimodal setting, the framework can also accommodate multimodal risks.
In such cases, skewness arises as a byproduct of multimodality and, up to first-order, its impact remains limited to its effect on
expected realizations, with the sign captured by the skew in risk. Higher-order effects may be significant when the skewness
is large but these cases are beyond the scope of our analysis.
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optimal decisions. Moreover, it should be noted that changes in the skewness of the shocks distribution,

Fu,t, affect agents’ optimal decisions through their impact on expectations. Specifically, positive (negative)

skewness increases (decreases) expectations by pulling the mean toward the right (left) tail. Therefore,

to characterize agents’ optimal decisions and to solve for the optimal policy, one needs to be able to pin

down agents’ expectations, which, in this asymmetric case, are also affected by the changing shape of the

distribution of price markup shocks.

To capture the effects of the changing skewness on agents’ expectations, we introduce a sequence of

dummy anticipated shocks, which are drawn from a Normal zero-mean distribution. A feature of these

anticipated shocks is that they do not necessarily materialize, akin to noise, sentiments, or shifts in

pure beliefs. This approach enables us to derive the beliefs representation of the model with asymmetric

macroeconomic risks, in which all shocks are normally distributed. This representation allows the complete

characterization of agents’ beliefs by taking into account the effects of asymmetrically distributed shocks.

Once beliefs are correctly specified, we can characterize the solution to the optimal monetary policy

problem presented in Section 2.1.

To illustrate how to obtain the beliefs representation of basic New Keynesian model, we assume that

agents know the distribution only one period ahead and expect it to become symmetric in two periods.6

Under this assumption, we write the autoregressive process for the price markup shocks in the beliefs

representation of the model as follows:

ut = ρuut−1 + εut +
(
φ0
t + φ1

t−1

)
, (3)

where φjt , for j ∈ {0, 1}, are Gaussian shocks known in period t that are expected to change price

markup in period t + j. The actual price markup shock is unanticipated and normally distributed; that

is, εut ∼ N (0, σ2u,t). As in the symmetric case, agents know the future evolution of the standard deviation

of this distribution.

The effects of the asymmetric distribution of ε̃ut on agents’ expectations are captured by the anticipated

shock φ1
t . Note that the expected value of the next period’s markup shock is Etεut+1 = φ1

t ̸= 0, shifting

expectations about the shock in period t + 1 away from the modal forecast, which is equal to zero.
6This assumption can easily be relaxed, as we will do later in the quantitative analysis. The general fully rational case,

where agents know the true distributions from which future shocks will be drawn, requires expressing the price markup process
in the beliefs representation as follows: ut = ρuut−1 + εut +

∑J
j=0 φ

j
t−j . We assume that after J periods, the distribution

becomes symmetric, where J can be arbitrarily large. We will use this specification later in the quantitative part of the
paper.
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Consequently, the expectation of next period’s markup is Etut+1 = ρuut + φ1
t , which is different from the

modal scenario, ρuut; that is, the mean scenario under a symmetric distribution of the shocks.

We have to make sure that the effects of the dummy anticipated shocks, φ1
t , remain confined to the

realm of beliefs and never materialize into an actual shock to the markup, as their function is solely to

capture the effects of asymmetric risks on agents’ expectations. To achieve this, we neutralize the effects

of the dummy anticipated shocks when they are supposed to affect the markup ut. Formally, we require

the dummy surprise markup shocks to satisfy the condition φ0
t = −φ1

t−1 in every period t.

In the beliefs representation, the optimal policy and the equilibrium dynamics of the price level and

the output gap under this policy can be characterized analytically and read as follows:

p̄t = ηp̄t−1 + λut + ζφ1
t ,

x̂t = ηx̂t−1 −
κ

αx

[
λut + ζφ1

t

]
.

Detailed derivations are provided in Appendix A. Note that, in this linearized model, macroeconomic risks

introduce a wedge in agents’ expectations relative to the modal scenario (i.e., agents’ expectations in the

symmetric case). Consequently, the equilibrium dynamics of prices and the output gap are shifted upward

or downward, depending on the direction of the risks (φ1
t ).

The optimal interest rate rule in the beliefs representation (assuming ρu = 0) is:7

ît = − (1− η)

[
1− σ

κ

αx

]
p̄t +

[
1− σ

κ

αx

]
λφ1

t , (4)

where the first term on the right-hand side represents the optimal rule under symmetry, and the second

captures the policy rate adjustment required to offset the effects of the balance of risks on agents’ expec-

tations, φ1
t . This rule suggests that the optimal policy requires the central bank to respond to the effects

of the changing balance of macroeconomic risks on agents’ expectations.

2.3 The case of asymmetric risks with an unwitting central bank

Assume now that the central bank chooses its optimal policy without internalizing that macroeconomic

risks are asymmetric, whereas agents are aware of it. This scenario makes an useful counterfactual scenario

to draw intuition regarding the key features of the optimal policy under asymmetric shocks.
7The derivation of the interest-rate rule satisfying the determinacy of one stable rational expectations equilibrium is also

shown in Appendix A.
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When the central bank ignores that macroeconomic risks can be unbalanced, it will aim to achieve

the price level that would arise if the distribution of shocks were symmetric (conditional on the previous

period’s price level). Specifically, the central bank chooses the output gap x̂t such that

x̂t = − κ

αx
p̄st , (5)

where p̄st = pst − p−1 and pst denotes the equilibrium price level the central wants to achieve based on

its beliefs that shocks are symmetrically distributed. Specifically, this “wrong” price level is defined as:

p̄st = ηp̄t−1 + λut. Note that this price level is not exactly the same as that in the fully symmetric case as

the central bank conditions its policy action today on the equilibrium price level from the previous period,

p̄t−1. This assumption implies that “bygones are bygones,” as the central bank does not attempt to correct

past mistakes – i.e. p̄t−1 − p̄st−1 in its current policy actions.8

The central bank – unaware of macroeconomic risks – targets the deviations of the wrong price level

(p̄st ̸= p̄t) from the implicit target, p−1. Comparing the above optimality condition with Equation (1),

which holds also in the case of asymmetric risk studied in the previous section, reveals that the central

bank sets the sign and the size of the output gap in proportion to the deviations of the price level (p̄st )

that is not achievable because of the presence of asymmetric macroeconomic risks. As a result, the output

gap will be suboptimal and under an equilibrium price level that is different from that targeted by the

central bank. The equilibrium price level in the case the central bank overlooks the presence of asymmetric

macroeconomic risk is shown in the Appendix A.

2.4 A illustrative example

We now present a simulation to illustrate how an optimizing central bank should respond to changes

in the balance of macroeconomic risks. The simulation assumes that the distribution of price markup

shocks in period 2 is negatively skewed, represented by a dummy anticipated shock φ1
t = −0.8 at t = 1.

Agents are assumed to be fully aware of this asymmetry starting in period 1, when the simulation begins.

In period 2, a negative price markup shock is drawn from the negatively skewed distribution; that is,

εut = −0.8 with t = 2. In all other periods, shocks are zero, and their distribution is symmetric. The

economy is assumed to be at the non-risky steady state in period 0. Furthermore, the markup shocks are
8It is important to point out that this case is not intended to be realistic – at some point, the central bank realizes that

the targeted price level cannot be achieved. This case is introduced to highlight key insights regarding the implications of
optimal policy under asymmetric macroeconomic risks.
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modeled as independently and identically distributed (IID), such that ρu = 0.

Results of this simulation are shown in Figure 1. We set the values of the model parameters following

Galí (2008), Chapter 3, which we report in Appendix A. The symmetric risks case is represented by the

black solid line – where we set the skewness to zero or φ1
t = 0 in any period t. In the asymmetric risks

case, where the central bank is aware of the balance of risks (blue dashed line with circle markers), the

distribution of markup shocks exhibits negative skewness.

The period-by-period effects of skewness on agents’ expectations about the next period’s markup shocks

are illustrated by the green solid line with square markers in the bottom-right panel. This line shows the

dynamics of the anticipated shock, φ1
t , in the beliefs representation. Since the distribution of shocks is

negatively skewed only in period 2, the effects on expectations arise exclusively in period 1, as indicated

by the spike in the green line during the first period. The red dashed-dotted line represents the case in

which risks are asymmetric, but the central bank does not take this into account (the case of the unwitting

central bank.)

To understand the implications of optimal policy in the case of asymmetric risks, one should compare

the blue dashed line with circle markers to the red dashed-dotted line. The difference between these

two lines captures the effects of the optimal response of monetary policy to asymmetric risks on the

macroeconomic variables.

In the first period, the unwitting central bank chooses the same output as in the symmetric case (the

black solid line) because it aims to achieve the price level that would arise under symmetry. However,

agents’ expectations are distorted by the negative skewness in the distribution of markup shocks for the

next period. As a result, the desired price level turns out to be unattainable, with the equilibrium price

level being significantly lower. This is reflected in the red dashed-dotted line falling below the black solid

line at time 1 in the bottom-left panel.9

When the central bank accounts for negative inflation risks (the blue dashed line with circle markers),

it optimally seeks to overheat the economy to counteract these deflationary risks. Consequently, the

optimal response to negatively skewed markup shocks is to boost the output gap, x̂t, and the price level,

p̂t. Compare the blue dashed line with circle markers (optimal policy) to the red dashed-dotted line

(suboptimal policy failing to account for deflationary risks) in period 1 in the left panels. The difference

between this two line in period 1 is entirely explained by the central bank’s optimal response to the

negative balance of inflation risks.
9The desired output gap under symmetric shocks is zero, as no shocks hit the economy in period 1.

ECB Working Paper Series No 3028 13



1 2 3 4 5 6
0

1

2

Output gap

1 2 3 4 5 6

-0.2

0

0.2

In.ation

1 2 3 4 5 6

-0.4

-0.2

0
Price level

1 2 3 4 5 6
-0.8

-0.6

-0.4

-0.2

Markup shock

Symmetric risks
Asymmetric risks
Asymmetric risks - Unwitting central bank

Asymmetric risks - targeted price level 7ps
t

Balance of risk ('1
t )

Figure 1: Optimal monetary policy under symmetric and asymmetric macroeconomic risks.
Note: The panels report the macroeconomic effects of a markup shocks drawn from a symmetric distribution (the black solid
line) and from an asymmetric distribution (the blue dotted line with circle markers) under optimal monetary policy. The
shock hits the economy in period 2, which is the only period when its distribution is assumed to be negatively skewed. The
red dashed-dotted line denotes the counterfactual case where risks are asymmetric but the central bank does not take it into
account when solving the optimal monetary policy problem. In the lower right panel, the price markup shock, ut is shown
as well as the skewness (φ1

t ) – green line with square markers. In the lower left panel, the line with red stars denotes the
price targeted by the central bank that overlooks the unbalance of risks, p̄st .

In period 2, a negative markup shock materializes, as illustrated by the markup shock shown in the

lower-right panel. At this point, agents understand that from now on, shocks will be drawn from a

symmetric distribution. Consequently, in this period and in the subsequent ones, the central bank follows

the same policy under the symmetric and the asymmetric risks cases. Despite adopting the same policy

strategy and operating in the same macroeconomic environment, the shift in the balance of risks in period

1 leaves persistent effects on macroeconomic outcomes. This is due to the path dependence introduced by

optimal commitment.10

In summary, in the presence of asymmetric risks (period 1), optimal policy requires the central bank
10However, the unwitting central bank continues to target the wrong price level in period 2, resulting in a suboptimal

output gap. The targeted price level is incorrect because the central bank failed to meet its price level target in the previous
period (see ??). If the unwitting central bank were to target the correct price level, it would align with the price level shown
in the symmetric risk case (the solid black line). It should be noted, however, that the unwitting central bank can achieve the
(wrong) targeted price level in period 2. As shown in the bottom-left chart, the red star lies exactly on the red dashed-dotted
line in period 2. This occurs because future shocks are symmetrically distributed, thereby eliminating the bias in agents’
expectations.
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to counteract the direction of the inflation risk. Specifically, an optimizing central bank must shift agents’

inflation expectations in the opposite direction of the risk. In Figure 1, this shift in the central scenario is

depicted by the difference between the blue dashed line with circle markers and the red dashed-dotted line

in period 1 in the bottom-left panel. The central bank accomplishes this by accepting a larger output gap

in period 1. Conversely, if the balance of risks is tilted to the upside, it is optimal for the central bank to

cool down the economy, thereby pushing the modal inflation scenario downward and accepting a negative

output gap.

