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Abstract

This paper presents a simple rational expectations model of in-
tertemporal asset pricing. It shows that heterogeneous risk aversion
of investors is likely to generate declining aggregate relative risk aver-
sion. This leads to predictability of asset returns and high and persis-
tent volatility. Stock market crashes may be observed if relative risk
aversion differs strongly across investors. Then aggregate relative risk
aversion may sharply increase given a small impairment in fundamen-
tals so that asset prices may strongly decline. Changes in aggregate
relative risk aversion may also lead to resistance and support levels as
used in technical analysis. For numerical illustration we propose an
analytical asset price formula.

JEL classification: G12

Keywords: Aggregate relative risk aversion, Equilibrium asset price
processes, Excess Volatility, Return predictability, Stock market crashes
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Empirical research suggests that returns of broad based market indices as
the S&P 500 are predictable. This seems to contradict the efficient market
hypothesis. While it is controversial whether the predictability in returns is
economically significant - especially concerns related to data-snooping are
often expressed - studies on return volatility provide clear evidence against
constant volatility and therefore against the geometric Brownian motion of
asset prices. An extensive literature on excess volatility which was started
by Shiller (1981) and LeRoy and Porter (1981) claims that the volatility of
asset prices is too high to be consistent with classical asset pricing models.
Moreover, the occurrence of stock market crashes without any significant
news and the widespread use of technical analysis are often claimed to be
incompatible with rational, efficient markets.1 To explain these findings
many researchers argue in favor of investor irrationality and new behav-
ioral postulates. Other explanations rely on market imperfections such as
information costs which may explain herding and positive feedback trading.

Neither ”irrational” behavior nor market imperfections are needed to ex-
plain these characteristics. In this paper we show that a simple rational
expectations model based on a perfect capital market can explain these as-
set price characteristics if aggregate relative risk aversion is declining. If
there exists a representative investor, then her relative risk aversion would
equal aggregate relative risk aversion (Rubinstein, 1974). In this paper no
representative investor exists. Then aggregate relative risk aversion depends
on the equilibrium allocation and the relative risk aversion levels of the var-
ious investors. The level and variation of aggregate relative risk aversion is
controversial. Defining aggregate relative risk aversion as the negative elas-
ticity of the stochastic discount factor with respect to the asset price, recent
empirical studies estimate its level using option prices. The empirical results
documented in Ait-Sahalia and Lo (2000), Jackwerth (2000) and Rosenberg
and Engle (2002) suggest extreme bounds for aggregate relative risk aver-
sion. Ait-Sahalia and Lo (2000), for example, document levels up to 60 for
S&P 500 index values about 15 percent below the current future price. For
the lower bound, the work by Jackwerth suggests even negative aggregate
risk aversion, that is risk loving.2 But little is known on the level of aggre-
gate relative risk aversion for index values more than 15 percent above or

1For an overview on return predictability and return volatility as well as a discussion of
the methodological problems, see Campbell et. al. (1997) and Cochrane (2001). Ghysels
et. al. (1996) provide an extensive overview on the characteristics of return volatility.
Shiller (2000) provides evidence that stock market crashes may occur without significant
news. For a recent study on the effectiveness of technical analysis see Lo et. al. (2000).

2Assuming constant aggregate relative risk aversion, Bliss and Panigirtzoglou (2003)
estimate aggregate relative risk aversion levels between 1.97 and 9.52. They find that risk
aversion declines with the forecast horizon and with the level of volatility. Analyzing the
cross section of industry portfolios Dittmar (2002) also provides evidence against constant
aggregate relative risk aversion.
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below the current future price and the empirical estimates are subject to
various methodological concerns (see Barone-Adesi et. al. 2004, Bliss and
Panigirtzoglou, 2003 and Hentschel, 2003). Also there is little consensus on
risk aversion of individual investors. Most researchers agree, however, that
investors display declining absolute risk aversion and that their risk aver-
sion levels differ. The first important result in this paper is that under these
conditions aggregate relative risk aversion is likely to decline. Therefore this
paper analyzes asset price processes under declining aggregate relative risk
aversion.

To analyze the effects of declining aggregate relative risk aversion on the
characteristics of the market portfolio return, we consider a model similar
to that of Brennan and Xia (2002) in which the dividend on the market
portfolio is governed by a geometric Brownian motion and the price of the
market portfolio equals the present value of these dividends. The price de-
pends on aggregate relative risk aversion. Since the dividend is exogenously
given, but prices are not, we prefer to define aggregate relative risk aversion
as the negative elasticity of the stochastic discount factor with respect to
the dividend. In an intertemporal model this allows us to characterize risk
preferences independently of endogenous asset prices. If aggregate relative
risk aversion is constant, then the market return is identically and indepen-
dently distributed ruling out return predictability, excess volatility and stock
market crashes. If, however, aggregate relative risk aversion declines with
increasing concurrent dividend, then an increase in the dividend leads to
an overproportional price increase because the risk premium declines. Sim-
ilarly, if the dividend declines, then the stock price declines overproportion-
ally because the risk premium increases. This implies excess volatility and
predictability of market returns. If aggregate relative risk aversion declines
rapidly in some dividend range, then the risk premium declines strongly in
this range so that the price of the market portfolio increases rapidly given
a small increase in dividends. Conversely, a small decline in dividends then
leads to a strong price decline, similar to a crash. If the dividend happens
to first increase and then to decline, then we may observe a stock market
movement which resembles a bubble that bursts. In the language of technical
analysis, the lower bound of this critical dividend range may be interpreted
as the support level and the upper bound as the resistance level. We show
that aggregate relative risk aversion may strongly decline with increasing
dividend if relative risk aversion levels differ strongly across investors.

These important results are new as shown by a brief discussion of the theoret-
ical asset pricing literature. For finite horizon models it is known from Bick
(1990) and Franke et. al. (1999) that if the price of the market portfolio is
governed by a geometric Brownian motion as in the Black and Scholes (1973)
model, then aggregate relative risk aversion is constant. Bick (1990) and He
and Leland (1993) derive characteristics of asset price processes which are
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consistent with an equilibrium driven by a representative investor. They
show that such an equilibrium rules out widely used stochastic processes
such as the Ornstein-Uhlenbeck process and constant elasticity of variance
for market portfolio returns.

Many asset pricing models still assume constant aggregate relative risk aver-
sion. Among the few papers which analyze the impact of aggregate rela-
tive risk aversion on return characteristics is Stapleton and Subrahmanyam
(1990). They assume that the cash flow process is governed by a geomet-
ric [arithmetic] Brownian motion. They show that if aggregate relative risk
aversion [absolute risk aversion] is constant, the forward price is governed by
a geometric [arithmetic] Brownian motion. Franke et. al. (1999) show that
option prices are higher for declining than for constant aggregate relative
risk aversion and that asset returns are serially correlated in case of declining
aggregate relative risk aversion. Neither Franke et. al. (1999) nor Stapleton
and Subrahmanyam (1990) give a characterization of the volatility function
or the autocorrelation function. Also, they do not provide any quantification
of the effects of aggregate relative risk aversion on asset price process. Re-
cent papers have analyzed the implications of heterogeneous preferences on
aggregate relative risk aversion. Besides of Benninga and Mayshar (2000),
Chan and Kogan (2002) analyze a continuous time-economy with a contin-
uum of agents who have ”catching up with the Joneses” preferences and
differ in the level of constant relative risk aversion. Although they do not
provide an analytical solution for asset prices, they show that this kind of
heterogeneity can generate mean reversion in asset returns. None of these
papers, however, provides any rationale for stock market crashes.

