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Abstract

In this paper we explain how the importance sampling technique can be generalized from simulat-
ing expectations to computing the initial value of backward SDEs with Lipschitz continuous driver.
By means of a measure transformation we introduce a variance reduced version of the forward ap-
proximation scheme by Bender and Denk [4] for simulating backward SDEs. A fully implementable
algorithm using the least-squares Monte Carlo approach is developed and its convergence is proved.
The success of the generalized importance sampling is illustrated by numerical examples in the con-
text of Asian option pricing under different interest rates for borrowing and lending.
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1 Introduction

The solutions of a variety of optimal portfolio selection problems and option pricing problems from
mathematical finance can be represented via backward stochastic differential equations (BSDEs), driven
by a Brownian motion W , of the form

dSt = b(t, St)dt + σ(t, St)dWt, S0 = s0,

dYt = −f(t, St, Yt, Zt)dt + ZtdWt, YT = Φ(S).

In the context of option pricing, S typically is a basket of financial underlyings, Φ is the payoff function
of the option, Y is the price process of the option, and Z is related to a hedging strategy (possibly in
the Föllmer-Schweizer sense), see e.g. the survey article by El Karoui et al. [11]. In the classical pricing
problem of options without early-exercise features, the driver f is linear and so today’s price Y0 reduces
to the expectation of the discounted option payoff under an equivalent martingale measure. In general,
the driver may become nonlinear, for example when considering different interest rates for borrowing and
investing in a bond, see Bergman [6], or when computing utility indifference prices, see e.g. Becherer [2].

In the classical linear option pricing problem, a generic way to calculate prices numerically is to apply
a Monte Carlo simulation of the underlyings and then average over the discounted payoffs. However, the
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estimators for the option prices resulting out of this procedure often suffer from high empirical variance.
This is, in particular, the case for out-of-the-money options or more general for options containing some
rare-event feature.

The efficiency of the Monte Carlo approach may be drastically increased by the choice of an appropriate
variance reduction technique. In this respect the importance sampling technique turns out to be highly
efficient for some path dependent options, for instance of Asian type, see e.g. Glasserman [13]. The basic
idea of importance sampling is to change the drift of the underlyings by a change of measure in order
to force more simulated paths to take value in ‘interesting’ regions (e.g. in the money). In this way one
obtains more non-zero pay-offs resulting in a more stable estimator. One delicate feature of importance
sampling is its requirement for tailor-made choices for the new measure. Choosing a wrong drift rather
results in variance blow-up than in variance reduction. The complexity of this method is reflected by the
vast existing literature concerning the ‘optimal choice’ of the new measure in diffusion models. While one
branch of literature tries to tackle the problem in continuous time, see e.g. the articles of Newton [23],
Milstein and Schoenmakers [22] or Guasoni and Robertson [16], other authors develop specific strategies
for special settings in discrete time, see e.g. Boyle et al. [8], Glasserman et al. [12] or Ökten et al. [24].
Besides its application in finance importance sampling methods are also used in many other areas such
as environmental modelling [25], biology [15], or computer graphics [26].

The aim of the present paper is to introduce importance sampling to Monte Carlo schemes for non-
linear pricing problems which are represented by nonlinear BSDEs. There is by now a variety of Monte
Carlo schemes for BSDEs which can be distinguished by two features: Firstly a scheme can be directed
backwardly in time as the ones suggested by Gobet et al. [14, 19], Bouchard and Touzi [7], and Zhang
[27], or forwardly through Picard iterations as proposed by Bender and Denk [4] and Labart [18], Ch.
III. Secondly the schemes differ by the kind of Monte Carlo estimator which is applied to approximate
the nested conditional expectations. Popular choices are estimators based on Malliavin calculus [7], non-
parametric regression [18], quantization [1, 10], and least-squares Monte Carlo [4, 5, 14, 19]. We briefly
mention that least-squares Monte Carlo has also been successfully applied to the pricing problem of early
exercise options, see [3, 9, 20].

In this paper we focus on the forward scheme with least-squares Monte Carlo, i.e. we introduce
importance sampling in the context of the paper by Bender and Denk [4], but it is straightforward
how the ideas can, in principle, be transferred to the other settings. The paper is organized as follows:
After setting the problem we briefly resume the Picard-type scheme of Bender and Denk in Section 2.
Section 3 introduces a modified version of this forward working technique. Parameterized by a change
of measure we introduce several time discretizations for (Y0, Z0) and analyze the error due to the time
discretization and the Picard iteration. We then replace the conditional expectations by a least-squares
Monte Carlo estimator in Section 4. Here the change of measure for the importance sampling considerably
complicates the situation, as the approximations for (Y,Z) need not be square integrable under the original
measure. To get around this difficulty, it is essential to carefully take the density process of the change of
measure into account, when designing an appropriate regression basis. We analyze the regression error
in dependence on the choice of basis and prove convergence of the corresponding Monte Carlo estimator
as the number of simulated paths tends to infinity. Finally we demonstrate the success of the variance
reduced estimator in a simulation study in the context of Asian option pricing under different interest
rates in a Black-Scholes economy. In this study we find a variance reduction of more than factor 10 for
the at-the-money case and more than factor 35 for the out-of-the-money case.

2 Preliminaries

We investigate numerical solutions of the following decoupled forward-backward stochastic differential
equation (FBSDE) on a complete probability space (Ω,F ,Ft, P ), where the filtration (Ft) is the aug-
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mentation of the one generated by a D-dimensional Brownian motion W :

dSt = b(t, St)dt + σ(t, St)dWt, S0 = s0,

dYt = −f(t, St, Yt, Zt)dt + ZtdWt, YT = Φ(S).

Here the coefficient functions b : [0, T ] × R
M −→ R

M , σ : [0, T ] × R
M −→ R

M×D, f : [0, T ] × R
M × R ×

R
D −→ R are given. The terminal condition for the BSDE is defined via the functional Φ, which acts on

the paths of S and is Lipschitz continuous in the sup-norm. Recall, that a solution is a triplet (S, Y, Z)
of (Ft)-adapted, square-integrable stochastic processes. We require throughout this paper the following
assumptions, which in particular ensure the existence of a unique solution:

A 1. For each (t, s), (t′, s′) ∈ ([0, T ] × R
M ):

|b(t, s) − b(t′, s′)| + |σ(t, s) − σ(t′, s′)| ≤ K
(√

|t − t′| + |s − s′|
)

.

A 2. For each (t, s, y, z), (t′, s′, y′, z′) ∈ ([0, T ] × R
M × R × R

D):

|f(t, s, y, z) − f(t′, s′, y′, z′)| ≤ K
(√

|t − t′| + |s − s′| + |y − y′| + |z − z′|
)

.

A 3. There is an M ′-dimensional Markov process (Xt,Ft) with St as its first M components such that

E

[
sup

0≤t≤T
|Xt|2

]
< ∞

and Φ(S) = φ(XT ) for some Lipschitz continuous function φ with Lipschitz constant K.

A 4.

sup
0≤t≤T

|b(t, 0)| + |σ(t, 0)| + |f(t, 0, 0, 0)| + |φ(0)| ≤ K.

We now explain the starting point for the algorithm developed later on. Consider the following family
of decoupled FBSDEs parameterized by some measurable, bounded and adapted process h : [0, T ] −→ R

D:

dSh
t = [b(t, Sh

t ) + σ(t, Sh
t )ht]dt + σ(t, Sh

t )dWt

dY h
t = [−f(t, Sh

t , Y h
t , Zh

t ) + (Zh
t )>ht]dt + Zh

t dWt

Sh
0 = s0, Y h

T = φ(Xh
T ).

where > denotes the transposition of a matrix. We denote (S, Y, Z) := (S0, Y 0, Z0), the solution of the
original FBSDE with h ≡ 0.

The first observation is that the initial value of the backward part does not depend on h. In fact,
defining a new measure Qh by dQh = Ψh

T dP where

Ψh
t = exp

{
−
∫ t

0

h>
u dWu − 1

2

∫ t

0

|hu|2du

}
,

we can apply the Girsanov theorem, to deduce that the law of (Sh, Y h, Zh) under Qh is the same as
that of (S, Y, Z) under P . In particular, the constants (Y0, Z0) and (Y h

0 , Zh
0 ) coincide. We mention that,

however, the path of the processes at later time points (Sh, Y h, Zh) and (S, Y, Z) differ. Nonetheless, in
many applications, e.g. in option pricing problems, one is mainly interesting in estimating Y0. Having
the different representations for Y0 at hand, we aim at reducing the variance of Monte Carlo estimators
for Y0 by a judicious choice of h. This turns out to generalize the importance sampling technique from
calculating expectations to nonlinear BSDEs. In the present paper we concentrate on a specific Monte
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Carlo scheme for BSDEs, namely the forward scheme by Bender and Denk [4], which we now briefly
review. Generalization to other Monte Carlo schemes for BSDEs are expected to be straightforward.

For a given partition π : 0 = t0 < . . . < tN = T with supi |ti+1 − ti| =: |π| < 1 we define ∆i = ti+1− ti
and use the Euler-Maruyama scheme Sπ for the forward part of the system S. The increments of the
Brownian motion are denoted by ∆Wi = Wi+1 − Wi. We add the following assumption:

A 5. For every partition π there is a deterministic function uπ : π × R
M ′ × R

D −→ R
M ′

such that

Xπ
ti

= uπ(ti, X
π
ti−1

,∆W π
i−1), Xπ

t0 = X0,

satisfies Xπ
m,ti

= Sπ
m,ti

for m ≤ M and E
[
|Xπ

tN
− XT |2

]
−→ 0 as |π| −→ 0.

Under Assumption A 5 (Xπ
ti

,Fti
) is a Markov process under P as well.

The approximation scheme for the backward part is now defined recursively for 0 ≤ i ≤ N by

Y n,π
ti

= E


φ(Xπ

T ) +

N−1∑

j=i

f(tj , S
π
tj

, Y n−1,π
tj

, Zn−1,π
tj

)∆j

∣∣∣∣Fti


 ,

Zn,π
d,ti

= E


∆Wd,i

∆i


φ(Xπ

T ) +

N−1∑

j=i+1

f(tj , S
π
tj

, Y n−1,π
tj

, Zn−1,π
tj

)∆j



∣∣∣∣Fti


 .

initialized at (Y 0,π, Z0,π) = (0, 0). We apply the convention ∆WN := 0 and use constant extensions for
the approximation, i.e. Y n,π

t := Y n,π
ti

and Zn,π
t := Zn,π

ti
for t ∈ [ti, ti+1[.

