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Dynami Modelling of Large Dimensional Covariane MatriesValeri Voev∗University of Konstanz, CoFE1 February 2007AbstratModelling and foreasting the ovariane of �nanial return series has always been ahallenge due to the so-alled "urse of dimensionality". This paper proposes a method-ology that is appliable in large dimensional ases and is based on a time series of realizedovariane matries. Some solutions are also presented to the problem of non-positivede�nite foreasts. This methodology is then ompared to some traditional models on thebasis of its foreasting performane employing Diebold-Mariano tests. We show that ourapproah is better suited to apture the dynami features of volatilities and ovolatilitiesompared to the sample ovariane based models.1 IntrodutionModelling and foreasting the varianes and ovarianes of returns of �nanial assets is ruialfor �nanial management and portfolio seletion and re-balaning. Reently this branh ofthe eonometri literature has grown at a very fast pae. One of the simplest methods used isthe sample ovariane matrix. A stylized fat, however, is that there is a serial dependene inthe seond moments of returns. Thus, more sophistiated models had to be developed whihinorporate this property, as well as other well-known features of �nanial return distributionssuh as leptokurtosis or the so-alled "leverage e�et". This led to the development of theunivariate GARCH proesses and their extension - the multivariate GARCH (MGARCH)models (for a omprehensive review see Bauwens, Laurent, and Rombouts (2006)), whihinlude also the modelling of ovarianes. One of the most severe drawbaks of the MGARCHmodels, however, is the di�ulty of handling dimensions higher than 4 or 5 (or with veryrestritive assumptions). Another more pratially oriented �eld of researh deals with theproblem of how to redue the noise inherent in simpler ovariane estimators suh as thesample ovariane matrix. Tehniques have been developed to "shrink" the sample ovariane(SC) matrix, thereby reduing its extreme values in order to mitigate the e�et of the so-alled error maximization noted by Mihaud (1989). One of the shrinkage estimators used
∗Finanial support from the German Siene Foundation, Researh Group "Preis-, Liquiditäts- und Kred-itrisiken: Messung und Verteilung" is gratefully aknowledged. I would like to thank Winfried Pohlmeier,Mihael Lehner, Jens Jakwerth and Günter Franke for helpful omments. Address for orrespondene: PBoxD-124, University of Konstanz, 78457 Konstanz; Tel. 0049 7531 88 2204; E-mail: valeri.voev�uni-konstanz.de1



among pratitioners is the Blak-Litterman model (Blak and Litterman (1992)). This modeluses a prior whih re�ets an investor's beliefs about seurities returns and ombines it withimplied equilibrium expeted returns to obtain a posterior distribution, whose variane is aombination of the ovariane matrix of implied returns and the on�dene of the investor'sviews (whih re�et the prior ovariane). Further, Ledoit and Wolf (2003) and Ledoit andWolf (2004) use shrinkage methods to ombine a SC matrix with a more strutured estimator(e.g a matrix with equal pairwise orrelations, or a fator estimator). The idea is to ombinean asymptotially unbiased estimator having a large variane with a biased estimator, whihis onsiderably less noisy. So the shrinkage atually amounts to optimizing in terms of thewell-known trade-o� between bias and variane.Reently, with the availability of high-quality transation databases, the tehnique ofrealized variane and ovariane (RC) gained popularity. A very omprehensive treatment ofvolatility modelling with fous on foreasting appears in Andersen, Bollerslev, Christo�ersen,and Diebold (2006). Andersen, Bollerslev, Diebold, and Ebens (2001), among others, haveshown that there is a long-range persistene (long memory) in daily realized volatilities, whihallows one to obtain good foreasts by means of frationally integrated ARMA proesses. Atthe monthly level, we �nd that the autoorrelations deline quite quikly to zero, whih ledus to hoose standard ARMA models for �tting and foreasting.The aim of this paper is to ompare the foreasting performane of a set of models,whih are suitable to handle large dimensional ovariane matries. Letting H denote the setof onsidered models, we have H = {s, ss, rm, rc, src, drc, dsrc}, where the �rst two modelsare based on the sample ovariane matrix, the third model is a RiskMetrisTM exponentiallyweighted moving average (EWMA) estimator developed by J.P. Morgan (1996), the fourthand the �fth represent simple foreasts based on the realized and on the shrunk realizedovariane matrix, and the last two models employ dynami modelling of the RC and shrunkRC, respetively. We judge the performane of the models by looking at their ability toforeast individual variane and ovariane series by employing a battery of Diebold-Mariano(Diebold and Mariano (1995)) tests. Of ourse, if we have good foreasts for the individualseries, then the whole ovariane matrix will also be well foreast. The pratial relevane ofa good foreast an be seen by onsidering an investor who faes an optimization problem todetermine the weights of some portfolio onstituents. One of the ruial inputs in this problemis a foreast of future movements and o-movements in asset returns. Our ontribution is topropose a methodology whih improves upon the sample ovariane estimator and is easy toimplement even for very large portfolios. We show that in some sense these models are more�exible than the MGARCH models, although this omes at the expense of some ompliations.The remainder of the paper is organized as follows: Setion 2 sets up the notationand desribes the foreasting models, Setion 3 presents the data set used to ompare theforeasting performane of the models, Setion 4 disusses the results on the foreast evaluationand Setion 5 onludes the paper.2 Foreasting modelsIn this setion we desribe eah of the ovariane foreasting models. First, we introduesome notation and desription of the foreasting methodology. We onentrate on one-step2



ahead foreasts of ovariane matries of N stoks, and onsider the monthly frequeny. Theinformation is updated every period and a new foreast is formed. Thus, eah new foreastinorporates the newest information whih has beome available. Suh a strategy might de-sribe an ative long-run investor, who revises and rebalanes her portfolio every month. Letthe multivariate prie proess be de�ned as P = {Pt(ω), t ∈ (−∞,∞), ω ∈ Ω}, where Ω is anoutome spae.1 The portfolio is set up at t = 0 and updated at eah t = 1, 2, . . . , T̄ , where
T̄ is the end of the investment period. The frequeny of the observations in our appliationis daily, whih we refer to as intra-periods. In this setup, we an formally de�ne the infor-mation set at eah time t ≥ 0 as a �ltration Ft = σ(Ps(ω), s ∈ T ) generated by P, with
T = {s : s = −L + j