Related to this paper is the research on the effect of learning on return
characteristics. Brennan and Xia (2002) assume that the representative in-
vestor cannot observe the growth rate of dividends but estimates it from
realized data. Their model can explain high volatility of stock prices. John-
son (2002) builds on their results to show that stochastic expected growth
rates of the dividend process lead to momentum. Brennan et. al. (2003)
and Brennan and Xia (2003) also work within a similar framework. They
emphasize the importance of a time-varying investment opportunity set to
explain the predictability of asset returns.3

Summarizing, we still lack a sound understanding of asset return characteris-
tics. This lack of knowledge exists even in the presence of the vast empirical
literature on asset returns, part of which has been criticized by Ang and Liu
(2004) for internal inconsistencies in asset return specifications.

The remainder of the paper is organized as follows. In Section 1 the model is
introduced and declining aggregate relative risk aversion is shown to be the

3See also Timmermann (1993), David (1997), Veronesi (2000) and Pastor and Veronesi
(2003) for the effect of learning on asset pricing.
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normal case. Moreover, the general relationship between aggregate relative
risk aversion, the dividend and the price process of the market portfolio is
derived. In Section 2, predictability of excess returns and excess volatility are
shown. Section 3 discusses conditions for stock market crashes. In section 4
an analytic formula for the price of the market portfolio is presented together
with simulations illustrating the previous results. Section 5 concludes.

1 The Economic Setting

Our aim is to analyze a simple model of investors preserving essential plau-
sible properties of a rational expectations equilibrium. Since asset pricing
depends on aggregate relative risk aversion, we first motivate our assump-
tion that aggregate relative risk aversion is declining. Then we analyze the
implications on asset pricing. We consider a pure exchange economy with
a perfect and complete market. All agents have homogeneous and rational
expectations, but different utility functions.

1.1 Investor Heterogeneity and Aggregate Risk Aversion

In this section we argue that declining aggregate relative risk aversion (RRA)
is the normal case. Aggregate RRA is the market’s relative risk aversion as
implied by the stochastic discount factor (pricing kernel) by which claims
to be paid at a given future date are valued in the capital market.4 In
the case of risk neutrality the stochastic discount factor is constant. With
risk aversion, the stochastic discount factor is declining in some aggregate
variable like wealth or aggregate consumption. The negative elasticity of
the discount factor with respect to this variable defines aggregate RRA.
This variable is given in our model by the dividend of the market portfolio.

Aggregate RRA depends on investors’ RRA. There is little disagreement
that investors display declining absolute risk aversion. But it is controver-
sial whether they display declining RRA. While it is therefore difficult to
justify declining aggregate RRA in a representative investor economy (Ru-
binstein, 1974), we will show that declining aggregate RRA is likely to be
observed if a representative investor does not exist. Consider the following
setup. At each date τ , aggregate consumption equals aggregate dividend
Dτ . Each agent, indexed by i = 1, . . . , n, has a time-additive von Neumann-
Morgenstern utility function. She has some initial endowment and trades
in a perfect, complete market. She may consume at each future date. As

4Since in this paper we consider only the characteristics of the market portfolio, we
do not differentiate between the pricing kernel and the asset specific pricing kernel. For a
discussion, see Camara (2003).
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shown by Wachter (2002), in a complete market an investor with time-
additive utility over consumption allocates wealth as if she saves for every
consumption date separately. Thus, the pricing of date τ1-claims can be an-
alyzed independently of that of τ2-claims subject to the usual no-arbitrage
requirement. At any date t, each agent can trade claims on aggregate con-
sumption of date τ, τ > t. Let xi(Dτ ) denote the consumption of agent i
at date τ as a function of aggregate consumption Dτ and αi(Dτ ) = xi/Dτ

her share of consumption. Then
∑

i αi(Dτ ) = 1 for every level of aggregate
consumption. As shown by Benninga and Mayshar (2000), in equilibrium
aggregate RRA ηM (Dτ ) is related to the investors’ RRA by the harmonic
mean,

1/ηM (Dτ ) =
∑

i

(1/ηi(xi)) αi(Dτ ). (1)

ηi(xi) is agent i’s RRA given her consumption xi. In order to find out
whether aggregate RRA declines in aggregate consumption Dτ , we differen-
tiate equation (1) with respect to Dτ . As shown in the appendix, we obtain
the following result.

Lemma 1 The growth rate of aggregate RRA is

η′M (Dτ )
ηM (Dτ )

=
∑

i

η′i(xi)
ηi(xi)

[
αi(Dτ )
ηi(xi)

ηM (Dτ )
]2

− [ηM (Dτ )]2

Dτ

∑
i

αi(Dτ )
[

1
ηi(xi)

− 1
ηM (Dτ )

]2

. (2)

The lemma shows that in equilibrium the growth rate of aggregate RRA is
the difference between two terms, the first being the sum of weighted growth
rates of individual RRA, the second being a pseudo-variance of the inverse
individual levels of RRA. If every investor has a positive share of consump-
tion αi(Dτ ), then, apart from [ηM (Dτ )]2/Dτ , the last term in equation (2)
has the properties of a variance term. The more heterogeneous agents are in
their preferences and, hence, in their equilibrium levels of RRA, the higher is
this pseudo-variance. It depends on the equilibrium allocation of consump-
tion since the shares αi(Dτ ) and the individual RRA ηi(xi) are endogenous.

Hence, as already shown by Benninga and Mayshar (2000), aggregate RRA
is declining if every agent has constant RRA, i.e. if η′i(xi) = 0. Now
suppose η′i(xi) �= 0. Then the first term on the right hand side of equa-
tion (2) multiplies the individual RRA growth rate η′i(xi)/ηi(xi) by z2

i ≡
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[αi(Dτ )ηM (Dτ )/ηi(xi)]2. Note that
∑

i zi = 1, by equation (1). Hence if
there are many investors, each having a positive consumption share, then
the average zi will be very small. This holds, a fortiori, for z2

i . Therefore if
there are investors with increasing, with constant and with declining RRA,
then the first term on the right hand side is likely to be close to zero while
the positive second term is subtracted. The second term tends to be higher,
the more heterogeneous investor preferences are.5 Since this heterogeneity
appears to be strong in reality, we conclude that aggregate RRA is likely to
decline.

The intuition for this result can be obtained from the following reasoning.
Given an optimal allocation of claims, a highly risk averse investor i tends
to buy claims xi(Dτ ) which increase only little with aggregate dividend
Dτ . Her demand curve xi(Dτ ) is rather flat. Hence her share αi(Dτ ) =
xi(Dτ )/Dτ tends to be high [low] when Dτ is low [high]. The opposite is
true of an investor with low RRA. Therefore in the low dividend states the
highly risk averse investors dominate the market so that aggregate RRA
turns out to be high. In the high dividend states low risk averse investors
dominate the market so that aggregate RRA turns out to be low. Thus,
aggregate RRA tends to decline with increasing dividend. Hence, we regard
declining aggregate RRA as the normal case and will analyze asset pricing
for this case.