Theorem 2 of Bender and Denk [4] gives the convergence of the Picard-type discretization scheme:

Theorem 2.1. There is a constant C such that

sup
0≤t≤T

E[|Yt − Y n,π
t |2] + E

[∫ T

0

|Zs − Zn,π
s |2ds

]
≤ CE

[
|XT − Xπ

tN
|2
]
+ C|π| + C

(
1

2
+ C∗|π|

)n

,

where C∗ = K2(T + 1)(4DK2(T + 1)DT + 1).

In comparison to the backward schemes of Bouchard and Touzi [7], Gobet et al. [14] and Zhang [27]
the error estimate contains an extra term due to the Picard iterations. This drawback is offset by the
moderate error occurring by the approximation of the conditional expectation with some estimator. The
error in the forward scheme does not explode if the mesh grid size tends to zero as it is the case for the
backward schemes. For more details, see the discussion in [4], pp. 1802-1803.

3 Modified forward scheme

In this section we introduce the time discretized analogue to the Picard-type iteration scheme with
importance sampling induced by some process h. As it is natural that the choice of h will vary with
the partition π, we do assume from now on that the partition π is fixed. At first we specify the class of
processes which we will consider in the sequel.

A 6. The discretized process h is given by

hti
= h̃(ti,∆W0, . . . ,∆Wi−1)

for some bounded deterministic function h̃ : π × R
D × . . . × R

D −→ R
D. The bound of h will be denoted

Ch.
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The modified forward scheme is then given by

∆Wh,π
i = ∆Wi + hti

∆i, 0 ≤ i ≤ N − 1, ∆W h,π
N = 0,

Ψh,π,j
ti

= exp

{
−

i−1∑

k=j

h>
tk

∆Wk − 1

2

i−1∑

k=j

|htk
|2∆k

}
, 0 ≤ j ≤ i ≤ N,

Xh,π
t0 = X0

Xh,π
ti

= uπ(ti, X
h,π
ti−1

,∆W h,π
i−1), 1 ≤ i ≤ N,

and, for 0 ≤ i ≤ N ,

Y h,n,π
ti

= E

[
Ψh,π,i

tN
φ(Xh,π

tN
) +

N−1∑

j=i

Ψh,π,i
tj

f(tj , S
h,π
tj

, Y h,n−1,π
tj

, Zh,n−1,π
tj

)∆j

)∣∣∣∣Fti

]
,

Zh,n,π
d,ti

= E

[
∆Wh,π

d,i

∆i

(
Ψh,π,i

tN
Φ(Sh,π) +

N−1∑

j=i+1

Ψh,π,i
tj

f(tj , S
h,π
tj

, Y h,n−1,π
tj

, Zh,n−1,π
tj

)∆j

)∣∣∣∣Fti

]
,

initialized at (Y h,0,π
ti

, Zh,0,π
ti

) = (0, 0). Again, we omit the superscript h, if h ≡ 0, in which case this is
just the forward scheme discussed in Section 2. Note that, by construction, the first M components of
Xh,π

ti
coincide with Sh,π

ti
defined via the Euler-Maruyama scheme

Sh,π
t0 = s0,

Sh,π
ti+1

= [b(ti, S
h,π
ti

) + σ(ti, S
h,π
ti

)hti
]∆i + σ(ti, S

h,π
ti

)∆Wi, 0 ≤ i ≤ N − 1.

Defining a new measure Qh,π by dQh,π = Ψh,π,0
tN

dP the Girsanov theorem implies that the process

Wh,π
t = Wt +

N−1∑

j=0

htj
(tj+1 ∧ t − tj ∧ t),

is Brownian motion under Qh,π. Consequently, ∆W h,π are Brownian increments under this measure.
This implies that (Xh,π,Fti

) is a Markovian process under Qh,π and that the transition probabilities of
Xh,π under Qh,π are the same as those of Xπ under P .

The following theorem shows that, in this Markovian setting, the conditional expectations in the
above iteration scheme actually simplify to regressions on Xh,π

ti
. On the one hand this is crucial for the

Monte Carlo algorithm described in the next section, on the other hand it also allows us to derive some
convergence results for the modified scheme in an elegant way.

Theorem 3.1. Under the standing assumptions there are deterministic functions yn,π
i and zn,π

i not
depending on h such that

Y h,n,π
ti

= yn,π
i (Xh,π

ti
),

Zh,n,π
ti

= zn,π
i (Xh,π

ti
).

In particular,

Y h,n,π
ti

= E

[
Ψh,π,i

tN
φ(Xh,π

tN
) +

N−1∑

j=i

Ψh,π,i
tj

f(tj , S
h,π
tj

, Y h,n−1,π
tj

, Zh,n−1,π
tj

)∆j

∣∣∣∣X
h,π
ti

]
,

Zh,n,π
d,ti

= E

[
∆Wh,π

d,i

∆i

(
Ψh,π,i

tN
φ(Xh,π

tN
) +

N−1∑

j=i+1

Ψh,π,i
tj

f(tj , S
h,π
tj

, Y h,n−1,π
tj

, Zh,n−1,π
tj

)∆j

)∣∣∣∣X
h,π
ti

]
.
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Proof. We proceed with a double induction, working forward in Picard-iterations and backward in time.
The claim is true for n = 0, i = 0, . . . , N , since by definition Y h,0,π

ti
= 0 = Zh,0,π

d,ti
for d = 1, . . . , D. Due to

the terminal condition Y h,n,π
tN

= φ(Xh,π
tN

) and Zh,n,π
tN

= 0 for each n it is also valid for n ∈ N and i = N .

Now, suppose the claim is true for Y h,n−1,π, Zh,n−1,π and for Y h,n,π
ti+1

, Zh,n,π
ti+1

, for some i ≤ N − 1.
Then we can conclude

Y h,n,π
ti

= E

[
Ψh,π,i

tN
φ(Xh,π

tN
) +

N−1∑

j=i

Ψh,π,i
tj

f(tj , S
h,π
tj

, Y h,n−1,π
tj

, Zh,n−1,π
tj

)∆j

∣∣∣∣Fti

]

= E

[
Ψh,π,i

tN
φ(Xh,π

tN
) +

N−1∑

j=i

E[Ψh,π,i
tN

|Ftj
]f(tj , S

h,π
tj

, Y h,n−1,π
tj

, Zh,n−1,π
tj

)∆j

∣∣∣∣Fti

]

= E

[
Ψh,π,i

tN

(
φ(Xh,π

tN
) +

N−1∑

j=i

f(tj , S
h,π
tj

, Y h,n−1,π
tj

, Zh,n−1,π
tj

)∆j

)∣∣∣∣Fti

]

= EQh,π

[
Y h,n,π

ti+1

∣∣∣∣Fti

]
+ f(ti, S

h,π
ti

, Y h,n−1,π
ti

, Zh,n−1,π
ti

)∆i

= EQh,π

[
yn,π

i+1(X
h,π
ti+1

)

∣∣∣∣Fti

]
+ f(ti, S

h,π
ti

, yn−1,π
i (Xh,π

ti
), zn−1,π

i (Xh,π
ti

))∆i

= EQh,π

[
yn,π

i+1(X
h,π
ti+1

)

∣∣∣∣X
h,π
ti

]
+ f(ti, S

h,π
ti

, yn−1,π
i (Xh,π

ti
), zn−1,π

i (Xh,π
ti

))∆i

= yn,π
i (Xh,π

ti
),

where we first use the martingale property of Ψh,π,i
tj

, the fifth equality is due to the induction hypothesis

and the sixth one is true because (Xh,π
ti

,Fti
) is Markovian under the measure Qh,π. Finally, the function

yn,π
i does not depend on h, because (Xh,π

ti
,Fti

) has the same transition probability under Qh,π as (Xπ
ti

,Fti
)

has under P .
Similarly, we obtain, for d = 1, . . . , D,

Zh,n,π
d,ti

= E

[
∆Wh,π

d,i

∆i

(
Ψh,π,i

tN
φ(Xh,π

tN
) +

N−1∑

j=i+1

Ψh,π,i
tj

f(tj , S
h,π
tj

, Y h,n−1,π
tj

, Zh,n−1,π
tj

)∆j

)∣∣∣∣Fti

]

= E

[
Ψh,π,i

tN

∆Wh,π
d,i

∆i

(
φ(Xh,π

tN
) +

N−1∑

j=i+1

f(tj , S
h,π
tj

, Y h,n−1,π
tj

, Zh,n−1,π
tj

)∆j

)∣∣∣∣Fti

]

= EQh,π

[
∆Wh,π

d,i

∆i
Y h,n,π

ti+1

∣∣∣∣Fti

]
= EQh,π

[
∆Wh,π

d,i

∆i
yn,π

i+1(X
h,π
ti+1

)

∣∣∣∣Fti

]

= EQh,π

[
∆Wh,π

d,i

∆i
yn,π

i+1(X
h,π
ti+1

)

∣∣∣∣X
h,π
ti

]
= zn,π

d,i (Xh,π
ti

),

where we used the independence of ∆W h,π
d,i and Xh,π

ti
and the notation zn,π

i (·) = (zn,π
1,i (·), . . . , zn,π

D,i (·)).

Since the regression functions do not depend on the choice of h and Xh,π
t0 = X0, we can conclude

that the error made by approximating (Y0, Z0) with (Y h,n,π
t0 , Zh,n,π

t0 ) is independent of h. Hence, we can
simply choose h ≡ 0 for which case the error estimate was already derived in Theorem 2.1.

Corollary 3.2. There are constants C and C∗ (independent of h) such that for all h

|Y h,n,π
t0 − Y0|2 + |Zh,n,π

t0 − Z0|2 ≤ CE[|XT − Xπ
tN
|2] + C|π| + C

(
1

2
+ C∗|π|

)n

,
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where C∗ is the same constant as in Theorem 2.1.

Remark 3.3. Another way to prove this result is to rewrite the iteration scheme under the new measure
Qh,π. Since (Sh,π, Y h,n,π, Zh,n,π) has the same law under the new measure as (Sπ, Y n,π, Zn,π) has under
P we can derive the above error estimate.

We now add a further assumption which guarantees that Ψh,π,0
ti

Y h,n,π
ti

and Ψh,π,0
ti

Zh,n,π
ti

are square-
integrable under P . This assumption turns out to be essential in order to avoid infinite variances within
the Monte Carlo implementation.