Not surprisingly, in the symmetric case, optimal monetary policy achieves a higher level of welfare in

every period, underscoring the fact that macroeconomic risks can exacerbate the trade-offs faced by the

central bank.

3 An econometric framework for inflation risk

In this section, we present a time-series model to estimate the full predictive density of inflation in

real-time, accounting for time variation in the first three moments of the distribution. The model we

propose inherits many features of common unobserved components specifications (along the lines of Stock

and Watson, 2007), and it comes with the additional flexibility of allowing for skewness in the predictive

distribution of inflation.

Based on this, we first formally test for time variation in inflation’s third moment, finding strong

evidence to reject the null of no variation. Second, we provide new insights into the stochastic properties

of inflation, with a focus on the dynamics of skewness. Finally, we demonstrate that explicitly modeling

time-varying skewness in the inflation process delivers competitive out-of-sample forecasting performance.

These findings reinforce the view that inflation outcomes are asymmetrically distributed and underscore

the importance of incorporating the third moment to better understand inflation dynamics.

3.1 Model specification

Let us denote the annualized, quarter-on-quarter (core) PCE inflation rate with πt = 400 log(pt/pt−1)

and assume that at each point in time the distribution of πt can be characterized by a Skew-t (Skt)

distribution with time-varying location (µt), scale (σt), and shape (ϱt) parameters:

πt ∼ Sktν(µt, σ
2
t , ϱt), (6)
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where ν denotes the, time invariant, degrees of freedom. The distribution of inflation realizations is

positively (negatively) skewed for ϱt > 0 (ϱt < 0) and the underlying right- and left-risk around the

central scenario (mode), µt, can be retrieved as σt(1 − ϱt) and σt(1 + ϱt). This specification allows

as special cases: (i) the symmetric Student-t distribution when ϱt = 0, (ii) the epsilon-Skew-Gaussian

(Mudholkar and Hutson, 2000) for ν → ∞, and (iii) the Gaussian density when both conditions hold

jointly. Thus, we allow for, but do not impose, asymmetric innovation terms.

Following a long tradition in modeling the stochastic properties of inflation (see e.g., Cogley, 2002;

Stock and Watson, 2007; Faust and Wright, 2013), we treat the time-varying parameters as unobserved

components that can be learned in real-time from the variation in the data. Unlike Stock and Watson

(2007), we opt for an observation-driven updating process.11 Specifically, let δt = log(σt) and γt =

arctanh(ϱt), we postulate that each element fi,t of ft = (µt, δt, γt)
′ features a permanent and transitory

component: fi,t = f̄i,t + f̃i,t, which evolve as:

f̄i,t = f̄i,t−1 + aisi,t−1, (7)

f̃i,t = ϕif̃i,t−1 + bisi,t−1. (8)

Updates of the time-varying parameters are proportional to si,t−1, which is the scaled score of the condi-

tional distribution (as in Creal et al., 2013; Harvey, 2013).12

Intuitively, the score vector translates the new information contained in the latest data release, summa-

rized by the prediction error, εt = πt − µt, into an update for the time-varying parameters characterizing

the predictive distribution of inflation; learning rates, ai and bi, regulate the strength of the updates.13

We illustrate the updating mechanism in Figure 2.

Consider a symmetric Gaussian environment (black lines), where ν → ∞ and ϱt = 0 in every pe-

riod. The location and scale parameters –which now represent the mean and standard deviation of the

distribution– update in line with standard Kalman filter learning (see, e.g., Cogley, 2002). Updates of the

mean are proportional to the prediction error, with strength inversely proportional to the variability of
11In an observation-driven model, current parameters are deterministic functions of lagged dependent variables as well

as contemporaneous and lagged exogenous variables. In parameter-driven models, parameters vary over time as dynamic
processes with idiosyncratic innovations. See Cox (1981).

12The scaled score vector, st = (sµ,t, sσ,t, sϱ,t)
′, is defined as st = St∇t, where ∇t is the gradient of the likelihood function

with respect to the dynamic parameters; the scaling matrix St is proportional to the inverse of the diagonal of the Information
matrix, It = E [∇∇′]. Updates driven by the scaled score are (generally) guaranteed to reduce the distance between the
conditional and the true (unobserved) predictive distribution, easily allowing for non-Gaussian features. See Blasques et al.
(2015, 2022)

13Appendix B we provide detailed derivations for the score and updates of the time-varying parameters of the model (see
also Delle Monache et al., 2024).
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Figure 2: Parameter updating
Note: Note: The panels report the scaled scores for different values of the standardized prediction error ζt = εt

σt
. We consider

the Gaussian case (black), the symmetric Skt5(µt, σt, 0) (orange), and negatively (green) and positively (blue) Skt5(µt, σt, ϱt).

the data, and the volatility is updated proportional to the difference between the variability of the predic-

tion error and the expected variability of the inflation process. Allowing for fat tails makes the updating

mechanism robust to large, unanticipated prediction errors (orange lines; see. e.g., Delle Monache and

Petrella, 2017; Antolín-Díaz et al., 2024) When asymmetry is introduced, the updating mechanism weights

prediction errors differently, depending on their sign. For example, when the conditional distribution is

left skewed (green lines), parameters react more to unexpected positive news, rather than to negative

prediction errors, which are expected to be more likely to occur. Consistently with this mechanism, large

deviations of inflation from the expected central scenario imply updates of the asymmetry parameter in

the direction of the prediction error.

Expected value under asymmetry A defining feature of any skew-distribution, p(π|µt, σt, ϱt, ν), is

the fact that asymmetry directly affects the first moment of the distribution. Specifically, in the case of

the Skew-t distribution in Equation (6), one can show that ∀h > 0

Etπt+h =

∫
R
πp(π|µt+h, σt+h, ϱt+h, ν)dπ,

= µt+h + g(ν)σt+hϱt+h︸ ︷︷ ︸
ψt+h

(9)

where g(ν) = 4νC(ν)
ν−1 . Therefore, the expected value can be represented as the sum of the mode and a

component, ψt+h, that is a function of the asymmetry parameter. That is, asymmetry creates a wedge
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Table 1: Time variation in higher order moments

Q Q∗ N Q Q∗ N

Homoskedastic Heteroskedastic

Scale2 369.36∗∗∗ 373.67∗∗∗ 1.50∗∗∗

Asymmetry 367.31∗∗∗ 371.60∗∗∗ 4.18∗∗∗ 35.65∗∗∗ 36.07∗∗∗ 0.79∗∗∗

Note: Q is the portmanteau test, Q* is the Ljung-Box extension (with automatic lag selection) and N corresponds to the
Nyblom test. Q and Q* are distributed as a χ2

1, while N is distributed as a Cramer von-Mises distribution with 1 degree of
freedom. * p < 10%, ** p < 5%, *** p < 1%.

between the central scenario, e.g., the mode, and the expected value. This wedge has the same sign of

the prevalent asymmetry and is quantitatively more relevant as the distribution becomes more dispersed,

as ∂Et−1πt
∂ϱt

> 0, ∀t. In Section 4 we will exploit Equation (9) to introduce asymmetry in the shocks of a

quantitative DSGE to understand the optimal monetary policy response when inflation risks is skewed.

De Polis (2023) provides detailed derivations and closed forms for the variance and skewness of the Skew-t

model.14

3.2 Formally testing for time-varying inflation skewness

We now formally test for the evidence of time variation in the asymmetry of the predictive distributions

of core PCE inflation. Starting from Equation (6), we estimate restricted specifications of the model in

Equations (7) and (8), where we assume constant asymmetry (ϕϱ = 1, bϱ = 0) and constant asymmetry

and scale (ϕσ = ϕϱ = 1, bσ = bϱ = 0).15

Table 1 reports the results of three alternative parametric Lagrange Multiplier tests: a Q test, an

adjusted Q* test, and the Nyblom test, applied to the score function sϱ,t as shown by Delle Monache

et al. (2024). All test strongly reject the null hypothesis of symmetry at the 1% confidence level; the

right panel of the Table show an equally strong rejection after accounting for stochastic volatility.16 These

tests underscore the importance of accounting for the evolution of inflation asymmetry when modeling the

inflation process.

An extensive Monte Carlo exercise, reported in Appendix D, demonstrates that the procedure detects

skewness only when it is present and remains robust to (changing) correlations between location and scale.

Furthermore, additional tests based on rolling estimates of inflation asymmetry provide further evidence
14Note that asymmetry raises (decreases) the variance when positive (negative). Therefore, procyclical variations in

inflation skewness are reflected into a time-varying correlation between the mean and volatility of the process.
15For this exercise we estimate the models by maximum likelihood (see Blasques et al., 2022, for additional details). Sample

scale and shape are estimate as the initial values for the two parameters.
16In Appendix C we show that the test results hold for different definitions of inflation.
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supporting these results (see Appendix E).

Although simple rolling measures of sample skewness can be easily computed from raw data, rolling

window estimators face a trade-off between estimation accuracy and sensitivity to time variation. Specifi-

cally, larger look-back windows improve the precision of third-moment estimates by reducing the influence

of isolated outliers but diminish the ability to detect and respond to changes in real time. To address this

limitation, we employ a flexible model that captures these features of the data by parametrizing the time

variation of the moments of inflation.17 This provides timely measures of time-varying inflation moments,

without increasing the noise in the estimates. In the next section, we demonstrate that our approach

produces measures of time-varying skewness that are qualitatively consistent with rolling estimates but

respond more promptly to changes in inflation skewness.

3.3 In-sample inference

We now estimate the model introduced above and highlight some novel in-sample results about the

statistical properties of inflation. The parameters of the model and the associated conditional distribution

of inflation are estimated using Bayesian methods as in Delle Monache et al. (2024); refer to Appendix B

for additional details.

The estimated model offers novel insights into the time-varying stochastic properties of the inflation

process. Figure 3 displays the estimated time-varying moments. We report in black the total moment

(e.g., computed using the total parameters, ft = f̄t+ f̃t), whereas the persistent components (e.g., setting

ft = f̄t) are in green. The model reveals significant time variation across all moments. The time-varying

mean, reported in Figure 3a, reflects the well-documented trend in inflation, which rises in the mid-1960s,

declines from the early 1980s, and stabilizes near a 2% target by the mid-1990s (see, e.g., Stock and

Watson, 2016). The recent inflationary episode is marked by a sharp increase in both average expected

inflation and its long-term component, with a noticeable reversal in the last few observations. Inflation

volatility (Figure 3b) peaks in the mid-1970s, remaining high until the late 1980s, and is well-contained

until early 2020, when it sharply increases starting in the second quarter. Unlike the mean, inflation

volatility exhibits clear cyclicality, rising significantly during recessions.

The skewness estimates in Figure 3c indicate moderate negative skewness in the 1960s, with increasing

upside risks from the late 1960s, peaking in the late 1970s, and then declining from the early 1980s.