1.2 The Pricing of the Market Portfolio

We investigate the pricing of the market portfolio in a perfect and complete
capital market. We consider a continuous time economy with an infinite
horizon. Since we are interested in the pricing impact of declining aggregate
RRA, we take the instantaneous risk-free rate rf as exogenously given and
non-random.6 The market portfolio pays an exogenously given dividend
stream which is governed by a geometric Brownian motion

dDt = µDDtdt + σDDtdWt , 0 � t < ∞, (3)

where the instantaneous drift µD and the instantaneous volatility σD are
assumed constant. Wt is a one-dimensional standard Brownian motion and
the initial dividend D0 is positive. This represents a simple setting with the

5The second term approaches zero if one investor buys a very large fraction of the ag-
gregate dividend and the other investors buy very little. This can happen if the aggregate
dividend is very low or very high and marginal utility of consumption of the first investor
relative to that of every other investor goes to infinity for very low resp. very high levels
of consumption.

6The impact of heterogeneous time-preferences of investors on the term structure of
interest rates is analyzed in Lengwiler (2004), for example.
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dividend being the only risk factor. The price of the market portfolio at
date t, St, is the present value of all future dividends

St = E

 ∞∫
t

exp (−rf (s − t)) DsΦt,sds

∣∣∣∣∣∣Dt

 . (4)

This price is finite given a sufficiently high risk-free rate and aggregate risk
aversion. exp (−rf (s − t)) Φt,s is the date t-stochastic discount factor for
claims contingent on some state at date s. In an arbitrage-free, complete
market this function is unique. Technically, Φ0,t is a martingale and Φt,s =
Φ0,s/Φ0,t. Since the dividend is the only risk factor in the market, Φ0,t can
be characterized by

dΦ0,t = −ηΦ,D
t σDΦ0,tdWt ,

Φ0,0 = 1,

where aggregate RRA is given by ηΦ,D
t , the negative elasticity of the sto-

chastic discount factor for claims to be paid at date t with respect to the
dividend Dt.7 In this setting the asset price St can be characterized by the
following stochastic differential equation

dSt = ηΦ,D
t ηS,D

t σ2
DSt − Dt + rfSt︸ ︷︷ ︸

=µS(St)St

dt + ηS,D
t σDSt︸ ︷︷ ︸

=ΣS(St)St

dWt. (5)

µS (St) denotes the instantaneous drift which equals the expected instanta-
neous excess return plus the risk-free rate rf . ΣS (St) denotes the instan-
taneous volatility. Both, volatility and drift depend in general on the asset
price St and time t. For simplicity of notation we suppress the time index.
ηS,D

t denotes the elasticity of the asset price St with respect to the dividend
Dt.

2 Predictability of Excess Returns and Excess Vola-
tility

We begin the analysis of return characteristics by looking at the elasticity
of the asset price with respect to the dividend. If this elasticity is equal

7One way to interpret this stochastic discount factor is to assume that at each date
aggregate consumption equals the aggregate dividend. Then the stochastic discount factor
mirrors aggregate marginal utility of consumption. Alternatively, investors may use the
aggregate dividend as an index of welfare with a higher index lowering the stochastic
discount factor.
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to 1, then the asset price also follows a geometric Brownian motion since
the dividend is governed by a geometric Brownian motion. If the elasticity
is higher than 1, then the spot price overreacts compared to a geometric
Brownian motion. The following proposition establishes the relationship
between the overreaction and aggregate RRA.

Proposition 1 (Overreaction)Assume that at each date aggregate RRA
is declining in the dividend and that the dividend is governed by a geometric
Brownian motion with constant instantaneous volatility and constant in-
stantaneous drift. Then the elasticity of the asset price with respect to the
dividend is higher than 1.8

This proposition is proved in the appendix. To get the intuition for the
overreaction, think about aggregate RRA in terms of RRA of a represen-
tative investor. A representative investor with decreasing RRA requires a
lower excess return for the same risk, the wealthier he is, i.e. the higher the
dividend is. Compared to an investor with constant RRA, her required risk
premium decreases, the wealthier she is. Hence, the price she is willing to
pay for the asset increases with increasing dividend more than under con-
stant RRA. Thus, with declining aggregate RRA an increase in the dividend
induces a decline in the required risk premium which reinforces the purely
fundamental increase of the asset price so that the asset price overreacts
compared to constant aggregate RRA. Similarly, a decline in the dividend
induces an overproportional decline in the asset price.

To draw conclusions about the behavior of excess returns we need to derive
the behavior of the total return index (performance index) Vt. Since the total
return index includes the reinvested dividend payments, its return minus the
risk-free rate is the excess return that we are interested in,

dVt

Vt
− rfdt =

dSt

St
+

Dt

St
dt − rfdt.

Note that Vt = αtSt with αt being independent of Dt. Therefore ∂ ln Vt
∂ lnDt

≡
ηV,D

t = ηS,D
t ≡ ∂ lnSt

∂ ln Dt
. This implies that Proposition 1 holds equally for the

elasticities ηS,D
t and ηV,D

t . Hence, declining aggregate RRA implies that
the total return index also overreacts. This overreaction translates into
an increase in the instantaneous volatility of returns as the instantaneous
volatility of the total return index is the product ΣV (St) = ηV,D

t σD. This
equals the instantaneous volatility of stock returns ΣS(St) = ηS,D

t σD. The
following proposition establishes that declining aggregate RRA also raises

8The corresponding result that asset returns underreact if aggregate RRA is increasing
is shown in the appendix.
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the variance of asset returns over finite periods. Hence, declining aggregate
RRA explains the well documented excess volatility.

Proposition 2 (Excess Volatility) Suppose that at each date aggregate
RRA is declining in the dividend and that the dividend is governed by a geo-
metric Brownian motion with constant instantaneous volatility and constant
instantaneous drift. Then the conditional (τ > t = θ) and the unconditional
(τ > t > θ) variance of the total return index exceed the dividend variance,
i.e.

V ar ( ln Vτ − ln Vt|Dθ) > V ar ( ln Dτ − lnDt|Dθ) . (6)

Proposition 2 is proved in the appendix.9 The conditional variance V ar(ln Vτ |Dt)
exceeds the dividend variance V ar(ln Dτ |Dt) because of overreaction. The
same is true of the unconditional variance. Therefore excess volatility is
obtained.

We have seen that asset returns under declining aggregate RRA overreact
compared to constant aggregate RRA. Does the overreaction render asset
returns predictable? First, notice that the instantaneous drift of the total
return index µV (St) equals the instantaneous drift of stock returns plus the
dividend yield. Hence the instantaneous Sharpe ratio

µV (St) − rf

ΣV (St)
=

µS (St) + Dt
St

− rf

ΣS (St)
= ηΦ,D

t σD

depends negatively on Dt for declining aggregate RRA, ηΦ,D
t . Therefore the

Sharpe ratio can easily be predicted knowing the current dividend. The pre-
dictability of the Sharpe ratio would directly translate into predictability of
excess returns if the instantaneous return volatility ΣV (St) was non-random.
But changes in volatility might disturb this relationship, the exception being
that the volatility does not increase with the dividend.

Instead of using the fundamental variable, in our model the dividend, for
forecasting excess returns, many forecasts are based on past excess re-
turns. This is successful if excess returns are either positively or nega-
tively autocorrelated. To analyze the serial return dependence, we con-
sider the covariance between the excess return over the time span [t, τ ], i.e.
CERt,τ ≡ ∫ τ

t
dVs
Vs

− ∫ τ
t rfds, and the instantaneous expected excess return

at time τ , i.e. µV (τ) − rf .10

9Proposition 2 assumes declining aggregate RRA. It does not hold in an analogous
manner for increasing aggregate RRA.