A 7. For 0 ≤ i ≤ N − 1

E

[(
Ψh,π,0

tN
φ(Xh,π

tN
) +

N−1∑

j=i

Ψh,π,0
tj

f(tj , S
h,π
tj

, 0, 0)∆j

)2]
< ∞.

For the first level of the Picard-iteration the above claim is now straightforward:

Lemma 3.4. It holds that (Ψh,π,0
ti

Y h,1,π
ti

,Ψh,π,0
ti

Zh,1,π
ti

) ∈ L2(P ) for every 0 ≤ i ≤ N .

Proof. Since Ψh,π,i
tj

= Ψh,π,0
tj

/Ψh,π,0
ti

and Ψh,π,0
ti

is Fti
-measurable we obtain for 0 ≤ i ≤ N :

Ψh,π,0
ti

Y h,n,π
ti

= E

[
Ψh,π,0

tN
φ(Xh,π

tN
) +

N−1∑

j=i

Ψh,π,0
tj

f(tj , S
h,π
tj

, Y h,n−1,π
tj

, Zh,n−1,π
tj

)∆j

∣∣∣∣Fti

]
, (1)

Ψh,π,0
ti

Zh,n,π
d,ti

= E

[
∆Wh,π

d,i

∆i

(
Ψh,π,0

tN
φ(Xh,π

tN
) +

N−1∑

j=i+1

Ψh,π,0
tj

f(tj , S
h,π
tj

, Y h,n−1,π
tj

, Zh,n−1,π
tj

)∆j

)∣∣∣∣Fti

]
. (2)

Consequently for n = 1

E
[
|Ψh,π,0

ti
Y h,1,π

ti
|2
]
≤ E

[(
Ψh,π,0

tN
φ(Xh,π

tN
) +

N−1∑

j=i

Ψh,π,0
tj

f(tj , S
h,π
tj

, 0, 0)∆j

)2]
< ∞

and by Hölder’s inequality

E
[
|Ψh,π,0

ti
Zh,1,π

d,ti
|2
]

≤ E

[
(∆W h,π

d,i )2

∆2
i

]
E

[(
Ψh,π,0

tN
φ(Xh,π

tN
) +

N−1∑

j=i+1

Ψh,π,0
tj

f(tj , S
h,π
tj

, 0, 0)∆j

)2]

≤
(

2

∆i
+ 2C2

h

)
E

[(
Ψh,π,0

tN
φ(Xh,π

tN
) +

N−1∑

j=i+1

Ψh,π,0
tj

f(tj , S
h,π
tj

, 0, 0)∆j

)2]
< ∞.

In order to derive the analogue result for n > 1 we now state some a priori estimates generalizing
Lemma 7 in [4].

Lemma 3.5. Suppose Γ and γ are positive real numbers, yι, zι, ι = 1, 2 are adapted processes and

Ψh,π,0
ti

Y
(ι)
ti

= E

[
Ψh,π,0

tN
φ(Xh,π

tN
) +

N−1∑

j=i

Ψh,π,0
tj

f(tj , S
h,π
tj

, y
(ι)
tj

, z
(ι)
tj

)∆j

∣∣∣∣Fti

]
,

Ψh,π,0
ti

Z
(ι)
d,ti

= E

[
∆Wh,π

d,i

∆i

(
Ψh,π,0

tN
φ(Xh,π

tN
) +

N−1∑

j=i+1

Ψh,π,0
tj

f(tj , S
h,π
tj

, y
(ι)
tj

, z
(ι)
tj

)∆j

)∣∣∣∣Fti

]
.
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Then

max
0≤i≤N

λiE
[
|Ψh,π,0

ti
Y

(1)
ti

− Ψh,π,0
ti

Y
(2)
ti

|2
]

+

N−1∑

i=0

λiE
[
|Ψh,π,0

ti
Z

(1)
ti

− Ψh,π,0
ti

Z
(2)
ti

|2
]
∆i

≤ K2(T + 1)

(
(|π| + 1

Γ
)(2D(γ + C2

h)T + 1) + 2
D

γ

)

×
(

1

T

N−1∑

i=0

λiE
[
|Ψh,π,0

ti
y
(1)
ti

− Ψh,π,0
ti

y
(2)
ti

|2
]
∆i +

N−1∑

i=0

λiE
[
|Ψh,π,0

ti
z
(1)
ti

− Ψh,π,0
ti

z
(2)
ti

|2
]
∆i

)
,

where λ0 = 1 and λi = (1 + Γ∆i−1)λi−1.

The proof is given in the Appendix.

With this result at hand we can conclude:

Corollary 3.6. For every 0 ≤ i ≤ N and n ∈ N we have (Ψh,π,0
ti

Y h,n,π
ti

,Ψh,π,0
ti

Zh,n,π
ti

) ∈ L2(P ).

Proof. Considering (Y h,n,π, Zh,n,π) and (Y h,n−1,π, Zh,n−1,π) we are in the situation of Lemma 3.5 with
y(1) = Y h,n−1,π, y(2) = Y h,n−2,π, z(1) = Zh,n−1,π and z(2) = Zh,n−2,π. Hence, choosing γ = 8DK2(T +1)
and Γ = 4K2(T + 1)(2D(γ + C2

h)T + 1) we can estimate

max
0≤i≤N

λiE
[
|Ψh,π,0

ti
Y h,n,π

ti
− Ψh,π,0

ti
Y h,n−1,π

ti
|2
]

+
N−1∑

i=0

λiE
[
|Ψh,π,0

ti
Zh,n,π

ti
− Ψh,π,0

ti
Zh,n−1,π

ti
|2
]
∆i

≤
(

Γ

4
|π| + 1

2

)(
max

0≤i≤N
λiE

[
|Ψh,π,0

ti
Y h,n−1,π

ti
− Ψh,π,0

ti
Y h,n−2,π

ti
|2
]

+
N−1∑

i=0

λiE
[
|Ψh,π,0

ti
Zh,n−1,π

ti
− Ψh,π,0

ti
Zh,n−2,π

ti
|2
]
∆i

)

≤
(

Γ

4
|π| + 1

2

)n−1(
max

0≤i≤N
λiE

[
|Ψh,π,0

ti
Y h,1,π

ti
|2
]

+

N−1∑

i=0

λiE
[
|Ψh,π,0

ti
Zh,1,π

ti
|2
]
∆i

)

≤ eΓT

(
Γ

4
|π| + 1

2

)n−1(
max

0≤i≤N
E
[
|Ψh,π,0

ti
Y h,1,π

ti
|2
]

+

N−1∑

i=0

E
[
|Ψh,π,0

ti
Zh,1,π

ti
|2
]
∆i

)
< ∞.

Here we iteratively applied Lemma 3.5 and the last estimate is due to Lemma 3.4.
The claim now follows by induction. For n = 1 it is true by Lemma 3.4. Now, suppose it is valid for

some (n − 1) ∈ N, then

E
[
|Ψh,π,0

ti
Y h,n,π

ti
|2
]
≤ 2E

[
|Ψh,π,0

ti
Y h,n−1,π

ti
|2
]

+ 2E
[
|Ψh,π,0

ti
Y h,n,π

ti
− Ψh,π,0

ti
Y h,n−1,π

ti
|2
]
.

The first term is finite by the induction hypothesis, the second one can be estimated with the above
calculation. For the Z-part we can proceed analogously.

4 Least-squares Monte Carlo

To get a fully implementable algorithm we have to approximate the conditional expectations by some
estimator. In this section we describe a simulation based least-squares Monte Carlo estimator and prove its
convergence. Recall that the least-squares method can be applied to estimate the conditional expectation
of a square-integrable random variable, see e.g. [9, 20]. However, we cannot guarantee that the processes
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(Y h,n,π, Zh,n,π) are square integrable in general under the measure P . Therefore we cannot apply the
least-squares approach directly to (Y h,n,π, Zh,n,π), but work with (Ψh,π,0Y h,n,π,Ψh,π,0Zh,n,π) instead.

As explained above, our remaining task is to estimate

Y h,n,π
ti

= E

[
Ψh,π,i

tN
φ(Xh,π

tN
) +

N−1∑

j=i

Ψh,π,i
tj

f(tj , S
h,π
tj

, Y h,n−1,π
tj

, Zh,n−1,π
tj

)∆j

∣∣∣∣Fti

]
,

Zh,n,π
d,ti

= E

[
∆Wh,π

d,i

∆i

(
Ψh,π,i

tN
φ(Xh,π

tN
) +

N−1∑

j=i+1

Ψh,π,i
tj

f(tj , S
h,π
tj

, Y h,n−1,π
tj

, Zh,n−1,π
tj

)∆j

)∣∣∣∣Fti

]
,

which we will do in the sequel. For any random variable V such that Ψh,π,0
ti

V ∈ L2(FtN
, P ) and E[V |Fti

] =

E[V |Xh,π
ti

], we write E[V |Fti
] = (Ψh,π,0

ti
)−1E[Ψh,π,0

ti
V |Fti

] and note that

E[Ψh,π,0
ti

V |Fti
] = Ψh,π,0

ti
E[V |Xh,π

ti
].

Consequently, E[Ψh,π,0
ti

V |Fti
] is the orthogonal projection on the space L2(Gh,π

i , P ), where Gh,π
i denotes

the σ-field generated by the random variables of the form Ψh,π,0
ti

v(Xh,π
ti

) for deterministic and measurable
functions v. We now replace this projection by a projection on a finite dimensional subspace. To do so,
we choose, for each time partition point, D + 1 sets of basis functions

{p0,i,1(·), . . . , p0,i,K0,i
(·)} for the estimation of Y h,n,π

ti
and

{pd,i,1(·), . . . , pd,i,Kd,i
(·)} for the estimation of Zh,n,π

d,ti
.

