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Abstract

Modelling and forecasting the covariance of financial return series has always been a
challenge due to the so-called "curse of dimensionality". This paper proposes a method-
ology that is applicable in large dimensional cases and is based on a time series of realized
covariance matrices. Some solutions are also presented to the problem of non-positive
definite forecasts. This methodology is then compared to some traditional models on the
basis of its forecasting performance employing Diebold-Mariano tests. We show that our
approach is better suited to capture the dynamic features of volatilities and covolatilities
compared to the sample covariance based models.

1 Introduction

Modelling and forecasting the variances and covariances of returns of financial assets is crucial
for financial management and portfolio selection and re-balancing. Recently this branch of
the econometric literature has grown at a very fast pace. One of the simplest methods used is
the sample covariance matrix. A stylized fact, however, is that there is a serial dependence in
the second moments of returns. Thus, more sophisticated models had to be developed which
incorporate this property, as well as other well-known features of financial return distributions
such as leptokurtosis or the so-called "leverage effect". This led to the development of the
univariate GARCH processes and their extension - the multivariate GARCH (MGARCH)
models (for a comprehensive review see Bauwens, Laurent, and Rombouts (2006)), which
include also the modelling of covariances. One of the most severe drawbacks of the MGARCH
models, however, is the difficulty of handling dimensions higher than 4 or 5 (or with very
restrictive assumptions). Another more practically oriented field of research deals with the
problem of how to reduce the noise inherent in simpler covariance estimators such as the
sample covariance matrix. Techniques have been developed to "shrink" the sample covariance
(SC) matrix, thereby reducing its extreme values in order to mitigate the effect of the so-
called error maximization noted by Michaud (1989). One of the shrinkage estimators used
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among practitioners is the Black-Litterman model (Black and Litterman (1992)). This model
uses a prior which reflects an investor’s beliefs about securities returns and combines it with
implied equilibrium expected returns to obtain a posterior distribution, whose variance is a
combination of the covariance matrix of implied returns and the confidence of the investor’s
views (which reflect the prior covariance). Further, Ledoit and Wolf (2003) and Ledoit and
Wolf (2004) use shrinkage methods to combine a SC matrix with a more structured estimator
(e.g a matrix with equal pairwise correlations, or a factor estimator). The idea is to combine
an asymptotically unbiased estimator having a large variance with a biased estimator, which
is considerably less noisy. So the shrinkage actually amounts to optimizing in terms of the
well-known trade-off between bias and variance.

Recently, with the availability of high-quality transaction databases, the technique of
realized variance and covariance (RC) gained popularity. A very comprehensive treatment of
volatility modelling with focus on forecasting appears in Andersen, Bollerslev, Christoffersen,
and Diebold (2006). Andersen, Bollerslev, Diebold, and Ebens (2001), among others, have
shown that there is a long-range persistence (long memory) in daily realized volatilities, which
allows one to obtain good forecasts by means of fractionally integrated ARMA processes. At
the monthly level, we find that the autocorrelations decline quite quickly to zero, which led
us to choose standard ARMA models for fitting and forecasting.

The aim of this paper is to compare the forecasting performance of a set of models,
which are suitable to handle large dimensional covariance matrices. Letting H denote the set
of considered models, we have H = {s, ss,rm,rec, src,drc,dsrc}, where the first two models
are based on the sample covariance matrix, the third model is a RiskMetrics™ exponentially
weighted moving average (EWMA) estimator developed by J.P. Morgan (1996), the fourth
and the fifth represent simple forecasts based on the realized and on the shrunk realized
covariance matrix, and the last two models employ dynamic modelling of the RC and shrunk
RC, respectively. We judge the performance of the models by looking at their ability to
forecast individual variance and covariance series by employing a battery of Diebold-Mariano
(Diebold and Mariano (1995)) tests. Of course, if we have good forecasts for the individual
series, then the whole covariance matrix will also be well forecast. The practical relevance of
a good forecast can be seen by considering an investor who faces an optimization problem to
determine the weights of some portfolio constituents. One of the crucial inputs in this problem
is a forecast of future movements and co-movements in asset returns. Our contribution is to
propose a methodology which improves upon the sample covariance estimator and is easy to
implement even for very large portfolios. We show that in some sense these models are more
flexible than the MGARCH models, although this comes at the expense of some complications.

The remainder of the paper is organized as follows: Section B sets up the notation
and describes the forecasting models, Section B presents the data set used to compare the
forecasting performance of the models, Section ll discusses the results on the forecast evaluation
and Section B concludes the paper.