M , j = 0, 1, . . . , (L + t)M}, M � the number of intra-periods within eahperiod2 and L � the number of periods, for whih prie data is available, before the invest-ment period. It is important to note that not all information is onsidered in the foreastsbased on the sample ovariane matrix. For these models only the lower frequeny monthlysampling is needed. Furthermore, we de�ne the monthly returns as rt = ln(Pt) − ln(Pt−1),where Pt is the realization of the prie proess at time t, and the jth intra-period return by
rt+ j

M

= ln
(
Pt+ j

M

)
− ln

(
Pt+ j−1

M

). The realized ovariane at time t + 1 is given by:
Σ

RC
t+1 =

M∑

j=1

rt+ j

M

r
′
t+ j

M

. (1)Assessing the performane of variane foreasts has been quite problemati, sine the trueovariane matrix Σt is not diretly observable. This has long been a hurdle in evaluatingGARCH models. Traditionally, the squared daily return was used as a measure of the dailyvariane. Although this is an unbiased estimator, it has a very large estimation error due tothe large idiosynrati noise omponent of daily returns. Thus a good model may be evaluatedas poor, simply beause the target is measured with a large error. In an important paper,Andersen and Bollerslev (1998) showed that GARCH models atually provide good foreastswhen the target to whih they are ompared is estimated more preisely, by means of sum ofsquared intradaily returns. Sine then, it has beome a pratie to take the realized varianeas the relevant measure for omparing foreasting performane. In this spirit, we use therealized monthly ovariane in plae of the true matrix. Thus we will assess a given foreast
Σ̂

(h)
t+1|t, h ∈ H by its deviation from Σ

RC
t+1.2.1 A sample ovariane foreastIn this setion we desribe a foreasting strategy based on the sample ovariane matrix,whih will serve as a benhmark. The sample ovariane is a onsistent estimator for the truepopulation ovariane under weak assumptions. We use a rolling window sheme and de�ne1Of ourse, in reality the prie proess ould not have started in the in�nite past. Sine we are interestedin when the proess beame observable, and not in its beginning, we leave the latter unspei�ed.2This number is not neessarily the same for all periods and should be denoted more preisely by M(t).This is not done in the text to avoid luttering of the notation.
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the foreast as:
Σ̂

(s)
t+1|t =

1

T

t∑

s=t−T+1

(rs − r̄t,T )(rs − r̄t,T )′, (2)where for eah t, r̄t,T is the sample mean of the return vetor r over the last T observations.We will denote the sample ovariane matrix at time t by Σ
SC
t . For T we hoose a value of60, whih with monthly data orresponds to a time span of �ve years. As the near future isof the highest importane in volatility foreasting, this number might seem too large. Toosmall a number of periods, however, would lead to a large variane of the estimator, thereforeother authors (e.g. Ledoit and Wolf (2004)) have also hosen 60 months as a balane betweenpreision and relevane of the data. A problem of this approah, as simple as it is, is that newinformation is given the same weight as very old information. Another obvious oversimpli�-ation is that we do not aount for the serial dependene present in the seond moments of�nanial returns.2.2 A shrinkage sample ovariane foreastIn this setion we brie�y present the shrinkage estimator, proposed by Ledoit and Wolf (2003),in order to give an idea of the shrinkage priniple.The shrinkage estimator of the ovariane matrix Σt is de�ned as a weighted linearombination of some shrinkage target Ft and the sample ovariane matrix, where the weightsare hosen in an optimal way. More formally, the estimator is given by

Σ
SS
t = α̂∗

t Ft + (1 − α̂∗
t )Σ

SC
t , (3)

α̂∗
t ∈ [0, 1] is an estimate of the optimal shrinkage onstant α∗

t .The shrinking intensity is hosen to be optimal with respet to a loss funtion de�nedas a quadrati distane between the true and the estimated ovariane matries based onthe Frobenius norm. The Frobenius norm of an N × N symmetri matrix Z with elements
(zij)i,j=1,...,N is de�ned by

‖Z‖2 =

N∑

i=1

N∑

j=1

z2
ij . (4)The quadrati loss funtion is the Frobenius norm of the di�erene between Σ

SS
t and the trueovariane matrix:

L(αt) =
∥∥αtFt + (1 − αt)Σ

SC
t − Σt

∥∥2
. (5)The optimal shrinkage onstant is de�ned as the value of α whih minimizes the expeted4



value of the loss funtion (i.e. the risk) in expression (5):
α∗

t = argmin
αt

E [L(αt)] . (6)For an arbitrary shrinkage target F and a onsistent ovariane estimator S, Ledoit and Wolf(2003) show that
α∗ =

∑N
i=1

∑N
j=1 (Var [sij] − Cov [fij, sij ])