We assume that
ηh

d,i,k := Ψh,π,0
ti

pd,i,k(Xh,π
ti

)

satisfy E[|ηh
d,i,k|2] < ∞ for every 0 ≤ d ≤ D, 0 ≤ i ≤ N−1 and 0 ≤ k ≤ Kd,i, and that (ηh

d,i,1, . . . , η
h
d,i,Kd,i

)

are linearly independent for every 0 ≤ d ≤ D, 0 ≤ i ≤ N − 1. Now we define Λh
d,i = span(ηh

d,i,k) and

denote by P h
d,i the orthogonal (in the L2-sense) projection on Λh

d,i. As these spaces are finite dimensional,
there are coefficients αd,i,k(V ) such that

Ph
d,i[Ψ

h,π,0
ti

V ] =

Kd,i∑

k=1

αd,i,k(V )Ψh,π,0
ti

pd,i,k(Xh,π
ti

). (3)

The inner-product matrices associated to the chosen bases are

Bh
d,i = E

[
ηh

d,i,kηh
d,i,l

]
k,l=1,...,Kd,i

. (4)

Hence we obtain as coefficients
αd,i(V ) = (Bh

d,i)
−1E[ηh

d,iV ], (5)

where ηh
d,i = (ηh

d,i,1, . . . , η
h
d,i,Kd,i

)> and αd,i(V ) = (αd,i,1(V ), . . . , αd,i,Kd,i
(V ))>. Finally, the correspond-

ing estimator for E[V |Fti
] = E[V |Xh,π

ti
], given the basis {pd,i,1(·), . . . , pd,i,Kd,i

(·)}, is

Kd,i∑

k=1

αd,i,k(V )pd,i,k(Xh,π
ti

).
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Thanks to Theorem 3.1 and Corollary 3.6 we can apply this machinery for estimating Y h,n,π
ti

and

Zh,n,π
d,ti

. As estimators for these quantities we define

Ŷ h,n,π
ti

= (Ψh,π,0
ti

)−1Ph
0,i

[
Ψh,π,0

tN
φ(Xh,π

tN
) +

N−1∑

j=i

Ψh,π,0
tj

f(tj , S
h,π
tj

, Ŷ h,n−1,π
tj

, Ẑh,n−1,π
tj

)∆j

]

=

K0,i∑

k=1

αh,n,π
0,i,k p0,i,k(Xh,π

ti
),

Ẑh,n,π
d,ti

= (Ψh,π,0
ti

)−1Ph
d,i

[
∆Wh,π

d,i

∆i

(
Ψh,π,0

tN
φ(Xh,π

tN
) +

N−1∑

j=i+1

Ψh,π,0
tj

f(tj , S
h,π
tj

, Ŷ h,n−1,π
tj

, Ẑh,n−1,π
tj

)∆j

)]

=

Kd,i∑

k=1

αh,n,π
d,i,k pd,i,k(Xh,π

ti
)

where

αh,n,π
0,i = (Bh

0,i)
−1E

[
ηh
0,i

(
Ψh,π,0

tN
φ(Xh,π

tN
) +

N−1∑

j=i

Ψh,π,0
tj

f(tj , S
h,π
tj

, Ŷ h,n−1,π
tj

, Ẑh,n−1,π
tj

)∆j

)]
, (6)

and for d ≥ 1

αh,n,π
d,i = (Bh

d,i)
−1E

[
ηh

d,i

(
∆Wh,π

d,i

∆i

(
Ψh,π,0

tN
φ(Xh,π

tN
)

+
N−1∑

j=i+1

Ψh,π,0
tj

f(tj , S
h,π
tj

, Ŷ h,n−1,π
tj

, Ẑh,n−1,π
tj

)∆j

))]
, (7)

initialized at (Ŷ h,0,π, Ẑh,0,π) = 0.

Remark 4.1. Note that Assumption A 7 and Theorem 4.2 below guarantee that the weights in (6)–(7)
are finite.

In the following, we analyze the error resulting from the approximation of (Ψh,π,0
ti

Y h,n,π
ti

,Ψh,π,0
ti

Zh,n,π
ti

)

with (Ψh,π,0
ti

Ŷ h,n,π
ti

,Ψh,π,0
ti

Ẑh,n,π
ti

). Analogously to Bender and Denk [4] this will be done in terms of the

projection errors |Ψh,π,0
ti

Y h,n,π
ti

− Ph
0,i(Ψ

h,π,0
ti

Y h,n,π
ti

)| and |Ψh,π,0
ti

Zh,n,π
d,ti

− Ph
d,i(Ψ

h,π,0
ti

Zh,n,π
d,ti

)|. We extend
their Theorem 11 (which corresponds to the case h = 0), reflecting the advantage of the Picard-type
scheme: The error induced by the approximation of the conditional expectations does neither explode
when the number of time steps tends to infinity nor does it blow up if the number of iterations grows. We
simply obtain, that the L2-error is bounded by a constant times the worst L2-projection error occurring
during iterations.

Theorem 4.2. There is a constant C depending on the data and the bound of h such that

max
0≤i≤N

E
[
|Ψh,π,0

ti
Ŷ h,n,π

ti
− Ψh,π,0

ti
Y h,n,π

ti
|2
]

+

N−1∑

i=0

E
[
|Ψh,π,0

ti
Ẑh,n,π

ti
− Ψh,π,0

ti
Zh,n,π

ti
|2
]
∆i

≤ C

(
max

1≤ν≤n
max

0≤i≤N

(
E
[
|Ψh,π,0

ti
Y h,ν,π

ti
− Ph

0,i[Ψ
h,π,0
ti

Y h,ν,π
ti

]|2
]

+

D∑

d=1

E
[
|Ψh,π,0

ti
Zh,ν,π

d,ti
− Ph

d,i[Ψ
h,π,0
ti

Zh,ν,π
d,ti

]|2
]))

for sufficiently small |π|.
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Proof. Define

Y
h,n,π

ti
= (Ψh,π,0

ti
)−1E

[
Ψh,π,0

tN
φ(Xh,π

tN
) +

N−1∑

j=i

Ψh,π,0
tj

f(tj , S
h,π
tj

, Ŷ h,n−1,π
tj

, Ẑh,n−1,π
tj

)∆j

∣∣∣∣Fti

]
,

Z
h,n,π

d,ti
= (Ψh,π,0

ti
)−1E

[
∆Wh,π

d,i

∆i

(
Ψh,π,0

tN
φ(Xh,π

tN
)

+
N−1∑

j=i+1

Ψh,π,0
tj

f(tj , S
h,π
tj

, Ŷ h,n−1,π
tj

, Ẑh,n−1,π
tj

)∆j

)∣∣∣∣Fti

]
.

Then we obtain

Ph
0,i

[
Ψh,π,0

ti
Y

h,n,π

ti
− Ψh,π,0

ti
Y h,n,π

ti

]
= Ψh,π,0

ti
Ŷ h,n,π

ti
− Ph

0,i

[
Ψh,π,0

ti
Y h,n,π

ti

]
,

Ph
d,i

[
Ψh,π,0

ti
Z

h,n,π

d,ti
− Ψh,π,0

ti
Zh,n,π

d,ti

]
= Ψh,π,0

ti
Ẑh,n,π

d,ti
− Ph

d,i

[
Ψh,π,0

ti
Zh,n,π

d,ti

]
.

Due to the orthogonality of the projection we also have

E
[
|Ψh,π,0

ti
Ŷ h,n,π

ti
− Ψh,π,0

ti
Y h,n,π

ti
|2
]

= E
[∣∣Ψh,π,0

ti
Ŷ h,n,π

ti
− Ph

0,i

[
Ψh,π,0

ti
Y h,n,π

ti

] ∣∣2
]

+E
[∣∣Ph

0,i

[
Ψh,π,0

ti
Y h,n,π

ti

]
− Ψh,π,0

ti
Y h,n,π

ti

∣∣2
]
,

and the analogous equation holds for Zh,n,π
d,ti

. Consequently, we get for any 0 ≤ i ≤ N ,

E
[
|Ψh,π,0

ti
Ŷ h,n,π

ti
− Ψh,π,0

ti
Y h,n,π

ti
|2
]

= E
[
|Ψh,π,0

ti
Ŷ h,n,π

ti
− Ph

0,i[Ψ
h,π,0
ti

Y h,n,π
ti

]|2
]

+ E
[
|Ph

0,i[Ψ
h,π,0
ti

Y h,n,π
ti

] − Ψh,π,0
ti

Y h,n,π
ti

|2
]

= E
[
|Ph

0,i[Ψ
h,π,0
ti

Y
h,n,π

ti
− Ψh,π,0

ti
Y h,n,π

ti
]|2
]

+ E
[
|Ph

0,i[Ψ
h,π,0
ti

Y h,n,π
ti

] − Ψh,π,0
ti

Y h,n,π
ti

|2
]

≤ E
[
|Ψh,π,0

ti
Y

h,n,π

ti
− Ψh,π,0

ti
Y h,n,π

ti
|2
]

+ E
[
|Ph

0,i[Ψ
h,π,0
ti

Y h,n,π
ti

] − Ψh,π,0
ti

Y h,n,π
ti

|2
]
,

where we used in the last step that nontrivial orthogonal projections have norm 1. In the same way we
get

E
[
|Ψh,π,0

ti
Ẑh,n,π

ti
− Ψh,π,0

ti
Zh,n,π

ti
|2
]

≤
D∑

d=1

E
[
|Ψh,π,0

ti
Z

h,n,π

d,ti
− Ψh,π,0

ti
Zh,n,π

d,ti
|2
]

+

D∑

d=1

E
[
|Ph

d,i[Ψ
h,π,0
ti

Zh,n,π
d,ti

] − Ψh,π,0
ti

Zh,n,π
d,ti

|2
]
.