2 Forecasting models

In this section we describe each of the covariance forecasting models. First, we introduce
some notation and description of the forecasting methodology. We concentrate on one-step



ahead forecasts of covariance matrices of IV stocks, and consider the monthly frequency. The
information is updated every period and a new forecast is formed. Thus, each new forecast
incorporates the newest information which has become available. Such a strategy might de-
scribe an active long-run investor, who revises and rebalances her portfolio every month. Let
the multivariate price process be defined as P = {P;(w),t € (—00,00),w € 2}, where  is an
outcome spaceﬂ The portfolio is set up at ¢ = 0 and updated at each t = 1,2,...,T, where
T is the end of the investment period. The frequency of the observations in our application
is daily, which we refer to as intra-periods. In this setup, we can formally define the infor-
mation set at each time ¢ > 0 as a filtration F; = o(P4(w),s € T) generated by P, with
T={s:s=—-L+ %,j =0,1,...,(L+t)M}, M — the number of intra-periods within each
periodE and L — the number of periods, for which price data is available, before the invest-
ment period. It is important to note that not all information is considered in the forecasts
based on the sample covariance matrix. For these models only the lower frequency monthly
sampling is needed. Furthermore, we define the monthly returns as ry = In(P;) — In(Py_1),
where P, is the realization of the price process at time ¢, and the j* intra-period return by

r, g = In (Pt+l) —1In (Pt+j;1). The realized covariance at time ¢ 4 1 is given by:
M M M

M

RC __ ]

EH_l—E IR AR (1)
j=1

Assessing the performance of variance forecasts has been quite problematic, since the true
covariance matrix ¥; is not directly observable. This has long been a hurdle in evaluating
GARCH models. Traditionally, the squared daily return was used as a measure of the daily
variance. Although this is an unbiased estimator, it has a very large estimation error due to
the large idiosyncratic noise component of daily returns. Thus a good model may be evaluated
as poor, simply because the target is measured with a large error. In an important paper,
Andersen and Bollerslev (1998) showed that GARCH models actually provide good forecasts
when the target to which they are compared is estimated more precisely, by means of sum of
squared intradaily returns. Since then, it has become a practice to take the realized variance
as the relevant measure for comparing forecasting performance. In this spirit, we use the
realized monthly covariance in place of the true matrix. Thus we will assess a given forecast

ﬁlii)llt’ h € H by its deviation from Eﬁﬁ.

2.1 A sample covariance forecast

In this section we describe a forecasting strategy based on the sample covariance matrix,
which will serve as a benchmark. The sample covariance is a consistent estimator for the true
population covariance under weak assumptions. We use a rolling window scheme and define

LOf course, in reality the price process could not have started in the infinite past. Since we are interested
in when the process became observable, and not in its beginning, we leave the latter unspecified.

2This number is not necessarily the same for all periods and should be denoted more precisely by M (t).
This is not done in the text to avoid cluttering of the notation.



the forecast as:

SN D @
s=t—T+1

where for each ¢, ¥y 7 is the sample mean of the return vector r over the last 7" observations.
We will denote the sample covariance matrix at time ¢ by Efc. For T" we choose a value of
60, which with monthly data corresponds to a time span of five years. As the near future is
of the highest importance in volatility forecasting, this number might seem too large. Too
small a number of periods, however, would lead to a large variance of the estimator, therefore
other authors (e.g. Ledoit and Wolf (2004)) have also chosen 60 months as a balance between
precision and relevance of the data. A problem of this approach, as simple as it is, is that new
information is given the same weight as very old information. Another obvious oversimplifi-
cation is that we do not account for the serial dependence present in the second moments of
financial returns.

2.2 A shrinkage sample covariance forecast
In this section we briefly present the shrinkage estimator, proposed by Ledoit and Wolf (2003),
in order to give an idea of the shrinkage principle.

The shrinkage estimator of the covariance matrix 3; is defined as a weighted linear
combination of some shrinkage target F; and the sample covariance matrix, where the weights
are chosen in an optimal way. More formally, the estimator is given by

295 = 41 F + (1 - 6))27¢, (3)

&y € [0,1] is an estimate of the optimal shrinkage constant «;.

The shrinking intensity is chosen to be optimal with respect to a loss function defined
as a quadratic distance between the true and the estimated covariance matrices based on
the Frobenius norm. The Frobenius norm of an N x N symmetric matrix Z with elements
(Zij)i,jzl,...,N is defined by

N N
2
12112 =" 2 (4)
i=1 j=1

The quadratic loss function is the Frobenius norm of the difference between 27 and the true
covariance matrix:

L(at) = HatFtﬂ—(l—at)ZfC—EtW. (5)

The optimal shrinkage constant is defined as the value of a which minimizes the expected



value of the loss function (i.e. the risk) in expression (H):

a; = argmin E [L(ay)] . (6)

%3

For an arbitrary shrinkage target F' and a consistent covariance estimator S, Ledoit and Wolf
(2003) show that

o Yoy Yo (Var [sy] — Cov [ £, 545]) o
SN S (Var [fi — syl + (635 — 035)2)

where f;; is a typical element of the sample shrinkage target, s;; — of the covariance estimator,
0;; — of the true covariance matrix, and ¢;; — of the population shrinkage target ®. Further
they prove that this optimal value is asymptotically constant over T" and can be written adl:

,{t:ﬂ't_;ot. (8)

Ut

In the formula above, m; is the sum of the asymptotic variances of the entries of the sample
covariance matrix scaled by VT 7, = le\il Zjvzl AVar [\/Tsij#} , pt 18 the sum of asymptotic
covariances of the elements of the shrinkage target with the elements of the sample covari-
ance matrix scaled by VT: p; = ZZ]L Zjvzl ACov [\/Tfij,t,\/?sij,t], and v; measures the
misspecification of the shrinkage target: vy = Zl]\i 1 Zj'v:l(@‘j,t — 04;¢)?. Following their for-
mulation and assumptions, sz\i 1 Zjvzl Var [\/T (fij — Sl'j)} converges to a positive limit, and

so SN Z;Vﬂ Var [fij — sij] = O(1/T). Using this result and the /T convergence in distri-
bution of the elements of the sample covariance matrix, Ledoit and Wolf (2003) show that the
optimal shrinkage constant is given by:

*_lﬂt—Pt L
G =5 ” +O<T2). (9)

Since «* is unobservable, it has to be estimated. Ledoit and Wolf (2004) propose a
consistent estimator of o* for the case where the shrinkage target is a matrix in which all
pairwise correlations are equal to the same constant. This constant is the average value of
all pairwise correlations from the sample correlation matrix. The covariance matrix resulting
from combining this correlation matrix with the sample variances, known as the equicorrelated
matrix, is the shrinkage target. The equicorrelated matrix is a sensible shrinkage target as
it involves only a small number of free parameters (hence less estimation noise). Thus the
elements of the sample covariance matrix, which incorporate a lot of estimation error and
hence can take rather extreme values are "shrunk" towards a much less noisy average. Using

®In their paper the formula appears without the subscript t. By adding it here we want to emphasize that
these variables are changing over time.



the equicorrelated matrix as the shrinkage target F; in equation (Bl the forecast is given by

(ss) _ §SS
2t+1|t_2t . (10)

2.3 A RiskMetrics™ forecast

The RiskMetrics™ forecasting methodology is a modification of the sample covariance matrix,
in which observations which are further in the past are given exponentially smaller weights, de-
termined by a factor A. For the generic (,7),7,7 = 1,..., N element of the EWMA covariance
matrix XM we have:

t
ot ==X N (ris =) (rjs — 75) (11)

s=1

where 7; = %22:1 ris. Again, the forecast is given by:

NGRS ri (12)

Methods to choose the optimal A are discussed in J.P. Morgan (1996). In this paper
we set A = 0.97, the value used by J.P. Morgan for monthly (co)volatility forecasts. Note
that contrary to the sample covariance matrix, for which we use a rolling window scheme, in
the RiskMetrics approach we use at each t all the available observations from the beginning
of the observation period up to ¢t. Since in the RiskMetrics approach the weights decrease
exponentially, the observations which are further away in the past are given relatively smaller
weights and hence do not influence the estimate as much as in the sample covariance matrix.

2.4 A simple realized covariance forecast

The realized covariance estimator was already defined in expression ([Il). Its univariate and
multivariate properties have been studied among others, by Barndorff-Nielsen and Shephard
(2004) and by Andersen, Bollerslev, Diebold, and Labys (2003). In the limit, when M — oo,
Barndorff-Nielsen and Shephard (2004) have shown that realized covariance is an error-free
measure for the integrated covariation of a very broad class of stochastic volatility models. In
the empirical part we compute monthly realized covariance by using daily returns (see also
French, Schwert, and Stambaugh (1987)). The simple forecast is defined by:

HEIES (13)
Thus an investor who uses this strategy simply computes the realized covariance at the end
of each month and then uses it as his best guess about the true covariance matrix of the next
month. A nice feature of this method is that it only uses recent information which is of most
value for the forecast but imposes a very simple and restrictive time dependence. Practically
equation ([3) states that all variances and covariances follow a random walk process. However,



as we shall see later, the estimated series of monthly variances and covariances show weak
stationarity.

2.5 A shrinkage realized covariance forecast

Although the estimator discussed in the previous section is asymptotically error-free, in prac-
tice one cannot record observations continuously. A much more serious problem is the fact
that at very high frequencies, the martingale assumption needed for the convergence of the
realized covariances to the integrated covariation is no longer satisfied. At trade-by-trade fre-
quencies, market microstructure affects the price process and results in microstructure noise
induced autocorrelations in returns and hence biased variance estimates. Methods to account
for this bias and correct the estimates have been developed by Hansen and Lunde (2006),
Oomen (2005), Ait-Sahalia, Mykland, and Zhang (2005), Bandi and Russell (2005), Zhang,
Mykland, and Ait-Sahalia (2005), and Voev and Lunde (2007), among others. At low frequen-
cies the impact of market microstructure noise can be significantly mitigated, but this comes
at the price of higher variance of the estimator. Since we are using daily returns, market
microstructure is not an issue. Thus we will suggest a possible way to reduce variance. Again
as in Section L2, we will try to find a compromise between bias and variance applying the
shrinkage methodology. The estimator looks very much like the one in expression (B). In this
case we have:

