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1 Introduction 
 
The Nobel-winning ingenious idea behind the classic option pricing model of Black and 

Scholes (1973) and Merton (1973), hereafter BSM, is that, in the absence of arbitrage, the 

price of an option equals the cost of setting up a judiciously managed portfolio with 

payoff that replicates the option payoff. 

The central premise of the BSM theory is that there exists a self-financing 

dynamic trading policy of the stock and risk free accounts that renders the market 

dynamically complete.  This requires that the market be complete and perfect.  Two 

assumptions of the BSM model make the market complete.  First, the price of the 

underlying security has continuous sample paths at the exclusion of jumps.  Second, the 

stock return volatility is constant.  These assumptions essentially imply that the stock of 

the underlying security is a geometric Brownian motion.  Finally, the assumption of the 

BSM model that renders the market perfect is that trading is frictionless.  In the BSM 

model, the volume of trading over any finite time interval is infinite.  The transaction 

costs associated with the replicating dynamic trading policy would be infinite for any 

given positive proportional transactions cost rate. 

Formally, absence of arbitrage in a frictionless market implies the existence of a 

risk-neutral probability measure, not necessarily unique, such that the price of any asset 

equals the expectation of its payoff under the risk-neutral measure, discounted at the risk 

free rate.  Furthermore, if the market is complete then the risk-neutral measure is unique 

and the option price is unique as well.  In the BSM model, the price of the underlying 

security follows a geometric Brownian motion which renders the market complete and 

the option price unique as well. 

The risk-neutral probability measure is the real probability measure with the 

expected rate of return on the underlying security replaced by the risk free rate.  The real 

probability distribution of stock returns can be estimated from the time series of past 

returns.  The risk neutral probability distribution of stock returns can be estimated from 

the cross-section of option prices.  As discussed in detail in the empirical Section 10, this 

prediction of the BSM theory does not fare well and provides the motivation to 

reexamine the premises of the theory. 
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In this essay, we are concerned with cases in which dynamic trading breaks down 

either because the market is incomplete or because there are trading costs or both.  

Market incompleteness renders the risk-neutral probability measure non unique and 

allows us to determine the option price only within a range.  Recognition of trading costs 

requires a refinement in the definition and usage of the concept of a risk-neutral 

probability measure. 

In Section 2, we discuss the implications of the absence of arbitrage.  We 

introduce the concept of the risk neutral probability and the closely related concept of the 

state price density or pricing kernel.  We apply the theory to price options under the 

assumption of the absence of arbitrage in complete and incomplete markets.  In Section 3, 

we lay out the general framework for pricing options in a market that is incomplete and 

also imperfect due to trading costs.  Under these market conditions, a replicating dynamic 

trading policy does not exist.  Nevertheless, we are able to impose further restrictions on 

the pricing kernel and provide testable restrictions on the prices of options.  In Sections 4-

9, we illustrate the theory to a series of market setups, beginning with the single period 

model, the two-period model and finally the general multiperiod model, with and without 

transaction costs.  In Section 10, we review related empirical results and, in Section 11, 

conclude. 

 
 

2 Implications of the absence of arbitrage 
2.1. General theory 

 
Absence of arbitrage in a frictionless market implies the existence of a risk-neutral 

probability measure, not necessarily unique, such that the price of any asset equals the 

expectation of its payoff under the risk-neutral measure, discounted at the risk free rate.  

If a risk-neutral measure exists, the ratio of the risk-neutral probability density and the 

real probability density, discounted at the risk free rate, is referred to as the pricing kernel 

or stochastic discount factor (SDF).  Thus, absence of arbitrage implies the existence of a 

strictly positive SDF.  These ideas are implicit in the option pricing theory of Black and 
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Scholes (1973) and Merton (1973) and were further developed by Ross (1976), Cox and 

Ross (1976), Constantinides (1978), Harrison and Kreps (1979), Harrison and Pliska 

(1981), and Delbaen and Schachermayer (1994). 

To fix ideas, let there be J securities.  Security , 1,...,j j J=  has price jP  at the 

beginning of the period and payoff ijX in state , 1,...,i i I=  at the end of the period.  An 

investor purchases jθ securities of type , 1,...,j j J=  with the objective to minimize the 

purchase cost, subject to the constraint that the portfolio payoff is strictly positive in all 

states of nature.  The investor solves the following LP problem: 

 

{ }
1inf

j

J

j jj
P

θ
θ

=∑      (2.1) 

subject to 

1
0,

J

j ijj
X iθ

=
> ∀∑ .    (2.2) 

 

If the minimum purchase cost is negative, then there is an arbitrage opportunity. 

Absence of arbitrage implies that the above problem, with the added condition 

 

1
0

J

j jj
Pθ

=
<∑      (2.3) 

 

is infeasible.  Then the dual of this LP problem is feasible.  This implies the existence of 

strictly positive state prices, { } 1,...,i i I
π

=
, such that: 

 

1
,

I

j i iji
P X jπ

=
= ∀∑     (2.4) 

and 

0,i iπ > ∀ .     (2.5) 
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If the number of states does not exceed the number of securities with linearly independent 

payoffs, the market is said to be complete and the state prices are unique.  Otherwise, the 

market is incomplete and the state prices are not unique. 

The normalized state prices
1

/ I
i i kk

q π π
=

≡ ∑  can be thought of as probabilities 

because they are strictly positive and add up to one.  The inverse of the sum of the state 

prices, 
1

1/
I

k
k

R π
=

≡ ∑ , has the interpretation as one plus the risk free rate.  Then we may 

write equation (2.4) as 

 
1 1

1
,

I Q
j i ij ji
P R q X R E X j− −

=
⎡ ⎤= = ∀⎣ ⎦∑    (2.6) 

 

with the interpretation that the price of security j  is its expected payoff under the 

probability measure { }iQ q= , discounted at the risk free rate.  For this reason, the 

probability measure Q  is referred to as a risk-neutral or risk-adjusted probability 

measure.  Thus, absence of arbitrage implies the existence of a risk neutral probability 

measure.  This property of the absence of arbitrage is far more general than this simple 

illustration implies. 

Let { }iP p=  denote the real probability measure of the states.  The ratio 

/i i im pπ≡  is referred to as the state price density or stochastic discount factor or pricing 

kernel or intertemporal rate of substitution.  In terms of the pricing kernel, we may write 

equation (2.4) as 

 

1
,

I P
j i i ij i ji
P pm X E m X j

=
⎡ ⎤= = ∀⎣ ⎦∑    (2.7) 

 

where the expectation is with respect to the real probability measure P . 

 

2.2. Application to the pricing of options 
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Let the stock market index have price 0S  at the beginning of the period; ex dividend price 

iS  with probability ip  in state =, 1,...,i i I  at the end of the period; and cum dividend 

price ( )δ+1 iS  at the end of the period.  The thj  derivative, = 1,...,j J , has price jP  at 

the beginning period, and its cash payoff ijX is ( )j iG S , a given function of the terminal 

stock price, at the end of the period in state i .  In this context, absence of arbitrage 

implies the existence of a strictly positive pricing kernel : , 1,...,im m i I= , such that: 

 

1
1

I

i ii
R pm

=
= ∑      (2.8) 

 

( )0 1
1

I

i i ii
S p m Sδ

=
= +∑     (2.9) 

and 

1
( ), 1,...,

I

j i i j ii
P pmG S j J

=
= =∑ .   (2.10) 

 

Non-existence of a strictly positive pricing kernel implies arbitrage such as violations of 

the Merton (1973) no arbitrage restrictions on the prices of options. 