Multiplying these inequalities with the weights λi, satisfying λ0 = 1 and λi = (1 + Γ∆i−1)λi−1 for some
Γ > 0 to be specified later, we obtain

max
0≤i≤N

λiE
[
|Ψh,π,0

ti
Ŷ h,n,π

ti
− Ψh,π,0

ti
Y h,n,π

ti
|2
]

+

N−1∑

i=0

λiE
[
|Ψh,π,0

ti
Ẑh,n,π

ti
− Ψh,π,0

ti
Zh,n,π

ti
|2
]
∆i

≤ max
0≤i≤N

λiE
[
|Ψh,π,0

ti
Y

h,n,π

ti
− Ψh,π,0

ti
Y h,n,π

ti
|2
]

+
N−1∑

i=0

λiE
[
|Ψh,π,0

ti
Z

h,n,π

ti
− Ψh,π,0

ti
Zh,n,π

ti
|2
]
∆i

+ max
0≤i≤N

λiE
[
|Ph

0,i[Ψ
h,π,0
ti

Y h,n,π
ti

] − Ψh,π,0
ti

Y h,n,π
ti

|2
]

+

D∑

d=1

N−1∑

i=0

λiE
[
|Ph

d,i[Ψ
h,π,0
ti

Zh,n,π
d,ti

] − Ψh,π,0
ti

Zh,n,π
d,ti

|2
]
∆i. (8)

11



Applying Lemma 3.5 with γ = 8DK2(T + 1) and Γ = 4K2(T + 1)(2D(γ + C2
h)T + 1) yields

max
0≤i≤N

λiE
[
|Ψh,π,0

ti
Y

h,n,π

ti
− Ψh,π,0

ti
Y h,n,π

ti
|2
]

+

N−1∑

i=0

λiE
[
|Ψh,π,0

ti
Z

h,n,π

ti
− Ψh,π,0

ti
Zh,n,π

ti
|2
]
∆i

≤
(

Γ

4
|π| + 1

2

)(
max

0≤i≤N
λiE

[
|Ψh,π,0

ti
Ŷ h,n−1,π

ti
− Ψh,π,0

ti
Y h,n−1,π

ti
|2
]

+

N−1∑

i=0

λiE
[
|Ψh,π,0

ti
Ẑh,n−1,π

ti
− Ψh,π,0

ti
Zh,n−1,π

ti
|2
]
∆i

)
. (9)

Putting estimates (8)–(9) together we obtain

max
0≤i≤N

λiE
[
|Ψh,π,0

ti
Ŷ h,n,π

ti
− Ψh,π,0

ti
Y h,n,π

ti
|2
]

+

N−1∑

i=0

λiE
[
|Ψh,π,0

ti
Ẑh,n,π

ti
− Ψh,π,0

ti
Zh,n,π

ti
|2
]
∆i

≤ max
0≤i≤N

λiE
[
|Ph

0,i[Ψ
h,π,0
ti

Y h,n,π
ti

] − Ψh,π,0
ti

Y h,n,π
ti

|2
]

+

D∑

d=1

N−1∑

i=0

λiE
[
|Ph

d,i[Ψ
h,π,0
ti

Zh,n,π
d,ti

] − Ψh,π,0
ti

Zh,n,π
d,ti

|2
]
∆i

+

(
Γ

4
|π| + 1

2

)(
max

0≤i≤N
λiE

[
|Ψh,π,0

ti
Ŷ h,n−1,π

ti
− Ψh,π,0

ti
Y h,n−1,π

ti
|2
]

+
N−1∑

i=0

λiE
[
|Ψh,π,0

ti
Ẑh,n−1,π

ti
− Ψh,π,0

ti
Zh,n−1,π

ti
|2
]
∆i

)
.

Iterating this inequality yields

max
0≤i≤N

E
[
|Ψh,π,0

ti
Ŷ h,n,π

ti
− Ψh,π,0

ti
Y h,n,π

ti
|2
]

+

N−1∑

i=0

E
[
|Ψh,π,0

ti
Ẑh,n,π

ti
− Ψh,π,0

ti
Zh,n,π

ti
|2
]
∆i

≤
n∑

ν=1

(
Γ

4
|π| + 1

2

)n−ν (
max

0≤i≤N
λiE

[
|Ph

0,i[Ψ
h,π,0
ti

Y h,ν,π
ti

] − Ψh,π,0
ti

Y h,ν,π
ti

|2
]

+

D∑

d=1

N−1∑

i=0

λiE
[
|Ph

d,i[Ψ
h,π,0
ti

Zh,ν,π
d,ti

] − Ψh,π,0
ti

Zh,ν,π
d,ti

|2
]
∆i

)

≤ eΓT
n∑

ν=1

(
Γ

4
|π| + 1

2

)n−ν (
max

0≤i≤N
E
[
|Ph

0,i[Ψ
h,π,0
ti

Y h,ν,π
ti

] − Ψh,π,0
ti

Y h,ν,π
ti

|2
]

+

D∑

d=1

N−1∑

i=0

E
[
|Ph

d,i[Ψ
h,π,0
ti

Zh,ν,π
d,ti

] − Ψh,π,0
ti

Zh,ν,π
d,ti

|2
]
∆i

)
.

Hence, the claim finally follows if |π| is small enough.

Remark 4.3. The proof of the above theorem only made use of the fact that orthogonal projections
have norm 1. Hence, it holds for orthogonal projections on any, possibly infinite-dimensional, subspaces
Λh

d,i ⊂ L2(Gh,π
i , P ).

The final approximation step of our algorithm replaces the expectations in (4) and (5) by their
simulation-based counterparts. That is, we assume that we have L ≥ maxd,i{Kd,i} independent draws

from (∆W h,π
i , Xh,π

ti
, φ(Xh,π

tN
),Ψh,π,j

ti
, ηh

d,i) which we denote by (∆λWh,π
i , λXh,π

ti
, φ(λXh,π

tN
), λΨh,π,j

ti
, ληh

d,i)

12



for λ = 1, . . . , L. The column vectors of these copies are denoted by (∆W
h,π
i ,Xh,π

ti
, φ(Xh,π

tN
),Psi

h,π,j
ti

, eh
d,i),

e.g.
X

h,π
ti

= (1X
h,π
ti

, . . . , LXh,π
ti

)>.

Define

Ah,L
d,i :=

1√
L

(
ληh

d,i,k

)
λ=1,...,L,k=1,...,Kd,i

, d = 0, . . . , D,

so that

Bh,L
d,i := (Ah,L

d,i )>Ah,L
d,i =

1

L

(
L∑

λ=1

ληh
d,i,k ληh

d,i,l

)

k,l=1,...,Kd,i

for d = 0, . . . , D

are the simulation-based analogues to the matrices Bh
d,i. Since the inverses of Bh,L

d,i need not exist,

we switch to the pseudo-inverses (Ah,L
d,i )+ in order to introduce in recursive manner simulation based

analogues to (6)–(7) with the help of the least-squares method. In detail we define:

αh,0,π,L
d,i = 0, d = 0, . . . , D

λŶ h,n−1,π
ti

=

K0,i∑

k=1

(λΨh,π,0
ti

)−1αh,n−1,π,L
0,i,k ληh

0,i,k

λẐh,n−1,π
d,ti

=

Kd,i∑

k=1

(λΨh,π,0
ti

)−1αh,n−1,π,L
d,i,k ληh

d,i,k

f(ti) = (f(ti, 1S
h,π
ti

, 1Ŷ
h,n−1,π
ti

, 1Ẑ
h,n−1,π
ti

), . . . , f(ti, LSh,π
ti

, LŶ h,n−1,π
ti

, LẐh,n−1,π
ti

))>

αh,n,π,L
0,i =

1√
L

(Ah,L
0,i )+

(
Psi

h,π,0
tN

• φ(Xh,π
tN

) +

N−1∑

j=i

Psi
h,π,0
tj

• f(tj)∆j

)

αh,n,π,L
d,i =

1√
L

(Ah,L
d,i )+

(
∆W

h,π
d,i

∆i
•
(
Psi

h,π,0
tN

• φ(Xh,π
tN

) +

N−1∑

j=i+1

Psi
h,π,0
tj

• f(tj)∆j

))
, d = 1, . . . , D,

where • denotes the componentwise multiplication of two vectors and we used the abbreviation αh,n,π,L
d,i =

(αh,n,π,L
d,i,1 , . . . , αh,n,π,L

d,i,Kd,i
)>. This enables us to define simulation based estimators by

Ŷ h,n,π,L
ti

=

K0,i∑

k=1

(Ψh,π,0
ti

)−1αh,n,π,L
0,i,k ηh

0,i,k =

K0,i∑

k=1

αh,n,π,L
0,i,k p0,i,k(Xh,π

ti
),

Ẑh,n,π,L
d,ti

=

Kd,i∑

k=1

(Ψh,π,0
ti

)−1αh,n,π,L
d,i,k ηh

d,i,k =

Kd,i∑

k=1

αh,n,π,L
d,i,k pd,i,k(Xh,π

ti
), d = 1, . . . , D.

Note that the thus constructed coefficients solve linear least-squares problems, e.g.

αh,n,π,L
0,i = arginf

α∈R
K0,i

1

L

L∑

λ=1

∣∣∣∣∣α
>

ληh
0,i − λΨh,π,0

tN
φ(λXh,π

tN
)

−
N−1∑

j=i

λΨh,π,0
tj

f(tj , λSh,π
tj

, λŶ h,n−1,π
tj

, λẐh,n−1,π
tj

)∆j

∣∣∣∣∣

2

,

and similarly for d = 1, . . . , D.
Next, we derive almost sure convergence of the simulation based estimators starting with the coeffi-

cients.

13



Lemma 4.4. (αh,n,π,L
0,i , . . . , αh,n,π,L

D,i ) converges P -almost surely to (αh,n,π
0,i , . . . , αh,n,π

D,i ), when L tends to
infinity.

Proof. We proceed with an induction on n. For n = 0 the claim is true by definition, since

αh,0,π,L
d,i,k = αh,0,π

d,i,k = 0, d = 0, . . . , D, k = 1, . . . ,Kd,i.

Now, we suppose convergence is already proved for some (n − 1) ∈ N0. We only show the convergence

for αh,n,π,L
d,i,k for some fixed d ≥ 1, the arguments for αh,n,π,L

0,i,k are basically the same.
By the law of large numbers we have

lim
L→∞

Bh,L
d,i = Bh

d,i, P-a.s. (10)

As Bh
d,i is invertible the same is valid for Bh,L

d,i provided L is large enough. We assume L to satisfy this

condition in the following. In particular, Ah,L
d,i then has full rank and its pseudo-inverse can be written

as
(Ah,L

d,i )+ = (Bh,L
d,i )−1(Ah,L

d,i )>.

Hence, we obtain

αh,n,π,L
d,i = (Bh,L

d,i )−1

(
1

L

L∑

λ=1

ληh
d,i

∆ λWh,π
d,i

∆i

(
λΨh,π,0

tN
φ(λXh,π

tN
)

+
N−1∑

j=i+1

λΨh,π,0
tj

f(tj , λSh,π
tj

, λŶ h,n−1,π
tj

, λẐh,n−1,π
tj

)∆j

))

so that due to (10), we only have to show for all 1 ≤ l ≤ Kd,i

1

L

L∑

λ=1

ληh
d,i,l

∆λWh,π
d,i

∆i

(
λΨh,π,0

tN
φ(λXh,π

tN
) +

N−1∑

j=i+1

λΨh,π,0
tj

f(tj , λSh,π
tj

, λŶ h,n−1,π
tj

, λẐh,n−1,π
tj

)∆j

)

−→ E

[
ηh

d,i,l

∆Wh,π
d,i

∆i

(
Ψh,π,0

tN
φ(Xh,π

tN
) +

N−1∑

j=i+1

Ψh,π,0
tj

f(tj , S
h,π
tj

, Ŷ h,n−1,π
tj

, Ẑh,n−1,π
ti

)∆j

)]
P-a.s.