∑N
i=1

∑N
j=1 (Var [fij − sij] + (φij − σij)2)

, (7)where fij is a typial element of the sample shrinkage target, sij � of the ovariane estimator,
σij � of the true ovariane matrix, and φij � of the population shrinkage target Φ. Furtherthey prove that this optimal value is asymptotially onstant over T and an be written as3:

κt =
πt − ρt

νt
. (8)In the formula above, πt is the sum of the asymptoti varianes of the entries of the sampleovariane matrix saled by √

T : πt =
∑N

i=1

∑N
j=1 AVar [√Tsij,t

], ρt is the sum of asymptotiovarianes of the elements of the shrinkage target with the elements of the sample ovari-ane matrix saled by √
T : ρt =

∑N
i=1

∑N
j=1 ACov [√

Tfij,t,
√

Tsij,t

], and νt measures themisspei�ation of the shrinkage target: νt =
∑N

i=1

∑N
j=1(φij,t − σij,t)

2. Following their for-mulation and assumptions, ∑N
i=1

∑N
j=1 Var [√T (fij − sij)

] onverges to a positive limit, andso ∑N
i=1

∑N
j=1 Var [fij − sij] = O(1/T ). Using this result and the √

T onvergene in distri-bution of the elements of the sample ovariane matrix, Ledoit and Wolf (2003) show that theoptimal shrinkage onstant is given by:
α∗

t =
1

T

πt − ρt

νt
+ O

(
1

T 2

)
. (9)Sine α∗ is unobservable, it has to be estimated. Ledoit and Wolf (2004) propose aonsistent estimator of α∗ for the ase where the shrinkage target is a matrix in whih allpairwise orrelations are equal to the same onstant. This onstant is the average value ofall pairwise orrelations from the sample orrelation matrix. The ovariane matrix resultingfrom ombining this orrelation matrix with the sample varianes, known as the equiorrelatedmatrix, is the shrinkage target. The equiorrelated matrix is a sensible shrinkage target asit involves only a small number of free parameters (hene less estimation noise). Thus theelements of the sample ovariane matrix, whih inorporate a lot of estimation error andhene an take rather extreme values are "shrunk" towards a muh less noisy average. Using3In their paper the formula appears without the subsript t. By adding it here we want to emphasize thatthese variables are hanging over time.
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the equiorrelated matrix as the shrinkage target Ft in equation (3) the foreast is given by
Σ̂

(ss)
t+1|t = Σ

SS
t . (10)2.3 A RiskMetrisTM foreastThe RiskMetrisTM foreasting methodology is a modi�ation of the sample ovariane matrix,in whih observations whih are further in the past are given exponentially smaller weights, de-termined by a fator λ. For the generi (i, j), i, j = 1, . . . , N element of the EWMA ovarianematrix ΣRM

t we have:
σRM

ij,t = (1 − λ)

t∑

s=1

λs−1 (ri,s − r̄i) (rj,s − r̄j) , (11)where r̄i = 1
t

∑t
s=1 ri,s. Again, the foreast is given by:

Σ̂
(rm)
t+1|t = Σ

RM
t . (12)Methods to hoose the optimal λ are disussed in J.P. Morgan (1996). In this paperwe set λ = 0.97, the value used by J.P. Morgan for monthly (o)volatility foreasts. Notethat ontrary to the sample ovariane matrix, for whih we use a rolling window sheme, inthe RiskMetris approah we use at eah t all the available observations from the beginningof the observation period up to t. Sine in the RiskMetris approah the weights dereaseexponentially, the observations whih are further away in the past are given relatively smallerweights and hene do not in�uene the estimate as muh as in the sample ovariane matrix.2.4 A simple realized ovariane foreastThe realized ovariane estimator was already de�ned in expression (1). Its univariate andmultivariate properties have been studied among others, by Barndor�-Nielsen and Shephard(2004) and by Andersen, Bollerslev, Diebold, and Labys (2003). In the limit, when M → ∞,Barndor�-Nielsen and Shephard (2004) have shown that realized ovariane is an error-freemeasure for the integrated ovariation of a very broad lass of stohasti volatility models. Inthe empirial part we ompute monthly realized ovariane by using daily returns (see alsoFrenh, Shwert, and Stambaugh (1987)). The simple foreast is de�ned by:

Σ̂
(rc)
t+1|t = Σ

RC
t . (13)Thus an investor who uses this strategy simply omputes the realized ovariane at the endof eah month and then uses it as his best guess about the true ovariane matrix of the nextmonth. A nie feature of this method is that it only uses reent information whih is of mostvalue for the foreast but imposes a very simple and restritive time dependene. Pratiallyequation (13) states that all varianes and ovarianes follow a random walk proess. However,6



as we shall see later, the estimated series of monthly varianes and ovarianes show weakstationarity.2.5 A shrinkage realized ovariane foreastAlthough the estimator disussed in the previous setion is asymptotially error-free, in pra-tie one annot reord observations ontinuously. A muh more serious problem is the fatthat at very high frequenies, the martingale assumption needed for the onvergene of therealized ovarianes to the integrated ovariation is no longer satis�ed. At trade-by-trade fre-quenies, market mirostruture a�ets the prie proess and results in mirostruture noiseindued autoorrelations in returns and hene biased variane estimates. Methods to aountfor this bias and orret the estimates have been developed by Hansen and Lunde (2006),Oomen (2005), Aït-Sahalia, Mykland, and Zhang (2005), Bandi and Russell (2005), Zhang,Mykland, and Aït-Sahalia (2005), and Voev and Lunde (2007), among others. At low frequen-ies the impat of market mirostruture noise an be signi�antly mitigated, but this omesat the prie of higher variane of the estimator. Sine we are using daily returns, marketmirostruture is not an issue. Thus we will suggest a possible way to redue variane. Againas in Setion 2.2, we will try to �nd a ompromise between bias and variane applying theshrinkage methodology. The estimator looks very muh like the one in expression (3). In thisase we have:
Σ