In practice, it is always possible to estimate the real probability measure P  from 

time series data on past index returns.  A derivatives pricing model is then a theory that 

associates the appropriate pricing kernel > =: 0, 1,...,im m i I  with the estimated 

probability measure P .  Formulating such a model is the only avenue open to us for 

valuing derivatives in a financial market in which no organized derivatives trading exists.  

On the other hand, in a market in which derivatives are traded, we may still wish to value 

additional non-traded derivative instruments.  This can be done by estimating the pricing 

kernel or, equivalently, the risk neutral probability Q , from the observed market prices 

, 1,...,jP j J=  of J traded derivatives. 

In the absence of arbitrage, a unique pricing kernel may be derived in terms of the 

prices of J  securities with linearly independent payoffs, if the market is complete, J I≥ .  

Then any derivative is uniquely priced in terms of the prices of I  securities.  This is the 

essence of derivatives pricing when the market is complete. 



 7

In a single-period binomial model, there are just two states and the pricing kernel 

is derived in terms of the prices of the risk free asset and the stock or index on which 

options are written.  Then any derivative is uniquely priced in terms of the risk free rate 

and the stock or index price.  The natural extension of the single period binomial model is 

the widely used multiperiod binomial model developed by Cox and Ross (1976), Cox, 

Ross and Rubinstein (1979), and Rendleman and Bartter (1979).  The stock price evolves 

on a multi-stage binomial tree over the life of the option so that the stock price assumes a 

wide range of values.  Yet the market is complete because in each subperiod there are 

only two states.  An option can be hedged or replicated on the binomial tree by adjusting 

the amounts held in the stock and the risk free asset at each stage of the binomial process.  

This type of trading is called dynamic trading and renders the market dynamically 

complete.  These fundamentals ideas underlie the original option pricing model of Black 

and Scholes (1973) and Merton (1973).  The binomial model is often used as a 

pedagogical tool to illustrate these ideas as in the textbook treatments by Hull (2005) and 

McDonald (2003).  The binomial model is also a powerful numerical tool in its own right 

in pricing American and exotic options. 

In this essay, we are concerned with cases in which dynamic trading or hedging 

breaks down either because the market is incomplete or because there are trading costs or 

both.  In these cases, we impose further restrictions on the pricing kernel by taking into 

account the economic environment in which the derivatives are traded. 

 

 
3 Additional restrictions implied by utility 

maximization 
3.1. Multiperiod investment behavior with proportional 

transaction costs 
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We consider a market with heterogeneous agents and investigate the restrictions on 

option prices imposed by a particular class of utility-maximizing traders that we simply 

refer to as traders.  We do not make the restrictive assumption that all agents belong to 

the class of the utility-maximizing traders.  Thus our results are unaffected by the 

presence of agents with beliefs, endowments, preferences, trading restrictions, and 

transaction cost schedules that differ from those of the utility-maximizing traders. 

As in Constantinides (1979), trading occurs at a finite number of trading dates, 

= 0,1,..., , ..., 't T T . 1   The utility-maximizing traders are allowed to hold only two 

primary securities in the market, a bond and a stock.  The stock has the natural 

interpretation as the market index.  Derivatives are introduced in the next section.  The 

bond is risk free and pays constant interest 1R −  each period.  The traders may buy and 

sell the bond without incurring transactions costs.  At date t, the cum dividend stock price 

is ( )δ+1 t tS , the cash dividend is δt tS , and the ex dividend stock price is tS , where tδ  is 

the dividend yield.  We assume that the rate of return on the stock, ( )1 11 /+ ++ t t tS Sδ , is 

identically and independently distributed over time. 

The assumption of i.i.d. returns is not innocuous and, in particular, rules out state 

variables such as stochastic volatility, stochastic risk aversion, and stochastic conditional 

mean of the growth rate in dividends and consumption.  In this essay, we deliberately rule 

out such state variables in order to explore the extent to which market incompleteness and 

market imperfections (trading costs) alone explain the prices of index options.  We 

discuss models with such state variables in Section 10. 

Stock trades incur proportional transaction costs charged to the bond account as 

follows.  At each date t, the trader pays ( )1 tk S+  out of the bond account to purchase 

one ex dividend share of stock and is credited ( )1 tk S− in the bond account to sell (or, 

sell short) one ex dividend share of stock.  We assume that the transactions cost rate 

satisfies the restriction 0 1k≤ < .  Note that there is no presumption that all agents in the 

economy face the same schedule of transactions costs as the traders do. 

                                                 
1 The calendar length of the trading horizon is N years and the calendar length between trading dates is 

/ 'N T  years.  Later on we vary 'T  and consider the mispricing of options under different assumptions 
regarding the calendar length between trading dates. 
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A trader enters the market at date t with dollar holdings tx  in the bond account 

and /t ty S  ex dividend shares of stock.  The endowments are stated net of any dividend 

payable on the stock at time t.2  The trader increases (or, decreases) the dollar holdings in 

the stock account from ty to 't t ty y υ= +  by decreasing (or, increasing) the bond account 

from tx  to ' | |t t t tx x kυ υ= − − .  The decision variable tυ is constrained to be 

measurable with respect to the information at date t.  The bond account dynamics is 

 

{ } ( ) δυ υ υ +
+ = − − + + ≤ −1
1 | | , ' 1t t

t t t t t t
t

S
x x k R y t T

S
  (3.1) 

 

and the stock account dynamics is 

 

( ) 1
1 , ' 1.t

t t t
t

S
y y t T

S
υ +

+ = + ≤ −    (3.2) 

 

At the terminal date, the stock account is liquidated, ' 'T Tyυ = − , and the net worth 

is ' ' '| |T T Tx y k y+ − .  At each date t, the trader chooses investment tυ  to maximize the 

expected utility of net worth, ( )' ' '| | |T T T tE u x y k y S⎡ ⎤+ −⎣ ⎦ .3  We make the plausible 

assumption that the utility function, ( )u ⋅ , is increasing and concave, and is defined for 

both positive and negative terminal net worth.4  Note that even this weak assumption of 

                                                 
2 We elaborate on the precise sequence of events.  The trader enters the market at date t with dollar 
holdings t t tx yδ− in the bond account and /t ty S  cum dividend shares of stock.  Then the stock pays cash 
dividend t tyδ and the dollar holdings in the bond account become tx .  Thus, the trader has dollar holdings 

tx in the bond account and /t ty S  ex dividend shares of stock. 
3 The results extend routinely to the case that consumption occurs at each trading date and utility is defined 
over consumption at each of the trading dates and over the net worth at the terminal date.  See 
Constantinides (1979) for details.  The model with utility defined over terminal net worth alone is a more 
realistic representation of the objective function of financial institutions. 
4 If utility is defined only for non-negative net worth, then the decision variable is constrained to be a 
member of a convex set that ensures the non-negativity of net worth.  See, Constantinides (1979) for 
details.  However, the derivation of bounds on the prices of derivatives requires an entirely different 
approach and yields weaker bounds.  This problem is studied in Constantinides and Zariphopoulou (1999, 
2001). 
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monotonicity and concavity of preferences is not imposed on all agents in the economy 

but only on the subset of agents that we refer to as traders. 

