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Abstract

Estimation of a nonparametric regression spectrum based on the
periodogram is considered. Neither trend estimation nor smoothing
of the periodogram are required. Alternatively, for cases where spec-
tral estimation of phase shifts fails and the shift does not depend on
frequency, a time domain estimator of the lag-shift is defined. Asymp-
totic properties of the frequency and time domain estimators are de-
rived. Simulations and a data example illustrate the methods.

Key words: Periodogram, cross spectrum, regression spectrum, phase,
wavelets.

1 Introduction
Consider a multivariate time series Y (i) = (Y1(4), ..., Y,(i))T of the form

Y (i) = f£(t:) + €(i), (1)

where t; = i/n (i = 1,...,n), £t) = (f1(¥),..., f,(t))T € C? (t € R) is a
multivariate deterministic trend function and €(z) = (£1(4), ..., £,(4))" is a zero



mean stationary process. In this model, dependence between two components
Y, and Y, can occur due to two reasons: 1. dependence between ¢, and ¢,, and
2. dependence due to similarities in the underlying deterministic components
fr and f,. In the first case, linear dependence is characterized by cross-
correlations, the cross-spectrum, coherency and phase-shift between €, and ¢,
(see e.g. standard books such as Priestley 1981, Brockwell and Davis 1987).
For the second case, Beran and Heiler (2007) introduced a nonparametric
regression cross spectrum. In the present paper, we consider estimation of the
regression cross spectrum based on the periodogram, and frequency and time
domain estimation of possible phase-shifts. Figure 5 shows a typical example
where the nonparametric regression spectrum leads to interesting insights.
The bivariate series consists of the Southern Oscillation Index (figure 5a)
and recruitment of new fish in the central Pacific Ocean (figure 5b), ranging
from 1950 to 1987 over a period of n = 453 months (Shumway and Stoffer
2000). Both series have strong deterministic components that are related to
each other. The analysis in section 5.2 shows that there are two levels of
dependencies, namely between the long-term trends (El Nino effect) of both
series, and between the deterministic seasonal components respectively.

The paper is organized as follows. Basic definitions from Beran and Heiler
(2007) are summarized briefly in section 2. An estimator of the regression
spectrum, its modulus and the phase spectrum, based on the periodogram, is
discussed in section 3, together with asymptotic properties. The asymptotic
results imply in particular that phase estimates can be highly unreliable for
frequencies with low amplitude spectrum. In fact, examples in section 5
illustrate that estimation of time-delays from the raw plot of the (estimated)
regression phase spectrum is virtually impossible. The problem is resolved by
applying an algorithm that downweighs or eliminates unreliable frequencies.
For cases where the number of relevant frequencies is too small, an alternative
procedure for estimating time shifts between trend functions is presented in
section 4. Simulations and a data example in section 5 illustrate the methods.
Proofs are given in the appendix.



2 Definition of the regression cross covari-
ance and spectrum

Under suitable regularity assumptions on f, Beran and Heiler (2007) define
the regression (cross-)covariance function I'(u) = [Vrs(u)]ys=1
regression (cross-)correlation function R(u) = [prs(w)]rs=1

.....

-----

ea(t) =< fo(- 4 1), fo = / £t + ) Fu(Eydt

and
Yrs (1)

7(0)75(0)

where fol f(z)dx is assumed to be zero and f(14+u) = f(u) (0 < u < 1). Note
that here, trend components that cannot be extended periodically beyond

t = 1 are assumed to have been removed, or to be negligible. For ¢ € [0, 1]
and f. € L?[0,1], we have

prs(u) - (2)

£(t) = > a(j)e™™,

j=—o00

where a(j) = (a1(j), a2(j), - a,(j))T € C? are given by

1
() =< f,, 2" S / Fo(#)e 2t dy.
0

Hence, the regression spectrum at frequency j is defined as the sequence of
p x p matrices H(j) = [hvs(4)]rs=1..p (J € Z) with