SRC
t = α̂∗

t Ft + (1 − α̂∗
t )Σ

RC
t , (14)where now Ft is the equiorrelated matrix, onstruted from the realized ovariane matrix

Σ
RC
t in the same fashion as the equiorrelated matrix onstruted from the sample ovarianematrix, as explained in Setion 2.2. Similarly to the previous setion, the foreast is simply

Σ̂
(src)
t+1|t = Σ

SRC
t . (15)Sine the realized ovariane is a onsistent estimator, we an still apply formula (7)taking into aount the di�erent rate of onvergene. In order to ompute the estimates forthe varianes and ovarianes, we need a theory for the distribution of the realized ovari-ane, whih is developed in Barndor�-Nielsen and Shephard (2004), who provide asymptotidistribution results for the realized ovariation matrix of ontinuous stohasti volatility semi-martingales (SVSMc). Assuming that the log prie proess lnP ∈ SVSMc, we an deom-pose it as lnP = a∗ +m∗, where a∗ is a proess with ontinuous �nite variation paths and m∗is a loal martingale. Furthermore, under the ondition that m∗ is a multivariate stohastivolatility proess, it an be de�ned as m∗(t) =

∫ t
0 Θ(u)dw(u), where Θ is the spot ovolatilityproess and w is a vetor standard Brownian motion. Then the spot ovariane is de�ned as:

Σ(t) = Θ(t)Θ(t)′, (16)assuming that (for all t < ∞)
∫ t

0
Σkl(u)du < ∞, k, l = 1, . . . , N, (17)7



where Σkl(t) is the (k, l) element of the Σ(t) proess. Having laid this notation we will nowinterpret the "true" ovariane matrix as:
Σt+1 =

∫ t+1

t
Σ(u)du. (18)Thus the ovariane matrix at time t + 1 is the inrement of the integrated ovarianematrix of the ontinuous loal martingale from time t to time t+1. The realized ovariane asde�ned in expression (1) onsistently estimates Σt+1 as given in equation (18). Furthermore,Barndor�-Nielsen and Shephard (2004) show that under a set of regularity onditions therealized ovariation matrix follows asymptotially, as M → ∞, the normal law with N × Nmatrix of means ∫ t+1

t Σ(u)du. The asymptoti ovariane of
√

M

{
Σ

RC
t+1 −

∫ t+1

t
Σ(u)du}is Ωt+1, a N2 × N2 array with elements

Ωt+1 =

{∫ t+1

t
{Σkk′(u)Σll′(u) + Σkl′(u)Σlk′(u)} du

}

k,k′,l,l′=1,...,N

.Of ourse, this matrix is singular due to the equality of the ovarianes in the integratedovariane matrix. This an easily be avoided by onsidering only its unique lower triangularelements, but for our purposes it will be more onvenient to work with the full matrix. Theresult above is not useful for inferene, sine the matrix Ωt+1 is not known. Barndor�-Nielsenand Shephard (2004) show that a onsistent, positive semi-de�nite estimator is given by arandom N2 × N2 matrix:
Ht+1 =

M∑

j=1

xj,t+1x
′
j,t+1 −

1

2

M−1∑

j=1

(
xj,t+1x

′
j+1,t+1 + xj+1,t+1x

′
j,t+1

)
, (19)where xj,t+1 = vec

(
rt+ j

M

r
′
t+ j

M

) and the vec operator staks the olumns of a matrix into avetor. It holds that MHt+1
p→ Ωt+1 with M → ∞.With the knowledge of this matrix, we an ombine the asymptoti results for the realizedovariane, with the result in equation (7) to ompute the estimates for πt, ρt and νt.For the equiorrelated matrix F we have that4 fij = r̄

√
σ

(RC)
ii σ

(RC)
jj , where r̄ is theaverage value of all pairwise orrelations, implied by the realized ovariane matrix, and σ

(RC)
ijis the (i, j) element of the realized ovariane matrix. Thus Φ, the population equiorrelatedmatrix, has a typial element φij = ¯̺

√
σiiσjj, where σij is the (i, j) of the true ovarianematrix Σ and ¯̺ is the average orrelation implied by it. Substituting σ

(RC)
ij for sij in equation4In the following exposition, the time index is suppressed for notational onveniene.8



(7) and multiplying by M gives for the optimal shrinkage intensity:
Mα∗ =

∑N
i=1

∑N
j=1

(Var [√
Mσ

(RC)
ij

]
−Cov [√

Mfij,
√

Mσ
(RC)
ij

])

∑N
i=1

∑N
j=1

(Var [
fij − σ

(RC)
ij

]
+ (φij − σij)2

) . (20)Note that this equation resembles expression (8). The only di�erene is the saling by √
Minstead of √T , whih is due to the √

M onvergene. In this ase πt, the �rst summand inthe numerator, is simply the sum of all diagonal elements of Ωt. By using the de�nition of theequiorrelated matrix, it an be shown that the seond term, ρt, an be written as (suppressingthe index t):
ρ =