We recursively define the value function ( ) ( )≡ , ,t tV t V x y t  as 

 

( ) { } ( ) ( )υ
δυ υ υ υ+ +

⎡ ⎤⎛ ⎞
= − − + + + +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
1 1, , max | | , , 1 |t t t

t t t t t t
t t

S S
V x y t E V x k R y y t S

S S

 (3.3) 

 

for ' 1t T≤ −  and 

 

( ) ( )' ' ' ' ', , ' | |T T T T TV x y T u x y k y= + − .   (3.4) 

 

We assume that the parameters satisfy appropriate technical conditions such that the 

value function exists and is once differentiable. 

Equations (3.1)-(3.4) define a dynamic program that can be numerically solved 

for given utility function and stock return distribution.  We shall not solve this dynamic 

program because our goal is to derive restrictions on the prices of options that are 

independent of the specific functional form of the utility function but solely depend on 

the plausible assumption that the traders’ utility function is monotone increasing and 

concave in the terminal wealth. 

The value function is increasing and concave in ( ),t tx y , properties that it inherits 

from the assumed monotonicity and concavity of the utility function: 

 

( ) ( )> >0, 0x yV t V t , = 0,..., ,..., 't T T .  (3.5) 

and 

 

( ) ( )( ) ( ) ( ) ( )α α α α α α

α

+ − + − ≥ + −

< < =

1 ', 1 ', , , 1 ', ', ,

0 1, 0,..., ,..., ' .

t t t t t t t tV x x y y t V x y t V x y t

t T T
 (3.6) 
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On each date, the trader may transfer funds between the bond and stock accounts 

and incur transactions costs.  Therefore, the marginal rate of substitution between the 

bond and stock accounts differs from unity by, at most, the transactions cost rate: 

 

( ) ( ) ( ) ( ) ( )− ≤ ≤ + =1 1 , 0,..., , ..., 'x y xk V t V t k V t t T T .  (3.7) 

 

Marginal analysis on the bond holdings leads to the following condition on the marginal 

rate of substitution between the bond holdings at dates t and t+1: 

 

( ) ( )[ ]1 , 0,..., , ..., ' 1x t xV t R E V t t T T= + = − .  (3.8) 

 

Finally, marginal analysis on the stock holdings leads to the following condition on the 

marginal rate of substitution between the stock holdings at date t and the bond and stock 

holdings at date t+1: 

 

( ) ( ) ( )1 11 1t t t
y t y x

t t

S S
V t E V t V t

S S
δ+ +⎡ ⎤

= + + +⎢ ⎥
⎢ ⎥⎣ ⎦

, 0,..., ,..., ' 1t T T= − . (3.9) 

 

Below we employ these restrictions on the value function to derive restrictions on the 

prices of options. 

 
3.2. Application to the pricing of options 

 
We consider J European-style derivatives on the index, with random cash payoff 

( )j TG S , 1,2,...,j J= , at their common expiration date , 'T T T≤ .  At time zero, the 

trader can buy the thj  derivative at price j jP k+  and sell it at price j jP k− , net of 

transactions costs.  Thus 2 jk  is the bid-ask spread plus the round-trip transactions cost 

that the trader incurs in trading the thj  derivative.  Note that there is no presumption that 
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all agents in the economy face the same bid-ask spreads and transaction costs as the 

traders do. 

We assume that the traders are marginal in all J derivatives.  Furthermore, we 

assume that, if a trader holds a finite (positive or negative) number of derivatives, these 

positions are sufficiently small relative to her holdings in the bond and stock that the 

monotonicity and concavity conditions (3.5) and (3.6) on the value function remain 

valid.5 

Marginal analysis leads to the following restrictions on the prices of options: 

 

( ) ( ) ( )[ ] ( ) ( )00 ( ) 0 , 1,2,...,j j x j T x j j xP k V E G S V T P k V j J− ≤ ≤ + = . 

 (3.10) 

 

Similar restrictions on the prices of options apply at dates 1,..., 1t T= − . 

Below, we illustrate the implementation of the restrictions on the prices of options 

in a number of important special cases.  First, we consider the case = 1T  which rules out 

trading between the bond and stock accounts over the lifetime of the options.  We refer to 

this case as the single-period case.  Note that the single-period case does not rule out 

trading over the trader’s horizon after the options expire; it just rules out trading over the 

lifetime of the options.  We discuss the single-period case both with and without 

transactions costs. 

A useful way to identify the options that cause infeasibility or near-infeasibility of 

the problem is to single out a “test” option, say the thn  option, and solve the problem 

 

( ) ( ){ }

( )

( )
0,...,

0
,
min ( )

0x y t T

x
n T

V t V t x

V T
E G S

V=

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

,    (3.11) 

 

subject to conditions (3.5)-(3.10).  If this problem is feasible, then the attained minimum 

has the following interpretation.  If one can buy the test option for less than the minimum 

                                                 
5 Conditions (3.7)-(3.9) remain valid even if the holdings of the derivatives are not small. 
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attained in this problem, then at least one investor, but not necessarily all investors, 

increases her expected utility by trading the test option. 

Likewise, we may solve the problem 

 

( ) ( ){ }

( )

( )
0,...,

0
,
max ( )

0x y t T

x
n T

V t V t x

V T
E G S

V=

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

,    (3.12) 

 

subject to conditions (3.5)-(3.10).  If this problem is feasible, then the attained maximum 

has the following interpretation.  If one can write the test option for more than the 

maximum attained in this problem, then at least one investor, but not necessarily all 

investors, increases her expected utility by trading the test option. 

As the number of trading dates T  increases, the computational burden rapidly 

increases.  One way to reduce computational complexity is to limit attention to the case J 

= 1 (one option) and convex payoff (as, for example, the payoff of a call or put option).  

In this special case, we present closed-form solutions with and without transaction costs 

and, in many cases, present limiting forms of the option prices as the number of 

intermediate trading dates becomes infinitely large. 

 

 

4 Special case: one period without 

transaction costs 
4.1. Results for general payoffs 

 
The stock market index has price 0S  at the beginning of the period; ex dividend price iS  

with probability ip  in state =, 1,...,i i I  at the end of the period; cum dividend price 

( )δ+1 iS  at the end of the period; and return ( )δ+ 01 /iS S .  We define by 0/i iz S S≡  

the ex dividend price ratio.  We order the states such that iS  is increasing in i .  The thj  
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derivative, = 1,...,j J , has price jP  at the beginning period and cash payoff ( )j iG z  at 

the end of the period in state i .  We denote by ( )iV t  the value function at date t and 

state i. 