The regression spectrum and covariance function are closely linked by

(e 9]

T(w)= 3 H(j)e

j==o0

and



Using polar representation of H(j),

ﬁTs(j) _ hrs(]) — ‘&T(j)as(j)’ eXp(Z@«s(j))

V 77“7“(0) ' '755(0) V 77“7“(0) ’ 755(0)

is called the standardized regression spectrum of f,

) )]
Y e ORI ARIAL
la,()as(5)]

TS, e )]

is the relative spectral modulus and ¢,.(7) the phase shift at frequency j. The
relative spectral modulus (or coherence) k,.5(j) defined above can assume any
number between 0 and 1, thus giving a relative measure of the contribution
of frequency 7 to the cross-covariance.

Remark 1 If two components f, and fs are shifted versions of each other,
1.€.
fs(t)=c- fr(t+A)
for some A, c € R, then
: Ja,(7)I?
krs(J) = 572
> lan(D)?
and the phase-shift
¢rs(j) = _QWAJ

1s a linear function of the shift parameter A.

3 Estimation in the spectral domain

3.1 The periodogram

In practice, the trend component f is usually unknown. Beran and Heiler
(2007) propose an estimator of the cross-spectrum based on a trend estimator
f obtained by wavelet thresholding. In this section, we consider a direct
estimator of the regression spectrum based on he periodogram. This has two

main advantages. First of all, the estimator is simple and does not require



nonparametric estimation of the trend function f. The second advantage is

that estimated values at different frequencies are asymptotically independent.
Given n observations of a multivariate vector Y (i) (: = 1,...,n), the

periodogram of Y (i) at frequency w; = 27j/n, w; € [—m, x|, is defined by

I(w,) = % (ZY(S) exp(—zsz)> (ZY(t) exp(zwjt)> |

Moreover, let
Aw;) = Z £(tr) exp(—iw;k)
and

B(w)) = Y _ e(k) exp(—iw;k),

respectively. Then

1(5) = sy = - Bley)B)

is the periodogram of the multivariate stationary series €(i) = (1(7), . .., €,(7))7.
The deterministic counterpart,

T

T6(s) = pins(3)] ey = A3 ATS)

will be called regression periodogram of f. It can be seen by straightforward
calculations that under model (1) with non-constant f the diagonal elements
of the periodogram I(w;) are of the order O(n) and are dominated by I¢(w;).
This is the essential reason why the regression spectrum can be estimated di-
rectly from the periodogram. Specific results on the asymptotic distribution
are given in the following two theorems.

Theorem 1 Denote by H = [hy], ., , the regression spectrum of f, and
suppose that €(i) are independent, identically zero mean random vectors with
non-singular covariance matrixz 3 = (er)lgmgp, and existing fourth mo-
ments. Then, for each pair (r,s), and Fourier frequencies 0 < wj, < --- <
wj, < m, (k€ N), the following holds.

(Z) nillrs(wj) - hrs(]) = Op(n71/2)7
(”) E [nilL‘S(wj)] - hrs(.]) = O(nil)a

>



\/ﬁ[n_ljrs(wjl) - hTS(jl)v s 7n_IITS(ij) - hTS(jk)]T

converges in distribution to a k-dimesional normal random vector with
mean 0 and covariances

lim nCOV(n_IITS(Wj),n_ljrs(wj')) =0,

n—~oo

or w; # wjr, and
j j

lim nvar(n ' I4(w;)) = 2 |as () + Zeslar(5)]%. (4)

Remark 2 More specifically, the proof of the theorem implies

neov(n ' Lg(w;),n  s(wy)) = O(n™?),
for w; # wj, and

nvar(n™ Is(wj) = Srrlas () + Bsslar (5)[* + R (5)
with ¥, denoting the (r,s)th entry of the matriz ¥ and
R, =n"'%,% +0(n?)

for 0 <w; <, and

Ry =n"" (2,35 + 5sX) + O(n™?)
for w; € {0,7}.