10For a similar analysis see Johnson (2002).
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Proposition 3 (Predictability of asset returns) Suppose that at each
date aggregate RRA is declining in the dividend and that the dividend is gov-
erned by a geometric Brownian motion with constant instantaneous volatility
and constant instantaneous drift. Then, the cumulated excess return and the
instantaneous expected excess return are negatively correlated if the volatility
of excess returns does not increase with the dividend.11

This proposition is proved in the appendix.12 It shows that excess returns are
negatively autocorrelated if aggregate RRA is declining, provided that the
volatility of excess returns does not increase with the dividend. The intuition
for the negative autocorrelation is that if past returns have been strongly
positive, investors are better off implying lower aggregate RRA. Hence, the
required risk premium decreases which lowers future expected excess returns.
This leads to negative autocorrelation. However, Proposition 3 reveals that
autocorrelation might be positive if the volatility of excess returns strongly
increases with the dividend so that the required risk premium increases, too.
This will be illustrated later in our simulations. To sum up, predictability
of asset returns may be caused by declining aggregate RRA.

3 Stock Market Crashes

In this section we analyze aggregate RRA in more detail and provide an
explanation for stock market crashes in our simple rational expectations
model. Often a stock market crash like that at the beginning of this decade
is associated with a previous price bubble. Such a bubble is created by a
strong stock price increase which is not driven by a strong improvement in
fundamentals, and a subsequent strong price decline aligning the stock price
again to fundamentals. It is difficult to explain bubbles in a rational expec-
tations framework. Many explanations are based on behavioral departures
from ”rationality” or market imperfections. The explanation of crashes in
this paper relies neither on irrationality nor on market imperfections.

We define a crash as a situation in which a small decline in the fundamentals
triggers a strong decline in the stock price. Conversely, a small improve-
ment in the fundamentals may trigger a strong increase in the stock price.
A bubble that bursts, thus, might be observed if a small improvement in
fundamentals leading to a strong price increase is followed by a small decline
in fundamentals leading to a strong price decline. Such phenomena will be
shown to be fully consistent with a rational expectations equilibrium in a

11The corresponding result for increasing aggregate RRA is shown in the appendix.
12The conditions established in Proposition 3 are sufficient but not necessary.
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perfect market. Strongly declining aggregate RRA in a small range of fun-
damentals may be viewed as a shift from a high risk aversion regime to a
low risk aversion regime or vice versa. This regime shift causes the crash.

To illustrate the regime shift, first, consider a market with constant aggre-
gate RRA, η̄. Then in an infinite horizon model in which the aggregate
dividend follows a geometric Brownian motion, the stock price at date t, St,
is a multiple of the dividend at date t,

St =
∞∑
s=t

E(Ds|Dt)
(1 + k)s−t

= Dt
1 + k

k

with 1 + k = exp[rf + η̄ σ2
D − µD].

To make things simple, suppose rf equals µD. Then the price dividend ratio
equals [1 − exp(−η̄ σ2

D)]−1. Empirical estimates of the dividend volatility
of the market portfolio are around 12.8 percent. Then the price dividend
ratio would be around 61.5 for constant aggregate RRA of 1. Now suppose
that unexpectedly aggregate RRA increases from a constant level of 1 to a
constant level of 10. Then the price dividend ratio would drop to 6.6, i.e.
the price would drop by almost 90 percent. Hence the shift from the low to
the high risk aversion regime induces a stock market crash. In the following,
we analyze equilibria with the potential for a stock market crash.

The property required for a crash is that aggregate RRA stays almost con-
stant in the range of low aggregate dividends, then drops sharply with an
increase in dividends and, again, almost stays constant in the upper range.
Even though a precise characterization of the conditions implying these
properties is difficult, we present a condition implying that aggregate RRA
almost stays constant for the low and the high supply range. Hence, in be-
tween, the (negative) slope must be strong so as to move down sufficiently.
Given such a condition, we may observe a stock market crash. The result
proved in the appendix assumes in line with the literature that all investors
have constant RRA, but the level of RRA differs across investors.

Lemma 2 Consider an equilibrium allocation with investors i (i = 1, . . . , n)
ordered by declining level of constant relative risk aversion. Then the slope
of the aggregate RRA curve relating aggregate RRA to the aggregate dividend
approaches zero for high levels of the aggregate dividend. The same is true
for very low levels if the constant RRA of investor 1 is higher than twice the
constant RRA of every other investor.

This result characterizes situations in which we may observe a locally strong
decline in aggregate RRA. It is driven by the condition that the constant
RRA of the most risk averse investor is much higher than that of the other
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investors. Then there exists a range of low aggregate dividend in which the
most risk averse investor buys a high share of the available claims so that the
aggregate RRA approaches her high level of constant RRA. This investor
dominates the market in this range. In the range of high dividends, this
investor buys a small share of the available claims so that her influence on
the market disappears. In this range the least risk averse investor dominates
the market. Hence there is a shift from a high risk aversion to a low risk
aversion regime. This shift may explain a crash.

The lemma does not prove that in some dividend range aggregate RRA
declines very rapidly. We therefore investigate this issue by simulating the
equilibrium allocation and the corresponding RRA.

4 Simulation

In this section we illustrate our results by some simulations. First, we derive
aggregate RRA assuming investors with constant RRA, but the level of RRA
varies across investors. Second, we discuss the procedure used for simulation.
Third, we present the simulation results.

4.1 Aggregate Relative Risk Aversion

The simulation approximates the valuation in an infinite horizon setting by
a finite horizon setting. The price of the market portfolio at the horizon is
approximated by a function of the aggregate dividend paid at the horizon.
Investors trade claims on the dividends paid until the horizon and claims
on the horizon market portfolio. Once the stochastic discount factor for
the horizon date is known, the stochastic discount factors for the preceding
dates can be derived from no-arbitrage. Therefore we need to derive the
stochastic discount factor for the horizon date or, equivalently, the aggregate
RRA for the horizon date. Assume that there are three investors with
different levels of constant relative risk aversion. (γ1, γ2, γ3) denotes the
vector of these levels. We derive the pareto-efficient allocation of claims
on the horizon market portfolio by using the social planner model. The
planner allocates these claims to the investors so as to maximize the weighted
sum of the investors’ utility subject to the constraint that the sum of all
claims equals the exogenous supply of claims. (1/λi) is the state-independent
weight attached by the social planner to investor i. λi/λj can be interpreted
as the ratio of investor i’s over investor j’s expected marginal utility in
equilibrium. λi is higher, the smaller the wealth that investor i allocates to
claims on the horizon market portfolio. Since this wealth is determined by
the equilibrium allocation, this is also true of λi. Yet, the simulation takes
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λi as exogenous. Later on, sensitivity of the results with respect to λi will
be discussed.

As discussed before, empirical results on investors’ risk aversion are mixed.
To determine the values for the risk aversion parameters we refer to recent
empirical estimates of aggregate RRA implied by option prices, but stick to
relatively conservative specifications.

-insert Figures 1 to 3 here-

Figures 1 to 3 illustrate the simulation results. The upper graph shows the
shares of claims bought by the three investors as a function of the aggregate
supply of claims. These shares always add up to 1. The lower graph shows
the implied aggregate RRA as a function of the aggregate supply of claims
(fat curve) and an approximation of the fat curve (thin curve) which is used
later. Note that the scale of X, the aggregate supply of claims, is irrelevant
since all investors have constant RRA.