Since the transactions cost rate is assumed to be zero, we have ( ) ( )=0 0x yV V  

and ( ) ( )1 1i i
x yV V= .  We identify the previously defined stochastic discount factor or 

pricing kernel im  with the intertemporal marginal rate of substitution in state i , 

( ) ( )1 / 0i
i x xm V V≡ .  Conditions (3.8)-(3.10) become: 

 

1
1

I

i ii
R pm

=
= ∑      (4.1) 

 

( )
1

1 1
I

i i ii
p m zδ

=
= +∑     (4.2) 

and 

1
( ),  1,...,

I

j i i j ii
P pmG z j J

=
= =∑ .    (4.3) 

 

The concavity relation (3.6) of the value function implies additional restrictions 

on the pricing kernel.  Historically, the expected premium of the return on the stock over 

the bond is positive.  Under the assumption of positive expected premium, the trader is 

long in the stock.  Since the assumption in the single-period model is that there is no 

trading between the bond and stock accounts over the life of the option, the trader’s 

wealth at the end of the period is increasing in the stock return.  Note that this conclusion 

critically depends on the assumption that there is no intermediate trading in the bond and 

stock.  Since we employed the convention that the stock return is increasing in the state i, 

the trader’s wealth on date T is increasing in the state i.  Then the concavity of the value 

function implies that the marginal rate of substitution is decreasing in the state i: 

 

1 2 ... 0Im m m≥ ≥ ≥ > .    (4.4) 
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A pricing kernel satisfying restrictions (4.1)-(4.4) defines the intertemporal 

marginal rate of substitution of a trader who maximizes her increasing and concave utility 

and is marginal in the options, the index and the risk free rate.  If there does not exist a 

pricing kernel satisfying restrictions (4.1)-(4.4), then any trader with increasing and 

concave utility can increase her expected utility by trading in the options, the index and 

the risk free rate—hence equilibrium does not exist.  These strategies are termed 

stochastically dominant for the purposes of this essay, insofar as they would be adopted 

by all traders with utility possessing the required properties, in the same way that all risk 

averse investors would choose a dominant portfolio over a dominated one in conventional 

second degree stochastic dominance comparisons.  Thus, the existence of a pricing kernel 

that satisfies restrictions (4.1)-(4.4) is said to rule out stochastic dominance between the 

observed prices. 

We emphasize that the restriction on option prices imposed by the criterion of the 

absence of stochastic dominance is motivated by the economically plausible assumption 

that there exists at least one agent in the economy with the properties that we assign to a 

trader.  This is a substantially weaker assumption than requiring that all agents have the 

properties that we assign to traders.  Stochastic dominance then implies that at least one 

agent, but not necessarily all agents, increases her expected utility by trading.6 

As before, we single out a “test” option, say the thn  option, and derive bounds 

that signify infeasibility if the price of the test option lies outside the bounds.  The 

general form of this problem was stated in expressions (3.11) and (3.12).  In the special 

case of no trading over the life of the option and zero transactions costs, the bounds on 

the test option with payoff ( )n iG z  in state i are given by 

 

{ } { }
( ) 1

max , min ( )
i i

I

i i n iim m
or pmG z

=∑ ,    (4.5) 

 

subject to conditions (4.1)-(4.4). 

                                                 
6  We also emphasize that the restriction of the absence of stochastic dominance is weaker than the 
restriction that the capital asset pricing model (CAPM) holds.  The CAPM requires that the pricing kernel 
be linearly decreasing in the index price.  The absence of stochastic dominance merely imposes that the 
pricing kernel be monotone decreasing in the index price. 
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4.2. Results for convex payoffs 

 
The feasibility of relations (4.1)-(4.4) can be expressed in closed form in the special case 

where the options are puts and calls, with payoff ( )j iG z  that is a convex function of the 

end-of-period return (or stock price).  Ryan (2000, 2003) provided tight inequalities that 

define an admissible range of prices for each option on the basis of the prices of the two 

options with immediately adjacent strike prices.  In practice this means that (4.1)-(4.4) 

become infeasible in most realistic problems with a large enough set of traded options. 

Perrakis and Ryan (1984), Levy (1985), and Ritchken (1985) expressed the upper 

and lower bounds in (4.5) in closed form in the special case 1J = (one option) where the 

option is a put and call, with payoff ( )j iG z  that is a convex function of the end-of-period 

stock price.  Consider a European call option with strike price K , payoff 

1 0( ) [ (1 ) ]i i iG z S z K cδ += + − ≡  and price 1P c= .  Define 
1

ˆ I
i ii

z p z
=

≡ ∑  and assume 

( ) ˆ1 z Rδ+ ≥ .  Equations (4.1)-(4.5) become 

 

{ }
1

( )
i

I

m i i i
i

Max Min p m c
=
∑     (4.6) 

subject to 
 

( ) 1
1 1

1 1,  and 1,   ... 0
I I

i i i i i I
i i

p m z R p m m mδ
= =

+ = = ≥ ≥ >∑ ∑ .  (4.7) 

 
The solution to (4.6)-(4.7) crucially depends on the minimum value min 1z z≡ .  If min 0z > , 

the upper and lower bounds 0c  and 0c  on the call option price are given by 

 

( )
( )( )

( )
( )( )

min
0 1

min min

ˆ1 11 ˆ
ˆ ˆ1 1I

R z z R
c c c

R z z z z
δ δ

δ δ
⎡ ⎤− + + −

= +⎢ ⎥+ − + −⎣ ⎦
    

(4.8) 
( )

( )( )
( )
( )( )

1
0 1

1 1

ˆ ˆ1 11 ˆ ˆ
ˆ ˆ ˆ ˆ1 1

h h
h h

h h h h

R z z R
c c c

R z z z z
δ δ

δ δ
+

+
+ +

⎡ ⎤− + + −
= +⎢ ⎥+ − + −⎣ ⎦

.   
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In the above equations, h  is a state index such that ( ) ( ) 1ˆ ˆ1 1h hz R zδ δ ++ ≤ ≤ +  and we 

have used the following notation for conditional expectations for = 1,...,k I : 

 

( )1
0

1

ˆ | 1
k
i i i

k T T kk
i i

c pc E c S S z
p

δ=

=

∑= = ≤ +⎡ ⎤⎣ ⎦∑
     

(4.9) 

[ ]1

1

ˆ |
k
i i i

k T T kk
i i

z pz E z z z
p

=

=

∑= = ≤
∑

.     

 
Inspection of equations (4.8) and (4.9) reveals that both the upper and lower bounds of 

the call option are discounted expectations with two different distributions, { }iU u=  and 

{ }iL l= .  These distributions are both risk neutral, since it can be easily verified that 

( ) ( )1 1

1 1

1 1 1
i I i I

i i i i
i i

R u z R l zδ δ
= =

− −

= =

+ = + =∑ ∑ .  These distributions are: 

 
( )

( )( )
( )

( )( )
( )

( )( )

min
1 1

min min

min

min

ˆ1 1
ˆ ˆ1 1

1
, 2,...,

ˆ1i i

R z z R
u p

z z z z

R z
u p i I

z z

δ δ
δ δ

δ
δ

− + + −
= +

+ − + −

− +
= =

+ −

     

  (4.10) 
( )
( )( )

( )
( )( )

( )
( )( )

1
1

1 11 1

1
1 1

11

ˆ ˆ1 1
, 1,...,

ˆ ˆ ˆ ˆ1 1

ˆ1
.

