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Dynami
 Modelling of Large Dimensional Covarian
e Matri
esValeri Voev∗University of Konstanz, CoFE1 February 2007Abstra
tModelling and fore
asting the 
ovarian
e of �nan
ial return series has always been a
hallenge due to the so-
alled "
urse of dimensionality". This paper proposes a method-ology that is appli
able in large dimensional 
ases and is based on a time series of realized
ovarian
e matri
es. Some solutions are also presented to the problem of non-positivede�nite fore
asts. This methodology is then 
ompared to some traditional models on thebasis of its fore
asting performan
e employing Diebold-Mariano tests. We show that ourapproa
h is better suited to 
apture the dynami
 features of volatilities and 
ovolatilities
ompared to the sample 
ovarian
e based models.1 Introdu
tionModelling and fore
asting the varian
es and 
ovarian
es of returns of �nan
ial assets is 
ru
ialfor �nan
ial management and portfolio sele
tion and re-balan
ing. Re
ently this bran
h ofthe e
onometri
 literature has grown at a very fast pa
e. One of the simplest methods used isthe sample 
ovarian
e matrix. A stylized fa
t, however, is that there is a serial dependen
e inthe se
ond moments of returns. Thus, more sophisti
ated models had to be developed whi
hin
orporate this property, as well as other well-known features of �nan
ial return distributionssu
h as leptokurtosis or the so-
alled "leverage e�e
t". This led to the development of theunivariate GARCH pro
esses and their extension - the multivariate GARCH (MGARCH)models (for a 
omprehensive review see Bauwens, Laurent, and Rombouts (2006)), whi
hin
lude also the modelling of 
ovarian
es. One of the most severe drawba
ks of the MGARCHmodels, however, is the di�
ulty of handling dimensions higher than 4 or 5 (or with veryrestri
tive assumptions). Another more pra
ti
ally oriented �eld of resear
h deals with theproblem of how to redu
e the noise inherent in simpler 
ovarian
e estimators su
h as thesample 
ovarian
e matrix. Te
hniques have been developed to "shrink" the sample 
ovarian
e(SC) matrix, thereby redu
ing its extreme values in order to mitigate the e�e
t of the so-
alled error maximization noted by Mi
haud (1989). One of the shrinkage estimators used
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among pra
titioners is the Bla
k-Litterman model (Bla
k and Litterman (1992)). This modeluses a prior whi
h re�e
ts an investor's beliefs about se
urities returns and 
ombines it withimplied equilibrium expe
ted returns to obtain a posterior distribution, whose varian
e is a
ombination of the 
ovarian
e matrix of implied returns and the 
on�den
e of the investor'sviews (whi
h re�e
t the prior 
ovarian
e). Further, Ledoit and Wolf (2003) and Ledoit andWolf (2004) use shrinkage methods to 
ombine a SC matrix with a more stru
tured estimator(e.g a matrix with equal pairwise 
orrelations, or a fa
tor estimator). The idea is to 
ombinean asymptoti
ally unbiased estimator having a large varian
e with a biased estimator, whi
his 
onsiderably less noisy. So the shrinkage a
tually amounts to optimizing in terms of thewell-known trade-o� between bias and varian
e.Re
ently, with the availability of high-quality transa
tion databases, the te
hnique ofrealized varian
e and 
ovarian
e (RC) gained popularity. A very 
omprehensive treatment ofvolatility modelling with fo
us on fore
asting appears in Andersen, Bollerslev, Christo�ersen,and Diebold (2006). Andersen, Bollerslev, Diebold, and Ebens (2001), among others, haveshown that there is a long-range persisten
e (long memory) in daily realized volatilities, whi
hallows one to obtain good fore
asts by means of fra
tionally integrated ARMA pro
esses. Atthe monthly level, we �nd that the auto
orrelations de
line quite qui
kly to zero, whi
h ledus to 
hoose standard ARMA models for �tting and fore
asting.The aim of this paper is to 
ompare the fore
asting performan
e of a set of models,whi
h are suitable to handle large dimensional 
ovarian
e matri
es. Letting H denote the setof 
onsidered models, we have H = {s, ss, rm, rc, src, drc, dsrc}, where the �rst two modelsare based on the sample 
ovarian
e matrix, the third model is a RiskMetri
sTM exponentiallyweighted moving average (EWMA) estimator developed by J.P. Morgan (1996), the fourthand the �fth represent simple fore
asts based on the realized and on the shrunk realized
ovarian
e matrix, and the last two models employ dynami
 modelling of the RC and shrunkRC, respe
tively. We judge the performan
e of the models by looking at their ability tofore
ast individual varian
e and 
ovarian
e series by employing a battery of Diebold-Mariano(Diebold and Mariano (1995)) tests. Of 
ourse, if we have good fore
asts for the individualseries, then the whole 
ovarian
e matrix will also be well fore
ast. The pra
ti
al relevan
e ofa good fore
ast 
an be seen by 
onsidering an investor who fa
es an optimization problem todetermine the weights of some portfolio 
onstituents. One of the 
ru
ial inputs in this problemis a fore
ast of future movements and 
o-movements in asset returns. Our 
ontribution is topropose a methodology whi
h improves upon the sample 
ovarian
e estimator and is easy toimplement even for very large portfolios. We show that in some sense these models are more�exible than the MGARCH models, although this 
omes at the expense of some 
ompli
ations.The remainder of the paper is organized as follows: Se
tion 2 sets up the notationand des
ribes the fore
asting models, Se
tion 3 presents the data set used to 
ompare thefore
asting performan
e of the models, Se
tion 4 dis
usses the results on the fore
ast evaluationand Se
tion 5 
on
ludes the paper.2 Fore
asting modelsIn this se
tion we des
ribe ea
h of the 
ovarian
e fore
asting models. First, we introdu
esome notation and des
ription of the fore
asting methodology. We 
on
entrate on one-step2



ahead fore
asts of 
ovarian
e matri
es of N sto
ks, and 
onsider the monthly frequen
y. Theinformation is updated every period and a new fore
ast is formed. Thus, ea
h new fore
astin
orporates the newest information whi
h has be
ome available. Su
h a strategy might de-s
ribe an a
tive long-run investor, who revises and rebalan
es her portfolio every month. Letthe multivariate pri
e pro
ess be de�ned as P = {Pt(ω), t ∈ (−∞,∞), ω ∈ Ω}, where Ω is anout
ome spa
e.1 The portfolio is set up at t = 0 and updated at ea
h t = 1, 2, . . . , T̄ , where
T̄ is the end of the investment period. The frequen
y of the observations in our appli
ationis daily, whi
h we refer to as intra-periods. In this setup, we 
an formally de�ne the infor-mation set at ea
h time t ≥ 0 as a �ltration Ft = σ(Ps(ω), s ∈ T ) generated by P, with
T = {s : s = −L + j