Upside risks persist until the mid-1990s, when the skew shifts to negative. Downside risk dominates until
17This approach effectively applies a one-sided discounting of past observations when estimating the model’s time-varying

parameters.
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Figure 3: Time-varying moments of inflation
Note: The panels report mean, volatility and skewness of US core PCE. Blue lines represent total moments, red lines
correspond to long-run components only. Bands report 68 and 96% credible intervals. Gray shaded areas represent NBER
recessions.

the post-COVID inflationary episode, except for the period before the GFC, where risks are balanced.

The model captures a marked increase in negative skewness during the pandemic, followed by a rapid rise

in upside risk. By the end of 2020, substantial upside risks emerge, reaching levels comparable to those

seen during the Great Inflation of the 1970s by mid-2021.

Notably, the estimated skewness during the latest inflationary episode closely resembles in magnitude

the environment of the mid-1970s, while the low and stable inflation period before COVID mirrored the

stable inflation era of the 1960s. It is worth noticing that, contrary to the mean, where the transitory

components remains highly persistent, skewness shows far less transitory deviations. This is due to a

lower estimate for the autocorrelation of the transitory component of asymmetry compared to that of
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Figure 4: Model-based vs rolling measures of skewness
Note: The figure reports cross-correlations between data-based and model-based measures of inflation skewness. We report in
blue the correlation between rolling quantile skewness and the estimated coefficient of asymmetry, and in green the correlation
between rolling sample skewness and the conditional skewness produced my the model. Gray shaded areas represent NBER
recessions.

the location, but also to smaller learning rates, which make the former less sensitive to noisy prediction

errors.18

Following Equation (9), Figure 3d presents the decomposition of expected inflation into the location

(the most likely expected outcome) and the tilt induced by the balance of risks around it, ψ. Inflation

risk significantly influences inflation expectations, introducing substantial upside bias during the 1970s

and the post-COVID era. Negative skewness contributed to a downward bias in expected inflation during

the decade leading up to COVID-19. However, low inflation volatility during this period mitigated the

average effect of asymmetry on expectations, limiting its impact to around 20 basis points, despite the

markedly negative skewness.

The subdued volatility of inflation observed during this time has significant implications for how

monetary policy should address the persistent negative skewness in the post-Great Recession era. This is

an important point to which we will return in the next section.

Whereas more is known about inflation’s time-varying mean and variance (see, e.g., Stock and Watson,

2007), our model provides novel insights into the dynamics of inflation skewness. We compare our model-

based measures of skewness (e.g., sample skewness, st, and the asymmetry parameter, ϱt) against rolling
18See Table E3 in Appendix E.

ECB Working Paper Series No 3028 21



estimates derived solely from core PCE data. Panel (a) of Figure 4 compares the sample skewness with

a 5-year rolling skewness, sst, shown in green. Although both measures exhibit similar patterns, sst

is noticeably noisier due to its sensitivity to individual observations. In the bottom figure, we contrast

estimates of ϱt with a robust quantile-based skewness measure, qst.19 The impact of outliers is particularly

evident, especially the large negative data points from the second quarter of 2020, which continue to distort

qst estimates post-2021. In contrast, model-based skewness estimates are less influenced by extreme values,

due to a more robust updating mechanism.

Furthermore, rolling estimates assume constant skewness within the sample window, making them

slow to adjust, particularly during significant inflation shifts, which poses a major challenge for real-time

risk assessment. In contrast, our model updates skewness estimates in real-time with each new inflation

release. While all measures generally align in capturing underlying risk and its evolution, Figure 4b shows

the cross-correlation between data-based measures of skewness and lags of model-based estimates. Our

skewness estimates respond to changes in inflation more quickly, leading the rolling measures by an average

of two quarters –a clear advantage for real-time monitoring of inflation risk.

3.4 Out-of-sample performance of the model

We assess the out-of-sample forecasting performance of our model, focusing on gauging the added value

of accounting for time-varying skewness. Specifically, we set up a real-time forecasting exercise where for

each inflation vintage we produce up to twelve-step ahead forecasts for the whole density of core PCE

inflation, starting from 2000Q1.20 We evaluate the forecasting performance of the model against the UCSV

model of Stock and Watson (2007) which represents a solid benchmark model, widely employed to predict

inflation outcomes.21 We compare the two models in their ability to produce accurate point, density and

event forecasts. Specifically, we evaluate the mean squared forecast error (MSFE) for point accuracy and

we use Gneiting and Ranjan (2011) quantile-weighted CRPS to assess density forecasting accuracy.

These scoring rules measure the squared difference between the forecast cumulative distribution func-

tion and the “perfect forecast”, that is a step function which moves from 0 to 1 on the realization point.

Furthermore, we evaluate the accuracy of predicting the right and left tails, and the central body of the

predictive densities.22

19Incidentally, both measures are bounded between -1 and 1.
20We start the exercise in 2000Q1 due to the availability of real-time data vintages.
21We implement the Bayesian version following Chan (2013).
22Left tail forecasts are defined up to the 25th quantile. Similarly, the right tail considers above the 95th quantile. The

remaining quantiles characterize to the center of the distribution.
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Table 2: Out-of-sample comparison

h = 1 h = 2 h = 3 h = 4 h = 8

MSFE 0.835
(0.016)

0.854
(0.021)

0.861
(0.031)

0.859
(0.010)

0.951
(0.004)

CRPS 0.936
(0.012)

0.939
(0.011)

0.934
(0.002)

0.927
(0.004)

0.966
(0.002)

CRPS decomposition

Right 0.926
(0.019)

0.932
(0.018)

0.931
(0.010)

0.934
(0.013)

0.965
(0.071)

Left 0.949
(0.002)

0.940
(0.006)

0.937
(0.001)

0.923
(0.001)

0.962
(0.002)

Center 0.933
(0.004)

0.942
(0.011)

0.935
(0.002)

0.923
(0.005)

0.971
(0.004)

Event Forecasts

πt+h < 1.5 0.945
(0.015)

0.940
(0.005)

0.931
(0.001)

0.950
(0.026)

0.960
(0.040)

πt+h > 2.5 0.910
(0.031)

0.969
(0.089)

0.960
(0.036)

0.966
(0.032)

0.986
(0.132)

1.5 ≤ πt+h ≥ 2.5 0.939
(0.013)

0.947
(0.009)

0.947
(0.016)

0.981
(0.176)

0.940
(0.001)

Note: The table report the relative performance of Stock and Watson (2007) UCSV model against our Skt model. Results
are reported in ratios, with our model being at the numerator; values smaller than 1 imply superior predictive accuracy of
the SKt model. The out-of-sample period runs from 2000Q1 to 2024Q2. Values in bold are significant at the 10% level.

Results of the comparison are presented in Table 2, where we report, for each loss function and forecast

horizon, the ratio of the score achieved by our model to that of the UCSV benchmark. Values below unity

indicate superior accuracy of our preferred model. p-values for the Diebold and Mariano (1995) test are

provided in parentheses.

The results strongly support the superiority of our model over the benchmark across all horizons and

forecast exercises. Gains in point forecasts range from 25% at short horizons to 7% over the medium term.

Smaller yet significant gains are observed in CRPS scores, with our model notably delivering improve-

ments of up to 8% in forecasting upside risks. These results underline the importance of accounting for

inflation skewness as a means to enhance forecasting accuracy. However, the UCSV model not only lacks

a mechanism for capturing skewness but also overlooks the presence of fat tails in the data. To ensure that

the observed gains stem specifically from modeling inflation skewness rather than from addressing fat tails,

we replicate the analysis using a specification that excludes any asymmetry, following a similar approach

to Delle Monache and Petrella (2017). The results, reported in Appendix E, confirm our assertion that

incorporating skewness is a critical step for improving model fit and inflation forecasting accuracy.
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Table 3: Event forecast comparison against SPF

πQ4
t < 1.5 πQ4

t > 2.5 1.5 ≤ πQ4
t ≤ 2.5

h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

1.196 0.892 1.159 0.893 0.853 0.164 0.335 0.599 1.177 0.895 1.327 1.125

Note: The table reports the ratio of the Brier score of our Skt model over the SPF’s for event predictions. The target variable
is Q4-over-Q4 core PCE. The evaluation sample runs from 2007Q1 due to SPF data availability.

Event forecast and comparison with SPF We now compare the ability of the competing models

to produce event forecasts. Specifically, we use the Brier score, defined as the mean squared difference

between the predicted probability of a binary outcome and its occurrence, to evaluate predictions of events

where πt+h is lower than 1.5%, greater than 2.5%, or falls within these thresholds. The comparison with

the UCVS model is reported in the bottom section of Table 2. Again, our model provide improvements

over the benchmark model, especially over the short-horizon.

We also compare our event forecast predictions against the SPF. Adams et al. (2021) show that both

upside and downside risks to the median SPF forecast fluctuate over time, and that lower quantiles of the

predictive distributions are generally more stable than the upper quantiles. For this exercise, we target

Q4-over-Q4 core PCE, πQ4
t , starting in 2007Q1 to match SPF data. First, panel (a) of Figure 5 shows

the interval predictions generated by our model, overlaid with the SPF projections. Our model produces

interval predictions that align closely with the SPF’s. In the bottom panels, we plot the evolution of the

predicted probability of πQ4
t being below 1.5% (Figure 5b) or above 2.5% (Figure 5c) 6 months ahead of

the realization; the predicted events are represented by the yellow-shaded areas. These figures demonstrate

that our model provides timelier assessments of event probabilities, in that the black lines lie above the

bright blue ones when predicted events realized (yellow shaded regions). Notably, our model detects little

to no probability of overshooting the 1.5–2.5% interval throughout the period between the GFC and the

post-pandemic inflation surge, while capturing the latter with greater precision.

A formal evaluation of these event predictions is summarized in Table 3, where we report the ratios

of Brier scores for our model relative to the SPF for the three events and up to four-step-ahead predic-

tions.23 Overall, the table indicates that our model and the SPF achieve comparable accuracy, except

for P
(
πQ4
t+1 > 2.5%

)
, where our model provides more timely probability assessments (see Figure 5, panel

(c)). However, it is important to note that the ratios reported in the table are based on a small sample
23For h = 1, predictions are based solely on out-of-sample values. As h approaches 4, up to three observed data points are

used in the computation of Q4-over-Q4 inflation.
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Figure 5: Event forecasts
Note: The top panel report the interval forecasts produced by the Skt model. We define left tail as the probability of inflation
expectations below 1.5%, central corresponds to expectations in the [1.5%, 2.5%] interval, whereas the right tail is defined as
expectations above 2.5%. Panels (b) and (c) report a comparison of the two-step-ahead predicted probability of Q4-over-Q4
inflation being below 1.5% and above 2.5%, repsectively; yellow shaded region represent the events. The sample runs from
2007Q1 to 2023Q4. Gray shaded areas represent NBER recessions.

size due to the limited availability of SPF data.

4 Quantitative structural analysis

In this section, we perform policy counterfactuals to highlight the importance of accounting for asym-

metric inflation risk, using a prominent empirical DSGE model estimated with U.S. data (Smets and

Wouters, 2007). Specifically, we consider a version of the model in which price markup shocks follow a

Skew-t distribution with time-varying moments. We assume that, in each period, agents expect these

moments to change in line with the forecasts provided by the model estimated in the previous section.24

24It should be noted that whereas the model we introduced in the previous section delivers accurate and timely real-time
estimates of U.S. inflation skewness, the beliefs representation can accommodate various methods (or combinations thereof)
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To study the DSGE model with changing asymmetric inflation risks, we proceed as follows. First,

we derive the beliefs representation of the asymmetric risks for this model. Second, we calibrate the

beliefs representation to match the effects of the inflation asymmetry on inflation expectations, which we

estimated in the previous section. Third, we analyze the macroeconomic implications of introducing the

RAIT – a central bank communication strategy designed to anchor expectations to target by counteracting

the effects of asymmetric risks – with particular focus on the post-pandemic period. Finally, we compare

the implications of the RAIT with those of the FAIT, which is the current framework employed by the

Federal Reserve.