To do so, define

λỸ h,n−1,π
ti

=

K0,i∑

k=1

(λΨh,π,0
ti

)−1αh,n−1,π
0,i,k ληh

0,i,k, λZ̃h,n−1,π
d,ti

=

Kd,i∑

k=1

(λΨh,π,0
ti

)−1αh,n−1,π
d,i,k ληh

d,i,k (11)

and λZ̃h,n−1,π
ti

= (λZ̃h,n−1,π
1,ti

, . . . , λZ̃h,n−1,π
D,ti

)>.
Note that

ληh
d,i,l

∆λWh,π
d,i

∆i

(
λΨh,π,0

tN
φ(λXh,π

tN
) +

N−1∑

j=i+1

λΨh,π,0
tj

f(tj , λSh,π
tj

, λỸ h,n−1,π
tj

, λZ̃h,n−1,π
tj

)∆j

)
, λ = 1, . . . , L

are independent and identically distributed with the same distribution as

ηh
d,i,l

∆Wh,π
d,i

∆i

(
Ψh,π,0

tN
φ(Xh,π

tN
) +

N−1∑

j=i+1

Ψh,π,0
tj

f(tj , S
h,π
tj

, Ŷ h,n−1,π
tj

, Ẑh,n−1,π
tj

)∆j

)
.
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Moreover, it holds that

E

[
ηh

d,i,l

∆Wh,π
d,i

∆i

(
Ψh,π,0

tN
φ(Xh,π

tN
) +

N−1∑

j=i+1

Ψh,π,0
tj

f(tj , S
h,π
tj

, Ŷ h,n−1,π
tj

, Ẑh,n−1,π
tj

)∆j

)]

≤ 1

∆i

√
E

[(
ηh

d,i,l∆Wh,π
d,i

)2
]

×

√√√√E

[(
Ψh,π,0

tN
φ(Xh,π

tN
) +

N−1∑

j=i+1

Ψh,π,0
tj

f(tj , S
h,π
tj

, Ŷ h,n−1,π
tj

, Ẑh,n−1,π
tj

)∆j

)2]

≤ 2

∆i

√
E

[(
ηh

d,i,l

)2
]

∆i + C2
hE

[(
ηh

d,i,l

)2
]

∆2
i

×
(

E

[( N−1∑

j=i+1

Ψh,π,0
tj

(f(tj , S
h,π
tj

, Ŷ h,n−1,π
tj

, Ẑh,n−1,π
tj

) − f(tj , S
h,π
tj

, 0, 0))∆j

)2]

+E

[(
Ψh,π,0

tN
φ(Xh,π

tN
) +

N−1∑

j=i+1

Ψh,π,0
tj

f(tj , S
h,π
tj

, 0, 0)∆j

)2])1/2

≤ 2(1 + C2
h∆i)

1/2

√
∆i

√
E

[(
ηh

d,i,l

)2
]

×
(

2T 2K2E

[
max

i+1≤j≤N−1

(
|Ψh,π,0

tj
Ŷ h,n−1,π

tj
|2 + |Ψh,π,0

tj
Ẑh,n−1,π

tj
|2
)]

+E

[(
Ψh,π,0

tN
φ(Xh,π

tN
) +

N−1∑

j=i+1

Ψh,π,0
tj

f(tj , S
h,π
tj

, 0, 0)∆j

)2])1/2

=
2(1 + C2

h∆i)
1/2

√
∆i

√
E

[(
ηh

d,i,l

)2
]

×
(

2T 2K2E

[
max

i+1≤j≤N−1

(∣∣∣∣
K0,j∑

k=1

αh,n−1,π
0,j,k ηh

0,j,k

∣∣∣∣
2

+

D∑

d=1

∣∣∣∣
Kd,j∑

k=1

αh,n−1,π
d,j,k ηh

d,j,k

∣∣∣∣
2)]

+E

[(
Ψh,π,0

tN
φ(Xh,π

tN
) +

N−1∑

j=i+1

Ψh,π,0
tj

f(tj , S
h,π
tj

, 0, 0)∆j

)2])1/2

< ∞,

where we used Hölder’s inequality, the independence of ∆W h,π
i and Xh,π

ti
, the Lipschitz continuity of f

and Assumption A 7. Therefore we can apply Kolmogorov’s law of large numbers, and deduce that

1

L

L∑

λ=1

ληh
d,i,l

∆λWh,π
d,i

∆i

(
λΨh,π,0

tN
φ(λXh,π

tN
) +

N−1∑

j=i+1

λΨh,π,0
tj

f(tj , λSh,π
tj

, λỸ h,n−1,π
tj

, λZ̃h,n−1,π
tj

)∆j

)

−→ E

[
ηh

d,i,l

∆Wh,π
d,i

∆i

(
Ψh,π,0

tN
φ(Xh,π

tN
) +

N−1∑

j=i+1

Ψh,π,0
tj

f(tj , S
h,π
tj

, Ŷ h,n−1,π
tj

, Ẑh,n−1,π
tj

)∆j

)]
P-a.s. (12)
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Finally, we obtain

∣∣∣∣
1

L

L∑

λ=1

ληh
d,i,l

∆λWh,π
d,i

∆i

(
λΨh,π,0

tN
φ(λXh,π

tN
) +

N−1∑

j=i+1

λΨh,π,0
tj

f(tj , λSh,π
tj

, λŶ h,n−1,π
tj

, λẐh,n−1,π
tj

)∆j

)

− 1

L

L∑

λ=1

ληh
d,i,l

∆λWh,π
d,i

∆i

(
λΨh,π,0

tN
φ(λXh,π

tN
) +

N−1∑

j=i+1

λΨh,π,0
tj

f(tj , λSh,π
tj

, λỸ h,n−1,π
tj

, λZ̃h,n−1,π
tj

)∆j

)∣∣∣∣

≤ K

L

L∑

λ=1

∣∣∣∣ ληh
d,i,l

∆λWh,π
d,i

∆i

∣∣∣∣ ·
( N−1∑

j=i+1

λΨh,π,0
tj

∣∣∣ λŶ h,n−1,π
tj

− λỸ h,n−1,π
tj

∣∣∣

+ λΨh,π,0
tj

∣∣∣ λẐh,n−1,π
tj

− λZ̃h,n−1,π
tj

∣∣∣
)

≤ K

L

L∑

λ=1

∣∣∣∣ ληh
d,i,l

∆λWh,π
d,i

∆i

∣∣∣∣ ·
N−1∑

j=i+1

(K0,j∑

k=1

|ληh
0,j,k| · |αh,n−1,π,L

0,j,k − αh,n−1,π
0,j,k |

+

D∑

d=1

Kd,j∑

k=1

|ληh
d,j,k| · |αh,n−1,π,L

d,j,k − αh,n−1,π
d,j,k |

)

≤ max
0≤j≤N−1

(
max

1≤k≤K0,j

|αh,n−1,π,L
0,j,k − αh,n−1,π

0,j,k | + max
1≤d≤D

max
1≤k≤Kd,j

|αh,n−1,π,L
d,j,k − αh,n−1,π

d,j,k |
)

×K

L

L∑

λ=1

∣∣∣∣ ληh
d,i,l

∆λWh,π
d,i

∆i

∣∣∣∣ ·
N−1∑

j=i+1

(K0,j∑

k=1

|ληh
0,j,k| +

D∑

d=1

Kd,j∑

k=1

|ληh
d,j,k|

)
. (13)

The first factor converges to zero due to the induction hypothesis, the second one to a finite number due
to the law of large numbers. Combining (10)–(13) yields the claim.

Consequently, we obtain the P -a.s. convergence of the simulation based estimator:

Theorem 4.5. (Ŷ h,n,π,L
ti

, Ẑh,n,π,L
ti

) converges P -almost surely to (Ŷ h,n,π
ti

, Ẑh,n,π
ti

) as L tends to infinity.

Proof. For any 0 ≤ i ≤ N we obtain

|Ŷ h,n,π,L
ti

− Ŷ h,n,π
ti

| + |Ẑh,n,π,L
ti

− Ẑh,n,π
ti

|

=

∣∣∣∣∣∣

K0,i∑

k=1

(
αh,n,π,L

0,i,k − αh,n,π
0,i,k

)
(Ψh,π,0

ti
)−1ηh

0,i,k

∣∣∣∣∣∣
+

∣∣∣∣∣∣

D∑

d=1

Kd,i∑

k=1

(
αh,n,π,L

d,i,k − αh,n,π
d,i,k

)
(Ψh,π,0

ti
)−1ηh

d,i,k

∣∣∣∣∣∣

≤ max
1≤k≤K0,i

∣∣∣αh,n,π,L
0,i,k − αh,n,π

0,i,k

∣∣∣
K0,i∑

k=1

|p0,i,k(Xh,π
ti

)|

+ max
1≤d≤D

max
1≤k≤Kd,i

∣∣∣αh,n,π,L
d,i,k − αh,n,π

d,i,k

∣∣∣
D∑

d=1

Kd,i∑

k=1

|pd,i,k(Xh,π
ti

)|.

Hence the claim follows in view of Lemma 4.4.

We now summarize the approximation of (Y0, Z0) by the modified forward scheme with importance
sampling in a least-squares Monte Carlo framework:
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The final estimator for (Y0, Z0) is (Ŷ h,n,π,L
t0 , Ẑh,n,π,L

t0 ). Notice that at time t0 = 0 the only choice for
the projection spaces is Λh

d,0 = R for any 0 ≤ d ≤ D. Taking {1} as basis, we observe that

Ŷ h,n,π,L
t0 =

1

L

L∑

λ=1

(
λΨh,π,0

tN
φ(λXh,π

tN
) +

N−1∑

j=0

λΨh,π,0
tj

f(tj , λSh,π
tj

, λŶ h,n−1,π
tj

, λẐh,n−1,π
tj

)∆j

)
,

Ẑh,n,π,L
d,t0

=
1

L

L∑

λ=1

∆λWh,π
d,0

∆0

(
λΨh,π,0

tN
φ(λXh,π

tN
) +

N−1∑

j=1

λΨh,π,0
tj

f(tj , λSh,π
tj

, λŶ h,n−1,π
tj

, λẐh,n−1,π
tj

)∆j

)
.