M , j = 0, 1, . . . , (L + t)M}, M � the number of intra-periods within ea
hperiod2 and L � the number of periods, for whi
h pri
e data is available, before the invest-ment period. It is important to note that not all information is 
onsidered in the fore
astsbased on the sample 
ovarian
e matrix. For these models only the lower frequen
y monthlysampling is needed. Furthermore, we de�ne the monthly returns as rt = ln(Pt) − ln(Pt−1),where Pt is the realization of the pri
e pro
ess at time t, and the jth intra-period return by
rt+ j

M

= ln
(
Pt+ j

M

)
− ln

(
Pt+ j−1

M

). The realized 
ovarian
e at time t + 1 is given by:
Σ

RC
t+1 =

M∑

j=1

rt+ j

M

r
′
t+ j

M

. (1)Assessing the performan
e of varian
e fore
asts has been quite problemati
, sin
e the true
ovarian
e matrix Σt is not dire
tly observable. This has long been a hurdle in evaluatingGARCH models. Traditionally, the squared daily return was used as a measure of the dailyvarian
e. Although this is an unbiased estimator, it has a very large estimation error due tothe large idiosyn
rati
 noise 
omponent of daily returns. Thus a good model may be evaluatedas poor, simply be
ause the target is measured with a large error. In an important paper,Andersen and Bollerslev (1998) showed that GARCH models a
tually provide good fore
astswhen the target to whi
h they are 
ompared is estimated more pre
isely, by means of sum ofsquared intradaily returns. Sin
e then, it has be
ome a pra
ti
e to take the realized varian
eas the relevant measure for 
omparing fore
asting performan
e. In this spirit, we use therealized monthly 
ovarian
e in pla
e of the true matrix. Thus we will assess a given fore
ast
Σ̂

(h)
t+1|t, h ∈ H by its deviation from Σ

RC
t+1.2.1 A sample 
ovarian
e fore
astIn this se
tion we des
ribe a fore
asting strategy based on the sample 
ovarian
e matrix,whi
h will serve as a ben
hmark. The sample 
ovarian
e is a 
onsistent estimator for the truepopulation 
ovarian
e under weak assumptions. We use a rolling window s
heme and de�ne1Of 
ourse, in reality the pri
e pro
ess 
ould not have started in the in�nite past. Sin
e we are interestedin when the pro
ess be
ame observable, and not in its beginning, we leave the latter unspe
i�ed.2This number is not ne
essarily the same for all periods and should be denoted more pre
isely by M(t).This is not done in the text to avoid 
luttering of the notation.

3



the fore
ast as:
Σ̂

(s)
t+1|t =

1

T

t∑

s=t−T+1

(rs − r̄t,T )(rs − r̄t,T )′, (2)where for ea
h t, r̄t,T is the sample mean of the return ve
tor r over the last T observations.We will denote the sample 
ovarian
e matrix at time t by Σ
SC
t . For T we 
hoose a value of60, whi
h with monthly data 
orresponds to a time span of �ve years. As the near future isof the highest importan
e in volatility fore
asting, this number might seem too large. Toosmall a number of periods, however, would lead to a large varian
e of the estimator, thereforeother authors (e.g. Ledoit and Wolf (2004)) have also 
hosen 60 months as a balan
e betweenpre
ision and relevan
e of the data. A problem of this approa
h, as simple as it is, is that newinformation is given the same weight as very old information. Another obvious oversimpli�-
ation is that we do not a

ount for the serial dependen
e present in the se
ond moments of�nan
ial returns.2.2 A shrinkage sample 
ovarian
e fore
astIn this se
tion we brie�y present the shrinkage estimator, proposed by Ledoit and Wolf (2003),in order to give an idea of the shrinkage prin
iple.The shrinkage estimator of the 
ovarian
e matrix Σt is de�ned as a weighted linear
ombination of some shrinkage target Ft and the sample 
ovarian
e matrix, where the weightsare 
hosen in an optimal way. More formally, the estimator is given by

Σ
SS
t = α̂∗

t Ft + (1 − α̂∗
t )Σ

SC
t , (3)

α̂∗
t ∈ [0, 1] is an estimate of the optimal shrinkage 
onstant α∗

t .The shrinking intensity is 
hosen to be optimal with respe
t to a loss fun
tion de�nedas a quadrati
 distan
e between the true and the estimated 
ovarian
e matri
es based onthe Frobenius norm. The Frobenius norm of an N × N symmetri
 matrix Z with elements
(zij)i,j=1,...,N is de�ned by

‖Z‖2 =

N∑

i=1

N∑

j=1

z2
ij . (4)The quadrati
 loss fun
tion is the Frobenius norm of the di�eren
e between Σ

SS
t and the true
ovarian
e matrix:

L(αt) =
∥∥αtFt + (1 − αt)Σ

SC
t − Σt

∥∥2
. (5)The optimal shrinkage 
onstant is de�ned as the value of α whi
h minimizes the expe
ted4



value of the loss fun
tion (i.e. the risk) in expression (5):
α∗

t = argmin
αt

E [L(αt)] . (6)For an arbitrary shrinkage target F and a 
onsistent 
ovarian
e estimator S, Ledoit and Wolf(2003) show that
α∗ =

∑N
i=1

∑N
j=1 (Var [sij] − Cov [fij, sij ])

∑N
i=1

∑N
j=1 (Var [fij − sij] + (φij − σij)2)

, (7)where fij is a typi
al element of the sample shrinkage target, sij � of the 
ovarian
e estimator,
σij � of the true 
ovarian
e matrix, and φij � of the population shrinkage target Φ. Furtherthey prove that this optimal value is asymptoti
ally 
onstant over T and 
an be written as3:

κt =
πt − ρt

νt
. (8)In the formula above, πt is the sum of the asymptoti
 varian
es of the entries of the sample
ovarian
e matrix s
aled by √

T : πt =
∑N

i=1

∑N
j=1 AVar [√Tsij,t

], ρt is the sum of asymptoti

ovarian
es of the elements of the shrinkage target with the elements of the sample 
ovari-an
e matrix s
aled by √
T : ρt =

∑N
i=1

∑N
j=1 ACov [√

Tfij,t,
√

Tsij,t

], and νt measures themisspe
i�
ation of the shrinkage target: νt =
∑N

i=1

∑N
j=1(φij,t − σij,t)

2. Following their for-mulation and assumptions, ∑N
i=1

∑N
j=1 Var [√T (fij − sij)

] 
onverges to a positive limit, andso ∑N
i=1

∑N
j=1 Var [fij − sij] = O(1/T ). Using this result and the √

T 
onvergen
e in distri-bution of the elements of the sample 
ovarian
e matrix, Ledoit and Wolf (2003) show that theoptimal shrinkage 
onstant is given by:
α∗

t =
1

T

πt − ρt

νt
+ O

(
1

T 2

)
. (9)Sin
e α∗ is unobservable, it has to be estimated. Ledoit and Wolf (2004) propose a
onsistent estimator of α∗ for the 
ase where the shrinkage target is a matrix in whi
h allpairwise 
orrelations are equal to the same 
onstant. This 
onstant is the average value ofall pairwise 
orrelations from the sample 
orrelation matrix. The 
ovarian
e matrix resultingfrom 
ombining this 
orrelation matrix with the sample varian
es, known as the equi
orrelatedmatrix, is the shrinkage target. The equi
orrelated matrix is a sensible shrinkage target asit involves only a small number of free parameters (hen
e less estimation noise). Thus theelements of the sample 
ovarian
e matrix, whi
h in
orporate a lot of estimation error andhen
e 
an take rather extreme values are "shrunk" towards a mu
h less noisy average. Using3In their paper the formula appears without the subs
ript t. By adding it here we want to emphasize thatthese variables are 
hanging over time.

5



the equi
orrelated matrix as the shrinkage target Ft in equation (3) the fore
ast is given by
Σ̂

(ss)
t+1|t = Σ

SS
t . (10)2.3 A RiskMetri
sTM fore
astThe RiskMetri
sTM fore
asting methodology is a modi�
ation of the sample 
ovarian
e matrix,in whi
h observations whi
h are further in the past are given exponentially smaller weights, de-termined by a fa
tor λ. For the generi
 (i, j), i, j = 1, . . . , N element of the EWMA 
ovarian
ematrix ΣRM

t we have:
σRM

ij,t = (1 − λ)

t∑

s=1

λs−1 (ri,s − r̄i) (rj,s − r̄j) , (11)where r̄i = 1
t

∑t
s=1 ri,s. Again, the fore
ast is given by:

Σ̂
(rm)
t+1|t = Σ

RM
t . (12)Methods to 
hoose the optimal λ are dis
ussed in J.P. Morgan (1996). In this paperwe set λ = 0.97, the value used by J.P. Morgan for monthly (
o)volatility fore
asts. Notethat 
ontrary to the sample 
ovarian
e matrix, for whi
h we use a rolling window s
heme, inthe RiskMetri
s approa
h we use at ea
h t all the available observations from the beginningof the observation period up to t. Sin
e in the RiskMetri
s approa
h the weights de
reaseexponentially, the observations whi
h are further away in the past are given relatively smallerweights and hen
e do not in�uen
e the estimate as mu
h as in the sample 
ovarian
e matrix.2.4 A simple realized 
ovarian
e fore
astThe realized 
ovarian
e estimator was already de�ned in expression (1). Its univariate andmultivariate properties have been studied among others, by Barndor�-Nielsen and Shephard(2004) and by Andersen, Bollerslev, Diebold, and Labys (2003). In the limit, when M → ∞,Barndor�-Nielsen and Shephard (2004) have shown that realized 
ovarian
e is an error-freemeasure for the integrated 
ovariation of a very broad 
lass of sto
hasti
 volatility models. Inthe empiri
al part we 
ompute monthly realized 
ovarian
e by using daily returns (see alsoFren
h, S
hwert, and Stambaugh (1987)). The simple fore
ast is de�ned by:

Σ̂
(rc)
t+1|t = Σ

RC
t . (13)Thus an investor who uses this strategy simply 
omputes the realized 
ovarian
e at the endof ea
h month and then uses it as his best guess about the true 
ovarian
e matrix of the nextmonth. A ni
e feature of this method is that it only uses re
ent information whi
h is of mostvalue for the fore
ast but imposes a very simple and restri
tive time dependen
e. Pra
ti
allyequation (13) states that all varian
es and 
ovarian
es follow a random walk pro
ess. However,6



as we shall see later, the estimated series of monthly varian
es and 
ovarian
es show weakstationarity.2.5 A shrinkage realized 
ovarian
e fore
astAlthough the estimator dis
ussed in the previous se
tion is asymptoti
ally error-free, in pra
-ti
e one 
annot re
ord observations 
ontinuously. A mu
h more serious problem is the fa
tthat at very high frequen
ies, the martingale assumption needed for the 
onvergen
e of therealized 
ovarian
es to the integrated 
ovariation is no longer satis�ed. At trade-by-trade fre-quen
ies, market mi
rostru
ture a�e
ts the pri
e pro
ess and results in mi
rostru
ture noiseindu
ed auto
orrelations in returns and hen
e biased varian
e estimates. Methods to a

ountfor this bias and 
orre
t the estimates have been developed by Hansen and Lunde (2006),Oomen (2005), Aït-Sahalia, Mykland, and Zhang (2005), Bandi and Russell (2005), Zhang,Mykland, and Aït-Sahalia (2005), and Voev and Lunde (2007), among others. At low frequen-
ies the impa
t of market mi
rostru
ture noise 
an be signi�
antly mitigated, but this 
omesat the pri
e of higher varian
e of the estimator. Sin
e we are using daily returns, marketmi
rostru
ture is not an issue. Thus we will suggest a possible way to redu
e varian
e. Againas in Se
tion 2.2, we will try to �nd a 
ompromise between bias and varian
e applying theshrinkage methodology. The estimator looks very mu
h like the one in expression (3). In this
ase we have:
Σ