B = &R+ (1 - a) B, (14)

where now F} is the equicorrelated matrix, constructed from the realized covariance matrix
Efo in the same fashion as the equicorrelated matrix constructed from the sample covariance
matrix, as explained in Section 22l Similarly to the previous section, the forecast is simply

BT = 2R, (15)

Since the realized covariance is a consistent estimator, we can still apply formula ()
taking into account the different rate of convergence. In order to compute the estimates for
the variances and covariances, we need a theory for the distribution of the realized covari-
ance, which is developed in Barndorff-Nielsen and Shephard (2004), who provide asymptotic
distribution results for the realized covariation matrix of continuous stochastic volatility semi-
martingales (SVSM€). Assuming that the log price process InP € SVSM¢, we can decom-
pose it as InP = a* +m*, where a* is a process with continuous finite variation paths and m*
is a local martingale. Furthermore, under the condition that m* is a multivariate stochastic
volatility process, it can be defined as m*(t) = fg O(u)dw(u), where © is the spot covolatility
process and w is a vector standard Brownian motion. Then the spot covariance is defined as:

S(t) = 0()e(t), (16)

t
/ Yp(uwdu < oo, k,l=1,...,N, (17)
0



where ¥y (t) is the (k,[) element of the X(t) process. Having laid this notation we will now
interpret the "true" covariance matrix as:

t+1
i :/t+ (u)du. (18)

Thus the covariance matrix at time ¢ 4+ 1 is the increment of the integrated covariance
matrix of the continuous local martingale from time ¢ to time t+ 1. The realized covariance as
defined in expression ([Il) consistently estimates 311 as given in equation ([8). Furthermore,
Barndorff-Nielsen and Shephard (2004) show that under a set of regularity conditions the
realized covariation matrix follows asymptotically, as M — oo, the normal law with N x N
matrix of means fttH Y (u)du. The asymptotic covariance of

t+1
VM {Eﬁq —/ E(u)du}
t
is Q1 1, a N2 x N? array with elements

Qt+1 = {/:Jrl {Ekk/(u)E”/(u) + Ekl/(u)Elk/(u)} du}

kK \LU=1,.. N

Of course, this matrix is singular due to the equality of the covariances in the integrated
covariance matrix. This can easily be avoided by considering only its unique lower triangular
elements, but for our purposes it will be more convenient to work with the full matrix. The
result above is not useful for inference, since the matrix 2y is not known. Barndorff-Nielsen
and Shephard (2004) show that a consistent, positive semi-definite estimator is given by a
random N? x N? matrix:

M M-1
Hi = ; ! 1 1 ; ! 19
1= 2 Tt — 5 (504121001 + T @) (19)
j=1 j=1

where x; ;11 = vec <rt+jr;+ ; > and the vec operator stacks the columns of a matrix into a
Mty

vector. It holds that M Hy 1 X Q11 with M — oo.

With the knowledge of this matrix, we can combine the asymptotic results for the realized
covariance, with the result in equation () to compute the estimates for m, p; and v4.
l(Z.R C)UJ(?C), where 7 is the
average value of all pairwise correlations, implied by the realized covariance matrix, and O'Z-(]RC)
is the (i,7) element of the realized covariance matrix. Thus ®, the population equicorrelated
matrix, has a typical element ¢;; = 0,/0:,0,;, where o;; is the (7,7) of the true covariance
(RC)
ij

For the equicorrelated matrix F' we have thatfl] fij =7

matrix 3 and p is the average correlation implied by it. Substituting o for s;; in equation

“In the following exposition, the time index is suppressed for notational convenience.



[@ and multiplying by M gives for the optimal shrinkage intensity:

Zij\il Zjvzl (Var {\/_ (RO } Cov {\/_fu, \/_O'(RC D
Ma* = . (20)
YIRS D (Var [fz‘j fJRC)} + (dij — %‘)2>

Note that this equation resembles expression (8). The only difference is the scaling by v/ M
instead of \/T, which is due to the /M convergence. In this case m, the first summand in
the numerator, is simply the sum of all diagonal elements of €);. By using the definition of the
equicorrelated matrix, it can be shown that the second term, p;, can be written as (suppressing
the index ¢):

p= iAVar[ (RC)} —i—Z Z ACov [ /o (RC) RC \/_ (RC)] . (21)
i=1

i=1 j=1,j#1

Applying the delta method the second term can be expressed ad]

(RC )

SV B ST O
(RC) { Mo,V Mo,

| 3

From this expression we see that p also involves summing properly scaled terms of the
matrix. In the denominator of equation ([0), the first term is of order O(1/M), and the
RC))2

second one is consistently estimated by o = ZZ 1 N i1 ( fij — oy

Since we have a consistent estimator for €2, we can now also estimate 7 and p. In
particular, we have

=
I

(RC)
i

—(roy i

95

where hy; 3 is the element of H which estimates the corresponding element of €). Thus we

can estimate k; by £y = f”%’}t and the estimator for the optimal shrinkage constant is:

@f:maX{O,min{%,l}}. (22)

Scf. Ledoit and Wolf (2004)



The estimated optimal shrinkage constants for our dataset range from 0.0205 to 0.2494
with a mean of 0.0562.