Remark 3 The periodogram I(w) contains a stochastic and a determinis-
tic part. This carries over to the asymptotic variance at frequency j. The
main component is given by a product of the variance of the stationary part
and the regression spectrum. The variance in theorem 1 is of order O(n™1)
so that n™'I,5(w;) is an asymptotically consistent estimator of hys(j). This
s in contrast to spectral estimation for stationary processes where the pe-
riodogram needs to be smoothed. Note also that, in contrast to the wavelet
estimator in Beran and Heiler (2007), the estimators f(w) = n~'I(w) at dif-
ferent frequencies are asymptotically independent. This facilitates estimation
of the coherence and phase spectrum (see results below).
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Theorem 1 can now be extended to linear error processes. Thus, assume

e(i)= > AQG)Z(i—j),
j=—o00
where A(j) = (Ax(j)),<; <, are p X p-matrices such that for all pairs (I, k),
Z | A (9)[15]2 < oo,
jez

and Z(7) are independent identically distributed with zero mean and non-
singular covariance matrix ¥. Also, denote by

the cross-spectral density of €(i). Theorem 1 can be generalized to

Theorem 2 Let €(i) be a linear process as defined above. Then, with the
same notation as in theorem 1,

(i) nillrs(wj) - hrs(]) = Op(nil/Q);
(”) E [n_ljrs(wj)] - hrs(]) = O(n_l);
(iii)
\/ﬁ[nilL“S(wjl) - hTS(jl)v B 7n71]7"3(wjk) - hTS(jk)]T

converges in distribution to a k-dimensional normal random variable
with mean zero,

lim ncov(n ' Lg(w;),n s(wi)) =0

n—oo
or w; # wir, and
j i

lim nvar(n_llrs(wj)) = 27rh€;w(wj)]as(j)]2 + 27rh6;ss(wj)\@7«(j)]2.

Remark 4 More specifically, the proof of the theorem implies

ncov(n’llm(wj),nilfrs(wj')) =0(n7?)



for wj # wj, and
nvar(n” Lg(w5)) = 2mherr(wj)las(9)? + 2mhess (w))|ar () + R (6)

with
R, = n_l(QW)QhE;TT(Wj)he;SS(Wj) + O(n_Q)

for 0 <w; <, and
R, = n71(27r)2 [Pesrr (W) hess(W)) + Pers(Wi) hesr (w;)]

for w; € {0,7}.

Remark 5 Recalling that h.s(j) = a.(j)as(j), we see that the asymptotic
variance of I,.s(w;) is equal to 2w times the product of the regression and the

stationary spectrum.

Remark 6 The result in theorem 2 can be generalized to pairs (r,s) and
(r',s'), 1 <r s, s" <p. For Fourier frequencies w;, wj we have

lim neov(n™ ' s(w;),n g (wy)) = O(n™?)

n—oo

for j # 7" and

lim neov(n™ ' Ls(w;), n " Lug(wjr)) = 2Thge (§) hear (W) 4270 () hesssr (W) +O(n71)

n—oo

forj =7
3.2 Estimation of modulus, phase spectrum and phase

shift

We now consider estimation of the modulus and the phase spectrum. As
a special case, the asymptotic results will be applied to the estimation of a
constant phase shift. Denote by

CTS(j) - %e{hﬂs(])}

and
Qrs (]) = _jm{hrs (])}



the real part and the imaginary part with reversed sign of h,s(j) = a,(j)as(j)
respectively. Thus,

hrs(j) = Crs(j) - qus(])

Similarily, we define for the cross spectral density of £(i) the quantities

Cs;rs(j) = me{h&ﬂ“s(j)}

and
QE;rs(j) = _jm{hiﬂ“s(j)}
The joint asymptotic distribution of é.4(7), G-s(j) follows directly from theo-

rem 1 and remark 6.