It is important to see that the averaging here is over dependent paths, because the weights in the definition
of (λŶ h,n−1,π

tj
, λẐh,n−1,π

tj
) depend on the whole collection of sample path. In the very special case f = 0,

one averages, however, over independent paths and Ŷ h,n,π,L
t0 reduces to the usual Monte Carlo estimator

for the expectation of φ(XT ) with importance sampling given by h. In the context of option pricing (with
f = 0) in a complete market Z0 is (up to a linear transformation) the delta of the option. The estimator

Ẑh,n,π,L
d,t0

then corresponds to the likelihood ratio delta with importance sampling. For more information
on this classical situation we refer to Glasserman [13], Ch. 4.6 for importance sampling, and Ch. 7.3 for
the likelihood ratio delta.

We now decompose the error into

|Y0 − Ŷ h,n,π,L
t0 |2 + |Z0 − Ẑh,n,π,L

t0 |2

≤ 3
(
|Y0 − Y h,n,π

t0 |2 + |Z0 − Zh,n,π
t0 |2

)
+ 3

(
|Y h,n,π

t0 − Ŷ h,n,π
t0 |2 + |Zh,n,π

t0 − Ẑh,n,π
t0 |2

)

+3
(
|Ŷ h,n,π

t0 − Ŷ h,n,π,L
t0 |2 + |Ẑh,n,π

t0 − Ẑh,n,π,L
t0 |2

)

The first term captures the error due to the time discretization and the iteration. We know from the
results in Section 3 that this error does not depend on the choice of h. In typical situations it is of
order 1/2 in the mesh size of the time partition and converges exponentially in the number of iterations,
see Corollary 3.2. Although the size of this first error term does not depend on h, we emphasize that
Y h,n,π

t0 is the expectation of an expression, whose variance changes with h. The second term contains
the error stemming from the choice of the basis. Obviously, the weights (6)–(7) in the construction of

(Ŷ h,n,π
t0 , Ẑh,n,π

t0 ) depend on h. Hence, for the second error term, the choice of h influences the error term
itself and the variances in the computation of the weights. By Theorem 4.2 the second term converges
to zero when the basis increases in a way that the projections spaces Λh

d,i exhaust the space L2(Gh,π
i , P ).

Finally, the third term covers the simulation error. Thanks to Theorem 4.5 this error converges to
zero almost surely as the number of path tends to infinity. The objective of the importance sampling
procedure, introduced in this paper, is to reduce this third error by a judicious choice of h. While a
theoretical analysis for the choice of h is beyond the scope of the present paper, we illustrate the success
of this importance sampling by some numerical examples in the next section.

5 Numerical experiments

We now apply the algorithm to the pricing problem of an Asian call option on a single stock in a complete
market in two different models. The terminal condition in this case is of the form

φ

(
ST ,

∫ T

0

Sudu

)
,

i.e.

Xt =

(
St,

∫ t

0

Sudu

)
.
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For approximation purposes we replace it by some discrete-time counterpart. Here we choose the
simplest approximation

φ

(
Sπ

tN
,

N−1∑

j=0

Sπ
tj

∆j

)
.

Corollary 4.4 of Zhang [27] completes the error analysis of Theorem 2.1 and Corollary 3.2: There is a
constant C such that

E

[∣∣∣∣φ
(

ST ,

∫ T

0

Su du

)
− φ

(
Sπ

tN
,
N−1∑

j=0

Sπ
tj

∆j

)∣∣∣∣
2]

≤ C|π|.

The first model which we consider is the standard Black-Scholes model with constant coefficients.
Hence the FBSDE becomes, after the measure transformation,

dSh
t =

[
bSh

t + σSh
t ht

]
dt + σSh

t dWt,

dY h
t =

[
rY h

t +
b − r

σ
Zh

t + Zh
t ht

]
dt + Zh

t dWt,

Sh
0 = s0, Y h

T =

(
1

T

∫ T

0

Sh
t dt − K

)+

.

Moreover, we consider the model introduced by Bergman [6], where we have different interest rates for
lending r and borrowing R, resulting in a nonlinear driver of the backward part:

dSh
t =

[
bSh

t + σSh
t ht

]
dt + σSh

t dWt,

dY h
t =

[
rY h

t +
b − r

σ
Zh

t − (R − r)

(
Y h

t − Zh
t

σ

)−

+ Zh
t ht

]
dt + Zh

t dWt,

Sh
0 = s0, Y h

T =

(
1

T

∫ T

0

Sh
t dt − K

)+

.

We now have to specify the discrete process hti
for the importance sampling. In the following we

concentrate on the variance induced by the terminal condition and neglect the variance stemming from
the driver. Therefore we can make use of the rich literature concerning the choice of h, which is available
in the context of option pricing. We pick out a rather heuristic approach by Glasserman [13] for this task.
Glasserman et al. [12] show that this method is equivalent to another asymptotically optimal approach
for the linear problem.

We restrict ourselves to equidistant time increments, i.e. ∆i = |π|, i = 0, . . . , N − 1, and also hti
will

have the simple structure hti
= hi√

|π|
for hi ∈ R. Hence, using the Euler-Maruyama scheme, we receive

Sh,π
ti+1

= Sh,π
ti

+ bSh,π
ti

|π| + σSh,π
ti

hi√
|π|

|π| + σSh,π
ti

∆Wi = Sh,π
ti

+ bSh,π
ti

|π| + σSh,π
ti

√
|π|(ξi + hi)

for standard normal random variables ξi. Defining ξ = (ξ0, . . . , ξN−1) and h = (h0, . . . , hN−1) we also get

Ψh,π,0
tN

= exp{−h>ξ − 1
2h>h}.

As approximation for the terminal condition we choose φ(Xh,π
tN

) =
(

1
N+1

∑N
i=0 Sh,π

ti
− K

)+

. In abuse of

notation we consider φ as function of ξ so that we can write

E[φ(ξ)1φ(ξ)>0] = E[exp{ln(φ(ξ))}1φ(ξ)>0]

= E

[
exp {ln(φ(ξ + h))} exp

{
−h>ξ − 1

2
h>h

}
1φ(ξ)>0

]

≈ E

[
exp

{
ln(φ(h)) + ∇ ln(φ(h))ξ − h>ξ − 1

2
h>h

}
1φ(ξ)>0

]
.
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Figure 1: Convergence of Ŷ
h,nstop,π,L
t0 in the case of linear BSDE.

If one can find h which satisfies ∇ ln(φ(h)) = h>, we would approximatively end up with the expectation of
a constant random variable independent of ξ and consequently get a low-variance estimator. The condition
∇ ln(φ(h)) = h> is the necessary condition for a local maximum of the function h 7→ ln(φ(h)) − 1

2h>h.
However, maximizing this function is equivalent to maximizing φ(h) exp(− 1

2h>h). This can be done
numerically as described by Glasserman [13].

In our simulations we use 20 time steps and a function basis of bivariate monomials xα
1 , xβ

2 for 0 ≤
α, β ≤ 3 for every point in the time grid. That is we choose K0,i = K1,i = 16 and p0,i(·) = p1,i(·) for
i = 1, . . . , N −1. Choosing the same basis for the Y - and the Z-component, we can use the same matrices
for several computations thereby reducing considerably the computation time. The Picard-iteration is
executed until the difference of two subsequent estimators of the initial price is smaller than the stop
condition 0.001 i.e. |Ŷ h,n,π,L

t0 − Ŷ h,n−1,π,L
t0 | < 0.001. In the option pricing problems of this section the

number of executed Picard iterations is rather low. There are no more than 4-6 iterations necessary to
get this accuracy.

The following parameters are used for the simulation procedure:

b σ r T s0 K
0.06 0.2 0.1 1 100 100

This example was also examined by Gobet et al. [14] without variance reduction in the context of the
backward scheme. As reference value Lapeyre and Temam [21] give 7.04 for the linear BSDE.

We calculate the estimators for the initial price for a number of simulations from 500 up to 50.000 and
repeat this procedure 100 times, thereby examining the convergence behavior with respect to the number
of simulations. Figure 1 shows the empirical mean plus/minus two empirical standard deviations of the

100 independent repetitions for the estimated initial value Ŷ
h,nstop,π,L
t0 in the Black-Scholes model using

the crude least-squares Monte Carlo method and the variance reduced algorithm respectively. We see
that importance sampling reduces the empirical variance roughly by a factor of 11, which demonstrates
the success of the variance reduction. The estimation of the price is at approximately 7.00 slightly below
the reference value of 7.04. This error is mainly due to the crude time discretization of the average. It
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Figure 2: Convergence of Ŷ
h,nstop,π,L
t0 in the case of nonlinear BSDE.

can be mended by adding more time steps or applying more sophisticated discretization schemes for the
average as suggested by Lapeyre and Temam [21] or Jourdain and Sbai [17].

We get a similar result concerning the empirical variance, see Figure 2, in the case of different interest
rates for lending and borrowing. Here, we use R = 0.15, r = 0.1 and all the other parameters stay the
same. This method is even more effective in the out-of-the-money case. We illustrate this with Figure
3, where we again take the model with the nonlinear BSDE but now with a higher strike (K = 120). In
this case we receive an empirical variance reduction by a factor of 36 in average.

Overall we may conclude that in the test examples on Asian option pricing the introduction of im-
portance sampling drastically increases the efficiency of the Picard-type scheme for BSDEs.

A Proof of Lemma 3.5

Define yti
:= y

(1)
ti

− y
(2)
ti

, zti
:= z

(1)
ti

− z
(2)
ti

and ∆fi := f(ti, S
h,π
ti

, y
(1)
ti

, z
(1)
ti

) − f(ti, S
h,π
ti

, y
(2)
ti

, z
(2)
ti

). Since

Ψh,π,0
tj

is an {Ftj
}-martingale, we can rewrite, noting (1) and (2),

Ψh,π,0
ti

Y
(ι)
ti

= E

[
Ψh,π,0

tN

(
φ(Xh,π

tN
) +

N−1∑

j=i+1

f(tj , S
h,π
tj

, y
(ι)
tj

, z
(ι)
tj

)∆j

)∣∣∣∣Fti

]

+E
[
Ψh,π,0

tN

∣∣Fti

]
f(ti, S

h,π
ti

, y
(ι)
ti

, z
(ι)
ti

)∆i

= E

[
Ψh,π,0

ti+1
Y

(ι)
ti+1

∣∣∣∣Fti

]
+ Ψh,π,0

ti
f(ti, S

h,π
ti

, y
(ι)
ti

, z
(ι)
ti

)∆i

and

Ψh,π,0
ti

Z
(ι)
d,ti

= E

[
Ψh,π,0

ti+1

∆Wh,π
d,i

∆i
Y

(ι)
ti+1

∣∣∣∣Fti

]
.
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Figure 3: Convergence of Ŷ
h,nstop,π,L
t0 in the case of nonlinear BSDE and out of the money option.