Analogously to what shown in Section 2.2, to construct the beliefs representation of asymmetric in-

flation risks for the Smets and Wouters (2007) model, we augment the price Phillips Curve with a set of

dummy anticipated price markup shocks as follows:25

π̂t = π1π̂t−1 + π2Etπ̂t+1 − π3µ
p
t + εpt +

J∑
j=0

φjt−j , (10)

where the variable µpt represents firms’ price mark-ups, the shock εpt stands for the actual price markup

shock, which follows a Gaussian ARMA process, and π1, π2, and π3 are the standard parameters in

this equation, as defined in Smets and Wouters (2007). The last term on the right-hand side captures

anticipated and unanticipated dummy mark-up shocks, with φjt representing the mark-up shock revealed

in period t but expected to materialize in period t + j. These anticipated shocks capture the effects of

the skewness of the Skew-t distribution of future price markup shocks on agents’s expectations about the

realization of these shocks.

In the beliefs representation, the expected price markup shock h periods ahead can be decomposed as

follows:

Et

εpt+h + J∑
j=0

φjt−j

 = Et(ε
p
t+h)︸ ︷︷ ︸

mode (µp
t+h|t)

+
J∑
j=h

φjt+h−j︸ ︷︷ ︸
balance of risks (ψp

t+h|t)

, (11)

which mimic the structure of Equation (9), since we assumed that price markup shocks distribute as a

for estimating skewness, extending beyond our preferred model.
25This equation embeds an identification assumption: specifically, we assume that only expectations of future price markup

shocks drive the changes in inflation risks estimated by our forecasting model. However, this approach can be generalized to
accommodate alternative identification assumptions by incorporating a variety of dummy anticipated shocks that contribute
to these risks.
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Skew-t distribution. The balance-of-risks term on the right of the decomposition captures the effects of

skewness in the distribution of the shocks on their expected value.

It then follows that the time-t revision to agents’ expectations about the realization of the price markup

shock h periods ahead is given by

Et − Et−1

εpt+h + J∑
j=0

φjt−j

 =
(
µpt+h|t − µpt+h|t−1

)
+ φht . (12)

Note that effects of the revision to the skewness from period t− 1 to period t on the expected value of the

shock in period t+ h are captured by the dummy anticipated shock, φht .

How to make sure that the beliefs representation match the estimated effects of the balance inflation

risks on expectations? First, realize that since all shocks (the seven structural shocks of the Smets and

Wouters (2007) model plus the J + 1 dummy shocks) are normally distributed, the linear approximation

of the model in its beliefs representation can, therefore, be solved quickly and efficiently using off-the-shelf

techniques. The solution of the model is standard and can be expressed as follows:

st = Γst−1 +Ωεt, (13)

where the vector st contains the model’s state variables, and the vector εt includes all shocks of the

beliefs representation of the model. The matrices Γ and Ω are the solution matrices, which depend on the

structural parameters of the model.

Second, we have to align the beliefs representation to match the inflation asymmetry estimated in the

previous section. To achieve this, we find the vector of J +1 dummy surprise and anticipated shocks that

satisfy the following system of J + 1 linear equations:



−
∑J

j=1 φ
j
t−j

ψt+1|t − ψt+1|t−1

...

ψt+J |t − ψt+J |t−1


=

 1 01×J

ΩS ΩN




φ0
t

φ1
t

...

φJt


, (14)

where ΩS and ΩN represent the contemporaneous effects of surprise and anticipated dummy markup

shocks on inflation expectations in the model.

The first equation ensures that the effects of dummy anticipated shocks remain confined to the realm
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of beliefs and never materialize into an actual shock to the markup. As noted in Section 2, the function

of these shocks is solely to capture the effects of asymmetric risks on agents’ expectations. The first term

on the left-hand side aggregates all past anticipated shocks expected to affect the economy in the current

period, t. The equation imposes that the surprise dummy shock, φ0
t , fully offsets these past anticipated

shocks. In this sense, the dummy anticipated shocks in the beliefs representation can be interpreted as

pure beliefs or sentiments.

Moving to the last J equations and starting from left-hand side, ψt+j|t−ψt+j|t−1, with j ∈ {1, . . . , J},

denote the revisions to the mean-mode inflation wedge estimated by the forecasting model – Equation (9)

– in the data. On the right-hand side, we have the surprise and anticipated dummy markup shocks. The

anticipated shocks
{
φjt

}J
j=1

are multiplied by the matrix ΩN which returns the effects of these shocks

on inflation expectations at each horizons (1, ..., J). So in the last J equations, we are imposing that

the dummy anticipated shocks moves inflation expectations to match the revisions to the mean-mode

inflation wedge estimated in the data at any horizon one through J quarters out. As explained earlier,

the surprise shock that is meant to wipe out the effects of the past anticipated shocks has an effect on

inflation expectations, which we have to take into account. These effects are captured by the vector ΩSφ0
t .

We solve these system of linear equations in Equation (14) to obtain the realization of dummy surprise

and anticipated price markup shocks,
{
φjt

}J
j=0

, that allows the beliefs representation to exactly match the

effects of the estimated revisions to inflation skewness on agents’ inflation expectations in every period of

our estimation sample.

The next step is to introduce the RAIT, which is defined as a central bank communication strategy

designed to anchor expectations to target by counteracting the effects of asymmetric risks we estimated

in the data on inflation expectations. Under the RAIT, average inflation over the medium run aligns with

the central bank’s target, provided that the distribution of inflation outcomes is accurately estimated for

every period and horizon.

Implementing the RAIT requires the central bank to tilt the expected central inflation scenario to

counter the direction of the perceived risks. Specifically, if the balance of risks suggests upward inflation

pressures, the central bank would temporarily aim to undershoot its target. Conversely, if the balance

of risks points to downward inflation pressures, the central bank would temporarily try to overshoot its

inflation target.

We take two simple steps to practically implement the RAIT in the Smets and Wouters (2007) model

with time-varying balance of inflation risks. First, we enhance the monetary policy reaction function as
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follows:

r̂t = ρr̂t−1 + (1− ρ)

rxx̂t + r∆x∆x̂t + rπ

π̂t −
J∑
j=1

π̂⋆t|t−j︸ ︷︷ ︸
π̂RAIT
t



+ εrt , (15)

where the variable π̂⋆t|t−j represents the forward guidance shocks that capture the central bank’s communi-

cations in period t− j regarding its intention to overshoot or undershoot the inflation target. Meanwhile,

the variable π̂RAIT
t denotes the magnitude of the overshoot or undershoot in period t as announced in

the central bank’s past communications. A negative (positive) value of π̂RAIT
t+h indicates the central bank’s

intention to undershoot (overshoot) its inflation target h periods from now. In the model, the inflation

target is set by a fixed parameter calibrated to align with a 2% annualized inflation rate. The variables r̂t,

x̂t, and ∆x̂t denote the nominal interest rate, the output gap, and the first difference of the output gap,

respectively, in log deviations from their steady-state value. The parameters in the monetary policy rule

are standard and defined in Smets and Wouters (2007).

Second, under the RAIT, in each period t, the central bank communicates revisions to its overshooting

or undershooting policy in response to changes in the balance of inflation risks and their impact on agents’

expectations, as estimated from the data in Section 3. These impacts, denoted as ψt+j|t − ψt+j|t−1, could

lead to a de-anchoring of inflation, which the central bank seeks to prevent by updating markets on its

future intention to overshoot or undershoot its long-run inflation target. When implemented effectively,

these communications fully offset the effects of the changing balance of inflation risks on expectations,

thereby restoring the anchoring of inflation expectations.

To obtain this communication strategy in the beliefs representation of the Smets and Wouter’s model,

we require the sequence of forward guidance shocks, {π̂⋆t+j|t}
J
j=0 to satisfy the following system of J linear

equations:

−



ψt+1|t − ψt+1|t−1

ψt+2|t − ψt+2|t−1

...

ψt+J |t − ψt+J |t−1


= ΩFG



π̂⋆t+1|t

π̂⋆t+2|t
...

π̂⋆t+J |t


, (16)

The J × J matrix ΩFG captures the impact response of the sequence of forward guidance shocks issued
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at time t on current inflation expectations (from 1 quarter through J periods ahead). This matrix can be

readily obtained by solving the beliefs representation of the Smets and Wouters (2007) model, augmented

with the monetary policy rule that includes forward guidance shocks, {π̂⋆t+j|t}
J
j=1 – see Equation (15). The

solution to such a model can be obtained using standard solvers for linear Rational Expectations models,

such as Dynare. The vector on the left-hand side represents the effects of the estimated revisions to the

balance of risks on inflation expectations, as defined in Equation (9). The system of equation imposes that

the shocks capturing the forward guidance issued in period t under the RAIT – {π̂⋆t+j|t}
J
j=1 – are chosen

by the central bank so as to offset these effects. Hence, the vector capturing these effects enters with a

negative sign.

The sequence of forward guidance shocks solving the system of linear equations in Equation (16) ensures

that the estimated balance of inflation risks has no effect on expectations. If the central bank shapes its

forward guidance according to the RAIT, inflation expectations will remain anchored at all horizons, and

average inflation will converge to the target in the medium term, as the effects of inflation skewness on

inflation expectations are fully neutralized by the strategy.

An alternative way to interpret forward guidance under the RAIT. The implementation of

the RAIT does not necessarily require communication about temporary overshooting or undershooting

of the inflation target. Technically, the forward guidance shocks {π̂⋆t+j|t}
J
j=0, appropriately rescaled by

−(1 − ρ)rπ, can be interpreted as stochastic upward or downward shifts in the intercept of the reaction

function, affecting the expected future path of interest rates. In the case of the RAIT, these shifts are tied

to the central bank’s assessment of the balance of inflation risks. The changes in the future interest rate

path would, therefore, be driven by forward guidance, designed to inform the public about the appropriate

reaction function required to counterbalance variations in the balance of inflation risks.

4.1 The RAIT in the post-pandemic era

The first counterfactual exercise illustrates how the central bank would have communicated its future

policy actions under the RAIT during the challenging period of the post-pandemic inflation surge.26 In

this exercise, we align the beliefs representation to match the forecasts of the mean-mode wedge estimated

using the Skew-t model introduced in Section 3. This involves setting the dummy surprise and anticipated
26Estimates reported in Smets and Wouters (2007) cover the period 1966–2004, during which the authors estimate a Phillips

curve slope of approximately 0.03. However, many studies suggest that the slope of the Phillips curve during the recent
inflation surge was significantly steeper. We therefore calibrate the parameters feeding into the Phillips curve to achieve a
slope of approximately 0.3.
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Figure 6: Forward guidance under the RAIT
Note: The figure reports the forward guidance on the policy rate recommended by the RAIT (left axis) from 2018 to 2024Q2,
again the balance of inflation risk (right axis), estimated from the model introduced in Section 3. Gray shaded areas represent
NBER recessions.

price markup shocks to satisfy Equation (14). We choose an horizon of five years when solving that system

of equations; that is, J = 20 quarters.