Lemma 1 Define the estimators

irsld) = 5 [Trslen) + Ty)

and
1

i) = == [olwp) = Tnl)

Then,
~ . . A~ . BRVA
Cn = \/ﬁ [Crs(]) - Crs(]): QTs(]) - %‘s(])]
converges in distribution to a bivariate normal zero mean random variable

with asymptotic covariance matriz M(j) = [M;;(j)]; ;_, , given by

Mi:1(j) = lim nvar(é.s(5))

n—oo

=m [hSS(j)hE;TT(Wj) + hrr(j)he;SS(wj)] +2m [CTS(j)Ce;rS(wj) - QTs(j)Qe;TS(wj)] )

M (j) = lim nvar(g.s(5))

n—oo

= 7 [ss () hegrr (W5) + iy () hesss(w5)] = 27 [ers () Cers(@5) = rs () desrs(w))]

and

M12(j) = lim ncov@%(ﬂadrs(ﬁ)

n—oo

=27 [Q’/‘s (j)CE;TS(wj) + Crs(j)qe;rs(wj)] ’



Based on lemma 1 we may now construct consistent estimators of the
spectral modulus and the phase shift. Using the notation

hrs(j) = Iiis(]) exp(igbrs(j))

estimators of the spectral modulus and phase shift respectively are defined
by

firs(7) = V3 (4) + 47 () (7)
and by )
5 (7)) = ar ws) = arctan _4rs\J .
¢T8(j) - gITS( J) t ( érs(])) (8)

The asymptotic distribution of &}, (j) and érs(j) is given in the following
corollaries.

Corollary 1 Let k},(j) > 0 and let the assumptions of theorem 2 hold, then
Fra(3) = #7s(5) = Op(n™"72)

uniformly for all j € Z. Furthermore,

V() — 5()] -5 N(0,02,.,(5)),
where

o2, () = DM 0) qi(j)fff?g))]f 2N Ml)

Moreover,
lim ncov(iy,(j), k7,(5") = O(n™?) (j # 7).

n—oo

Corollary 2 Let k7,(j) > 0 with ¢,s(j) = arghys(j) and ¢,s(j) as above.
Then,

¢Er8(j) — ¢rs(j) = Op(n_1/2)

uniformly for all j € Z. Furthermore,

Vit | drs() = rs(3)] 5 N(0,02,.7),

10



where

0,2. (]) _ QZS(])MH(]) + C?s(])MQ2(]) - chs(j)QTs(j)MIQ(j)
o GO

Moreover,

~

lim TLCO’U(&TS(]'), ¢rs(j/>) = O(n72) (] 7é ]/)

n—oo

Note that the variance of the phase spectrum is small whenever the mod-
ulus k() is large and vice versa. Accurate estimation of the phase spectrum
may therefore only be expected for frequencies 7 where the amplitude spec-
trum is large. Examples in section 5 illustrate that often most frequencies
have to be omitted in the estimation of phase shifts. For instance, in the
case of a simple shift between f,. and f, i.e.

fr(t) = cfs(t+ A)

and hence
¢rs(j) = _27TjA7
the following algorithm can be applied:

1. Calculate f(w;) = n'T(w;);
2. Define
I ={i mL0) > e /or, ()}
for a suitably chosen ¢ € R;

3. Estimate the phase shift by applying a local robust regression to the
points {(j, ¢rs(j)) : j € J*}, taking into account possible jumps modulo
2.

4 Lag Estimation in the time domain

In the previous sections we considered estimation of the regression cross
spectrum based on the periodogram and derived a method for estimating
lead-lag effects in the trend components. The proposed algorithm is based
on a set of significant common frequencies that can be used for estimating
the slope of the phase line. Problems with this algorithm are expected if

11



the set of common frequencies is too small to identify a slope in the phase
plot. This is the case, for instance, if the deterministic components have a
Fourier series representation with a small number of harmonic components.
Phase-shifts may then have to be identified by examining regression cross
correlations instead of the phase spectrum. In the case of a simple shift that
does not depend on frequency, the time delay between two trend components
can be estimated by identifying the maximum of the cross correlation.
Thus, for each pair (r,s), 1 <r,s < p, denote the set of local maxima by