2.6 Dynamic realized covariance forecasts

This model is an alternative to the one in Section B4l The most popular models for time
varying variances and covariances are the GARCH models. The most significant problem of
these models is the large number of parameters in large dimensional systems. The recent
DCC models of Tse and Tsui (2002) and Engle (2002) propose a way to mitigate this problem
by using the restriction that all correlations obey the same dynamics. Recently Gourieroux,
Jasiak, and Sufana (2004) have suggested an interesting alternative — the WAR (Wishart
autoregressive) model, which has certain advantages over the GARCH models, e.g. smaller
number of parameters, easy construction of non-linear forecasts, simple verification of station-
arity conditions, etc. Even quite parsimonious models, however, have a number of parameters
of the order N(INV 4 1)/2. With N = 15 this means more than 120 parameters, which would
be infeasible for estimation. We therefore suggest a simple approach in which all variance
and covariance series are modelled univariately as ARMA processes and individual forecasts
are made, which are then combined into a forecast of the whole matrix. This approach can
also be extended by including lags of squared returns which can be interpreted as a kind of
ARCH-terms. A theoretical drawback of this model, is that such a methodology does not
guarantee the positive definiteness of the forecast matrix. It turns out that this problem could
be quite severe, especially if we include functions of lagged returns in the specification. Hence
we propose two possible solutions. First, if the above mentioned problem occurs relatively
rarely, then in these cases we can define the forecast as in Section Z4] which would ensure
that all forecast matrices are positive definite. More precisely, instead of assuming a random
walk process for the realized covariance series (as in Section E]) we now model each of them
as ARMAX(p, q, l)ﬁ processes as follows:

p q
RC RC
Uz(j,t ' =wet > SOSUz(j,t—)s + Y Ouliji—u O 1Te 1, (23)
s=1

u=0

with 0y = 1 and ¢;;; — a Gaussian white noise process. The model easily extends to an
ARMAX(p, q, k) specification with k lags of crossproducts. The parameters ¢s, 0, and « are

estimated by maximum likelihood starting at ¢ = 100 and the forecasts &ERC) are collected

Jt+1t
in a matrix EtDﬁC. At time ¢ 41 the new information is taken into account and the procedure
is repeated. The best model for each series is selected by minimizing the Akaike information

criterion (AIC).

In this case the forecast is:

(24)

& (dre) SPRCif BPRC s positive definite
t1ft SR otherwise.

6The last parameter shows the number of lags of the X variable.

10



A more robust solution is to factorize the sequence of realized covariance matrices into
their Cholesky decompositions, model the dynamics and forecast the Cholesky series and then
reconstruct the variance and covariance forecasts. This ensures the positive definiteness of
the resulting forecast. In this case the Cholesky series are modelled like in equation (Z3), the
forecasts are collected in a lower triangular matrix C;41 and the covariance forecast is given
by:

2(drc—0hol)

1|t = Ct+1Chy1. (25)

Analogously, we can use these two strategies to model dynamically the series of shrunk

(dsre) and 2](dsrchhol)

variance covariance matrices which defines the forecasts X 1t 1t

3 Data

The data we have used consists of 15 stocks from the current composition of the Dow Jones
Industrial Average index from 01.01.1980 to 31.12.2002. The stocks are Alcoa (NYSE ticker
symbol: AA), American Express Company (AXP), Boeing Company (BA), Caterpillar Inc.
(CAT), Coca-Cola Company (KO), Eastman Kodak (EK), General Electric Company (GE),
General Motors Corporation (GM), Hewlett-Packard Company (HPQ), International Busi-
ness Machines (IBM), McDonald’s Corporation (MCD), Philip Morris Companies Incorpo-
rated (MO), Procter & Gamble (PG), United Technologies Corporation (UTX) and Walt
Disney Company (DIS). The reason that we have considered only 15 stocks is due to fact
that the realized covariance matrices are of full rank only if M > N, where M is the number
of intra-period observations used to construct the realized covariance, in our case number of
daily returns used to construct each monthly realized covariance. Usually there are 21 trading
days per month, but some months have had fewer trading days (e.g. September 2001). With
intradaily data this problem would not be of importance, since then we can easily have hun-
dreds of observations within a day. Such datasets are already common, but they still do not
cover large periods of time. Nevertheless, the dynamic properties of daily realized volatilities,
covariances and correlations are studied by e.g. Andersen, Bollerslev, Diebold, and Ebens
(2001) and Andersen, Bollerslev, Diebold, and Labys (2001). It has been shown that there is
a long-range persistence, which allows for construction of good forecasts by means of ARFIMA
processes.