N∑

i=1

AVar [√Mσ
(RC)
ii

]
+

N∑

i=1

N∑

j=1,j 6=i

ACov [√
Mr̄

√
σ

(RC)
ii σ

(RC)
jj ,

√
Mσ

(RC)
ij

]
. (21)Applying the delta method the seond term an be expressed as5

r̄

2




√√√√σ
(RC)
jj

σ
(RC)
ii

ACov [√
Mσ

(RC)
ii ,

√
Mσ

(RC)
ij

]
+

√√√√σ
(RC)
ii

σ
(RC)
jj

ACov [√
Mσ

(RC)
jj ,

√
Mσ

(RC)
ij

]

 .From this expression we see that ρ also involves summing properly saled terms of the Ωmatrix. In the denominator of equation (20), the �rst term is of order O(1/M), and theseond one is onsistently estimated by ν̂ =

∑N
i=1

∑N
j=1

(
fij − σ

(RC)
ij

)2.Sine we have a onsistent estimator for Ω, we an now also estimate π and ρ. Inpartiular, we havê
π =

N∑

i=1

N∑

j=1

hij,ij

ρ̂ =

N∑

i=1

hii,ii +
r̄

2

N∑

i=1

N∑

j=1

√√√√σ
(RC)
jj

σ
(RC)
ii

hii,ij +

√√√√σ
(RC)
ii

σ
(RC)
jj

hjj,ij,where hkl,k′l′ is the element of H whih estimates the orresponding element of Ω. Thus wean estimate κt by κ̂t = π̂t−ρ̂t

γ̂t
and the estimator for the optimal shrinkage onstant is:
α̂∗

t = max

{
0,min

{
κ̂t

M
, 1

}}
. (22)5f. Ledoit and Wolf (2004) 9



The estimated optimal shrinkage onstants for our dataset range from 0.0205 to 0.2494with a mean of 0.0562.2.6 Dynami realized ovariane foreastsThis model is an alternative to the one in Setion 2.4. The most popular models for timevarying varianes and ovarianes are the GARCH models. The most signi�ant problem ofthese models is the large number of parameters in large dimensional systems. The reentDCC models of Tse and Tsui (2002) and Engle (2002) propose a way to mitigate this problemby using the restrition that all orrelations obey the same dynamis. Reently Gourieroux,Jasiak, and Sufana (2004) have suggested an interesting alternative � the WAR (Wishartautoregressive) model, whih has ertain advantages over the GARCH models, e.g. smallernumber of parameters, easy onstrution of non-linear foreasts, simple veri�ation of station-arity onditions, et. Even quite parsimonious models, however, have a number of parametersof the order N(N + 1)/2. With N = 15 this means more than 120 parameters, whih wouldbe infeasible for estimation. We therefore suggest a simple approah in whih all varianeand ovariane series are modelled univariately as ARMA proesses and individual foreastsare made, whih are then ombined into a foreast of the whole matrix. This approah analso be extended by inluding lags of squared returns whih an be interpreted as a kind ofARCH-terms. A theoretial drawbak of this model, is that suh a methodology does notguarantee the positive de�niteness of the foreast matrix. It turns out that this problem ouldbe quite severe, espeially if we inlude funtions of lagged returns in the spei�ation. Henewe propose two possible solutions. First, if the above mentioned problem ours relativelyrarely, then in these ases we an de�ne the foreast as in Setion 2.4, whih would ensurethat all foreast matries are positive de�nite. More preisely, instead of assuming a randomwalk proess for the realized ovariane series (as in Setion 2.4) we now model eah of themas ARMAX(p, q, 1)6 proesses as follows:
σ

(RC)
ij,t = ω +

p∑

s=1

ϕsσ
(RC)
ij,t−s +

q∑

u=0

θuεij,t−u + αri,t−1rj,t−1, (23)with θ0 = 1 and εij,t � a Gaussian white noise proess. The model easily extends to anARMAX(p, q, k) spei�ation with k lags of rossproduts. The parameters ϕs, θu and α areestimated by maximum likelihood starting at t = 100 and the foreasts σ̂
(RC)
ij,t+1|t are olletedin a matrix Σ

DRC
t+1 . At time t+1 the new information is taken into aount and the proedureis repeated. The best model for eah series is seleted by minimizing the Akaike informationriterion (AIC).In this ase the foreast is:

Σ̂
(drc)
t+1|t =

{
Σ

DRC
t+1 , if Σ

DRC
t+1 is positive de�nite

Σ
RC
t , otherwise. (24)6The last parameter shows the number of lags of the X variable.10



A more robust solution is to fatorize the sequene of realized ovariane matries intotheir Cholesky deompositions, model the dynamis and foreast the Cholesky series and thenreonstrut the variane and ovariane foreasts. This ensures the positive de�niteness ofthe resulting foreast. In this ase the Cholesky series are modelled like in equation (23), theforeasts are olleted in a lower triangular matrix Ct+1 and the ovariane foreast is givenby:
Σ̂

(drc−Chol)
t+1|t = Ct+1C

′
t+1. (25)Analogously, we an use these two strategies to model dynamially the series of shrunkvariane ovariane matries whih de�nes the foreasts Σ