M ={u € [-1,1] : 75,(u) = 0, 775 (u) < 0}

and
ul® = argmax{vy,s(u) : u € M}

s
where 7,4 is the cross autocorrelation defined in section 1. An estimator of
w** is then defined by

~max

am = argmax{F,s(u) : u € M}

where
M = {u e [-1,1]: 41,(u) = 0, 4/s(u) < 0}
and 7,4 is a suitable consistent estimator of 7,.(u).
More specifically, here 7, will be defined using a wavelet estimator of
the trend function f € R? in the definition of v,s. Thus, given a father and
mother wavelet ¢(-), () € L*(R) and the corresponding wavelet basis

dui(x) = 256(2 — I)

and , ‘
Uin(x) = 259(2x — k), k,jEZ,
we define
P)/rs / fr t + u )
with
frlt) =" af7 +ZZJM%M> (10)
k j>l
where
W (r 1
& =~ dus(t) i (1), (11)
u=1



and

B = S sty (), (12)
u=1

for some .J,, — oo, and w(r) = 1{|Bj(rk)| > \/var(ﬁ(r)))\j}. For the choice of
the threshold A; see e.g. Br1ll1nger (1994, 1996) and Donoho and Johnston
(1995), among others. Denote by al”) = {O‘sz : Lk € Z, 041(2 # 0} and
B = {Bj(rk) s3> LkeZ ﬂ # 0} (r =1,...,p) the coefficients in the
wavelet representation of the components of f, i.e.

Z&lk@k +ZZ ¢Jk (13)

3>l

As in Brillinger (1995), we assume that for each r, the number of non-zero
coefficients a and ﬁ(r) is finite. Let r,s € {1,2,...,p} be fixed. Defining

0, = (a(r)’ﬁ(r)’ a(s)’ﬁ(S))

we may then write
P)/rs(u) = P)/rs(ua 90)

where 7, depends continuously on 6,,
M = M(QO) = {U S [_17 1] : ’77,“5(u7 00) = 07 71/“,5(”7 00) < O}

and
upe = argmax{ |y, (u, 6)] - u € M(6)}. (14)

rs

The estimator of u;.** is then defined by

~max __
= argmax{

Yos(,0)| - w € M(@)}. (15)

To ensure existence, uniqueness and consistency of estimator the following
assumptions will be used.

(A1) ¢, have compact support and are of finite variation;

(A2) f. (r=1,2,...,p) are as defined in section 1 and of bounded variation;

13



(A3) The cumulants

Conr (U ooy Upp—1) = cum e, (i +uy), ..o, €0( + Um—1),€-(2) }

of €,(i) exist, are absolutely summable, i.e.
Conr = Z |Comer (U, ooy Upp—1) | < 00
Moreover, ¢, has covariances 7., (k) such that
k=—o00
(A4) dim(0,) < oo;
(A5) For z in a small neighborhood of 0,

Z Cpz™ < oo
m

(A6) As n — oo, we have J, — oo, n2-7/? - oo, 2j/2)\j = o(n1/2) (j =
LI+1,..,J,) and

Jn
S22 exp(~2X2/(1 + 1)) = o(1)
>l
for some n > 0;
(A7) 7ys(u, 8) is twice continously differentiable with respect to u and 6;

max

(A8) |v,s(u,bp)| has a unique maximum at ;"

Asymptotic properties of u,:** are given in the following theorem.
Theorem 3 Under assumptions (A1)-(A8) we have, for 1 <r, s <p,

{maz _ g mar _ Op(n—1/2)

and ) .
V(a7 — ™) — N (0, Ty ),
with
1 0 ro (0
() = Yo maz o) [ =~ maz '
Tu, ( 0) (%’s(uga“”,eo)y (aeﬁyrs(urs 0)) 'U(ZT’( ) (aeﬁyrs(urs 0))