All the stocks are traded on the NYSE and we take the daily closing prices and monthly
closing prices to construct corresponding returns. The data is adjusted for splits and dividends.
We find the typical properties of financial returns: negative skewness (with the exception of
PQG), leptokurtosis and non-normality. The average (across stocks) mean daily return is 0.05%
and the average daily standard deviation is 1.9 %. From the daily data log monthly returns
are constructed by using the opening price of the first trading day of the month and the
closing price of the last day. These returns are then used to construct rolling window sample
covariance matrices, used in the first two forecasting models.

11



4 Results

In this section we present and discuss the results on the performance of the forecasting models
described in Section &1

In order to asses the forecasting performance, we employ Diebold-Mariano tests for
each of the variance and covariance series. Then we measure the deviation of the forecast
as a matrix from its target by using again the Frobenius norm, which gives an overall idea
of the comparative performance of the models. Of course, if the individual series are well
forecast, so will be the matrix. As a target or "true" covariance matrix, we choose the realized
covariance matrix. First, we present some graphical results. Out of the total of 120 variance
and covariance forecast series, Figure [l plots 9 representative cases, for the sample covariance
and the RiskMetrics™ model, against the realized series. The name, which appears above
each block in the figure, represents either a variance series (e.g. EK), or a covariance one (e.g.
GE,AA).

Both forecasts are quite close, and as can be seen, they cannot account properly for the
variation in the series. As the tests show, however, the Riskmetrics™ fares better and is the
best model among the sample based ones. It is already an acknowledged fact that financial
returns have the property of volatility clustering. This feature is also clearly evident in the
figure, where periods of low and high volatility can be easily distinguished, which suggests
that variances and covariances tend to exhibit positive autocorrelation. Figure B shows the
autocorrelation functions for the same 9 series of realized (co)variances. The figure clearly
shows that there is some positive serial dependence, which usually dies out quickly, suggesting
stationarity of the series. Stationarity is also confirmed by running Augmented Dickey-Fuller
(ADF) tests, which reject the presence of an unit root in all series at the 1% significance level.

The observed dependence patterns suggest the idea of modelling the variance and co-
variance series as well as their shrunk versions as ARMA processes. This resulted in a few
cases in which the matrix forecast was not positive definite (16 out of 176 for the original
series and 8 out of 176 for the shrunk series). Thus the forecast in expression ([24)) seems to
be reasonable and as we shall see later, compares well to the sample covariance based mod-
els. In a GARCH framework, the conditional variance equation includes not only lags of the
variance, but also lags of squared innovations (shocks). When mean returns are themselves
unpredictable (the usual approach is to model the mean equation as an ARMA process), the
shock is simply the return. This fact led us to include lags of squared returns (for the vari-
ance series) and cross-products (for the covariance series) as in the ARMAX(p,q,1) model
in equation (Z3)). This added flexibility, however, comes at the price of a drastic increase of
the non-positive definite forecasts (108 and 96 out of 176, respectively). Thus the forecast in
equation (4 comes quite close to the simple realized and shrunk realized covariance models
in Sections 24 and 20 respectively. A solution to this issue is to decompose the matrices into
their lower triangular Cholesky factors, forecast the Cholesky series, and then reconstruct the
matrix. This leads to the forecasting formula in equation (23)), which defines the drc — Chol
and dsrc — Chol forecasting models for the simple realized and shrunk realized covariance
case, respectively. A drawback of this approach is that the Cholesky series do not have an
intuitive interpretation. They are simply used as a tool to constrain the forecasts to satisfy the
complicated restrictions implied by the positive definiteness requirement. Another drawback
is that the Cholesky decomposition involves nonlinear transformations of the original series.
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Figure 1: Comparison of the sample covariance based (Sample) and Riskmetrics™
(RM) forecast against the realized covariance (True).
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The dashed line is the upper 95% confidence band.

Figure 2: Autocorrelation functions of the realized variance and covariance series.
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Thus, if one can adequately forecast the nonlinear transformation, this does not immediately
mean that applying the inverse transformation to the forecast will produce a good forecast of
the initial series. So there is a trade-off between the possibility of including more information
in the forecast and obtaining positive definite matrices on the one hand, and the distortions
caused by the non-linearity of the transformation on the other. It turns out that in our case
the beneficial effects outweigh the negative ones. Figure Bl shows the drc — Chol and the
RiskMetrics™ forecast for the same 9 variance and covariance series. From the figure it is
evident that the dynamic forecasts track the true series much closer than the RiskMetrics™
forecasts, especially at the end of the period when the (co)volatilities were more volatile. The
dsrc — Chol forecast looks quite similar to the drec — Chol (due to the usually small shrinkage
constants), but as we shall see later the forecasts are in fact somewhat better.