(dsrc)
t+1|t and Σ

(dsrc−Chol)
t+1|t .3 DataThe data we have used onsists of 15 stoks from the urrent omposition of the Dow JonesIndustrial Average index from 01.01.1980 to 31.12.2002. The stoks are Aloa (NYSE tikersymbol: AA), Amerian Express Company (AXP), Boeing Company (BA), Caterpillar In.(CAT), Coa-Cola Company (KO), Eastman Kodak (EK), General Eletri Company (GE),General Motors Corporation (GM), Hewlett-Pakard Company (HPQ), International Busi-ness Mahines (IBM), MDonald's Corporation (MCD), Philip Morris Companies Inorpo-rated (MO), Proter & Gamble (PG), United Tehnologies Corporation (UTX) and WaltDisney Company (DIS). The reason that we have onsidered only 15 stoks is due to fatthat the realized ovariane matries are of full rank only if M > N , where M is the numberof intra-period observations used to onstrut the realized ovariane, in our ase number ofdaily returns used to onstrut eah monthly realized ovariane. Usually there are 21 tradingdays per month, but some months have had fewer trading days (e.g. September 2001). Withintradaily data this problem would not be of importane, sine then we an easily have hun-dreds of observations within a day. Suh datasets are already ommon, but they still do notover large periods of time. Nevertheless, the dynami properties of daily realized volatilities,ovarianes and orrelations are studied by e.g. Andersen, Bollerslev, Diebold, and Ebens(2001) and Andersen, Bollerslev, Diebold, and Labys (2001). It has been shown that there isa long-range persistene, whih allows for onstrution of good foreasts by means of ARFIMAproesses.All the stoks are traded on the NYSE and we take the daily losing pries and monthlylosing pries to onstrut orresponding returns. The data is adjusted for splits and dividends.We �nd the typial properties of �nanial returns: negative skewness (with the exeption ofPG), leptokurtosis and non-normality. The average (aross stoks) mean daily return is 0.05%and the average daily standard deviation is 1.9 %. From the daily data log monthly returnsare onstruted by using the opening prie of the �rst trading day of the month and thelosing prie of the last day. These returns are then used to onstrut rolling window sampleovariane matries, used in the �rst two foreasting models.
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4 ResultsIn this setion we present and disuss the results on the performane of the foreasting modelsdesribed in Setion 2.In order to asses the foreasting performane, we employ Diebold-Mariano tests foreah of the variane and ovariane series. Then we measure the deviation of the foreastas a matrix from its target by using again the Frobenius norm, whih gives an overall ideaof the omparative performane of the models. Of ourse, if the individual series are wellforeast, so will be the matrix. As a target or "true" ovariane matrix, we hoose the realizedovariane matrix. First, we present some graphial results. Out of the total of 120 varianeand ovariane foreast series, Figure 1 plots 9 representative ases, for the sample ovarianeand the RiskMetrisTM model, against the realized series. The name, whih appears aboveeah blok in the �gure, represents either a variane series (e.g. EK), or a ovariane one (e.g.GE,AA).Both foreasts are quite lose, and as an be seen, they annot aount properly for thevariation in the series. As the tests show, however, the RiskmetrisTM fares better and is thebest model among the sample based ones. It is already an aknowledged fat that �nanialreturns have the property of volatility lustering. This feature is also learly evident in the�gure, where periods of low and high volatility an be easily distinguished, whih suggeststhat varianes and ovarianes tend to exhibit positive autoorrelation. Figure 2 shows theautoorrelation funtions for the same 9 series of realized (o)varianes. The �gure learlyshows that there is some positive serial dependene, whih usually dies out quikly, suggestingstationarity of the series. Stationarity is also on�rmed by running Augmented Dikey-Fuller(ADF) tests, whih rejet the presene of an unit root in all series at the 1% signi�ane level.The observed dependene patterns suggest the idea of modelling the variane and o-variane series as well as their shrunk versions as ARMA proesses. This resulted in a fewases in whih the matrix foreast was not positive de�nite (16 out of 176 for the originalseries and 8 out of 176 for the shrunk series). Thus the foreast in expression (24) seems tobe reasonable and as we shall see later, ompares well to the sample ovariane based mod-els. In a GARCH framework, the onditional variane equation inludes not only lags of thevariane, but also lags of squared innovations (shoks). When mean returns are themselvesunpreditable (the usual approah is to model the mean equation as an ARMA proess), theshok is simply the return. This fat led us to inlude lags of squared returns (for the vari-ane series) and ross-produts (for the ovariane series) as in the ARMAX(p, q, 1) modelin equation (23). This added �exibility, however, omes at the prie of a drasti inrease ofthe non-positive de�nite foreasts (108 and 96 out of 176, respetively). Thus the foreast inequation (24) omes quite lose to the simple realized and shrunk realized ovariane modelsin Setions 2.4 and 2.5, respetively. A solution to this issue is to deompose the matries intotheir lower triangular Cholesky fators, foreast the Cholesky series, and then reonstrut thematrix. This leads to the foreasting formula in equation (25), whih de�nes the drc − Choland dsrc − Chol foreasting models for the simple realized and shrunk realized ovarianease, respetively. A drawbak of this approah is that the Cholesky series do not have anintuitive interpretation. They are simply used as a tool to onstrain the foreasts to satisfy theompliated restritions implied by the positive de�niteness requirement. Another drawbakis that the Cholesky deomposition involves nonlinear transformations of the original series.12



Figure 1: Comparison of the sample ovariane based (Sample) and RiskmetrisTM(RM) foreast against the realized ovariane (True).
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The dashed line is the upper 95% on�dene band.Figure 2: Autoorrelation funtions of the realized variane and ovariane series.
14