ˆ ˆ1

h hi i
i h h

k kh h k h h k

h h
h h

kh h k

z R R zp pl i h
z z p z z p

R z pl
z z p

δ δ
δ δ

δ
δ

+
+

= =+ +

+
+ +

=+

+ − − +
= + =

+ − + −∑ ∑

− +
=

+ − ∑

  

 
As the states increases, the distribution of z  becomes continuous over the interval 

min[ , )z ∞ , with actual distribution ( )P z and expectation ( )E z .  Then, U  and L  become 

 
( )

( )( )

( )
( )( )

min

min

min min

1
1 ( )

1 ( )
1 ( )

( ) with probability  
( )

1 with probability

R z
E z z

E z R
z E z z

P z
U z

δ
δ

δ
δ

− +
+ −

+ −
+ −

⎧
⎪= ⎨
⎪⎩

     

(4.11) 
( )( ) ( | 1 ( ) )L z P z E z Rδ= + ≤ .     
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We note that the two call option bounds become two increasing and convex functions 

0( )c S and 0( )c S given by 

 

0 0 0 0
1 1( ) [( (1 ) ) ],   ( ) [( (1 ) ) ]U Lc S E S z K c S E S z K
R R

δ δ+ += + − = + − .  (4.12) 

 
In the important special case min 0z = , the upper bound in (4.12) becomes 

 

( ) [ ]0 0
1( ) [( (1 ) ) ]

1
Pc S E S z K

E z
δ

δ
+= + −

+
.   (4.13) 

 
Similar results are available for put options.  We have thus shown that under the no 

intermediate trading assumption the option price is bound by two values given as the 

expectation of discounted payoff under two limiting distributions.  Oancea and Perrakis 

(2004) provided corresponding bounds when ( ) ˆ1 z Rδ+ ≤ . 

 

 

5 Special case: one period with transaction 

costs and general payoffs 
 
In a one-period model with transaction costs and general payoffs, conditions (3.8)-(3.10) 

become 

 

( ) ( )
1

0 1
I

i
x i x

i

V R pV
=

= ∑     (5.1) 

 

( ) ( ) ( )
0 01

0 1 1
I

i ii i
y i y x

i

S S
V p V V

S S
δ

=

⎡ ⎤
= +⎢ ⎥

⎢ ⎥⎣ ⎦
∑    (5.2) 

and 
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( ) ( ) ( ) ( ) ( )
1

0 ( ) 1 0 , 1,...,
I

i
j j x i j i x j j x

i

P k V pG S V P k V j J
=

− ≤ ≤ + =∑ . (5.3) 

 

Conditions (3.5)-(3.7) become7 

 

( ) ( ) ( ) ( )0 0, 0 0, 1 0, 1 0, 1,...,i i
x y x yV V V V i I> > > > =   (5.4) 

 

( ) ( ) ( )≥ ≥ ≥ >1 21 1 ... 1 0I
y y yV V V     (5.5) 

and 

( ) ( ) ( ) ( ) ( )1 1 1 1 1 , 1,...,i i i
x y xk V V k V i I− ≤ ≤ + = .  (5.6) 

 

As before, a useful way to pinpoint options that cause infeasibility or near-

infeasibility of the problem is to single out a “test” option and solve the problems (3.11) 

and (3.12) subject to restrictions (5.1)-(5.6). 

In order to highlight the difference in the formulation brought about by 

transaction costs, we adopt a notation similar to that in (4.1)-(4.5).  We define 

(1)
(0)

i
x

i
x

Vm
V

≡ , the marginal rate of substitution between the bond account at time one and 

the bond account at time zero and state i ; and 
(1)
(0)

i
y

i
x

V
V

λ ≡ , the marginal rate of 

substitution between the stock account at time one and the bond account at time zero and 

state i . 

Then (5.1)-(5.6) become 

 

1

1
I

i i
i

R p m
=

= ∑      (5.7) 

 

                                                 
7 Since the value of the bond account at the end of the period is independent of the state i, the concavity 
conditions ( ) 0xxV t <  and ( ) ( ) ( )( )21 1 1 0xx yy xyV V V− >  cannot be imposed.  Only the concavity condition 

( ) 0yyV t < is imposed as in equation (5.5). 
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1

(1 ) ( ) (1 )
I

i i i i
i

k p z m kλ δ
=

− ≤ + ≤ +∑    (5.8) 

 

1

( ) ( ) ( ), 1,...,
I

j j i i j i j j
i

P k p m G z P k j J
=

− ≤ ≤ + =∑   (5.9) 

 

1 2 .... 0Iλ λ λ≥ ≥ >     (5.10) 

and 

(1 ) (1 ) , 1,...,i i ik m k m i Iλ− ≤ ≤ + = .   (5.11) 

 

The bounds on the nth option with payoff ( )n iG z  in state i are given by 

 

( ),, 1

max min  ( )
i ii i

I

i i n imm i

p m G z
λλ

=
∑ .    (5.12) 

 
Transaction costs double the number of variables that must be determined by the solution 

of the program.  Furthermore, transaction costs expand the feasible region of the pricing 

kernel for any given set of option prices.  Indeed, it is easy to see that for 

0, 0, 1,...,jk k j J= = =  the problem (5.7)-(5.12) becomes identical to (4.1)-(4.5).  

Therefore, if a feasible solution to (4.1)-(4.4) exists then this solution is feasible for (5.7)-

(5.11) with λ= =, 1,...,i im i I .  This implies that the spread between the two objective 

functions of (4.5) lies within the spread of the objective functions of (5.12). 

 

 
6 Special case: two periods without 

transaction costs and general payoffs 
 
The single-period model without transaction costs implies that the wealth at the end of 

the period is an increasing function of the stock price at the end of the period and, 
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therefore, the pricing kernel is a decreasing function of the stock price at the end of the 

period.  Likewise, the single period model with transactions costs implies that the value 

of the stock account at the end of the period is an increasing function of the stock price at 

the end of the period and, therefore, the marginal utility of wealth out of the stock 

account is a decreasing function of the stock price at the end of the period. 

Constantinides and Zariphopoulou (1999) pointed out that intermediate trading 

invalidates the above implications with or without transaction costs, because the wealth at 

the end of the period (or, the value of the stock account at the end of the period) becomes 

a function not only of the stock price at the option’s expiration but also of the entire 

sample path of the stock price.8  Constantinides and Perrakis (2002) recognized that it is 

possible to recursively apply the single-period approach with or without transaction costs 

and derive stochastic dominance bounds on option prices in a market with intermediate 

trading over the life of the options. 

In this section, we study a two-period model without transaction costs and, in the 

next section, a two-period model with transaction costs.  In the absence of transaction 

costs, the value function ( ) ( )≡ , ,t tV t V x y t  defined in (3.1)-(3.4) becomes a function of 

the aggregate trader wealth, ( , )t tV x y t+ .  Therefore, we have ( ) ( ),   0,1, 2x yV t V t t= = .  