Figure 1 may be viewed as the ”normal” case. The three investors have
RRA levels (5; 3; 1). The weights (1/λ) are given by the vector (1; 3/5; 1).
As indicated in the upper graph, given a very low aggregate supply of claims,
the most risk averse investor 1 buys almost all available claims, but her share
declines quickly since, first, investor 2 with RRA 3 quickly raises her share
and, second, the least risk averse investor also increases her share gradually.
The RRA-vector (5; 3; 1) violates the condition for a risk aversion regime
shift given in Lemma 2. Therefore the slope of the aggregate RRA curve
does not approach zero for low levels of supply. The lower graph shows that
aggregate RRA is basically a smoothly declining convex curve. Hence, in
this setting there is no room for a crash.

In Figure 2 we raise investor 1’s RRA from 5 to 20 so that (γ) = (20; 3; 1).
(1/λ) = (10−3; 20; 1) so that the expected marginal utility of investor 1 is
very high indicating a small amount of wealth allocated to claims on the
horizon market portfolio. Yet the upper graph in Figure 2 shows that she
buys almost all claims as long as the supply of claims stays below 1. The
second and third investor come into play at higher supply levels. Therefore
aggregate RRA stays almost constant at a level of 20 for the entire (0; 1)
range of claims supply. Then it declines sharply in the range (1; 1.5) and
thereafter slowly approaches the level 1, the RRA of the least risk averse
investor. Hence this situation paves the ground for a crash. Important is
the sharp decline in aggregate RRA. This reflects the high pseudo-variance
of the investors’ inverse RRA, i.e. the second term in equation (2).

Consider the third example in Figure 3. Now there exist two investors with
high RRA 20 resp. 18 and one investor with RRA 1; (γ) = (20; 18; 1) and
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(1/λ) = (10; 6; 1). In this case the expected marginal utilities of the highly
risk averse investors are relatively low indicating relatively high amounts of
wealth allocated to claims on the horizon market portfolio. The lower graph
shows that aggregate RRA is almost constant at a level of 19 for a wide
range of claims supply (0; 1.3). Then it drops sharply to a level of 7 in the
range (1.3; 1.8) and then gradually approaches the level 1. The interesting
result is that even though the condition stated in Lemma 2 does not hold,
aggregate RRA basically stays constant in a wide range of low claims supply.
The reason is that the two highly risk averse investors dominate the market
and change their shares of claims relatively little implying aggregate RRA
to be roughly equal to the average of their risk aversion levels. Again, we
may observe a crash.

How robust are the results shown in Figures 2 and 3? Additional simulations
indicate several properties. First, if as in Figure 3, there are 2 investors such
that their levels of RRA are higher than twice the level of the third investor,
then the aggregate RRA curve is similar to that in Figure 3. Second, if
the weights (1/λ) for the three investors are changed, then the shape of the
aggregate RRA curve remains similar, but the low supply range with almost
constant aggregate RRA will be shorter or longer depending on the wealth
of the most risk averse investors. Third, if there are many investors instead
of one with the same constant RRA γ, this has no effect on aggregate RRA
as long as the sum of the λ1/γ across these investors stays the same. The
intuition is that all investors with the same RRA buy the same portfolio
of claims up to multiplicative factors reflecting the levels of their initial
endowments.

Therefore, the shape of aggregate RRA shown in Figures 2 and 3 appears
to be robust to a wide set of parameter changes. The crucial condition for
a sharp decline of aggregate RRA in some range of the supply of claims
appears to be that there is a group of investors with high levels of RRA and
another group of investors with low levels such that the high levels exceed
twice the low levels.

4.2 Simulation Procedure

For the simulation of equilibrium price processes we approximate aggregate
RRA by approximating the equilibrium stochastic discount factor through
a sum of power functions. Let St+h be the value of the market portfolio
at some horizon date t + h which defines the aggregate supply of claims at
that date. The random part of the stochastic discount factor, Φt,t+h(St+h),
is approximated by the generalized polynomial

Φt,t+h =

∑N
i=1 αi S−δi

t+h

E[
∑N

i=1 αi S−δi
t+h|Dt]

,
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Figure 1 Figure 2 Figure 3
γ1 5 δ1 4.5 γ1 20 δ1 20 γ1 20 δ1 19
γ2 3 δ2 3 γ2 3 δ2 12 γ2 18 δ2 6
γ3 1 δ3 1.2 γ3 1 δ3 2 γ3 1 δ3 2
λ−1

1 1 α1 1 λ−1
1 10−3 α1 1 λ−1

1 10 α1 1
λ−1

2 .6 α2 1 λ−1
2 20 α2 1 λ−1

2 6 α2 0.001
λ−1

3 1 α3 .2 λ−1
3 1 α3 .01 λ−1

3 1 α3 0.0001
Table 1: For each figure the table shows the RRA of the three investors
(γ) and their relative expected marginal utility (λ−1). The parameters used
in the polynomial approximation of the stochastic discount factor are the
exponents (δ) and the weights (α).

with αi, δi ∈ R. This specification is quite general. Since the δi’s are not
required to be integers, this approximation is at least as good as a Taylor-
series approximation. We use polynomials with N = 3 terms. Table 1
displays for each figure of the previous section the parameters of the investors
and the parameters δi and αi used in the generalized polynomial.

The table shows that the exponents δ1 and δ3 used in the polynomial approx-
imation of the stochastic discount factor correspond closely to the RRA γ1

resp. γ3. The quality of the approximation can be seen in the lower graphs
of Figures 1 to 3 depicting aggregate RRA derived from the social planner
model (fat curve) and aggregate RRA derived from the approximation (thin
curve). The approximation appears to be quite good. It could be further
improved by using more than three power functions (see also Düring and
Lüders, 2005).

The simulation of the process of the price of the market portfolio can be
facilitated strongly if the price at any time can be derived analytically. To
achieve this, we approximate the infinite horizon setting by a finite horizon
setting. The date t-price of the market portfolio is the present value of future
dividends. We approximate this value by the present value of dividends until
a given horizon t + h and a suitable approximation for the horizon wealth
generated by subsequent dividends. The horizon h is constant over time so
that t+h moves over time. The asset price at the horizon is a deterministic
function of the dividend paid at the horizon, St+h = St+h(Dt+h) consistent
with the infinite horizon model. The approximation used here is that at
the horizon the elasticity of the asset price with respect to the dividend is
assumed to be constant, i.e. St+h = dpDϑ

t+h. dp is a kind of price dividend
ratio. The exponent ϑ is assumed to be greater or equal to 1 indicating
declining or constant aggregate RRA (see Proposition 1). Since we use a
very long horizon of 240 months, we expect the impact of this approximation
on our simulation results to be very small.13

13Further numerical simulations based on a finite horizon model that are not shown in
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Analyzing the annual S&P 500 real price and price-dividend data for the
time period 1871-2002 14, one finds that the price-dividend ratio is reason-
ably approximated by St

ADt
= 7.27AD0.53

t with an R2 of almost 40 percent
where ADt = 12Dt is the annual and Dt the monthly dividend . This implies
for the numerical simulation based on monthly data St+h = 325.6D1.53

t+h . The
real interest rate is set to 2.5 percent p.a. which is consistent with the his-
torical average (see Brennan and Xia, 2002). Consistent with the historical
mean and volatility of real monthly dividend growth we choose σD = 0.037
and µD = 0.002. The initial dividend D0 is set to 1 or 4. The asset price is
given by the present value of future dividends:

St =
t+h∑
s=t

exp(rf (t − s))E (DsΦt,s|Dt) (7)

+ exp(−rfh)E
(
dp Dϑ

t+hΦt,t+h|Dt

)
Using the stochastic discount factor polynomial, E(St+hΦt,t+h|Dt) is a weighted
average of means of power functions of St+h. Since St+h is a power func-
tion of Dt+h and Dt+h is lognormally distributed, E(St+hΦt,t+h|Dt) can
be derived analytically. The same is true of E(DsΦt,s|Dt) since Φt,s =
E(Φt,t+h|Ds) by no-arbitrage. Hence the price St can be derived analyti-
cally as a function of the dividend Dt as shown in the appendix. Since the
stochastic discount factor Φt,t+h is assumed to be time-homogeneous, the
asset pricing function (7) is also time-homogeneous. The asset price is a
function of the dividend only.