SRC
t = α̂∗

t Ft + (1 − α̂∗
t )Σ

RC
t , (14)where now Ft is the equi
orrelated matrix, 
onstru
ted from the realized 
ovarian
e matrix

Σ
RC
t in the same fashion as the equi
orrelated matrix 
onstru
ted from the sample 
ovarian
ematrix, as explained in Se
tion 2.2. Similarly to the previous se
tion, the fore
ast is simply

Σ̂
(src)
t+1|t = Σ

SRC
t . (15)Sin
e the realized 
ovarian
e is a 
onsistent estimator, we 
an still apply formula (7)taking into a

ount the di�erent rate of 
onvergen
e. In order to 
ompute the estimates forthe varian
es and 
ovarian
es, we need a theory for the distribution of the realized 
ovari-an
e, whi
h is developed in Barndor�-Nielsen and Shephard (2004), who provide asymptoti
distribution results for the realized 
ovariation matrix of 
ontinuous sto
hasti
 volatility semi-martingales (SVSMc). Assuming that the log pri
e pro
ess lnP ∈ SVSMc, we 
an de
om-pose it as lnP = a∗ +m∗, where a∗ is a pro
ess with 
ontinuous �nite variation paths and m∗is a lo
al martingale. Furthermore, under the 
ondition that m∗ is a multivariate sto
hasti
volatility pro
ess, it 
an be de�ned as m∗(t) =

∫ t
0 Θ(u)dw(u), where Θ is the spot 
ovolatilitypro
ess and w is a ve
tor standard Brownian motion. Then the spot 
ovarian
e is de�ned as:

Σ(t) = Θ(t)Θ(t)′, (16)assuming that (for all t < ∞)
∫ t

0
Σkl(u)du < ∞, k, l = 1, . . . , N, (17)7



where Σkl(t) is the (k, l) element of the Σ(t) pro
ess. Having laid this notation we will nowinterpret the "true" 
ovarian
e matrix as:
Σt+1 =

∫ t+1

t
Σ(u)du. (18)Thus the 
ovarian
e matrix at time t + 1 is the in
rement of the integrated 
ovarian
ematrix of the 
ontinuous lo
al martingale from time t to time t+1. The realized 
ovarian
e asde�ned in expression (1) 
onsistently estimates Σt+1 as given in equation (18). Furthermore,Barndor�-Nielsen and Shephard (2004) show that under a set of regularity 
onditions therealized 
ovariation matrix follows asymptoti
ally, as M → ∞, the normal law with N × Nmatrix of means ∫ t+1

t Σ(u)du. The asymptoti
 
ovarian
e of
√

M

{
Σ

RC
t+1 −

∫ t+1

t
Σ(u)du}is Ωt+1, a N2 × N2 array with elements

Ωt+1 =

{∫ t+1

t
{Σkk′(u)Σll′(u) + Σkl′(u)Σlk′(u)} du

}

k,k′,l,l′=1,...,N

.Of 
ourse, this matrix is singular due to the equality of the 
ovarian
es in the integrated
ovarian
e matrix. This 
an easily be avoided by 
onsidering only its unique lower triangularelements, but for our purposes it will be more 
onvenient to work with the full matrix. Theresult above is not useful for inferen
e, sin
e the matrix Ωt+1 is not known. Barndor�-Nielsenand Shephard (2004) show that a 
onsistent, positive semi-de�nite estimator is given by arandom N2 × N2 matrix:
Ht+1 =

M∑

j=1

xj,t+1x
′
j,t+1 −

1

2

M−1∑

j=1

(
xj,t+1x

′
j+1,t+1 + xj+1,t+1x

′
j,t+1

)
, (19)where xj,t+1 = vec

(
rt+ j

M

r
′
t+ j

M

) and the vec operator sta
ks the 
olumns of a matrix into ave
tor. It holds that MHt+1
p→ Ωt+1 with M → ∞.With the knowledge of this matrix, we 
an 
ombine the asymptoti
 results for the realized
ovarian
e, with the result in equation (7) to 
ompute the estimates for πt, ρt and νt.For the equi
orrelated matrix F we have that4 fij = r̄

√
σ

(RC)
ii σ

(RC)
jj , where r̄ is theaverage value of all pairwise 
orrelations, implied by the realized 
ovarian
e matrix, and σ

(RC)
ijis the (i, j) element of the realized 
ovarian
e matrix. Thus Φ, the population equi
orrelatedmatrix, has a typi
al element φij = ¯̺

√
σiiσjj, where σij is the (i, j) of the true 
ovarian
ematrix Σ and ¯̺ is the average 
orrelation implied by it. Substituting σ

(RC)
ij for sij in equation4In the following exposition, the time index is suppressed for notational 
onvenien
e.8



(7) and multiplying by M gives for the optimal shrinkage intensity:
Mα∗ =

∑N
i=1

∑N
j=1

(Var [√
Mσ

(RC)
ij

]
−Cov [√

Mfij,
√

Mσ
(RC)
ij

])

∑N
i=1

∑N
j=1

(Var [
fij − σ

(RC)
ij

]
+ (φij − σij)2

) . (20)Note that this equation resembles expression (8). The only di�eren
e is the s
aling by √
Minstead of √T , whi
h is due to the √

M 
onvergen
e. In this 
ase πt, the �rst summand inthe numerator, is simply the sum of all diagonal elements of Ωt. By using the de�nition of theequi
orrelated matrix, it 
an be shown that the se
ond term, ρt, 
an be written as (suppressingthe index t):
ρ =

N∑

i=1

AVar [√Mσ
(RC)
ii

]
+

N∑

i=1

N∑

j=1,j 6=i

ACov [√
Mr̄

√
σ

(RC)
ii σ

(RC)
jj ,

√
Mσ

(RC)
ij

]
. (21)Applying the delta method the se
ond term 
an be expressed as5

r̄

2




√√√√σ
(RC)
jj

σ
(RC)
ii

ACov [√
Mσ

(RC)
ii ,

√
Mσ

(RC)
ij

]
+

√√√√σ
(RC)
ii

σ
(RC)
jj

ACov [√
Mσ

(RC)
jj ,

√
Mσ

(RC)
ij

]