Turning to the statistical comparison of the forecasting methods, we first briefly present
the Diebold-Mariano testing framework as in Harvey, Leyborne, and Newbold (1997). Suppose
a pair of [-step ahead forecasts hy and hg, hi,hy € H have produced errors (ej¢,e9), t =
1,...,T. The null hypothesis of equality of forecasts is based on some function g(e) of the
forecast errors and has the form E[g(ei;) — g(eat)] = 0. Defining the loss differential d; =
g(e1r) — g(ea) and its average d = T~! Zthl dy, the authors note that "the series d; is likely
to be autocorrelated. Indeed, for optimal [-steps ahead forecasts, the sequence of forecast
errors follows a moving average process of order (I — 1). Thus result can be expected to hold
approximately for any reasonably well-conceived set of forecasts." Consequently, it can be
shown that the variance of d is, asymptotically,

Var[cﬂ ~T !

-1
k=1

where ~y;, is the k™" autocovariance of d;. The Diebold-Mariano test statistic is:

s = [Varld]] a (27)

where Var [J ] is obtained from equation (Z6]) by substituting for o and ~, the sample variance
and autocovariances of d;, respectively. Tests are then based on the asymptotic normality of
the test statistic. Noting that we only consider 1-step ahead forecasts in this paper, the series
d; should not be autocorrelated. As already noted above, this is expected to hold for any
reasonably constructed forecasts. Actually, however, the sample based forecasts are not really
reasonable in the sense that they do not account for the serial dependence of the process they
are supposed to forecast. Thus, the degree of autocorrelation in the d; series, when either hy
or hs is a sample based forecast, will correspond to the degree of dependence in the series to be
forecast. For this reason, ignoring autocovariances in the construction of the Diebold-Mariano
tests will lead to an error in the test statistic. To correct for this we include in Var [CZ } the
first k significant autocorrelations for each of the 120 series.

Table M summarizes the results of the Diebold-Mariano tests carried out pairwise be-
tween all models for all 120 series. The first entry in each cell of the table shows the number
of series (out of 120) for which the model in the corresponding column outperforms the model
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Figure 3: Comparison of the Riskmetrics™ forecast (RM) and the dynamic real-
ized covariance forecast based on Cholesky series (DRC-Chol) against the realized
covariance (True).
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Table 1: Results from the Diebold-Mariano tests.

s ss rm re sre drc dsrc drc— dsrc—

Chol Chol

s - 85/28 106/50 14/1 16/1 47/20 89/37 93/49 100/55
ss 20/0 - 106/47 14/1 16/1 47/20 89/37 92/49 100/55
rm 14/0 14/0 - 7/1 11/1 377 73/29 85/33 89/37
re 106/60 106/61 113/69 - 105/86 119/59 120/88 115/80 117/88
sre 104/55 104/56 109/69 0/0 - 119/50 120/86 114/77 117/85
dre 73/12 73/12 83/26 1/0 1/0 - 104/31 98/47 103/58
dser 31/3 31/3 47/8 0/0 0/0 1/0 - 69/28 83/35
drc (Chol) 27/8 28/8 35/10 5/1 6/1 22/7 51/12 - 91/19
dsrc (Chol) 20/7 20/7 31/8 3/1 3/1 17/6 37/11 29/3 -

Note: Due to the definition of the shrinkage target, the first numbers in the pairs highlighted
in bold do not sum up to 120, since the variance series are unchanged in their respective "shrunk"
versions. Thus, in these cases there are only 105 series forecasts to be compared.

in the corresponding row. The second entry corresponds to the number of significant outper-
formances according to the Diebold-Mariano tests at the 5% significance level. Hence, the
table is in a sense symmetric, as the number of times model hy outperforms model hy plus
the number of times model hs outperforms model hy (given by the first number in each cell)
sum up to 120 — the total number of series. This is not the case, only for the pairs highlighted
in bold, because the 15 variance series are unchanged in their respective "shrunk" versions [l
Thus, in these cases there are only 105 covariance series forecasts to be compared.

At first glance one can notice that the worst performing models are the rc and sre
models. Among the sample based forecasts the RiskMetrics™ is the one which delivers the
best performances. The comparison between the sample and the shrinkage sample forecasts
shows that shrinking has indeed improved upon the sample covariance matrix. This holds also
for the realized covariance matrix. Here, the result is reinforced by the fact that shrinking
also increases the probability of obtaining a positive definite forecast. In fact, the quite poor
performance of the drc model is not due to the poor forecasting of the series themselves,
but due to the large error, introduced by taking the previous realized covariance matrix, in
case of a non-positive definite forecast (see equation (Z4l)). Even though this only happens
in 16 out of 176 cases, it is enough to distort the forecast considerably. The main result
of this paper, however, arises from the comparison of the dynamic models with the sample
based ones, which can be drawn by considering the last three columns of the table. For most
of the series the dynamic models provide better forecasts, which results in smaller errors in
the covariance matrix forecasts, as will be shown later. Despite the fact that the number
of significant outperformances is not strikingly high (due to the small number of periods
for evaluation), it is still clear that the dynamic models outperform decisively even the best
model among the sample based ones. Furthermore, as noted earlier, the forecasts using the
Cholesky decomposition appear to be better compared to those which model the variance
and covariance series directly. This result comes mainly as a consequence of the considerable
explanatory power of the lagged shocks in addition to the lagged (co)variances, which could
not have been utilized had not we assured the positive definiteness of the forecasts.