As before, we define the first period pricing kernel as ( ) ( )≡1 1 / 0i
i x xm V V .  For the 

second period, we define the pricing kernel as 2

(2)
,   , 1,...,

(0)

ik
y

ik
x

V
m i k I

V
≡ = .  Then 

conditions (3.5)-(3.11) become 

 

2
1

1 1 1

1 ,   1 , 1,...,
I I

ik
i i k

i k i

mR p m R p i I
m= =

= = =∑ ∑    (6.1) 

 

( ) 2
11 1

1

1 1 ,   1 (1 ) ,   1,...,
I I ik

i i i k ki k
i

m
pm z p z i I

m
δ δ

= =
= + = + =∑ ∑  (6.2) 

 

                                                 
8 In the special case of i.i.d. returns, power utility and zero transactions costs, the wealth at the end of the 
period is a function only of the stock price.  However, this assumption would considerably diminish the 
generality of the model. 
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21 1
( ), 1,...,

I I

j i k ik j i ki k
P p p m G z z j J

= =
= =∑ ∑   (6.3) 

and 

11 12 1 2 1 2 2 2... 0,   m ... 0, 1,...,I i i iIm m m m m i I≥ ≥ ≥ > ≥ ≥ ≥ > = .  (6.4) 

 

We test for feasibility by solving the program 

 

( )
1 21 2

2 1 2,, 1 1

max min  ( )
i iki ik

I I

i k ik n i km mm m i k

p p m G z z
= =
∑∑ .   (6.5) 

 

The extension of the program (6.1)-(6.5) to a multiperiod context becomes 

potentially explosive.  In Section 8, we present closed form expressions for the bounds on 

the prices of European options in the special case where the payoff ( )j TG S  is convex 

(call or put) and 1J = , by using the expressions developed in Section 4.2. 

 

 
7 Special case: two periods with transaction 

costs and general payoffs 
 
We now allow for transaction costs in the two-period model with general payoffs.  Unlike 

Section 6, we have ( ) ( ),   0,1,2x yV t V t t≠ = .  We define the first period marginal rates of 

substitution as 1 1

(1)(1)    and  , 1,...,
(0) (0)

ii
yx

i i
x x

VVm i I
V V

λ≡ ≡ = .  We define the two-period 

marginal rates of substitution as 2 2

(2)(2) and ,   , 1,...,
(0) (0)

ikik
yx

ik ik
x x

VVm i k I
V V

λ≡ ≡ = .  Then 

conditions (3.5)-(3.11) become 

 

2
1

1 1 1

1 ,   1 ,   1,...,
I I

ik
i i k

i k i

mR p m R p i I
m= =

= = =∑ ∑    (7.1) 
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1 1 1 1 2 2 2
1 1

(1 ) ( ) (1 ),   ( ),   1,...,
I I

i i i i i k k ik ik
i k

k p z m k p z m i Iλ δ λ λ δ
= =

− ≤ + ≤ + = + =∑ ∑  (7.2) 

 

21 1
( ) , 1,...,

I I

j j i k ik j i k j ji k
P k p p m G z z P k j J

= =
− ≤ ≤ + =∑ ∑ ,  (7.3) 

 

11 12 1 2 1 2 2 2... 0,   ... 0,   1,...,I i i iI i Iλ λ λ λ λ λ≥ ≥ ≥ > ≥ ≥ > =   (7.4) 

and 

1 1 1 2 2 2(1 ) (1 ) ,   (1 ) (1 ) ,   1,..., ,  1,...,i i i ik ik ikk m k m k m k m i I k Iλ λ− ≤ ≤ + − ≤ ≤ + = = . (7.5) 

 

As before, we test for feasibility by solving the program 

 

( )
1 1 2 21 1 2 2

2 1 2, , ,, , , 1 1

max min  ( )
i i ik iki i ik ik

I I

i k ik n i km mm m i k

p p m G z z
λ λλ λ

= =
∑∑    (7.6) 

 

subject to (7.1)-(7.5).  Constantinides, Jackwerth and Perrakis (2005) tested for violations 

of stochastic dominance conditions (7.1)-(7.6). 

In Section 9, we present closed form expressions for the bounds on the prices of 

European options for 2T ≥  in the special case where the payoff ( )j TG S  is convex (call 

or put) and 1J = , by using the expressions developed in Section 4.2. 

 

 
8 Multiple periods without transaction costs 

and with convex payoffs 
 
For the case 1J =  and with convex payoffs, it is possible to use the special structure of 

the closed-form solution (4.8)-(4.12), in order to decompose the general problem into a 

series of one-period problems for any value of T .  Indeed, consider the U  and L  

distributions defined in (4.10) or (4.11) and define the following recursive functions: 
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( ) ( )1 11 1

1

1 1( ) [ ( 1 ) ], ( ) [ ( 1 ) ],

( ) ( ) ( (1 ) ) .

U L
t t t tt t t t t t t t

T TT T T T

c S E c S z S c S E c S z S
R R

c S c S S z K

δ δ

δ

+ ++ +

+
−

= + = +

= = + −

 (8.1) 

 

In (8.1), the P , U  and L  distributions of the successive price ratios 1
1

t
t

t

Sz
S
+

+ ≡  are 

allowed to depend on the current index value tS  provided such dependence preserves the 

convexity of the option value ( )t tc S  at any time t with respect to tS . 

Assume that 1tz +  takes I  ordered values 1, ,  1,...,t iz i I+ =  that determine the states 

at time 1t + , set ( )1, 1,( 1 )t i t t t ic c S zδ+ +≡ +  and define at time t  the variables 

1 1,

( 1)
: , 1,...,

( )

i
y

t t i
x

V t
m m i I

V t+ +

+
≡ = .  We can then show by induction that the expressions 

(8.1) define upper and lower bounds on the option value ( )t tc S  at any time t T< .9  We 

clearly have10 

 

( )1, 1, 1, 1 1
1

( ) [ ( 1 ]
i I

P
t t t i t i t i t t t t t

i
c S p m c E m c S z Sδ

=

+ + + + +
=

= = +∑ .   (8.2) 

 

With these definitions consider now the program 

 

( )

1, 1, 1,

1, 1, 1, 1, 1,

{ } 1,
1

1 1

1, 1 1, 2 1,

min(max)  ,subject to :

1 1 , 1 ,

... 0.

t i t i t i

t i t i t i t j t i

I

m t t i
i

I I

i i

t t t I

c c p m

z p m R p m

m m m

δ

+ + +

+ + + + +

+
=

= =

+ + +

=

= + =

≥ ≥ ≥ >

∑

∑ ∑   (8.3) 

                                                 
9 The multiperiod upper bound in (6.6) was initially developed in Perrakis (1986). The lower bound was 
derived in Ritchken and Kuo (1988). 
10 In (8.2) the expectations are conditional on the stock price at time t. In fact the model is more general and 
the P -distribution may be allowed to depend on other variables such as, for instance, the current volatility 
of the stock price provided convexity is preserved and these other variables do not affect independently the 
trader utility function. 
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Given the assumed convexity of ( )1 1( 1 )t t t tc c S zδ+ += + , the solution of (8.3) produces 

upper and lower bounds on ( )t tc S  that are discounted expectations of ( ) 1( 1 )t t tc S zδ ++  

under the U  and L  distributions given by (4.10) or (4.11), conditional on tS .  The bounds 

on tc  are still given by the recursive expressions in (8.1). 

Oancea and Perrakis (2004) addressed the asymptotic behavior of the multiperiod 

bounds in (8.1) as the number of trading dates increases.  They considered specific cases 

of convergence of the P distribution to a particular stochastic process at the limit of 

continuous time.  They showed that both the U and L  distributions defined in (4.11) 

converge to a single risk neutral stochastic process whenever the P distribution 

converges to a generalized diffusion, possibly a two-dimensional one, that preserves 

convexity of the option with respect to the underlying asset price.11  A necessary and 

sufficient condition for the convergence of a discrete process to a diffusion is the 

Lindeberg condition, which was used by Merton (1982) to develop criteria for the 

convergence of binomial and, more generally, multinomial discrete time processes.  This 

condition is applicable to multidimensional diffusion processes. 