 .From this expression we see that ρ also involves summing properly s
aled terms of the Ωmatrix. In the denominator of equation (20), the �rst term is of order O(1/M), and these
ond one is 
onsistently estimated by ν̂ =

∑N
i=1

∑N
j=1

(
fij − σ

(RC)
ij

)2.Sin
e we have a 
onsistent estimator for Ω, we 
an now also estimate π and ρ. Inparti
ular, we havê
π =

N∑

i=1

N∑

j=1

hij,ij

ρ̂ =

N∑

i=1

hii,ii +
r̄

2

N∑

i=1

N∑

j=1

√√√√σ
(RC)
jj

σ
(RC)
ii

hii,ij +

√√√√σ
(RC)
ii

σ
(RC)
jj

hjj,ij,where hkl,k′l′ is the element of H whi
h estimates the 
orresponding element of Ω. Thus we
an estimate κt by κ̂t = π̂t−ρ̂t

γ̂t
and the estimator for the optimal shrinkage 
onstant is:
α̂∗

t = max

{
0,min

{
κ̂t

M
, 1

}}
. (22)5
f. Ledoit and Wolf (2004) 9



The estimated optimal shrinkage 
onstants for our dataset range from 0.0205 to 0.2494with a mean of 0.0562.2.6 Dynami
 realized 
ovarian
e fore
astsThis model is an alternative to the one in Se
tion 2.4. The most popular models for timevarying varian
es and 
ovarian
es are the GARCH models. The most signi�
ant problem ofthese models is the large number of parameters in large dimensional systems. The re
entDCC models of Tse and Tsui (2002) and Engle (2002) propose a way to mitigate this problemby using the restri
tion that all 
orrelations obey the same dynami
s. Re
ently Gourieroux,Jasiak, and Sufana (2004) have suggested an interesting alternative � the WAR (Wishartautoregressive) model, whi
h has 
ertain advantages over the GARCH models, e.g. smallernumber of parameters, easy 
onstru
tion of non-linear fore
asts, simple veri�
ation of station-arity 
onditions, et
. Even quite parsimonious models, however, have a number of parametersof the order N(N + 1)/2. With N = 15 this means more than 120 parameters, whi
h wouldbe infeasible for estimation. We therefore suggest a simple approa
h in whi
h all varian
eand 
ovarian
e series are modelled univariately as ARMA pro
esses and individual fore
astsare made, whi
h are then 
ombined into a fore
ast of the whole matrix. This approa
h 
analso be extended by in
luding lags of squared returns whi
h 
an be interpreted as a kind ofARCH-terms. A theoreti
al drawba
k of this model, is that su
h a methodology does notguarantee the positive de�niteness of the fore
ast matrix. It turns out that this problem 
ouldbe quite severe, espe
ially if we in
lude fun
tions of lagged returns in the spe
i�
ation. Hen
ewe propose two possible solutions. First, if the above mentioned problem o

urs relativelyrarely, then in these 
ases we 
an de�ne the fore
ast as in Se
tion 2.4, whi
h would ensurethat all fore
ast matri
es are positive de�nite. More pre
isely, instead of assuming a randomwalk pro
ess for the realized 
ovarian
e series (as in Se
tion 2.4) we now model ea
h of themas ARMAX(p, q, 1)6 pro
esses as follows:
σ

(RC)
ij,t = ω +

p∑

s=1

ϕsσ
(RC)
ij,t−s +

q∑

u=0

θuεij,t−u + αri,t−1rj,t−1, (23)with θ0 = 1 and εij,t � a Gaussian white noise pro
ess. The model easily extends to anARMAX(p, q, k) spe
i�
ation with k lags of 
rossprodu
ts. The parameters ϕs, θu and α areestimated by maximum likelihood starting at t = 100 and the fore
asts σ̂
(RC)
ij,t+1|t are 
olle
tedin a matrix Σ

DRC
t+1 . At time t+1 the new information is taken into a

ount and the pro
edureis repeated. The best model for ea
h series is sele
ted by minimizing the Akaike information
riterion (AIC).In this 
ase the fore
ast is:

Σ̂
(drc)
t+1|t =

{
Σ

DRC
t+1 , if Σ

DRC
t+1 is positive de�nite

Σ
RC
t , otherwise. (24)6The last parameter shows the number of lags of the X variable.10



A more robust solution is to fa
torize the sequen
e of realized 
ovarian
e matri
es intotheir Cholesky de
ompositions, model the dynami
s and fore
ast the Cholesky series and thenre
onstru
t the varian
e and 
ovarian
e fore
asts. This ensures the positive de�niteness ofthe resulting fore
ast. In this 
ase the Cholesky series are modelled like in equation (23), thefore
asts are 
olle
ted in a lower triangular matrix Ct+1 and the 
ovarian
e fore
ast is givenby:
Σ̂

(drc−Chol)
t+1|t = Ct+1C

′
t+1. (25)Analogously, we 
an use these two strategies to model dynami
ally the series of shrunkvarian
e 
ovarian
e matri
es whi
h de�nes the fore
asts Σ