Thus, if one an adequately foreast the nonlinear transformation, this does not immediatelymean that applying the inverse transformation to the foreast will produe a good foreast ofthe initial series. So there is a trade-o� between the possibility of inluding more informationin the foreast and obtaining positive de�nite matries on the one hand, and the distortionsaused by the non-linearity of the transformation on the other. It turns out that in our asethe bene�ial e�ets outweigh the negative ones. Figure 3 shows the drc − Chol and theRiskMetrisTM foreast for the same 9 variane and ovariane series. From the �gure it isevident that the dynami foreasts trak the true series muh loser than the RiskMetrisTMforeasts, espeially at the end of the period when the (o)volatilities were more volatile. The
dsrc−Chol foreast looks quite similar to the drc−Chol (due to the usually small shrinkageonstants), but as we shall see later the foreasts are in fat somewhat better.Turning to the statistial omparison of the foreasting methods, we �rst brie�y presentthe Diebold-Mariano testing framework as in Harvey, Leyborne, and Newbold (1997). Supposea pair of l-step ahead foreasts h1 and h2, h1, h2 ∈ H have produed errors (e1t, e2t), t =
1, . . . , T . The null hypothesis of equality of foreasts is based on some funtion g(e) of theforeast errors and has the form E [g(e1t) − g(e2t)] = 0. De�ning the loss di�erential dt =
g(e1t) − g(e2t) and its average d̄ = T−1

∑T
t=1 dt, the authors note that "the series dt is likelyto be autoorrelated. Indeed, for optimal l-steps ahead foreasts, the sequene of foreasterrors follows a moving average proess of order (l − 1). Thus result an be expeted to holdapproximately for any reasonably well-oneived set of foreasts." Consequently, it an beshown that the variane of d̄ is, asymptotially,Var[d̄ ]

≈ T−1

[
γ0 + 2

l−1∑

k=1

γk

]
, (26)where γk is the kth autoovariane of dt. The Diebold-Mariano test statisti is:

S1 =
[V̂ar[d̄ ]]−1/2

d̄, (27)where V̂ar[d̄ ] is obtained from equation (26) by substituting for γ0 and γk the sample varianeand autoovarianes of dt, respetively. Tests are then based on the asymptoti normality ofthe test statisti. Noting that we only onsider 1-step ahead foreasts in this paper, the series
dt should not be autoorrelated. As already noted above, this is expeted to hold for anyreasonably onstruted foreasts. Atually, however, the sample based foreasts are not reallyreasonable in the sense that they do not aount for the serial dependene of the proess theyare supposed to foreast. Thus, the degree of autoorrelation in the dt series, when either h1or h2 is a sample based foreast, will orrespond to the degree of dependene in the series to beforeast. For this reason, ignoring autoovarianes in the onstrution of the Diebold-Marianotests will lead to an error in the test statisti. To orret for this we inlude in V̂ar[d̄ ] the�rst k signi�ant autoorrelations for eah of the 120 series.Table 1 summarizes the results of the Diebold-Mariano tests arried out pairwise be-tween all models for all 120 series. The �rst entry in eah ell of the table shows the numberof series (out of 120) for whih the model in the orresponding olumn outperforms the model15



Figure 3: Comparison of the RiskmetrisTM foreast (RM) and the dynami real-ized ovariane foreast based on Cholesky series (DRC-Chol) against the realizedovariane (True).
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Table 1: Results from the Diebold-Mariano tests.
s ss rm rc src drc dsrc drc− dsrc−

Chol Chol

s - 85/28 106/50 14/1 16/1 47/20 89/37 93/49 100/55
ss 20/0 - 106/47 14/1 16/1 47/20 89/37 92/49 100/55
rm 14/0 14/0 - 7/1 11/1 37/7 73/29 85/33 89/37
rc 106/60 106/61 113/69 - 105/86 119/59 120/88 115/80 117/88
src 104/55 104/56 109/69 0/0 - 119/50 120/86 114/77 117/85
drc 73/12 73/12 83/26 1/0 1/0 - 104/31 98/47 103/58
dscr 31/3 31/3 47/8 0/0 0/0 1/0 - 69/28 83/35
drc (Chol) 27/8 28/8 35/10 5/1 6/1 22/7 51/12 - 91/19
dsrc (Chol) 20/7 20/7 31/8 3/1 3/1 17/6 37/11 29/3 -Note: Due to the de�nition of the shrinkage target, the �rst numbers in the pairs highlightedin bold do not sum up to 120, sine the variane series are unhanged in their respetive "shrunk"versions. Thus, in these ases there are only 105 series foreasts to be ompared.in the orresponding row. The seond entry orresponds to the number of signi�ant outper-formanes aording to the Diebold-Mariano tests at the 5% signi�ane level. Hene, thetable is in a sense symmetri, as the number of times model h1 outperforms model h2 plusthe number of times model h2 outperforms model h1 (given by the �rst number in eah ell)sum up to 120 � the total number of series. This is not the ase, only for the pairs highlightedin bold, beause the 15 variane series are unhanged in their respetive "shrunk" versions.7Thus, in these ases there are only 105 ovariane series foreasts to be ompared.At �rst glane one an notie that the worst performing models are the rc and srcmodels. Among the sample based foreasts the RiskMetrisTM is the one whih delivers thebest performanes. The omparison between the sample and the shrinkage sample foreastsshows that shrinking has indeed improved upon the sample ovariane matrix. This holds alsofor the realized ovariane matrix. Here, the result is reinfored by the fat that shrinkingalso inreases the probability of obtaining a positive de�nite foreast. In fat, the quite poorperformane of the drc model is not due to the poor foreasting of the series themselves,but due to the large error, introdued by taking the previous realized ovariane matrix, inase of a non-positive de�nite foreast (see equation (24)). Even though this only happensin 16 out of 176 ases, it is enough to distort the foreast onsiderably. The main resultof this paper, however, arises from the omparison of the dynami models with the samplebased ones, whih an be drawn by onsidering the last three olumns of the table. For mostof the series the dynami models provide better foreasts, whih results in smaller errors inthe ovariane matrix foreasts, as will be shown later. Despite the fat that the numberof signi�ant outperformanes is not strikingly high (due to the small number of periodsfor evaluation), it is still lear that the dynami models outperform deisively even the bestmodel among the sample based ones. Furthermore, as noted earlier, the foreasts using theCholesky deomposition appear to be better ompared to those whih model the varianeand ovariane series diretly. This result omes mainly as a onsequene of the onsiderableexplanatory power of the lagged shoks in addition to the lagged (o)varianes, whih ouldnot have been utilized had not we assured the positive de�niteness of the foreasts.7By shrinking towards the equiorrelated matrix, the varianes do not hange.17