We use simulation to derive the properties of the price process. In each
simulation run, we generate 240 observations of the dividend process. This
corresponds to 20 years of monthly data. Given a constant investment hori-
zon of h = 240 months, we obtain a sequence of 240 asset prices, derived from
equation (7). For every model specification we run 1000 simulations. The
parameters of every specification 1 to 3 are given in Table 1, approximating
aggregate RRA in Figures 1 to 3.

4.3 Simulation Results

First, consider Figure 4 illustrating the relationship between the asset price
and the concurrent dividend.

- insert Figure 4 here -

this paper support this view.
14Source: Shiller (http://www.econ.yale.edu/ shiller/data.htm)
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In the benchmark case of constant aggregate RRA the asset price increases
linearly in the dividend. In specification 1, the rather mild decline in aggre-
gate RRA produces a convex curve which mildly contrasts with the bench-
mark case. Specifications 2 and 3 deviate strongly from the benchmark case.
For low dividends, the asset price increases very little with the dividend, then
around a dividend level of 4, it increases strongly and, thereafter, it increases
almost proportionally as in the benchmark case. Hence, specifications 2 and
3 show the potential for a stock market crash, in contrast to the benchmark
case and specification 1. If, given specification 3, the dividend declines from
4.3 to 3.8, then the price of the market portfolio crashes from about 1,400 to
around 260. A small decline (less than 12 percent) in the dividend, the fun-
damental variable, triggers a very strong decline in the market value (more
than 80 percent). The reason is that the stock market switches from a low
to a high risk aversion regime. The mildly risk averse investors dominating
the market in the high dividend range basically disappear from the market
and the very risk averse investors take over and dominate the market. They
strongly pull down the asset price. If the dividend happens to first increase
from 3.8 to 4.3 and then to fall back to 3.8, then the asset price increases
from about 260 to 1,400 and then falls back to about 260. This can be
viewed as a bubble. Technicians would call 260 a support level and 1,400 a
resistance level.

The crash potential of specifications 2 and 3 is also illustrated by the strong
variability in the elasticity of the asset price with respect to the dividend
as shown in Figure 5. This elasticity varies only little with levels between
1 and 2 in specification 1, but it increases dramatically to more than 16 in
specifications 2 and 3 around a dividend level of 4 so that the local return
volatility will be quite high.

- insert Figure 5 here -

Figure 4 also illustrates return predictability. This exists if expected asset
returns depend on the dividend level or on the asset price. In Figure 4, the
expected asset return is reflected in the slope of the asset price curve. This
slope varies except for the benchmark case, its variation is particularly strong
for specifications 2 and 3, due to the crash potential. Another indicator of
predictability is the Sharpe-ratio. The simulation shows that except for the
benchmark case the Sharpe-ratio declines with increasing dividend, similar
to the aggregate RRA. This decline is particularly strong for specifications
2 and 3.

Although the equity premium puzzle is not at the center of our study we
would like to point out that declining aggregate RRA may also explain this
puzzle. Note that for declining aggregate RRA Sharpe ratios are high for
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low dividend levels and low for high dividend levels. For instance, for Spec-
ification 3 the average Sharpe ratio is around 0.18 given an initial dividend
D0 = 4. For D0 = 1, we find an astonishingly high average Sharpe ratio
of about 2.65. These fluctuations of the Sharpe ratio may explain why for
certain time periods empirical studies find such high equity premia.

- insert Table 2 here -

More information on the characteristics of the asset price process is provided
in Table 2. This table presents measures of return volatility and of auto-
correlation in returns and return volatility for the benchmark case and for
specifications 1 to 3. The results are given for initial dividends of 1 and 4.
The initial dividend is relevant since it determines the likely dividend paths
underlying the simulation results. Regarding return predictability, the au-
tocorrelation of returns is important. All displayed return autocorrelations
are negative. Figure 6 reveals that the serial return covariance is slightly
negative everywhere for specification 1, but this is not true for specifications
2 and 3. Here the autocorrelation becomes positive at a dividend level of
about 3.5, reaches a peak at about 3.7 resp. 3.9 and then turns strongly
negative before it moves back close to zero. The intuition for this surprising
result is as follows. When the dividend moves up from, say, 3.8 to 4.2, then
the asset return is strongly positive as it is when the dividend moves further
up in the next period from 4.2 to 4.7 implying positive autocorrelation. But
when it moves further up from 4.7 to 5.2, then the return will be small im-
plying negative autocorrelation. Hence even though Table 2 shows negative
autocorrelations, this only indicates that the local negative autocorrelations
dominate the positive ones in our simulations. These results seem to be in
line with empirical research suggesting short-term momentum and long-term
reversals.15

- insert Figure 6 here -

Finally, Table 2 illustrates excess volatility and volatility clustering. The
volatility of asset returns equals the dividend volatility of 12.8 percent in
the benchmark case. But it is higher for specifications 1 to 3 because of
declining aggregate RRA. For specification 1 and an initial dividend of 1
the return volatility is 16.7 percent on a monthly basis and 16.6 percent on
a 4-year basis. These figures are higher for specifications 2 and 3. They in-
crease dramatically if the initial dividend is 4, i.e. in the center of the crash
potential. The strong price movements in this region produce a predictable,
high volatility. All the autocorrelations in return volatility shown in the last

15There are different definitions of momentum and reversals. In this paper we define
positive [negative] serial correlation as momentum [reversal].
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two rows of Table 2 are positive indicating volatility clustering. Again, this
does not rule out varying signs of local autocorrelation.The autocorrelations
are small for specification 1, but quite high for specifications 2 and 3. The
high volatility in the crash region reinforces volatility clustering. To con-
clude, this section has demonstrated that declining aggregate RRA makes
excess returns overreact, makes expected excess returns and return volatil-
ities predictable, generates excess return volatility and volatility clustering,
and, perhaps most importantly, can explain stock market crashes.

5 Conclusion

This paper argues that in a perfect capital market with rational, heteroge-
neously risk averse investors asset pricing is likely to be characterized by
declining aggregate relative risk aversion (RRA). Therefore the paper ana-
lyzes the impact of declining aggregate RRA on asset returns in a simple
rational expectations model. If aggregate RRA is constant and the aggre-
gate dividend is the fundamental variable, driven by a geometric Brownian
motion, then asset prices are also governed by a geometric Brownian motion.
Declining aggregate RRA can lead to short-term momentum, long-term re-
versals as well as high and persistent volatility of excess returns. Declining
aggregate RRA even provides a rationale for chart analysis in an efficient
market. The asset price reaction to a dividend change depends on the divi-
dend level. In certain dividend ranges the asset price reaction is weak while
it can be quite strong in others. A small decline in the dividend can trigger
a strong decline in the price of the market portfolio as in a stock market
crash. This requires that aggregate RRA declines strongly in some dividend
range. It is likely to happen when there are two groups of investors, one
with a high level of RRA and the other one with a much lower level. Hence
explaining a stock market crash neither requires ”irrational behavior” nor
market imperfections.