(dsrc)
t+1|t and Σ

(dsrc−Chol)
t+1|t .3 DataThe data we have used 
onsists of 15 sto
ks from the 
urrent 
omposition of the Dow JonesIndustrial Average index from 01.01.1980 to 31.12.2002. The sto
ks are Al
oa (NYSE ti
kersymbol: AA), Ameri
an Express Company (AXP), Boeing Company (BA), Caterpillar In
.(CAT), Co
a-Cola Company (KO), Eastman Kodak (EK), General Ele
tri
 Company (GE),General Motors Corporation (GM), Hewlett-Pa
kard Company (HPQ), International Busi-ness Ma
hines (IBM), M
Donald's Corporation (MCD), Philip Morris Companies In
orpo-rated (MO), Pro
ter & Gamble (PG), United Te
hnologies Corporation (UTX) and WaltDisney Company (DIS). The reason that we have 
onsidered only 15 sto
ks is due to fa
tthat the realized 
ovarian
e matri
es are of full rank only if M > N , where M is the numberof intra-period observations used to 
onstru
t the realized 
ovarian
e, in our 
ase number ofdaily returns used to 
onstru
t ea
h monthly realized 
ovarian
e. Usually there are 21 tradingdays per month, but some months have had fewer trading days (e.g. September 2001). Withintradaily data this problem would not be of importan
e, sin
e then we 
an easily have hun-dreds of observations within a day. Su
h datasets are already 
ommon, but they still do not
over large periods of time. Nevertheless, the dynami
 properties of daily realized volatilities,
ovarian
es and 
orrelations are studied by e.g. Andersen, Bollerslev, Diebold, and Ebens(2001) and Andersen, Bollerslev, Diebold, and Labys (2001). It has been shown that there isa long-range persisten
e, whi
h allows for 
onstru
tion of good fore
asts by means of ARFIMApro
esses.All the sto
ks are traded on the NYSE and we take the daily 
losing pri
es and monthly
losing pri
es to 
onstru
t 
orresponding returns. The data is adjusted for splits and dividends.We �nd the typi
al properties of �nan
ial returns: negative skewness (with the ex
eption ofPG), leptokurtosis and non-normality. The average (a
ross sto
ks) mean daily return is 0.05%and the average daily standard deviation is 1.9 %. From the daily data log monthly returnsare 
onstru
ted by using the opening pri
e of the �rst trading day of the month and the
losing pri
e of the last day. These returns are then used to 
onstru
t rolling window sample
ovarian
e matri
es, used in the �rst two fore
asting models.

11



4 ResultsIn this se
tion we present and dis
uss the results on the performan
e of the fore
asting modelsdes
ribed in Se
tion 2.In order to asses the fore
asting performan
e, we employ Diebold-Mariano tests forea
h of the varian
e and 
ovarian
e series. Then we measure the deviation of the fore
astas a matrix from its target by using again the Frobenius norm, whi
h gives an overall ideaof the 
omparative performan
e of the models. Of 
ourse, if the individual series are wellfore
ast, so will be the matrix. As a target or "true" 
ovarian
e matrix, we 
hoose the realized
ovarian
e matrix. First, we present some graphi
al results. Out of the total of 120 varian
eand 
ovarian
e fore
ast series, Figure 1 plots 9 representative 
ases, for the sample 
ovarian
eand the RiskMetri
sTM model, against the realized series. The name, whi
h appears aboveea
h blo
k in the �gure, represents either a varian
e series (e.g. EK), or a 
ovarian
e one (e.g.GE,AA).Both fore
asts are quite 
lose, and as 
an be seen, they 
annot a

ount properly for thevariation in the series. As the tests show, however, the Riskmetri
sTM fares better and is thebest model among the sample based ones. It is already an a
knowledged fa
t that �nan
ialreturns have the property of volatility 
lustering. This feature is also 
learly evident in the�gure, where periods of low and high volatility 
an be easily distinguished, whi
h suggeststhat varian
es and 
ovarian
es tend to exhibit positive auto
orrelation. Figure 2 shows theauto
orrelation fun
tions for the same 9 series of realized (
o)varian
es. The �gure 
learlyshows that there is some positive serial dependen
e, whi
h usually dies out qui
kly, suggestingstationarity of the series. Stationarity is also 
on�rmed by running Augmented Di
key-Fuller(ADF) tests, whi
h reje
t the presen
e of an unit root in all series at the 1% signi�
an
e level.The observed dependen
e patterns suggest the idea of modelling the varian
e and 
o-varian
e series as well as their shrunk versions as ARMA pro
esses. This resulted in a few
ases in whi
h the matrix fore
ast was not positive de�nite (16 out of 176 for the originalseries and 8 out of 176 for the shrunk series). Thus the fore
ast in expression (24) seems tobe reasonable and as we shall see later, 
ompares well to the sample 
ovarian
e based mod-els. In a GARCH framework, the 
onditional varian
e equation in
ludes not only lags of thevarian
e, but also lags of squared innovations (sho
ks). When mean returns are themselvesunpredi
table (the usual approa
h is to model the mean equation as an ARMA pro
ess), thesho
k is simply the return. This fa
t led us to in
lude lags of squared returns (for the vari-an
e series) and 
ross-produ
ts (for the 
ovarian
e series) as in the ARMAX(p, q, 1) modelin equation (23). This added �exibility, however, 
omes at the pri
e of a drasti
 in
rease ofthe non-positive de�nite fore
asts (108 and 96 out of 176, respe
tively). Thus the fore
ast inequation (24) 
omes quite 
lose to the simple realized and shrunk realized 
ovarian
e modelsin Se
tions 2.4 and 2.5, respe
tively. A solution to this issue is to de
ompose the matri
es intotheir lower triangular Cholesky fa
tors, fore
ast the Cholesky series, and then re
onstru
t thematrix. This leads to the fore
asting formula in equation (25), whi
h de�nes the drc − Choland dsrc − Chol fore
asting models for the simple realized and shrunk realized 
ovarian
e
ase, respe
tively. A drawba
k of this approa
h is that the Cholesky series do not have anintuitive interpretation. They are simply used as a tool to 
onstrain the fore
asts to satisfy the
ompli
ated restri
tions implied by the positive de�niteness requirement. Another drawba
kis that the Cholesky de
omposition involves nonlinear transformations of the original series.12



Figure 1: Comparison of the sample 
ovarian
e based (Sample) and Riskmetri
sTM(RM) fore
ast against the realized 
ovarian
e (True).
13



The dashed line is the upper 95% 
on�den
e band.Figure 2: Auto
orrelation fun
tions of the realized varian
e and 
ovarian
e series.
14