Table 2: Root mean squared predition errors based on the Frobenius norm.RMSPEs 0.06021RMSPEss 0.06016RMSPErm 0.05887RMSPErc 0.06835RMSPEsrc 0.06766RMSPEdrc 0.06004RMSPEdsrc 0.05749RMSPEsrc−Chol 0.05854RMSPEdsrc−Chol 0.05799In order to understand better the bene�ts from modelling the variane and ovarianeseries dynamially, we shall onsider an alternative (but losely related) measure of foreastingerror. In setion 2.2 it was shown how the Frobenuis norm an be used as a measure of distanebetween two matries. Here we will utilize this onept again by onsidering the followingde�nition of the foreast error in terms of a matrix foreast:
e
(h)
t =

∥∥∥Σ̂(h)
t|t−1 − Σ

RC
t

∥∥∥
2
, h ∈ H. (28)The root mean squared predition errors (RMSPE) are olleted in Table 2. The ranking ofthe models aording to this table is quite similar to the one following from Table 1. The onlydi�erene is that now the dsrc model appears to be somewhat better than the dsrc − Chol,whih is most probably due to hane, sine as we saw earlier the latter model foreasts mostof the series better. As a onlusion, we an state again that in general, the dynami modelsoutperform the sample ovariane based ones.5 ConlusionVolatility foreasting is ruial for portfolio management, option priing and other �elds of�nanial eonomis. Starting with Engle (1982) a new lass of eonometri models was de-veloped to aount for the typial harateristis of �nanial returns volatility. This lass ofmodels grew rapidly and numerous extensions were proposed. In the late 1980's these mod-els were extended to handle not only volatilities, but also ovariane matries. The mainpratial problem of these models is the large number of parameters to be estimated, if onedeides to inlude more than a few assets in the spei�ation. Partial solutions to this "urseof dimensionality" were proposed, whih imposes restritions on the system dynamis. Still,modelling and foreasting return ovariane matries remains a hallenge. This paper proposesa methodology whih is more �exible than the traditional sample ovariane based models andat the same time is apable of handling a large number of assets. Although oneptually thismethodology is more elaborate than the above mentioned traditional models, it is easily appli-able in pratie and atually requires shorter historial samples, but with a higher frequeny.The gains ome from the fat that with high-frequeny observations, the latent volatility omeslose to being observable. This enables the onstrution of realized variane and ovarianeseries, whih an be modelled and foreast on the basis of their dynami properties. Addition-ally, we show that shrinking, whih has been shown to improve upon the sample ovariane18



matrix, an also be helpful in reduing the error in the realized ovariane matries. A pra-tial drawbak whih appears in this framework is that the so onstruted foreasts are notalways positive de�nite. One possible solution to this is to use the Cholesky deomposition asa method of inorporating the positive de�niteness requirement in the foreast.The paper shows that on the monthly frequeny, this approah produes better foreastsbased on results from Diebold-Mariano tests. The possible gains from a better foreast are,e.g., onstrution of mean-variane e�ient portfolios. Providing a more aurate foreast offuture asset omovements will result in better balaned portfolios. These gains will be mostprobably higher and more pronouned if intradaily returns are used for the onstrution ofdaily realized ovariane matries, whih remains a possible avenue for further researh. Ithas been shown (e.g. by Andersen, Bollerslev, Diebold, and Ebens (2001)) that realized dailyvolatilities and orrelations exhibit high persistene. Sine by inorporating intra-daily infor-mation these realized measures are also quite preise, this serial dependene an be exploitedfor volatility foreasting. A possible extension of the methodologial framework suggested inthe paper ould be modelling the realized series in a vetor ARMA system, in order to analyzevolatility spillovers aross stoks, industries or markets, whih however would again involve alarge number of parameters.A losely related area of researh is onerned with the methods for evaluation of o-variane matrix foreasts. In this paper we have used purely statistial evaluation tools basedon a symmetri loss funtion. An asymmetri measure in this ase may have more eonomimeaning, sine it is quite plausible to assume that if a portfolio variane has been overesti-mated, the onsequenes are less adverse than if it has been underestimated. In a multivariateontext Byström (2002) uses as an evaluation measure of foreasting performane the pro�tsgenerated by a simulated trading of portfolio of rainbow options. The pries of suh optionsdepend on the orrelation between the underlying assets. Thus the agents who foreast theorrelations more preisely should have higher pro�ts on average.Further, the models presented in this paper an be extended by introduing the possibilityof asymmetri reation of (o)volatilities to previous shoks (leverage). This an be ahieved byintroduing some kind of asymmetry in equation (23), e.g., by inluding produts of absoluteshoks or produts of indiator funtions for positivity of the shoks.
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