In Figure 6, we illustrate how the beliefs representation translates predictions of the balance of risks

for inflation into communications about the path of future interest rates, or forward guidance.27

In Figure 6, the blue solid line represents the inflation overshoot communicated over the past four

quarters to offset the effects of the balance of risks estimated during that period (the solid gray line with

blue diamond markers.) Since forward guidance typically refers to the likely path of future interest rates,

we express these revisions in interest rate units. Specifically, the solid blue line is computed as follows:

Forward guidancet = −(1− ρ)rπ

4∑
j=1

π̂⋆t+j|t,

where the coefficients ensure that the forward guidance shocks are appropriately mapped into the interest

rate space.

The solid black line depicts the observed federal funds rate, the policy rate controlled by the Federal
27For this exercise, we applied a moving average to the estimated balance of risks to smooth out the noise introduced by

the forecasting model, which is particularly evident when one wants to estimate the skewness during such an unprecedented
high-volatility period. Arguably, policymakers would assess the dynamics of inflation risks using a combination of model
averaging and judgment, especially in periods of heightened macroeconomic volatility, such as the post-pandemic era. The
smoothing applied to the balance of risks reflects this consideration.
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Reserve. The solid gray line with blue diamond markers represents the estimated balance of risks, ψt|t −

ψt|t−1, obtained from the forecasting model introduced in Section 3. The balance of risks is expressed in

inflation units and, hence, is mapped to the right axis of the chart.

Our model’s real-time assessment of the rapid changes in the balance of risks during the second half

of 2020 leads the RAIT to recommend increasingly hawkish communication of the central bank’s policy

stance through early 2022. This hawkish forward guidance is somewhat mitigated in the following year,

becoming essentially neutral by 2024, when risk assessments are considerably more balanced.

Comparing forward guidance with the actual path of the federal funds rate suggests that the central

bank began raising the policy rate with some delays compared to what the RAIT would have suggested.

Conversely, the RAIT would have recommended the central bank start lowering rates slightly earlier than

observed.

As we will show, this delay in lowering the interest rate is broadly consistent with the recommendations

of the Federal Reserve’s framework. Specifically, this delay reflects the FAIT’s limited adaptability to

changes in the stochastic environment of inflation, a limitation that the RAIT seeks to address through

real-time assessment of the skewness in the probability distribution of future inflation outcomes. We will

return to this critical point in subsequent discussions.

In Figure 7, we show the counterfactual dynamics of the federal funds rate, core PCE inflation rate,

and hours worked implied by the RAIT alongside the actual realizations. These counterfactual variables

are computed by first simulating the interest rate, inflation, and hours from the beliefs representation of

the model using only the forward guidance shocks, which solve the system of equations Equation (16), and

then adding the observed federal funds rate, core PCE inflation rate, and hours worked (in logs) to the

simulates series. This additive approach is appropriate because the beliefs representation of the model is

linear.

Starting in mid-2021, the RAIT-consistent policy rate exceeds the actual policy rate. This positive

gap reflects the prevailing upside risks to inflation, which necessitate tighter monetary policy to counter

the impact of more likely future inflation spikes on agents’ current inflation expectations. A substantial

tightening is prescribed in 2022, following a strong resurgence of inflation after a brief quarter of slower

price growth. It is important to note that the estimation of the skewness in the inflation distribution

is conducted in real time, making abrupt revisions of risks more frequent – particularly in periods of

heightened volatility, such as the post-pandemic era.

The alternative policy path implied by the RAIT would have anchored inflation expectations and driven
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Figure 7: Macro dynamics under RAIT
Note: The plots report the counterfactual dynamics of the policy rate, inflation and hours worked consistent with the RAIT
framework, against the actual data (black). Inflation is defined as annualized quarter-on-quarter core PCE. Hours worked
are the logarithm of hours worked in the nonfarm business sector, normalized to 0 in 2019Q4. Gray shaded areas represent
NBER recessions.

inflation to the 2% target one year earlier (see the middle chart of Figure 7). RAIT would have delivered

a slower, but more balanced recovery of the labor market (see right chart of Figure 7). Specifically, the

faster tightening under the RAIT would have significantly slowed the recovery of the labor market in 2022

and much of 2023. Yet, the strategy’s early call for easing monetary policy in 2023 would have stimulated

the labor market, helping it partially regain the momentum lost due to the earlier tighter policy.

At the peak of the monetary policy response, the RAIT prescribes a policy rate of approximately

5.5%. Notably, the peak of the tightening is remarkably similar to the level ultimately chosen by the

Federal Open Market Committee (FOMC), even though the RAIT would have prescribed starting the

tightening sooner and reaching that peak two quarters earlier. Moreover, consistent with the forward

guidance analysis shown in Figure 6, the RAIT would have recommended a more rapid unwinding of the

tightening. This pattern reflects the swift retrenchment of positive inflation risks, as estimated in real

time by our econometric model.

4.2 FAIT vs. RAIT

We now compare the implications of adopting the FAIT or the RAIT for the central bank’s communi-

cations. Both strategies aim to counterbalance asymmetric inflation risks by clarifying to the public that

the central bank may tolerate an overshooting or undershooting of inflation relative to the 2% target in

the short run.
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One of the reasons behind the Federal Reserve’s adoption of the FAIT was the heightened risk of

encountering the ZLB constraint, driven by the low interest rate environment of the past decade (Clarida,

2022). This limited the central bank’s ability to stabilize the economy during recessions, tilting the balance

of inflation risks to the downside. In this context, the FAIT serves as a strategy whose objective is to

counterbalance this balance of risks by enabling the central bank to convey its willingness to tolerate an

overshoot of inflation for a period of time.

Similar to the RAIT, the FAIT aims to shift the distribution of inflation outcomes to counter the balance

of inflation risks and reanchor inflation expectations to the desired central bank’s target.28 However,

the two strategies differ in the conditionality underlying their respective communications regarding the

opportunity to overshoot or undershoot the target. Under the FAIT, the central bank seeks to overshoot

the target if the repeatedly binding ZLB constraint has lowered the past average inflation rate. In contrast,

under the RAIT, the central bank communicates its intention to overshoot the target if the balance of

inflation risks – estimated through models or policymakers’ judgment – is tilted to the downside.

Under the FAIT, the central bank decides on its temporary inflation overshoot by accounting for past

deviations of inflation from the 2% medium-run inflation target. Specifically, we operationalize the FAIT

target (π̄FAIT
t ) by evaluating its effects on the monetary policy stance:

π̂FAIT
t = ρF π̂

FAIT
t−1 − (1− ρF )

(
πData
t − π̄

)
, (17)

where πData
t stands for the inflation rate observed in the data and π̄ represents the 50 basis point inflation

target, corresponding to 2% annual inflation. Thus, the elements within the round brackets on the right-

hand side capture the current miss of inflation relative to the 2% target. A positive value of π̂FAIT
t indicates

that, under the FAIT, the central bank would aim for an inflation overshoot to counteract the prevailing

negative inflationary pressures observed in past years. The parameter ρF ∈ (0, 1) represents the Central

Bank’s memory when assessing deviations of inflation from the target.29 The monetary policy rule under

the FAIT is given by:

r̂t = ρrt−1 + (1− ρ)
[
rxx̂t + r∆x∆x̂t + rπ

(
π̂t − π̂FAIT

t

)]
+ εrt . (18)

28The FAIT adopted by the Federal Reserve in August 2020 was asymmetric, as it did not account for the possibility of
undershooting the FOMC’s inflation objective. In this analysis, we consider a symmetric FAIT framework, as we examine
an environment where inflation risks may be unbalanced either to the upside or the downside.

29A small ρF indicates short memory, leading the Central Bank to quickly attempt to correct recent deviations, resulting
in high variability in FAIT. Conversely, a large ρF results in a smoother but slower-to-adjust target.
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In Figure 8, we compare the FAIT parameter, which captures the average of past inflation misses,

π̂FAIT
t , with the RAIT parameter, π̄RAIT

t , which reflects the average revisions to the inflation target over

a J-period horizon, induced by forward guidance provided at time t.

π̄RAIT
t =

1

J

J∑
j=1

Et − Et−1

(
π̂RAIT
t+j

)
=

1

J

J∑
j=1

π̂⋆t+j|t

The FAIT parameter in the plot was largely positive during the past decade when U.S. inflation consistently

ran below target. Under the FAIT, the central bank would have been required to communicate its intention

to create an inflation overshoot. In contrast, the predictions of the RAIT are very different. The RAIT

would not have required an inflation overshoot to achieve this goal.

The reason lies in the RAIT’s focus on the effects of the balance of inflation risks on expectations –

captured by the wedge shown in Equation (9). As indicated in that equation, the effects remain small if

the volatility, represented by the scale parameter σ, is low. When the predictive distribution of inflation

is not highly diffuse (low σt), the impact of its shape – ϱt – on inflation expectations is muted. During

the past decade, although the predictive distribution was negatively skewed due to continuous inflation
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misses, inflation volatility reached historical lows. As a result, the mean-mode wedge in Equation (9) – ψt

– was small.

Consequently, the RAIT would have recommended maintaining the Federal Reserve’s symmetric frame-

work in the past decade, without requiring any adjustments to address negative skewness in inflation

outcomes. This is always the case when inflation volatility is low.

The FAIT parameter lags behind the RAIT parameter during the inflationary surge of 2021, reducing

the proactiveness of monetary policy. The FAIT is more backward-looking and less responsive to evolving

stochastic conditions affecting future inflation dynamics than the RAIT. When the distribution of infla-

tion outcomes shifts rapidly, the FAIT is slower than the RAIT in providing the central bank with the

appropriate policy stance.

At the end of the sample period, the FAIT entirely misses the quick re-balancing of inflation risks.

In contrast, the RAIT, with its greater adaptability, would have enabled the central bank to promptly

communicate a shift in the balance of inflation risks, justifying monetary easing as early as the beginning

of 2023. This more favorable balance of risks was detected in real time by the econometric model presented

in Section 3.

The RAIT emphasizes communicating the evolution of the balance of inflation risks to provide clarity

on future policy decisions. Implementing the RAIT requires access to multiple models to reliably assess

changes in the balance of inflation risks. Additionally, our econometric model can be enhanced with

predictors such as fiscal policy measures, labor market prices, geopolitical indices, and commodity price

indices to construct scenario analyses that further support forward-looking communications by a central

bank adopting the RAIT.

De Polis et al. (2023) illustrate how incorporating macroeconomic and financial predictors into the

forecasting model enhances its ability to predict changes in the balance of inflation risks accurately, thereby

improving its practical utility for the RAIT implementation.

5 Concluding remarks

This paper explores the role of time-varying inflation skewness in shaping monetary policy. Using a

time-series model to estimate the predictive distribution of U.S. core PCE inflation, we demonstrate that

inflation skewness fluctuates significantly over time, affecting the balance of risks and enhancing forecasting

accuracy during periods of heightened volatility.
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Time-varying skewness introduces a wedge between expected and modal inflation, necessitating optimal

monetary policy to “lean against” these risks by adjusting the modal scenario in the opposite direction of

the balance of risks.

We assess Risk-Adjusted Inflation Targeting (RAIT), a strategy that incorporates real-time assessments

of the balance of inflation risks into central bank communications, allowing for temporary overshoots or

undershoots of the inflation target. Unlike FAIT, which advocates inflation overshooting in response to the

past decade of persistently low price dynamics, the RAIT would have maintained a symmetric approach to

inflation stabilization. Furthermore, during the recent inflation surge, the RAIT would have recommended

earlier tightening and a more rapid initiation of policy normalization.

This study underscores the importance of integrating real-time assessments of the balance of inflation

risks into policy frameworks, enabling central banks to more effectively achieve macroeconomic stability.