Thus, if one 
an adequately fore
ast the nonlinear transformation, this does not immediatelymean that applying the inverse transformation to the fore
ast will produ
e a good fore
ast ofthe initial series. So there is a trade-o� between the possibility of in
luding more informationin the fore
ast and obtaining positive de�nite matri
es on the one hand, and the distortions
aused by the non-linearity of the transformation on the other. It turns out that in our 
asethe bene�
ial e�e
ts outweigh the negative ones. Figure 3 shows the drc − Chol and theRiskMetri
sTM fore
ast for the same 9 varian
e and 
ovarian
e series. From the �gure it isevident that the dynami
 fore
asts tra
k the true series mu
h 
loser than the RiskMetri
sTMfore
asts, espe
ially at the end of the period when the (
o)volatilities were more volatile. The
dsrc−Chol fore
ast looks quite similar to the drc−Chol (due to the usually small shrinkage
onstants), but as we shall see later the fore
asts are in fa
t somewhat better.Turning to the statisti
al 
omparison of the fore
asting methods, we �rst brie�y presentthe Diebold-Mariano testing framework as in Harvey, Leyborne, and Newbold (1997). Supposea pair of l-step ahead fore
asts h1 and h2, h1, h2 ∈ H have produ
ed errors (e1t, e2t), t =
1, . . . , T . The null hypothesis of equality of fore
asts is based on some fun
tion g(e) of thefore
ast errors and has the form E [g(e1t) − g(e2t)] = 0. De�ning the loss di�erential dt =
g(e1t) − g(e2t) and its average d̄ = T−1

∑T
t=1 dt, the authors note that "the series dt is likelyto be auto
orrelated. Indeed, for optimal l-steps ahead fore
asts, the sequen
e of fore
asterrors follows a moving average pro
ess of order (l − 1). Thus result 
an be expe
ted to holdapproximately for any reasonably well-
on
eived set of fore
asts." Consequently, it 
an beshown that the varian
e of d̄ is, asymptoti
ally,Var[d̄ ]

≈ T−1

[
γ0 + 2

l−1∑

k=1

γk

]
, (26)where γk is the kth auto
ovarian
e of dt. The Diebold-Mariano test statisti
 is:

S1 =
[V̂ar[d̄ ]]−1/2

d̄, (27)where V̂ar[d̄ ] is obtained from equation (26) by substituting for γ0 and γk the sample varian
eand auto
ovarian
es of dt, respe
tively. Tests are then based on the asymptoti
 normality ofthe test statisti
. Noting that we only 
onsider 1-step ahead fore
asts in this paper, the series
dt should not be auto
orrelated. As already noted above, this is expe
ted to hold for anyreasonably 
onstru
ted fore
asts. A
tually, however, the sample based fore
asts are not reallyreasonable in the sense that they do not a

ount for the serial dependen
e of the pro
ess theyare supposed to fore
ast. Thus, the degree of auto
orrelation in the dt series, when either h1or h2 is a sample based fore
ast, will 
orrespond to the degree of dependen
e in the series to before
ast. For this reason, ignoring auto
ovarian
es in the 
onstru
tion of the Diebold-Marianotests will lead to an error in the test statisti
. To 
orre
t for this we in
lude in V̂ar[d̄ ] the�rst k signi�
ant auto
orrelations for ea
h of the 120 series.Table 1 summarizes the results of the Diebold-Mariano tests 
arried out pairwise be-tween all models for all 120 series. The �rst entry in ea
h 
ell of the table shows the numberof series (out of 120) for whi
h the model in the 
orresponding 
olumn outperforms the model15



Figure 3: Comparison of the Riskmetri
sTM fore
ast (RM) and the dynami
 real-ized 
ovarian
e fore
ast based on Cholesky series (DRC-Chol) against the realized
ovarian
e (True).
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Table 1: Results from the Diebold-Mariano tests.
s ss rm rc src drc dsrc drc− dsrc−

Chol Chol

s - 85/28 106/50 14/1 16/1 47/20 89/37 93/49 100/55
ss 20/0 - 106/47 14/1 16/1 47/20 89/37 92/49 100/55
rm 14/0 14/0 - 7/1 11/1 37/7 73/29 85/33 89/37
rc 106/60 106/61 113/69 - 105/86 119/59 120/88 115/80 117/88
src 104/55 104/56 109/69 0/0 - 119/50 120/86 114/77 117/85
drc 73/12 73/12 83/26 1/0 1/0 - 104/31 98/47 103/58
dscr 31/3 31/3 47/8 0/0 0/0 1/0 - 69/28 83/35
drc (Chol) 27/8 28/8 35/10 5/1 6/1 22/7 51/12 - 91/19
dsrc (Chol) 20/7 20/7 31/8 3/1 3/1 17/6 37/11 29/3 -Note: Due to the de�nition of the shrinkage target, the �rst numbers in the pairs highlightedin bold do not sum up to 120, sin
e the varian
e series are un
hanged in their respe
tive "shrunk"versions. Thus, in these 
ases there are only 105 series fore
asts to be 
ompared.in the 
orresponding row. The se
ond entry 
orresponds to the number of signi�
ant outper-forman
es a

ording to the Diebold-Mariano tests at the 5% signi�
an
e level. Hen
e, thetable is in a sense symmetri
, as the number of times model h1 outperforms model h2 plusthe number of times model h2 outperforms model h1 (given by the �rst number in ea
h 
ell)sum up to 120 � the total number of series. This is not the 
ase, only for the pairs highlightedin bold, be
ause the 15 varian
e series are un
hanged in their respe
tive "shrunk" versions.7Thus, in these 
ases there are only 105 
ovarian
e series fore
asts to be 
ompared.At �rst glan
e one 
an noti
e that the worst performing models are the rc and srcmodels. Among the sample based fore
asts the RiskMetri
sTM is the one whi
h delivers thebest performan
es. The 
omparison between the sample and the shrinkage sample fore
astsshows that shrinking has indeed improved upon the sample 
ovarian
e matrix. This holds alsofor the realized 
ovarian
e matrix. Here, the result is reinfor
ed by the fa
t that shrinkingalso in
reases the probability of obtaining a positive de�nite fore
ast. In fa
t, the quite poorperforman
e of the drc model is not due to the poor fore
asting of the series themselves,but due to the large error, introdu
ed by taking the previous realized 
ovarian
e matrix, in
ase of a non-positive de�nite fore
ast (see equation (24)). Even though this only happensin 16 out of 176 
ases, it is enough to distort the fore
ast 
onsiderably. The main resultof this paper, however, arises from the 
omparison of the dynami
 models with the samplebased ones, whi
h 
an be drawn by 
onsidering the last three 
olumns of the table. For mostof the series the dynami
 models provide better fore
asts, whi
h results in smaller errors inthe 
ovarian
e matrix fore
asts, as will be shown later. Despite the fa
t that the numberof signi�
ant outperforman
es is not strikingly high (due to the small number of periodsfor evaluation), it is still 
lear that the dynami
 models outperform de
isively even the bestmodel among the sample based ones. Furthermore, as noted earlier, the fore
asts using theCholesky de
omposition appear to be better 
ompared to those whi
h model the varian
eand 
ovarian
e series dire
tly. This result 
omes mainly as a 
onsequen
e of the 
onsiderableexplanatory power of the lagged sho
ks in addition to the lagged (
o)varian
es, whi
h 
ouldnot have been utilized had not we assured the positive de�niteness of the fore
asts.7By shrinking towards the equi
orrelated matrix, the varian
es do not 
hange.17