In a first step we show that

N−1∑

i=0

λiE
[
|Ψh,π,0

ti
Z

(1)
d,ti

− Ψh,π,0
ti

Z
(2)
d,ti

|2
]
∆i

≤ 2(γ + C2
h)

N−1∑

i=0

λiE
[
|Ψh,π,0

ti
Y

(1)
ti

− Ψh,π,0
ti

Y
(2)
ti

|2
]
∆i +

2(T + 1)K2

γ

N−1∑

i=0

λiE
[
|Ψh,π,0

ti
zti

|2
]
∆i

+
2(T + 1)K2

Tγ

N−1∑

i=0

λiE
[
|Ψh,π,0

ti
yti

|2
]
∆i. (14)

We have

Ψh,π,0
ti

Z
(1)
d,ti

− Ψh,π,0
ti

Z
(2)
d,ti

= E

[
∆Wd,i + hti

∆i

∆i

(
Ψh,π,0

ti+1
Y

(1)
ti+1

− Ψh,π,0
ti+1

Y
(2)
ti+1

) ∣∣∣∣Fti

]

= E

[
∆Wd,i

∆i

(
Ψh,π,0

ti+1
Y

(1)
ti+1

− Ψh,π,0
ti+1

Y
(2)
ti+1

− E[Ψh,π,0
ti+1

Y
(1)
ti+1

− Ψh,π,0
ti+1

Y
(2)
ti+1

|Fti
]
) ∣∣∣∣Fti

]

+E

[
hti

(
Ψh,π,0

ti+1
Y

(1)
ti+1

− Ψh,π,0
ti+1

Y
(2)
ti+1

) ∣∣∣∣Fti

]

≤
√

1

∆i
E

[(
Ψh,π,0

ti+1
Y

(1)
ti+1

− Ψh,π,0
ti+1

Y
(2)
ti+1

− E[Ψh,π,0
ti+1

Y
(1)
ti+1

− Ψh,π,0
ti+1

Y
(2)
ti+1

|Fti
]
)2
∣∣∣∣Fti

]1/2

+E

[
hti

(
Ψh,π,0

ti+1
Y

(1)
ti+1

− Ψh,π,0
ti+1

Y
(2)
ti+1

) ∣∣∣∣Fti

]
.
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Hence,

E
[
|Ψh,π,0

ti
Z

(1)
d,ti

− Ψh,π,0
ti

Z
(2)
d,ti

|2
]

≤ 2

∆i
E
[
|Ψh,π,0

ti+1
Y

(1)
ti+1

− Ψh,π,0
ti+1

Y
(2)
ti+1

|2 − E[Ψh,π,0
ti+1

Y
(1)
ti+1

− Ψh,π,0
ti+1

Y
(2)
ti+1

|Fti
]2
]

+2C2
hE
[
|Ψh,π,0

ti+1
Y

(1)
ti+1

− Ψh,π,0
ti+1

Y
(2)
ti+1

|2
]

=
2

∆i
E
[
|Ψh,π,0

ti+1
Y

(1)
ti+1

− Ψh,π,0
ti+1

Y
(2)
ti+1

|2 − |Ψh,π,0
ti

Y
(1)
ti

− Ψh,π,0
ti

Y
(2)
ti

− Ψh,π,0
ti

∆fi∆i|2
]

+2C2
hE
[
|Ψh,π,0

ti+1
Y

(1)
ti+1

− Ψh,π,0
ti+1

Y
(2)
ti+1

|2
]

≤ 2

∆i
E
[
|Ψh,π,0

ti+1
Y

(1)
ti+1

− Ψh,π,0
ti+1

Y
(2)
ti+1

|2 − |Ψh,π,0
ti

Y
(1)
ti

− Ψh,π,0
ti

Y
(2)
ti

|2
]

+4E
[
(Ψh,π,0

ti
Y

(1)
ti

− Ψh,π,0
ti

Y
(2)
ti

)Ψh,π,0
ti

∆fi

]
+ 2C2

hE
[
|Ψh,π,0

ti+1
Y

(1)
ti+1

− Ψh,π,0
ti+1

Y
(2)
ti+1

|2
]
.

Multiplying with λi∆i and summing up from 0 to N − 1 yields for γ > 0:

N−1∑

i=0

λiE
[
|Ψh,π,0

ti
Z

(1)
d,ti

− Ψh,π,0
ti

Z
(2)
d,ti

|2
]
∆i + 2λ0E[|Y (1)

t0 − Y
(2)
t0 |2]

≤ 2λNE
[
|Ψh,π,0

tN
Y

(1)
tN

− Ψh,π,0
tN

Y
(2)
tN

|2
]

+ 4

N−1∑

i=0

λiE
[
(Ψh,π,0

ti
Y

(1)
ti

− Ψh,π,0
ti

Y
(2)
ti

)Ψh,π,0
ti

∆fi

]
∆i

+2C2
h

N−1∑

i=0

λiE
[
|Ψh,π,0

ti+1
Y

(1)
ti+1

− Ψh,π,0
ti+1

Y
(2)
ti+1

|2
]
∆i

≤ 2γ

N−1∑

i=0

λiE
[
|Ψh,π,0

ti
Y

(1)
ti

− Ψh,π,0
ti

Y
(2)
ti

|2
]
∆i + 2

K2

γ

N−1∑

i=0

λiE
[
(|Ψh,π,0

ti
yti

| + |Ψh,π,0
ti

zti
|)2
]
∆i

+2C2
h

N−1∑

i=0

λiE
[
|Ψh,π,0

ti
Y

(1)
ti

− Ψh,π,0
ti

Y
(2)
ti

|2
]
∆i

≤ 2(γ + C2
h)

N−1∑

i=0

λiE
[
|Ψh,π,0

ti
Y

(1)
ti

− Ψh,π,0
ti

Y
(2)
ti

|2
]
∆i

+2
(1 + T )K2

γ

N−1∑

i=0

λiE
[
|Ψh,π,0

ti
zti

|2
]
∆i + 2

(1 + T )K2

Tγ

N−1∑

i=0

λiE
[
|Ψh,π,0

ti
yti

|2
]
∆i,

where we used Young’s inequality and Y
(1)
tN

= Y
(2)
tN

.
Secondly, we shall derive

max
0≤i≤N

λiE
[
|Ψh,π,0

ti
Y

(1)
ti

− Ψh,π,0
ti

Y
(2)
ti

|2
]

≤ K2(T + 1)(|π| + 1

Γ
)

(
N−1∑

i=0

λiE
[
|Ψh,π,0

ti
zti

|2
]
∆i +

1

T

N−1∑

i=0

λiE
[
|Ψh,π,0

ti
yti

|2
]
∆i

)
. (15)
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To this end we estimate

E
[
|Ψh,π,0

ti
Y

(1)
ti

− Ψh,π,0
ti

Y
(2)
ti

|2
]

≤ (1 + Γ∆i)E
[
|Ψh,π,0

ti+1
Y

(1)
ti+1

− Ψh,π,0
ti+1

Y
(2)
ti+1

|2
]

+ (∆i +
1

Γ
)E
[
|Ψh,π,0

ti
∆fi|2

]
∆i

≤ (1 + Γ∆i)E
[
|Ψh,π,0

ti+1
Y

(1)
ti+1

− Ψh,π,0
ti+1

Y
(2)
ti+1

|2
]

+ (|π| + 1

Γ
)K2(T + 1)E

[
|Ψh,π,0

ti
zti

|2
]
∆i

+(|π| + 1

Γ
)K2 (T + 1)

T
E
[
|Ψh,π,0

ti
yti

|2
]
∆i.

Multiplying with λi, an iterated application of the above inequality yields (15).
Finally, we put (14)–(15) together, and, noting that Z is D-dimensional, we deduce

max
0≤i≤N

λiE
[
|Ψh,π,0

ti
Y

(1)
ti

− Ψh,π,0
ti

Y
(2)
ti

|2
]

+

N−1∑

i=0

λiE
[
|Ψh,π,0

ti
Z

(1)
ti

− Ψh,π,0
ti

Z
(2)
ti

|2
]
∆i

≤ K2(T + 1)(|π| + 1

Γ
)

(
N−1∑

i=0

λiE
[
|Ψh,π,0

ti
zti

|2
]
∆i +

1

T

N−1∑

i=0

λiE
[
|Ψh,π,0

ti
yti

|2
]
∆i

)

+2D(γ + C2
h)

N−1∑

i=0

λiE
[
|Ψh,π,0

ti
Y

(1)
ti

− Ψh,π,0
ti

Y
(2)
ti

|2
]
∆i +

2D(T + 1)K2

γ

N−1∑

i=0

λiE
[
|Ψh,π,0

ti
zti

|2
]
∆i

+
2D(T + 1)K2

Tγ

N−1∑

i=0

λiE
[
|Ψh,π,0

ti
yti

|2
]
∆i

≤ K2(T + 1)

(
(|π| + 1

Γ
)(2D(γ + C2

h)T + 1) + 2
D

γ

)

×
(

N−1∑

i=0

λiE
[
|Ψh,π,0

ti
zti

|2
]
∆i +

1

T

N−1∑

i=0

λiE
[
|Ψh,π,0

ti
yti

|2
]
∆i

)
.
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[24] Ökten, G., Salta, E., Göncü, A.: On pricing discrete barrier options using conditional expectation
and importance sampling Monte Carlo. Mathematical and Computer Modelling 47 (2008), 484-494.

[25] Schoenmakers, J. G. M., Heemink, A. W., Kloeden, P. E., Ponnambalam, K.: Variance reduction
for Monte Carlo simulation of stochastic environmental models. Applied Mathematical Modelling 26

No. 8 (2002), 785-795.

[26] Shirley, P., Edwards, D., Boulos, S.: Monte Carlo and quasi-Monte Carlo methods for computer
graphics. In Heinrich, S., Keller, A., Niederreiter, H. (Eds.), Monte Carlo and Quasi-Monte Carlo
2006, Selected papers based on the presentations at the 7th international conference ’Monte Carlo and
quasi-Monte Carlo methods in scientific computing’, Ulm, Germany, August 14-18, 2006, Springer,
Berlin (2007), 167-177.

[27] Zhang, J.: A numerical scheme for BSDEs. The Annals of Applied Probability 14 No. 1 (2004),
459-488.

25