Future research could refine RAIT’s implementation and explore alternative communication strategies.
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A Solving the New Keynesian model with mark-up shock

In this appendix, we provide detailed derivations of the solutions for the optimal monetary problem

under asymmetric risks, outlined in Section 2. This problem is derived in the basic New Keynesian model

presented in Chapter 3 of Galí (2008). We briefly outline the housholds and firms problems, and then

derive the optimal monetary policy rules.

A.1 The baseline New Keynesian model

The model features a continuum of households, firms, and a central bank. Households work, consume,

and save. Firms hire labor in a competitive market, produce goods, and set prices, with the market for

goods being monopolistically competitive. Price setting is subject to the Calvo lottery. Monetary policy is

optimal under the assumption that the central bank can commit to future actions. The optimal monetary

problem faced by the central bank is discussed in the next section of this appendix.

Households. An infinitely-lived representative agent seeks to maximize

E0

∞∑
t=0

βtU(Ct, Nt),

subject to the budget constraint

PtCt +QtBt ≤ Bt−1 +WtNt + Tt, for t = 1, 2, . . . ,

where Ct and Pt represent the quantity and price of the aggregate consumption index, Qt is the price

of a nominal bond purchased in quantity Bt, Nt denotes the hours worked, remunerated at the nominal

wage Wt; finally, Tt is a lump-sum transfer. There is a CES technology aggregating differentiated goods

produced by firms into the consumption bundle, Ct, consumed by the representative household. The

parameter β is the deterministic discount factor of households.

Assuming the utility function to be

U(Ct, Nt) =
C1−σ
t

1− σ
− N1−φ

t

1− φ
,

where σ is the parameter of relative risk aversion and φ is the inverse Frisch elasticity of labor supply.

Households’ demand for a differentiated good is downward sloping with respect to the price of the good.
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Firms. A continuum of monopolistic firms produce differentiated goods using the same technology

Yt(i) = AtNt(i)
1−α,

where At denotes the technology level, and α is the production function scale parameter. All firms face

the same downward-sloping demand schedule obtained from solving the household’s problem of choosing

goods of different variety.

We assume that, every period, a firm can re-optimize its prices with probability 1 − θ. This friction

gives rise to the following dynamics for the aggregate price level, expressed in log-terms,

πt = (1− θ)(p∗t − pt−1),

where p∗t is the re-optimized price level and pt−1 is the average price level for the non-re-optimizing firms.

A.2 The optimal monetary policy problem

In this model, the output gap and inflation in deviations from steady state are governed by a standard

IS and a Phillips curve

σx̂t = σEtx̂t+1 − ît + Etπ̂t+1, (A1)

π̂t = βEtπt+1 + κx̂t + ut, (A2)

where it = − logQt is the short-term nominal rate and κ is the slope of the Phillips curve. The process

driving price markups ut can be expressed as follows:

ut = ρuut−1 + εut (A3)

where ut ∼ iidF (0, σu,t) is a shock to the price markup, with F (0, σu,t) being a general (unimodal)

symmetric distribution, usually assumed to be the Normal distribution.

We assume that the central bank commits, with full credibility, to a policy plan consistent with

a quadratic objective function in inflation deviations, π̂t and the output gap, x̂t. Therefore, optimal
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monetary policy consists in choosing the state-contingent {π̂t, x̂t}∞t=0 that minimizes

1

2
E0

∞∑
t=0

βt
(
π̂2t + αxx̂

2
t

)
,

subject to the sequence of constraints imposed by the Phillips curve above. Casting the problem into its

Lagrangian form

L = E0

∞∑
t=0

βt
[
1

2

(
π̂2t + αxx̂

2
t

)
+ γt (π̂t − κx̂t − βπ̂t+1)

]
,

and differentiating with respect to x̂t and π̂t yields the optimality conditions

αxx̂t − κγt = 0

π̂t + γt − γt−1 = 0

that must hold for t = 0, 1, 2, ...; We set γ−1 = 0 in that Phillips curve constraint is not binding in period

−1 for the central bank choosing the optimal plan in period 0.

Standard manipulations yield the following optimality conditions,

x̂0 = − κ

αx
π̂0,

x̂t = x̂t−1 −
κ

αx
π̂t, ∀t.

Define p̄t = pt − p−1 as the inflation rate over period 0 through period t, where pt denotes the log of the

price level at time t. We can now write the optimal targeting rule under commitment as

x̂t = − κ

αx
p̄t, (A4)

such that the optimizing central bank keeps output below or above the efficient level in proportion to the

deviations of the price level from its implicit target. Plugging Equation (A4) into Equation (A2) we can

recast the Phillips curve in as

p̄t = ap̄t−1 + aβEtp̄t+1 + aut (A5)

with a ≡ αx
αx(1+β)+κ2

.
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A.2.1 The symmetric case

The stationary solution to Equation (A5) can be obtained by using the method of undetermined

coefficients by conjecturing a solution of the form

p̄t = ηp̄t−1 + λut, (A6)

such that the expected value of the next period’s price level is

Etp̄t+1 = ηp̄t + λρuut. (A7)

Substituting the expectations implied by the stationary solution yields

p̄t = ap̄t−1 + aβ (ηp̄t + λρuut) + aut

p̄t =
a

1− aβη︸ ︷︷ ︸
η

p̄t−1 + a
1 + βλρu
1− aβη︸ ︷︷ ︸

λ

ut

Solving for η and λ, we obtain

η =
1−

√
1− 4βa2

2aβ
, (A8)

λ =
a

1− aβ(η + ρu)
, (A9)

and we can express the equilibrium process for the output gap as

x̂t = ηx̂t−1 −
κ

αx
λut, (A10)

for t = 1, 2, ..., with x̂0 = − κ
αx
λu0.

Implementation. We assume that the price mark-up shocks are iid (ρu = 0) throughout this section.

The IS equation reads

σx̂t = σEtx̂t+1 − ît + Etπ̂t+1,
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and let us express this in terms of the price level

σx̂t = σEtx̂t+1 − ît + Etp̄t+1 − p̄t.

The optimality condition in Equation (A4) allows us to write the IS curve as

[
1− σ

κ

αx

]
p̄t =

[
1− σ

κ

αx

]
Etp̄t+1 − ît.

Now, substituting the implied expectation derived in Equation (A7), and recalling that ρu = 0, we obtain

the following optimal monetary rule:

ît = − (1− η)

[
1− σ

κ

αx

]
p̄t. (A11)

To ensure determinacy, we need to replace p̄t with its law of motion. Starting from Equation (A6),30

p̄t =
t∑

k=0

ηk+1ut−k;

substituting into the optimal rule and adding a subtracting ϕpp̄t yields

ît = −
(
ϕp + (1− η)

[
1− σ

κ

αx

]) t∑
k=0

ηk+1ut−k + ϕpp̄t.

Provided that ϕp > 0, the system of equations comprising the IS equation, the Phillips curve, and the

optimal monetary rule in the above specification admits a unique stable rational expectations equilibrium

(see, e.g., Galí, 2008).

A.2.2 The asymmetric case

Let us now assume that the stochastic process driving the markup shock (Equation (A3)) is no longer

symmetric. That is, let the shocks be ε̃ut ∼ iidF(0, σu,t, ϱu,t), where F(0, σu,t, ϱu,t) represents a general

(unimodal) distribution, which features asymmetry about 0 when ϱu,t ̸= 0.

We now propose to represent the asymmetric shocks ε̃ut as the linear combination of the symmetric
30It can be shown that λ = η when ρu = 0.
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shock εut and two news shocks,

ut = ρuut−1 + εut +
(
ψ0
t + ψ1

t−1

)
, (A12)

where ψjt is a shock known in period t and that will have affect in period t + j. For this representation

to hold we impose the restriction ψ0
t+1 = −ψ1

t , where ψ1
t represents a surprise shock which agents are

not aware of; we call this the beliefs representation of asymmetric risk. Here, we are considering the case

where the distribution of the markup process is expected by economic agents to be skewed by just one

period (i.e., in period t agents expect the distribution to be back to symmetric – ϱu,t+j = 0 for j > 1).

However, this can be easily generalized to multiple periods.

Notice that now the expected value of the shock is potentially nonzero, for Etεut+1 = ψ1
t , where

ψ1
t ∼ N (0, σ21), and the expectation of next period’s markup is given by Etut+1 = ρuut + ψ1

t . Due to this

asymmetry, next period’s price level, Etp̄t+1, are potentially distorted. We recompute the price process as

above:

p̄t = ηp̄t−1 + λut + ζψ1
t , (A13)

and it follows that Etp̄t+1 = ηp̄t + λ
(
ρuut + ψ1

t

)
, since Eut+1 = ρuut + ψ1

t and Etψ1
t+1 = 0. Substituting

the expectations implied by the stationary solution yields

p̄t = ap̄t−1 + aβ
[
ηp̄t + λρuut + λψ1

t

]
+ aut,

p̄t =
a

1− aβη︸ ︷︷ ︸
η

p̄t−1 + a
1 + βλρu
1− aβη︸ ︷︷ ︸

λ

ut +
aβλ

1− aβη︸ ︷︷ ︸
ζ

ψ1
t .

Solving for η, λ and ζ we obtain

η =
1−

√
1− 4βa2

2aβ
,

λ =
a

1− aβ(η + ρu)
,

ζ =
aβλ

1− aβη
.
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It follows that the equilibrium process for the output gap is

x̂t = ηx̂t−1 −
κ

αx

[
λut + ζψ1

t

]
, (A14)

and x̂0 = − κ
αx

[
λu0 + ζψ1

t

]
.

Implementation. Again, let us assume ρu = 0 and let us rewrite the IS equation in terms of the price

level under asymmetry and substitute the optimality condition such that

[
1− σ

κ

αx

]
p̄t =

[
1− σ

κ

αx

]
Etp̄t+1 − ît.

Substituting the expectation for the price level under asymmetry, and recalling that ρu = 0, we obtain the

optimal monetary rule under asymmetry :

ît = − (1− η)

[
1− σ

κ

αx

]
p̄t +

[
1− σ

κ

αx

]
λψ1

t ,

where the first term in the right-hand side is the same as in Equation (A11), and the last term captures how

the the central bank needs to adjust the policy rate to take into the expectation bias due to asymmetric

risks.

As before, we ensure determinacy by substituting into the rule the law of motion for p̄t,

p̄t =
t∑

k=0

ηk+1
(
ut−k + ψ1

t−k
)
,

to obtain

ît = −
(
ϕp + (1− η)

[
1− σ

κ

αx

]) t∑
k=0

ηk+1
(
ut−k + ψ1

t−k
)
+ ϕpp̄t +

[
1− σ

κ

αx

]
λψ1

t .

A.2.3 Asymmetric case with an unwitting central bank

We now consider the case in which the distribution of price markups are skewed but the central bank

does not take this into account (or it does not know) and adopts the optimal policy under the incorrect

assumption about shocks distributions. Markup shocks’ asymmetry is captured by agents receiving sur-

prises ψ1
t , tilting their expectations about future realizations of the shocks away from the central scenario

(ρuut−1) in every period t. We compare this scenario against the case of optimal monetary policy under
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symmetry.31

We start from the optimality condition between output gap and inflation

x̂t = − κ

αx
p̄st , (A15)

where pst is the price level under full symmetry (ψ0
t = 0 in very period) defined

p̄st = ηp̄t−1 + λut; (A16)

note that this is not exactly the same price level as in fully symmetric case (p̄t), in that past suboptimal

price levels, p̄t−1, are a given for the optimizing central bank.

We write the Phillips curve in terms of the price level,

(1 + β)p̄t = p̄t−1 + κx̂t + βEtp̄t+1 + ut,

and we conjecture that the difference between the two prices under symmetry that the central bank takes

into account when solving its optimal problem is

p̄t − p̄st = τψ1
t .