Table 2: Root mean squared predi
tion errors based on the Frobenius norm.RMSPEs 0.06021RMSPEss 0.06016RMSPErm 0.05887RMSPErc 0.06835RMSPEsrc 0.06766RMSPEdrc 0.06004RMSPEdsrc 0.05749RMSPEsrc−Chol 0.05854RMSPEdsrc−Chol 0.05799In order to understand better the bene�ts from modelling the varian
e and 
ovarian
eseries dynami
ally, we shall 
onsider an alternative (but 
losely related) measure of fore
astingerror. In se
tion 2.2 it was shown how the Frobenuis norm 
an be used as a measure of distan
ebetween two matri
es. Here we will utilize this 
on
ept again by 
onsidering the followingde�nition of the fore
ast error in terms of a matrix fore
ast:
e
(h)
t =

∥∥∥Σ̂(h)
t|t−1 − Σ

RC
t

∥∥∥
2
, h ∈ H. (28)The root mean squared predi
tion errors (RMSPE) are 
olle
ted in Table 2. The ranking ofthe models a

ording to this table is quite similar to the one following from Table 1. The onlydi�eren
e is that now the dsrc model appears to be somewhat better than the dsrc − Chol,whi
h is most probably due to 
han
e, sin
e as we saw earlier the latter model fore
asts mostof the series better. As a 
on
lusion, we 
an state again that in general, the dynami
 modelsoutperform the sample 
ovarian
e based ones.5 Con
lusionVolatility fore
asting is 
ru
ial for portfolio management, option pri
ing and other �elds of�nan
ial e
onomi
s. Starting with Engle (1982) a new 
lass of e
onometri
 models was de-veloped to a

ount for the typi
al 
hara
teristi
s of �nan
ial returns volatility. This 
lass ofmodels grew rapidly and numerous extensions were proposed. In the late 1980's these mod-els were extended to handle not only volatilities, but also 
ovarian
e matri
es. The mainpra
ti
al problem of these models is the large number of parameters to be estimated, if onede
ides to in
lude more than a few assets in the spe
i�
ation. Partial solutions to this "
urseof dimensionality" were proposed, whi
h imposes restri
tions on the system dynami
s. Still,modelling and fore
asting return 
ovarian
e matri
es remains a 
hallenge. This paper proposesa methodology whi
h is more �exible than the traditional sample 
ovarian
e based models andat the same time is 
apable of handling a large number of assets. Although 
on
eptually thismethodology is more elaborate than the above mentioned traditional models, it is easily appli-
able in pra
ti
e and a
tually requires shorter histori
al samples, but with a higher frequen
y.The gains 
ome from the fa
t that with high-frequen
y observations, the latent volatility 
omes
lose to being observable. This enables the 
onstru
tion of realized varian
e and 
ovarian
eseries, whi
h 
an be modelled and fore
ast on the basis of their dynami
 properties. Addition-ally, we show that shrinking, whi
h has been shown to improve upon the sample 
ovarian
e18



matrix, 
an also be helpful in redu
ing the error in the realized 
ovarian
e matri
es. A pra
-ti
al drawba
k whi
h appears in this framework is that the so 
onstru
ted fore
asts are notalways positive de�nite. One possible solution to this is to use the Cholesky de
omposition asa method of in
orporating the positive de�niteness requirement in the fore
ast.The paper shows that on the monthly frequen
y, this approa
h produ
es better fore
astsbased on results from Diebold-Mariano tests. The possible gains from a better fore
ast are,e.g., 
onstru
tion of mean-varian
e e�
ient portfolios. Providing a more a

urate fore
ast offuture asset 
omovements will result in better balan
ed portfolios. These gains will be mostprobably higher and more pronoun
ed if intradaily returns are used for the 
onstru
tion ofdaily realized 
ovarian
e matri
es, whi
h remains a possible avenue for further resear
h. Ithas been shown (e.g. by Andersen, Bollerslev, Diebold, and Ebens (2001)) that realized dailyvolatilities and 
orrelations exhibit high persisten
e. Sin
e by in
orporating intra-daily infor-mation these realized measures are also quite pre
ise, this serial dependen
e 
an be exploitedfor volatility fore
asting. A possible extension of the methodologi
al framework suggested inthe paper 
ould be modelling the realized series in a ve
tor ARMA system, in order to analyzevolatility spillovers a
ross sto
ks, industries or markets, whi
h however would again involve alarge number of parameters.A 
losely related area of resear
h is 
on
erned with the methods for evaluation of 
o-varian
e matrix fore
asts. In this paper we have used purely statisti
al evaluation tools basedon a symmetri
 loss fun
tion. An asymmetri
 measure in this 
ase may have more e
onomi
meaning, sin
e it is quite plausible to assume that if a portfolio varian
e has been overesti-mated, the 
onsequen
es are less adverse than if it has been underestimated. In a multivariate
ontext Byström (2002) uses as an evaluation measure of fore
asting performan
e the pro�tsgenerated by a simulated trading of portfolio of rainbow options. The pri
es of su
h optionsdepend on the 
orrelation between the underlying assets. Thus the agents who fore
ast the
orrelations more pre
isely should have higher pro�ts on average.Further, the models presented in this paper 
an be extended by introdu
ing the possibilityof asymmetri
 rea
tion of (
o)volatilities to previous sho
ks (leverage). This 
an be a
hieved byintrodu
ing some kind of asymmetry in equation (23), e.g., by in
luding produ
ts of absolutesho
ks or produ
ts of indi
ator fun
tions for positivity of the sho
ks.
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