"By shrinking towards the equicorrelated matrix, the variances do not change.
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Table 2: Root mean squared prediction errors based on the Frobenius norm.

RMSPE™ 0.06021
RMSPE™ 0.05887
RMSPE" 0.06835
RvSPE 0 00004
RMSPE™e-CHo 003831
RMSPE®sre=Chol 0.05799

In order to understand better the benefits from modelling the variance and covariance
series dynamically, we shall consider an alternative (but closely related) measure of forecasting
error. In section Z2]it was shown how the Frobenuis norm can be used as a measure of distance
between two matrices. Here we will utilize this concept again by considering the following
definition of the forecast error in terms of a matrix forecast:

el = =, - zﬁcuz, heH. (28)
The root mean squared prediction errors (RMSPE) are collected in Table @l The ranking of
the models according to this table is quite similar to the one following from Table[ll The only
difference is that now the dsrc model appears to be somewhat better than the dsrc — Chol,
which is most probably due to chance, since as we saw earlier the latter model forecasts most
of the series better. As a conclusion, we can state again that in general, the dynamic models
outperform the sample covariance based ones.

5 Conclusion

Volatility forecasting is crucial for portfolio management, option pricing and other fields of
financial economics. Starting with Engle (1982) a new class of econometric models was de-
veloped to account for the typical characteristics of financial returns volatility. This class of
models grew rapidly and numerous extensions were proposed. In the late 1980’s these mod-
els were extended to handle not only volatilities, but also covariance matrices. The main
practical problem of these models is the large number of parameters to be estimated, if one
decides to include more than a few assets in the specification. Partial solutions to this "curse
of dimensionality" were proposed, which imposes restrictions on the system dynamics. Still,
modelling and forecasting return covariance matrices remains a challenge. This paper proposes
a methodology which is more flexible than the traditional sample covariance based models and
at the same time is capable of handling a large number of assets. Although conceptually this
methodology is more elaborate than the above mentioned traditional models, it is easily appli-
cable in practice and actually requires shorter historical samples, but with a higher frequency.
The gains come from the fact that with high-frequency observations, the latent volatility comes
close to being observable. This enables the construction of realized variance and covariance
series, which can be modelled and forecast on the basis of their dynamic properties. Addition-
ally, we show that shrinking, which has been shown to improve upon the sample covariance
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matrix, can also be helpful in reducing the error in the realized covariance matrices. A prac-
tical drawback which appears in this framework is that the so constructed forecasts are not
always positive definite. One possible solution to this is to use the Cholesky decomposition as
a method of incorporating the positive definiteness requirement in the forecast.

The paper shows that on the monthly frequency, this approach produces better forecasts
based on results from Diebold-Mariano tests. The possible gains from a better forecast are,
e.g., construction of mean-variance efficient portfolios. Providing a more accurate forecast of
future asset comovements will result in better balanced portfolios. These gains will be most
probably higher and more pronounced if intradaily returns are used for the construction of
daily realized covariance matrices, which remains a possible avenue for further research. It
has been shown (e.g. by Andersen, Bollerslev, Diebold, and Ebens (2001)) that realized daily
volatilities and correlations exhibit high persistence. Since by incorporating intra-daily infor-
mation these realized measures are also quite precise, this serial dependence can be exploited
for volatility forecasting. A possible extension of the methodological framework suggested in
the paper could be modelling the realized series in a vector ARMA system, in order to analyze
volatility spillovers across stocks, industries or markets, which however would again involve a
large number of parameters.

A closely related area of research is concerned with the methods for evaluation of co-
variance matrix forecasts. In this paper we have used purely statistical evaluation tools based
on a symmetric loss function. An asymmetric measure in this case may have more economic
meaning, since it is quite plausible to assume that if a portfolio variance has been overesti-
mated, the consequences are less adverse than if it has been underestimated. In a multivariate
context Bystrom (2002) uses as an evaluation measure of forecasting performance the profits
generated by a simulated trading of portfolio of rainbow options. The prices of such options
depend on the correlation between the underlying assets. Thus the agents who forecast the
correlations more precisely should have higher profits on average.

Further, the models presented in this paper can be extended by introducing the possibility
of asymmetric reaction of (co)volatilities to previous shocks (leverage). This can be achieved by
introducing some kind of asymmetry in equation (23], e.g., by including products of absolute
shocks or products of indicator functions for positivity of the shocks.
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