By plugging this equation into the optimality condition in Equation (A15), and substituting into the

Phillips curve expressed in terms of price level yields

p̄t = ap̄t−1 + aβEtp̄t+1 + bτψ1
t + aut (A17)

with a ≡ αx
αx(1+β)+κ2

and b ≡ κ2

αx(1+β)+κ2
.

As before, we conjecture the stationary solution, retrieve expectations of next period’s price level and

plug these into Equation (A17) to obtain

p̄t =
a

1− aβη︸ ︷︷ ︸
η

p̄t−1 + a
1 + βλρu
1− aβη︸ ︷︷ ︸

λ

ut +
aβλ+ bτ

1− aβη︸ ︷︷ ︸
ζ

ψ1
t .

31This exercise can be interpreted as the asymmetric case under the counterfactual assumption that the central bank does
not try to lean against the asymmetry in the dynamics of the price level.
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Solving for the coefficients we obtain

η =
1−

√
1− 4βa2

2aβ

λ =
a

1− aβ(η + ρu)

ζ =
aβλ+ bτ

1− aβη

We recover τ by taking the difference between the price level, p̄, and the price level under the symmetric

policy – Equation (A16). Specifically,

p̄t − p̄st =
aβλ+ bτ

1− aβη︸ ︷︷ ︸
τ

ψ1
t ,

which leads to

ζ = τ =
aβλ

1− aβη − b
. (A18)

The equilibrium process for the output gap is

x̂t = − κ

αx
p̄st , (A19)

for t = 1, 2, .... It should be noted that the central bank that overlooks the importance of the imbalance

of risks will end up setting an output gap as a function of p̄st . However, this price level is not achievable

by the central bank because of the balance of inflation risks, resulting in a suboptimal output gap and in

a price level that is different from that targeted by the central bank, p̄st . Therefore,

x̂t ̸=
κ

αx
p̄t. (A20)

It should be noted that the output gap initially chosen by the central bank is the same as that chosen

in the first case. This is because the price level targeted by the central bank, p̄st , is exactly the same as

the price level target by the symmetric central bank in the symmetric case.32 However, in the subsequent

periods the output gap starts diverging in the two economies as the previous period’s price level is different
32We assume that in period t = −1, the economy is at the deterministic steady state equilibrium where risks are fully

balanced, ψ1
−i = 0, i = −1,−2, ....
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due to the skewness of the shocks distribution.

A.3 Calibration values for the numerical simulation

We follow Galí (2008) and set the following values for the parameters of the model: the elasticity of

substitution, σ, to unity, the production function scale parameter, α, is set to one third, the elasticity of

substitution among intermediate goods, ε, is equal to 6, and the slope of the Phillips curve, κ, is equal to

0.1275.
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B Score-driven framework

B.1 Score derivations

The scaled score st is a non-linear function of past observations and past parameters’ values. For

ℓt = logD(θ, ft) being the Skew-t of Gómez et al. (2007), yt|Yt−1 ∼ Sktν(µt, σ
2
t , ϱt), the log-likelihood

takes the form

ℓt(rt|θ,Ft−1) = log C(ν)− 1

2
log σ2t −

1 + ν

2
log

[
1 +

ε2t
ν(1 + sgn(εt)ϱt)2σ2t

]
, (B1)

log C(ν) = log Γ

(
ν + 1

2

)
− log Γ

(ν
2

)
− 1

2
log ν − 1

2
log π,

where Γ(·) is the Gamma function, sgn(·) is the sign function, and ν > 3 are the degrees of freedom.

Differentiating (B1) with respect to location, scale and asymmetry we obtain the gradient vector ∇t =[
∂ℓt
∂µ ,

∂ℓt
∂σ2

t
, ∂ℓt∂ϱt

]′
. Recall that εt = yt − µt, ζt = εt

σt
and let

f(µt, σ
2
t , ϱt) = 1 +

ε2t
ν(1 + sgn(εt)ϱt)2σ2t

=
ν(1 + sgn(εt)ϱt)

2σ2t + ε2t
ν(1 + sgn(εt)ϱt)2σ2t

To avoid overburdening the notation, in what follows ∂f(x)
∂x = f ′x and a = −1+ν

2 . The score with respect

to the location parameter reads

∂ℓt
∂µt

= wt
ζt
σt
, with wt =

ν + 1

ν (1 + sgn (εt) ϱt)
2 + ζ2t

.

Proof. Define

g(µt) = a log f(µt, σ
2
t , ϱt),

such that ∂ℓt
∂µt

= ∂g(µt)
∂µt

= a
f ′µt

f(µt,σ2
t ,ϱt)

. For

f ′µt = − 2

ν(1 + sgn(εt)ϱt)2σ2t
εt,
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it follows:

∂ℓt
∂µt

=
1 + ν

2

2

ν(1 + sgn(εt)ϱt)2σ2t
· εt ·

ν(1 + sgn(εt)ϱt)
2σ2t

ν(1 + sgn(εt)ϱt)2σ2t + ε2t

=
(1 + ν)

ν(1 + sgn(εt)ϱt)2σ2t + ε2t
εt

= ωt
ζt
σt

.

The score with respect to the squared scale parameter reads

∂ℓt
∂σ2t

=
(wtζ

2
t − 1)

2σ2t
.

Proof. Define

g(σ2t ) = − log σ2t
2

+ a log f(µt, σ
2
t , ϱt),

such that ∂ℓt
∂σ2

t
=

∂g(σ2
t )

∂σ2
t

= − 1
2σ2

t
+ a

f ′
σ2
t

f(µt,σ2
t ,ϱt)

, with f ′
σ2
t
= − ε2t

ν(1+sgn(εt)ϱt)2σ4
t
. It follows that:

∂ℓt
∂σ2t

= − 1

2σ2t
− 1 + ν

2
·
[
− ε2t
ν(1 + sgn(εt)ϱt)2σ4t

· ν(1 + sgn(εt)ϱt)
2σ2t

ν(1 + sgn(εt)ϱt)2σ2t + ε2t

]
= − 1

2σ2t
− 1 + ν

2
·
[
− ε2t
σ2t

· 1

ν(1 + sgn(εt)ϱt)2σ2t + ε2t

]
= − 1

2σ2t
+
wtζ

2
t

2σ2t
=

(wtζ
2
t − 1)

2σ2t

.

The score with respect to the shape parameter reads as

∂ℓt
∂ϱt

=
sgn(εt)

(1 + sgn(εt)ϱt)
wtζ

2
t .

Proof. Define

g(ϱt) = a log f(µt, σ
2
t , ϱt),
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such that ∂ℓt
∂ϱt

= ∂g(ϱt)
∂σ2

t
= a

f ′ϱt
f(µt,σ2

t ,ϱt)
, with f ′ϱt = − 2(sgn(εt)+ϱt)ε2t

ν(1+sgn(εt)ϱt)4σ2
t
. It follows that:

∂ℓt
∂ϱt

=
1 + ν

2
· 2(sgn(εt) + ϱt)ε

2
t

ν(1 + sgn(εt)ϱt)4σ2t
· ν(1 + sgn(εt)ϱt)

2σ2t
ν(1 + sgn(εt)ϱt)2σ2t + ε2t

=
(sgn(εt) + ϱt)ε

2
t

(1 + sgn(εt)ϱt)2
wt
σ2t

=
sgn(εt)

(1 + sgn(εt)ϱt)
wtζ

2
t

.

B.2 Scaled scores

Given we model γt = log σt and δt = atanh(ϱt), for the chain rule we have:

∂ℓt
∂γt

=
∂ℓt
∂σ2t

∂σ2t
∂γt

,
∂ℓt
∂δt

=
∂ℓt
∂ϱt

∂ϱt
∂δt

, (B2)

where ∂σ2
t

∂γt
= 2σ2t and ∂ϱt

∂δt
= (1− ϱ2t ). We can thus define the vector of interest as ft = (µt, γt, δt)

′ with the

associated Jacobian matrix

Jt =
∂(µt, σ

2
t , ϱt)

∂f ′t
=


1 0 0

0 2σ2t 0

0 0 1− ϱ2t

 . (B3)

The Fisher information matrix is computed as the expected value of outer product of the gradient vector.

Given the degrees of freedom ν > 3 this is computed as:

It = Et−1[∇t∇′
t] =


(1+ν)

(ν+3)(1−ϱ2t )σ2
t

0 4(1+ν)
σt(1−ϱ2t )(3+ν)

0 1
2(3+ν)σ4

t
0

4(1+ν)
σt(1−ϱ2t )(3+ν)

0 3(1+ν)
(1−ϱ2t )(3+ν)

 . (B4)

As a result, the vector of scaled scores reads as:

st = (J ′
tdiag(It)Jt)−

1
2J ′

t∇t =


sµ,t

sγ,t

sδ,t

 =


√

(ν+3)(1−ϱ2t )
(ν+1) wtζt√

(ν+3)
2ν (wtζ

2
t − 1)

sgn(εt)
√

(ν+3)(1−sgn(εt)ϱt)
3(ν+1)(1+sgn(εt)ϱt)

wtζ
2
t

 . (B5)

Full derivations for the Information matrix are provided in Delle Monache et al. (2024).
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B.3 Bayesian estimation

We use Minnesota-type priors for the the persistence of the transitory components. Loadings on the

score components are Inverse Gamma distributed, with mean and standard deviation equal to 0.01 and

0.001 for the permanent loadings, a, and 0.025 and 0.015 for the transitory loadings, b. This choice reflects

the view that transitory parameters are slower to react to news compared to the transitory components.

Furthermore, the prior ensures that the filter is invertible (Blasques et al., 2022), that is it reduces the

possibility of overshooting the updates in the direction of the (local) optimum, and assumes conservative

views on parameters time variation. Lastly, we assume an inverse gamma prior for η.

Posterior estimates of the parameters are obtained via simulation by means of an Adaptive Metropolis-

Hastings algorithm (Haario et al., 1999). Given that estimated parameters lie in bounded regions of the

parameter space, we augment the algorithm with a rejection step to prevent numerical instability due to

invalid parameter draws. The algorithm is rather efficient, and a complete chain of 50000 draws can be

obtained in less than 2 minutes. Section D in Delle Monache et al. (2024) provides detailed explanation

of the algorithm.
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Table C1: Time variation in higher order moments

Q Q∗ N Q Q∗ N

GDP Deflator Headline PCE

Homoskedastic

Shape 637.470∗∗∗ 644.910∗∗∗ 5.690∗∗∗ 303.820∗∗∗ 307.370∗∗∗ 6.460∗∗∗

Heteroskedastic

Scale2 597.120∗∗∗ 604.090∗∗∗ 4.050∗∗∗ 566.190∗∗∗ 572.800∗∗∗ 2.330∗∗∗

Shape 154.150∗∗∗ 155.950∗∗∗ 2.780∗∗∗ 148.610∗∗∗ 150.350∗∗∗ 1.890∗∗∗

Core CPI Headline CPI

Homoskedastic

Shape 840.710∗∗∗ 850.480∗∗∗ 3.290∗∗∗ 407.600∗∗∗ 412.340∗∗∗ 4.220∗∗∗

Heteroskedastic

Scale2 556.980∗∗∗ 563.460∗∗∗ 3.810∗∗∗ 730.210∗∗∗ 738.700∗∗∗ 3.430∗∗∗

Shape 185.210∗∗∗ 187.360∗∗∗ 3.260∗∗∗ 183.040∗∗∗ 185.160∗∗∗ 2.150∗∗∗

Note: Q is the portmanteau test, Q* is the Ljung-Box extension (with automatic lag selection) and N corresponds to the
Nyblom test. Q and Q* are distributed as a χ2

1, while N is distributed as a Cramer von-Mises distribution with 1 degree of
freedom. * p < 10%, ** p < 5%, *** p < 1%.