With minor reformulation, Oancea and Perrakis (2004) extended the validity of 

the bounds to stochastic volatility and GARCH models of the stock price.  They also 

demonstrated that U and L  converge to distinct limits when the limit of the 

P distribution is a mixed jump-diffusion process.  They applied the stochastic dominance 

bounds to a discrete time process that converges to a general version of (6.13), a mixed 

jump-diffusion process, in which the logarithm of the jump size amplitude G  converges to a 

distribution with support min max[ , ]G G G∈ , with min max0G G< < .  The fact that the two 

option bounds converge to two different values is not particularly surprising.  Recall that 

the bounds derived in earlier studies are also dependent either on the special assumption 

of fully diversifiable jump risk as in Merton (1976), or on the risk aversion parameter of 

the power utility function of the representative investor, as in Bates (1991) and Amin 

                                                 
11  The conditions for the preservation of convexity were first presented by Bergman et al (1996).  
Convexity is preserved in all one-dimensional diffusions and in most two-dimensional diffusions that have 
been used in the option pricing literature. 
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(1993).  The option prices derived in these earlier studies are special cases located within 

the continuous time limits of the stochastic dominance bounds derived by (8.1). 

 

 
9 Multiple periods with transaction costs 

and with convex payoffs 
 
Constantinides and Perrakis (2002) recognized that it is possible to recursively apply the 

single-period approach with transaction costs and derive stochastic dominance bounds on 

option prices in a market with intermediate trading over the life of the options.  The task 

of computing these bounds is easy compared to the full-fledged investigation of the 

feasibility of conditions (3.5)-(3.10) for large T  for two reasons.  As with the no 

transaction costs case, the derivation of the bounds takes advantage of the special 

structure of the payoff of a call or put option, specifically the convexity of the payoff as a 

function of the stock price.  Second, the set of assets is limited to three assets: the bond, 

stock and one option, the test option.  Below, we state these bounds without proof. 

At any time t prior to expiration, the following is an upper bound on the price of a 

call: 

 

( ){ }
( )[ ]+(1 )

( ,  t) 1 -
ˆ(1 ) 1

t T tT t

k
c S E S K S

k z
δ

δ
−

+ ⎡ ⎤= +⎢ ⎥⎣ ⎦− +
,  (9.1) 

 

where ( ) ˆ1 zδ+  is the expected return on the stock per unit time.  Observe that (9.1) is the 

same as the upper bound given in (4.13) for min 0z =  times the roundtrip transaction cost.  

The tighter upper bound given in (4.8), (4.11) and (8.1) does not survive the introduction 

of transaction costs and is eventually dominated by (9.1). 

A partition-independent lower bound for a call option can also be found, but only 

if it is additionally assumed that there exists at least one trader for whom the investment 
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horizon coincides with the option expiration, 'T T= .  In such a case, transactions costs 

become irrelevant in the put-call parity and the following is a lower bound:12 

 

( ) ( ){ }t-T
t t ˆ ( ,  t)  1+ S - / [( ) S ]/ 1

T tT t
t Tc S K R E K S zδ δ −− += + − + , (9.2) 

 

where R  is one plus the risk free interest rate per unit time. 

Put option upper and lower bounds also exist that are independent of the 

frequency of trading.  They are given as follows: 

 

( )( ) [ ]1
ˆ( ,  ) 1 |

1
t T

t T tT t

K k
p S t z E K S K S

R k
δ

− +

−

− ⎡ ⎤⎡ ⎤= + + − −⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦+
,  (9.3) 

and 

( )( ) [ ]

[ ]

+1 -
ˆ( , ) 1 - | , 1

1

- , .

t T

t T t

T

k
p S t z E K S S t T

k

K S t T

δ
−

+

⎡ ⎤= + ≤ −⎢ ⎥⎣ ⎦+
= =

  (9.4) 

 

The bounds presented in (9.1)-(9.4) may not be the tightest possible bounds for any given 

frequency of trading.  Nonetheless, they have the property that they do not depend on the 

frequency of trading over the life of the option.  For a comprehensive discussion and 

derivation of these and other possibly tighter bounds that are specific to the allowed 

frequency of trading, see Constantinides and Perrakis (2002).  See also Constantinides 

and Perrakis (2004) for extensions to American-style options and futures options. 

 

 

10 Empirical results 
 
A robust prediction of the BSM option pricing model is that the volatility implied by 

market prices of options is constant across striking prices.  Rubinstein (1994) tested this 
                                                 
12 In the special case of zero transactions costs, the assumption 'T T=  is redundant because the put-call 
parity holds. 
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prediction on the S&P 500 index options (SPX), traded on the Chicago Board Options 

Exchange, an exchange that comes close to the dynamically complete and perfect market 

assumptions underlying the BSM model.  From the start of the exchange-based trading in 

April 1986 until the October 1987 stock market crash, the implied volatility is a 

moderately downward-sloping function of the strike price, a pattern referred to as the 

“volatility smile”, also observed in international markets and to a lesser extent on 

individual-stock options.  Following the crash, the volatility smile is typically more 

pronounced.13 

An equivalent statement of the above prediction of the BSM model, that the 

volatility implied by market prices of options is constant across striking prices, is that the 

risk-neutral stock price distribution is lognormal.  Ait-Sahalia and Lo (1998), Jackwerth 

and Rubinstein (1996) and Jackwerth (2000) estimated the risk-neutral stock price 

distribution from the cross section of option prices.14  Jackwerth and Rubinstein (1996) 

confirmed that, prior to the October 1987 crash, the risk-neutral stock price distribution is 

close to lognormal, consistent with a moderate implied volatility smile.  Thereafter, the 

distribution is systematically skewed to the left, consistent with a more pronounced smile. 

Even when we relax the specific assumptions of the BSM model that rule out 

stock price jumps and stochastic volatility, economic theory imposes restrictions on the 

pricing kernel that go beyond merely ruling out arbitrage.  As we have demonstrated in 

Section 3, if prices are set by a utility maximizing trader in a frictionless market, the 

pricing kernel must be a monotonically decreasing function of the market index price.  To 

see this, the pricing kernel equals the representative agent’s intertemporal marginal rate 

of substitution over each trading period.  If the representative agent has state independent 

(derived) utility of wealth, then the concavity of the utility function implies that the 

pricing kernel is a decreasing function of wealth.  Under the two maintained hypotheses 

that the marginal investor’s (derived) utility of wealth is state independent and wealth is 

monotone increasing in the market index level, the pricing kernel is a decreasing function 

of the market index level. 

                                                 
13 Brown and Jackwerth (2004), Jackwerth (2004), Shefrin (2005), and Whaley (2003) review the literature 
and potential explanations. 
14 Jackwerth (2004) reviews the parametric and non-parametric methods for estimating the risk-neutral 
distribution. 
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In a frictionless representative-agent economy, Ait-Sahalia and Lo (2000), 

Jackwerth (2000), and Rosenberg and Engle (2002) estimated the pricing kernel implied 

by the observed cross-section of prices of S&P 500 index options as a function of wealth, 

where wealth is proxied by the S&P 500 index level.  Jackwerth (2000) reported that the 

pricing kernel is everywhere decreasing during the pre-crash period 1986-1987 but 

widespread violations occur over the post-crash period 1987-1995.  Ait-Sahalia and Lo 

(2000) reported violations in 1993 and Rosenberg and Engle (2002) reported violations 

over the period 1991-1995. 15   On the other hand, Bliss and Panigirtzoglou (2004) 

estimated plausible values for the risk aversion coefficient of the representative agent. 