The findings of the paper are consistent with many empirical findings on
stock returns. In contrast to mainly empirically motivated time-series mod-
els, the model in this paper has a solid economic foundation and in contrast
to many theoretical models analytical asset price functions are derived. How-
ever, the model setup is deliberately chosen to be simple to pinpoint the
importance of aggregate RRA for asset return processes. Therefore future
research is needed to investigate more complicated models taking into con-
sideration more realistic settings. For example, this model does not deal
explicitly with heterogeneous expectations of investors. Also, this model
only analyzes the return of the market portfolio neglecting single stocks.
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6 Appendix

6.1 Proof of Lemma 1

Investor i derives her optimal portfolio of date τ -claims from

maxE[ui(xi)] s.t. E[xiφ(Dτ )] = w0τ .

w0τ is the investor’s endowment reserved for buying claims on Dτ . φ(Dτ ) is
the stochastic discount factor, i.e. φ(Dτ ) = Φ0,τ exp(−rfτ). The FOC for
xi is (λi denotes the Lagrange-multiplier of the budget constraint)

u′
i(xi) = λiφ(Dτ ) ;∀ Dτ .

Differentiate the log of this equation with respect to ln Dτ . This yields

ηi(xi)
d ln xi

d ln Dτ
= ηM (Dτ ) ;∀ Dτ (8)

Since d ln xi/d ln Dτ = (dxi/dDτ )/αi(Dτ ) and
∑

i dxi/dDτ = 1, aggregating
equation (8) across all investors yields

1
ηM (Dτ )

=
∑

i

αi(Dτ )
ηi(xi)

(9)

Differentiate equation (9) with respect to Dτ . This yields

η′M (Dτ )
[ηM (Dτ )]2

=
∑

i

η′i(xi)
[ηi(xi)]2

dxi

dDτ
αi(Dτ ) −

∑
i

1
ηi(xi)

α′
i(Dτ ). (10)

The first term on the right hand side of equation (10) can be rewritten using
(8) as

∑
i

η′i(xi)
[ηi(xi)]2

d ln xi

d ln Dτ
[αi(Dτ )]2 =

1
ηM (Dτ )

∑
i

η′i(xi)
ηi(xi)

[
αi(Dτ )

ηM (Dτ )
ηi(xi)

]2

.
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The second term on the right hand side of equation (10) can be rewritten
as (since

∑
i α

′
i(Dτ ) = 0)

∑
i

α′
i(Dτ )

(
1

ηi(xi)
− 1

ηM (Dτ )

)
=

1
Dτ

∑
i

α′
i(Dτ )

αi(Dτ )
Dτ

[
1

ηi(xi)
− 1

ηM (Dτ )

]
αi(Dτ )

=
1

Dτ

∑
i

d ln αi

d ln Dτ

[
1

ηi(xi)
− 1

ηM (Dτ )

]
αi(Dτ )

=
ηM (Dτ )

Dτ

∑
i

[
1

ηi(xi)
− 1

ηM (Dτ )

]2

αi(Dτ )

The last equation follows from d ln αi/d ln Dτ = d ln xi/d ln Dτ −1 and equa-
tion (8) which implies d ln αi/d ln Dτ = ηM (Dτ)[1/ηi(xi) − 1/ηM (Dτ )].

Multiplying equation (10) by ηM (Dτ ) proves Lemma 1. �

6.2 Proof of Proposition 1

For 0 ≤ t ≤ s the forward stochastic discount factor is defined by Φt,s =
Φ0,s/Φ0,t. Because of the martingale property Φ0,t = E(Φ0,s|Dt), the elas-
ticity of the (forward) stochastic discount factor Φt,s with respect to the
dividend Dt is given by

∂ ln Φt,s

∂ ln Dt
=

∂ ln Φ0,s

∂ lnDs
− E

(
∂ ln Φ0,s

∂ ln Ds
Φt,s

∣∣∣∣Dt

)
= −ηΦ,D

s + E
(
ηΦ,D

s Φt,s

∣∣Dt

)
,

since ∂ ln Ds
∂ ln Dt

= 1 and ηΦ,D
s ≡ −∂ lnΦ0,s

∂ lnDs
.

Differentiating the logarithm of equation (4) with respect to ln Dt yields
after some manipulation

ηS,D
t = 1 +

∫∞
t exp (−rf (s − t)) E

(
DsΦt,s

(
−ηΦ,D

s + E
(

ηΦ,D
s Φt,s

∣∣∣Dt

))∣∣∣Dt

)
ds

St
.

The forward stochastic discount factor defines an equivalent martingale mea-
sure P̃ , i.e. P̃ (A) =

∫
A Φt,sdP , where P is the physical or objective proba-

bility measure. Hence the previous equation yields

ηS,D
t = 1 −

∞∫
t

cov
�P (Ds, η

Φ,D
s |Dt)ds

exp (rf (s − t)) St
,

where cov
�P (.) is the covariance under the equivalent martingale measure P̃ .

Thus, if ηΦ,D
s is constant, then ηS,D

t ≡ ∂ ln St
∂ lnDt

= 1. Declining aggregate RRA,
∂ηΦ,D

s
∂Ds

< 0, implies cov
�P (Ds, η

Φ,D
s |Dt) < 0 and, hence, ηS,D

t > 1. Increasing

aggregate RRA, ∂ηΦ,D
s

∂Ds
> 0, implies ηS,D

t < 1. �
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6.3 Proof of Proposition 2

We know that for constant aggregate RRA

V ar

(
ln

Vτ

Vt

∣∣∣∣Dt

)
= V ar

(
ln

Dτ

Dt

∣∣∣∣Dt

)
, t < τ .

By Proposition 1, for declining aggregate RRA ηΦ,D
t , the elasticity ηS,D

t > 1
so that the conditional variance of asset returns is higher than the (condi-
tional) variance of the dividend process, i.e.

V ar

(
ln

Vτ

Vt

∣∣∣∣Dt

)
> V ar

(
ln

Dτ

Dt

∣∣∣∣Dt

)
, t < τ . (11)

Consider now the unconditional variance (i.e. θ = 0):

V ar

(
ln

Vτ

Vt

)
= V ar (E ( ln Vτ |Dt) − ln Vt) + E (V ar ( ln Vτ |Dt))(12)

with

E ( ln Vτ |Dt) − ln Vt = E

 τ∫
t

(
µV (Ss) − 1

2
ΣV (Ss)2

)
ds

∣∣∣∣∣∣Dt

 .(13)

We need to show that V ar
(
ln Vτ

Vt

)
is greater than

V ar

(
ln

Dτ

Dt

)
= V ar ( ln Dτ |Dt) . (14)

From (11) it follows that the second term on the right hand side of equa-
tion (12) exceeds V ar

(
ln Dτ

Dt

)
. As the first term on the right hand side of

equation (12) is also positive, we are done. The proof is the same for the
variance conditional on Dθ; 0 < θ < t. �

6.4 Proof of Proposition 3

Since by definition CERt,τ ≡ ∫ τ
t (dSs/ Ss) +

∫ τ
t (Ds/Ss − rf ) ds, and the

riskless rate rf is assumed constant, the covariance is given by

Cov (CERt,τ , µV (Sτ ) − rf |Dt) = Cov

 τ∫
t

dSs

Ss
+

τ∫
t

Ds

Ss
ds,

τ∫
t

dµV (Ss)