C Evidence for other inflation measures

In this appendix we report additional results about other policy relevant measures of inflation. The

evidence reported in Section 3 is based on data for core PCE, which is the measure preferred by the FOMC

to gauge price stability. Nevertheless, estimating the model on different inflation measures lends support

to a generalization of our in-sample findings. Specifically, we consider, the GDP deflator, headline PCE

and core and headline CPI. All samples go from 1960 Q1 to 2024 Q2.

Table C1 collect the test statistics for the detection of time variation in the asymmetry for all four

measures of inflation. Overall, the null of restricted asymmetry is strongly rejected.

Figure C1 shows the estimated dynamics of inflation volatility and skewness across the different mea-

sures, highlighting in blacks that of core PCE. Two comments are in order. First, the dynamics of the

two moments is extremely similar for all measures. With varying magnitudes, volatilities spike around

recessions, and remain persistently high soon after. Skewness follow humped-shape patterns in the 1970s

and 1980s, then moving downward since the 1990s, remaining negative until the pandemic period. Second,

it’s important to note that, among all these measures, core PCE shows the least variation in both volatility
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Figure C1: Risk across different inflation measures
Note: The panels report the full moment median estimates volatilities (a) and skewness (b) for different measures of inflation.
Black lines indicate estimates for core PCE. Other inflation measures we consider are: GDP deflator, headline PCE, headline
CPI and core CPI. Gray shaded areas represent NBER recessions.

and skewness, appearing to be the more stable measure of price dynamics.

Based on previous results, we also report the estimates for the time-varying moments of the four

measures.
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Figure C2: Estimated mean for different inflation measures
Note: The panels report the estimated total (black) and long-run (green) mean for: (a) GDP deflator, (b) headline PCE,
(c) core CPI, and (d) headline CPI. ray shaded areas represent NBER recessions.
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Figure C3: Estimated volatility for different inflation measures
Note: The panels report the estimated total (black) and long-run (green) volatility for: (a) GDP deflator, (b) headline PCE,
(c) core CPI, and (d) headline CPI. ray shaded areas represent NBER recessions.
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Figure C4: Estimated skewness for different inflation measures
Note: The panels report the estimated total (black) and long-run (green) skewness for: (a) GDP deflator, (b) headline PCE,
(c) core CPI, and (d) headline CPI. ray shaded areas represent NBER recessions.
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D Monte Carlo analysis

We simulate T=250 observations from Sktν(µt, σt, ϱt), for simulated values of the parameters of loca-

tion, µt, scale, σt, and asymmetry, ϱt. Unless explicitly mentioned, we simulate the parameters indepen-

dently, and we consider the following cases: no asymmetry, breaks in the asymmetry, fixed asymmetry

with location-scale covariance, fixed asymmetry with location-scale covariance with breaks, time-varying

asymmetry, and time-varying asymmetry with breaks in the location-scale covariance.

For all cases, we simulate the location and log-scale from first order Gaussian autoregressive processes,

with autoregressive parameters equal to 0.9 and 0.99, repsectively, and variances set to 0.05 and 0.025.

When we assume correlated innovations for the two parameters, we set this to 0.4. When we impose breaks

in this correlation, we assume the relation abruptly shifts to 0.8 after 100 observations, and then falls to

-0.4 after additional 50 observations. When time-varying, the asymmetry parameter is simulated from an

AR(1) with persistence set to 0.9 and variance 0.025; when only breaks are considered, these occur on the

100th observation, moving from 0 to 0.25, and a sharp fall to -0.25 on the 150th observation.

Define δt = log σt, δt = arctanh ϱt, and ε ∼ N (0, 1), and let chol() define the lower-triangular Choleski

factor; here we report a summary of the six DGPs.

DGP1: no asymmetry

µt
δt

 =

0.9 0

0 0.99


µt−1

δt−1

+ chol


0.05 0

0 0.025


 εt,

γt = 0, ∀t

DGP2: constant asymmetry with breaks

µt
δt

 =

0.9 0

0 0.99


µt−1

δt−1

+ chol


0.05 0

0 0.025


 εt,

γt =


0 t ≤ 100

0.25 100 < t ≤ 150

−0.25 t < 150
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DGP3: no asymmetry and location-scale covariance

µt
δt

 =

0.9 0

0 0.99


µt−1

δt−1

+ chol


0.05 0

0 0.025


1
2
1 .4

.4 1


0.05 0

0 0.025


1
2

 εt,

γt = 0 ∀t

DGP4: no asymmetry and location-scale covariance with breaks

µt
δt

 =

0.9 0

0 0.99


µt−1

δt−1

+ chol


0.05 0

0 0.025


1
2
 1 ρt

ρt 1


0.05 0

0 0.025


1
2

 εt,

ρt =


0.4 t ≤ 100

0.8 100 < t ≤ 150

−0.4 t < 150

,

γt = 0 ∀t

DGP5: time-varying asymmetry


µt

δt

γt

 =


0.9 0 0

0 0.99 0

0 0 0.9



µt−1

δt−1

γt−1

+ chol



0.05 0 0

0 0.025 0

0 0 0.025


 εt

DGP5: time-varying asymmetry and correlated updates


µt

δt

γt

 =


0.9 0 0

0 0.99 0

0 0 0.9



µt−1

δt−1

γt−1

+ chol


0.05 0

0 0.025


1
2


1 ρt 0.2

ρt 1 0.3

0.2 0.3 1


0.05 0

0 0.025


1
2

 εt,

ρt =


0.4 t ≤ 100

0.8 100 < t ≤ 150

−0.4 t < 150
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We report the results of this exercise in Figure D5. Specifically, for DGP1 to DGP4 we report in

blue the estimated asymmetry, with 68% and 90% credible sets represented by shades of gray, against the

simulated parameter, in red. For DGP5 and DGP6 we report the distribution of the difference between

the estimated and the simulated asymmetry.

For the first DGP, data are simulated under the assumption of symmetry, with independent, time-

varying location and volatility. We show that the model does not pick up any asymmetry when this is not

a feature of the data. The second DGP considers the case in which the asymmetry parameter experiences

a break from 0 to 0.25 after 100 observations, hence implying positively skewed distributions, and another

jump to -0.25 after additional 50 observations; this second jump changes the sign of the skewness. Three

comments are in order. First, as for DGP1, no asymmetry is detected when the true value is zero. Second,

the parameter reacts promptly to the first jump, despite only 50 observations feature positive skewness.

Third, the model quickly detects a turning point in the sing of the asymmetry, turning from positive to

negative in less than 20 periods.

DGP3 and DGP4 are meant to provide reassurances that the model does not mistake correlations

between the location and the scale for evidence of asymmetry. In DGP4 we further allow for the correlation

to experience breaks, that flip the sing of the covariance between the two parameters. The reported results

highlight that the model provides asymmetry estimates that are robust to such features of the data.

Finally, in DGP5 and DGP6 we simulate the asymmetry parameter to vary over time, as the other

two parameters. The two DGPs differ in the covariance structure of the parameters: DGP5 assumes

independent innovations to the processes, whereas DGP6 assumes a full covariance matrix, with the

covariance between location and scale experiencing two breaks, as in DGP4. Once again, we document

that our model is successful in detecting the correct sign and dynamics for the asymmetry parameter, even

when all the parameters are correlated, and experience instability.

Returning to DGP2, we evaluate the ability of the model to distinguish permanent changes in the

parameter against transitory moves. Figure D6 report the estimated long- and short-run components;

notice that the two distributions add up to that reported in panel (b) of Figure D5. The model successfully

discerns the persistence of the asymmetry in the data whereby it correctly picks up permanent changes.

Interestingly, the short-run component shows short periods of increased volatility around the observations

where the DGP jumps. This suggests that at first the model interprets new observations as transitory

changes in the data, but as more evidence comes through, the long-run component quickly learns the new

feature of the data, whereas the short-term component reverts to zero.
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Figure D5: Estimated asymmetry
Note: The panels reports the estimated paths for the asymmetry parameters (blue) with the associated 68% and 90% credible
sets. The asymmetry under the DGP is reported in red. For DGP 5 and 6 we report deviations of the estimated parameter
from the simulated values. We consider T=250 observations for 1000 Monte Carlo replications.
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Figure D6: Disentangling permanent changes
Note: The panel report the estimates long- (a) and short- (b) components of the asymmetry parameters estimated under
DGP2. Median values are reported in blue, with the associated 68% and 90% credible sets in gray. The asymmetry under
the DGP is reported in red. We consider T=250 observations for 1000 Monte Carlo replications.
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E Additional results

Table E1: Out-of-sample comparison - Student t

h = 1 h = 2 h = 3 h = 4 h = 8

MSFE 0.839
(0.085)

0.854
(0.051)

0.908
(0.081)

0.942
(0.129)

1.008
(0.782)

CRPS 0.938
(0.074)

0.950
(0.077)

0.960
(0.081)

0.959
(0.074)

0.996
(0.331)

CRPS decomposition

Right 0.927
(0.109)

0.914
(0.075)

0.935
(0.099)

0.936
(0.074)

0.981
(0.116)

Left 0.952
(0.088)

0.982
(0.258)

0.986
(0.197)

0.983
(0.200)

1.009
(0.808)

Center 0.936
(0.058)

0.953
(0.117)

0.960
(0.041)

0.960
(0.060)

0.999
(0.476)

Note: The table report the relative performance of a t model against our Skt model. Results are reported in ratios, with our
model being at the numerator; values smaller than 1 imply superior predictive accuracy of the SKt model. The out-of-sample
period runs from 2000Q1 to 2024Q2. Values in bold are significant at the 10% level.

Table E2: Out-of-sample comparison - ϱ = 0, ∀t

h = 1 h = 2 h = 3 h = 4 h = 8

MSFE 0.832
(0.081)

0.884
(0.115)

0.906
(0.057)

0.966
(0.190)

1.055
(0.997)

CRPS 0.947
(0.116)

0.961
(0.153)

0.962
(0.075)

0.978
(0.166)

1.024
(0.983)

CRPS decomposition

Right 0.928
(0.081)

0.928
(0.053)

0.947
(0.048)

0.962
(0.123)

1.012
(0.854)

Left 0.967
(0.242)

0.995
(0.440)

0.988
(0.339)

0.998
(0.461)

1.039
(0.994)

Center 0.946
(0.123)

0.961
(0.150)

0.954
(0.053)

0.977
(0.155)

1.024
(0.970)

Note: The table report the relative performance of our Skt model when skewness is omitted (ϱt = 0, ∀t) against our Skt
model. Results are reported in ratios, with our model being at the denominator; values smaller than 1 imply superior
predictive accuracy of the SKt model. The out-of-sample period runs from 2000Q1 to 2024Q2. Values in bold are significant
at the 10% level.
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Table E3: Parameters estimates for the econometric model in Section 3

Autocorrelations

ϕµ ϕγ ϕδ
0.990
(0.006)

0.853
(0.068)

0.803
(0.055)

Learning rates

aµ bµ aγ bγ aδ bδ
0.095
(0.005)

0.094
(0.005)

0.084
(0.013)

0.088
(0.011)

0.041
(0.011)

0.085
(0.013)

Degrees of freedom

η
0.130
(0.035)

Note: The table reports mean estimates of the deep parameters of the model. Parameters standard deviations are reported
in parentheses.
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Figure E1: Bai and Ng (2005) rolling tests

Note: The figure reports rolling Bai and Ng (2005) test statistics for US core PCE, using windows of 3, 5 and 10 years, and
the the 68 and 90% critical values.
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