Several theories have been suggested to explain the inconsistencies with the BSM 

model and the violations of monotonicity of the pricing kernel.  Brown and Jackwerth 

(2004) suggested that the reported violations of the monotonicity of the pricing kernel 

may be an artifact of the maintained hypothesis that the pricing kernel is state 

independent but concluded that volatility cannot be the sole omitted state variable in the 

pricing kernel.  Bollen and Whaley (2004) suggested that buying pressure drives the 

volatility smile while Han (2004) and Shefrin (2005) provided behavioral explanations 

based on sentiment. 

Pan (2002), Garcia, Luger and Renault (2003), and Santa-Clara and Yan (2004), 

among others, estimated models in which the pricing kernel is state dependent, using 

panel data on S&P 500 options.  The estimated parameter values are plausible.  However, 

their results do not necessarily imply absence of stochastic dominance violations on a 

month-by-month basis. 

Calibrated theoretical models have been put forth that generate a volatility smile 

pattern observed in option prices.  Liu, Pan and Wang (2005) investigated “rare-event 

premia” driven by “uncertainty aversion” in the context of a calibrated equilibrium model 

and demonstrated that the model generates a volatility smile pattern observed in option 

prices.  Benzoni, Collin-Dufresne, and Goldstein (2005) extended the above approach to 

show that “uncertainty aversion” is not a necessary ingredient of the model.  More 

                                                 
15 Rosenberg and Engle (2002) found violations when they used an orthogonal polynomial pricing kernel 
but not when they used a power pricing kernel. 
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significantly, they demonstrated that the model can generate the stark regime shift that 

occurred at the time of the 1987 crash. 

Constantinides, Jackwerth and Perrakis (2005), hereafter CJP, empirically 

investigated whether the observed cross sections of S&P 500 index option prices are 

consistent with various economic models that explicitly allow for a dynamically 

incomplete market and also recognize trading costs and bid-ask spreads.  In the first part 

of their paper, CJP introduced transactions costs (trading fees and bid-ask spreads) in 

trading the index and options and investigated the extent to which violations of stochastic 

dominance, gross of transactions costs, are explained by transactions costs.  They found 

that transactions costs decrease the frequency of violations but violations persist in 

several months both before and after the October 1987 crash. 

Then CJP explored the second maintained hypothesis that every economic agent’s 

wealth on the expiration date of the options is monotone increasing in the S&P 500 index 

price on that date.  This assumption is unwarranted once we recognize that trading occurs 

over the (one-month) life of the options.  With intermediate trading, a trader’s wealth on 

the expiration date of the options is generally a function not only of the price of the 

market index on that date but also of the entire path of the index.  Thus the pricing kernel 

is a function not only of the index level but also of the entire path of the index level.  CJP 

explored the month-by-month violations of stochastic dominance while allowing the 

pricing kernel to depend on the path of the index level.  They found that intermediate 

trading actually increases the frequency of violations both before and after the October 

1987 crash.  This counterintuitive result arises because intermediate trading imposes the 

restriction on the pricing kernel that it now has to be monotone decreasing in wealth over 

each trading period, conditional on the path leading up to that trading period. 

In estimating the real distribution of the S&P 500 index returns, CJP refrained 

from adopting a particular parametric form of the distribution and proceeded in three 

different ways.  In the first approach, they estimated the unconditional distribution as the 

histograms extracted from two different historical index data samples covering the 

periods 1928-1986 and 1977-1986.  In the second approach, they estimated the 

unconditional distribution as the histograms extracted from two different forward-looking 

samples, one that includes the October 1987 crash (1987-1995) and one that excludes it 
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(1988-1995).  In the third approach, they modeled the variance of the index return as a 

GARCH (1, 1) process and estimate the conditional variance over the period 1977-1995 

by the semiparametric method of Engle and Gonzalez-Rivera (1991) that does not impose 

the restriction that conditional returns are normally distributed. 

Based on the index return distributions extracted in the above three approaches, 

they tested the compliance of option prices to the predictions of models that sequentially 

introduce market incompleteness, transactions costs, and intermediate trading over the 

life of the options. 

A novel finding is that, even though pre-crash option prices follow the BSM 

model reasonably well, it does not follow that these options are correctly priced.  Pre-

crash option prices are incorrectly priced, if index return expectations are formed based 

on the historical experience.  Furthermore, some of these prices lie below the theoretical 

bounds, contrary to received wisdom that historical volatility generally underprices 

options in the BSM model. 

Another novel finding dispels the common misconception that the observed smile 

is too steep after the crash.  Most of the violations post-crash are due to the option smile 

not being steep enough relative to expectations on the index price formed post-crash.  

Even though the BSM model assumes that there is no smile, an investor who properly 

understood the post-crash distribution of index returns should have priced the options 

with a steeper smile than the smile reflected in the actual option prices. 

The results employing the conditional index return distribution support the 

scenario that investors in options were ignoring shifts in the index return volatility prior 

to the crash and began paying attention to these shifts only after the crash.  There are 

fewer violations of stochastic dominance in the post-crash call prices over 1991-1995 

when using the conditional index return distribution than when using the forward looking 

unconditional distribution.  CJP interpreted the results with the historical, forward-

looking and conditional index distributions as evidence that traders began to learn about 

the index return distribution after the crash, but the speed of learning was slow. 

In all cases, there is a higher percentage of months with stochastic dominance 

violations by out-of-the-money calls (or, equivalently, in-the-money puts) than by in-the-

money calls, suggesting that the mispricing is caused by the right-hand tail of the index 
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return distribution and not by the left-hand tail.  This observation is novel and contradicts 

the common inference drawn from the observed implied volatility smile that the problem 

lies with the left-hand tail of the index return distribution. 

 

 

11 Concluding remarks 

 
We presented an integrated approach to the pricing of options that allows for incomplete 

and imperfect markets.  The BSM option pricing model is the nested case of complete 

and perfect markets.  When the market is incomplete, imperfect, or both, the principle of 

no-arbitrage by itself implies restrictions on the prices of options that are too weak to be 

useful to either price options or confront the data with a testable hypothesis. 

Instead of the principle of the absence of arbitrage that underlies the BSM model, 

we introduced the economic restriction that at least one risk-averse trader is a marginal 

investor in the options and the underlying security.  Given the cross-section of the prices 

of options and the real probability distribution of the return of the underlying security, the 

implied restrictions may be tested by merely solving a linear program.  We also showed 

that the economic restrictions may be expressed in the form of upper and lower bounds 

on the price of an option, given the prices of the stock and the other outstanding options. 

By providing an integrated approach to the pricing of options that allows for 

incomplete and imperfect markets, we provided testable restrictions on option prices that 

include the BSM model as a special case.  We reviewed the empirical evidence on the 

prices of S&P 500 index options.  The economic restrictions are violated surprisingly 

frequently, suggesting that the mispricing of these options cannot be entirely attributed to 

the fact that the BSM model does not allow for market incompleteness and realistic 

transaction costs.  These are indeed exciting developments and are bound to stimulate 

further theoretical and empirical work to address the month-by-month pattern of option 

price violations. 
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