∣∣∣∣∣∣Dt



22



= E

 τ∫
t

dSs

Ss
+

τ∫
t

Ds

Ss
ds − E

 τ∫
t

dSs

Ss
+

τ∫
t

Ds

Ss
ds

∣∣∣∣∣∣Dt


×
 τ∫

t

dµV (Ss) − E

 τ∫
t

dµV (Ss)

∣∣∣∣∣∣Dt

∣∣∣∣∣∣Dt


By equation (5), µV (St) = ηΦ,D

t ηS,D
t σ2

D + rf and ΣS(St) = ηS,D
t σD. Since

Vt = αtSt, we obtain ηS,D
t = ηV,D

t and ΣV (St) = ΣS(St) = ηV,D
t σD. Hence

we can rewrite the covariance as

E

 τ∫
t

ηV,D
s σDdWs

 τ∫
t

{
ηV,D

s

∂ηΦ,D
s

∂Ds
+ ηΦ,D

s

∂ηV,D
s

∂Ds

}
σ3

DDsdWs

∣∣∣∣∣∣Dt


=

τ∫
t

E

({
ηV,D

s

∂ηΦ,D
s

∂Ds
+ ηΦ,D

s

∂ηV,D
s

∂Ds

}
σ4

DDsη
V,D
s

∣∣∣∣∣Dt

)
ds,

since by Ito’s Lemma the stochastic part of dµV (St) is given by

∂(ηΦ,D
t ηV,D

t σ2
D + rf )

∂Dt
σDDtdWt.

The elasticities ηV,D
s and ηΦ,D

s are positive. Hence, Cov (CERt,τ , µV (V τ) − rf |Dt) <

[>] 0 if aggregate RRA is declining [increasing] and ηV,D
s is non-increasing

[non-declining] in Ds. The latter condition is equivalent to the condition that
the instantaneous volatility of the return index, ΣV (Ss), is not increasing
[not declining] because ΣV (Ss) = ηV,D

s σD. �

6.5 Proof of Lemma 2

Let X denote the aggregate supply of claims. Then equation (9) yields for
ηi(xi) = γi, i = 1...n

1
ηM (X)

=
∑

i

αi(X)
γi

.

Differentiating with respect to X yields

η′M (X)
[ηM (X)]2

=
∑

i

α′
i(X)
γi

.
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Hence η′M (X) → 0 if α′
i(X) → 0,∀ i. The first order condition for an

optimal portfolio of claims is

x−γi
i = λi · φ(X);∀(i,X).

Hence

xi

X
= αi(X) = λ

− 1
γi

i [φ(X)]−
1
γi /X,

so that αi(X)ε(0, 1).

Differentiating ln(αi(X)) with respect to ln(X) yields

α′
i(X)

αi(X)
=

1
X

[
1
γi

ηM (X) − 1] (15)

As shown by Benninga and Mayshar (2000), η′M (X) < 0 and for X → ∞,
αn → 1, so that ηM (X) → γn. Hence, for X → ∞, α′

i(X) → 0,∀i, and
η′M (X) → 0.

Now consider X → 0. Then η′M (X) → 0 if α′
i(X) → 0, i = 2, .., n, since∑

i α′
i(X) = 0. From the first order condition, optimal risk sharing implies

xi =
(

λi

λ1

)− 1
γi

x
γ1
γi
1

or

xi

X2
=

αi(X)
X

=
(

λi

λ1

)− 1
γi x

γ1
γi
1

X2

As shown by Benninga and Mayshar (2000), α1(X) → 1 for X → 0 so that
ηM (x) → γ1 and x1 → X. Hence the last equation yields for X → 0

αi(X)
X

→ (
λi

λ1
)−

1
γi X

γ1
γi

−2
, i = 2, .., n.

This term goes to zero for X → 0 if γ1 > 2γi, i = 2, .., n. Then, by equation
(1), α′

i(X) → 0 for X → 0, i = 2, ..., n. Hence η′M (X) → 0 for X → 0. �
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6.6 The Price of the Market Portfolio

The price of the market portfolio at date t, St, is

St =
t+h∑
s=t

exp(rf (t − s))E[DsΦt,s|Dt) + exp(−rfh)E(dpDϑ
t+hΦt,t+h|Dt)

= A

t+h∑
s=t

exp(rf (t − s))
N∑

i=1

D1−δiϑ
t Bi

t,s

exp[(1 − δiϑ(s − t)){µD − δiϑσ2
D/2}]

+A exp(−rfh)
N∑

i=1

D
ϑ(1−δi)
t βi dp1−δi

exp[(1 − δi)ϑh{µD − [(1 − δi)ϑ − 1]σ2
D/2}]

with

A−1 ≡
N∑

i=1

D−δiϑ
t Bi

t,t

Bi
t,s ≡ βi dp−δiexp[−δiϑ(t + h − s){µD − [δiϑ + 1]σ2

D/2}]
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Figures

Figures 1 to 3 depict in the upper graph the shares of claims bought by
the three investors in equilibrium for different levels of aggregate supply
of claims, X. The fat (thin) curve in the lower graph depicts the implied
(approximated) aggregate RRA with respect to X. (γ) denotes the assumed
vector of the constant RRA of the three investors, (1/λ) denotes the vector
of weights attached to these investors by the social planner.

Figure 1: (γ) = (5; 3; 1) and 1/λ = (1; 3/5; 1)
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Figure 2: (γ) = (20; 3; 1) and 1/λ = (10−3; 20; 1)

Figure 3: (γ) = (20; 18; 1) and 1/λ = (10; 6; 1)
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Figure 4: Asset price as a function of the concurrent monthly div-
idend.
The figure shows for four different specifications the asset price as a function of
the concurrent monthly dividend. The first graph (left) shows the benchmark case
of constant aggregate RRA. The other graph shows the asset prices for declining
aggregate RRA as shown in Specification 1 (gray line), Specification 2 (black line)
and Specification 3 (dotted line)(Figure 1-3).

Figure 5: Elasticity of the asset price with respect to the concurrent
monthly dividend.
The figure shows the elasticity of the asset price with respect to the concurrent
monthly dividend for declining aggregate RRA as shown in Specification 1 (gray
line), Specification 2 (black line) and Specification 3 (dotted line) (Figure 1-3).
The benchmark case of constant aggregate RRA (not shown in the figure) yields a
constant elasticity of 1.
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Figure 6: Serial covariance of the asset return as a function of the
monthly dividend.
The figure shows the instantaneous serial covariance of the monthly asset return
as a function of the monthly dividend for declining aggregate RRA as shown in
Specification 1 (gray line), Specification 2 (black line) and Specification 3 (dotted
line) (Figure 1-3). In the benchmark case of constant aggregate RRA there is no
serial correlation. The instantaneous serial covariance, covt(CERt,τ , µ(τ)) with
τ → t, is the cross variation between the expected excess return and the cumulated
excess return.

Table 2: Characteristics of excess returns and excess return volatil-
ity.
The table shows the mean annualized volatility of monthly and 4-year-returns, the
lag 1-serial correlation of these returns as well as lag 1- and lag 4-serial correla-
tions in return volatility. For comparison we also show the theoretical values for a
geometric Brownian motion (constant aggregate RRA). Results are shown for two
different start values (D0 = 1 and D0 = 4) of the dividend process. Specifications
1 to 3 correspond to the aggregate RRA shown in figures 1 to 3.
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