14



5 Examples

5.1 Simulations

Consider model (1) with f;(z) a piecewise constant function as displayed
in figure lc, fo(x) = fi(x + A) with A = .0625, €(i), e2(¢) independent
and identically distributed N(0,02), 02 = 9 and corr(e; (i), e2(j)) = 0. A
simulated sample path of Y (i) = (V1,Y2)? (i = 1,2,...,2048) with Y;(i) =
fi(t:) +¢€;(7) (j = 1,2) is displayed in figures la and b. The regression
amplitude and phase spectrum for these trend components are shown in
figure le and f. Estimates of the regression amplitude and phase spectrum
obtained from n~'T are shown in figures 1g and h respectively. Figures 1g,h
illustrate that the common frequencies can be identified quite accurately in
the amplitude spectrum, whereas the phase spectrum is heavily disturbed by
the random noise components €, €5. This is expected in view of corollary 1
and 2. It is therefore essential to use important common frequencies only,
when estimating the regression phase spectrum.

Figure 2a through d display results of a small simulation study where
the simulated and true variance of the amplitude spectrum according to
(9) are compared for different sample sizes. At each frequency N =200
simulations are carried out and the amplitude spectrum was estimated. The
empirical standard deviations multiplied by /n are plotted in figures 2a
through d (black line) together with their asymptotic counterparts (red line).
Convergence to the asymptotic standard deviation is apparently faster for
frequencies where the amplitude spectrum is large. These are exactly that
are used for estimating time shifts.

n 512 1024 2048 4096
true value | 0.0625 | 0.0625 | 0.0625 0.0625
median 0.06012 | 0.06073 | 0.06322 | 0.06300
mean 0.05856 | 0.05838 | 0.06306 | 0.06262
std.dev. 0.03816 | 0.02275 | 0.00918 | 0.005528

Table 1: Summary statistics of lag estimates. For each sample size, 200
simulations were carried out.

Figure 3a shows the amplitude spectrum and the phase estimate for one
simulated series. Frequencies where the estimated amplitude spectrum is

15



above four times its standard deviation are highlighted by black squares in
figures 3a and b. The resulting estimated phase line in figure 3b is obtained by
linear regression using these points only, taking into account jumps modulo
2m. The red lines indicate 99% confidence intervals for the regression slope.
The regression line in figure 3b, with slope around 0.39, is obviously very
similar to the true phase spectrum (figure 1f) with slope 0.30. For a more
systematic illustration of finite sample properties of A, a small simulation
study was carried out, with sample sizes n = 512,1024, 2048 and n = 4096.
In each case we ran 200 simulations. Boxplots of A (figure 4) based on 200
simulations (for each n) illustrate that estimation of A is very difficult for
n = 512. The accuracy of A improves fast, however, with increasing sample
size. A detailed summary of this simulation study is given in table 1.
Finally, we examine in how far confidence intervals for A, based on
weighted linear regression of (j, @) (with weights and residual variances ob-
tained from corollary 2) have the desired coverage probability. For each
simulated series, the six frequencies with largest cross-spectral modulus were
used in the regression, and 95%-confidence intervals were calculated using es-
timated variances of gg at these frequencies. The coverage percentages, based
on 1000 simulations, turned out to be close the desired values, namely 93.9%,
93.5%, 94.8% and 94.8% for n = 512, 1024, 2048 and 4096 respectively.

5.2 El Nino and recruitment of new fish

Figures 5a and b display the components of the bivariate time series con-
sisting of the Southern Oscillation Index (SOI) and recruitment (amount)
of new fish in the central Pacific Ocean (figures 5a and b), ranging from
1950 to 1987 over a period of n = 453 months. The SOI relates changes
in air pressure to the temperature of the ocean at the surface. The data
set can be found in Shumway and Stoffer (2000). Both time series exhibit
cyclic components. The dominating periodic component in the SOI has a
period of 12 months. The second series oscillates with a lower frequency,
but a 12-months cycle is visible as well, at least in parts of the series. This
is most obvious when looking at the amplitude of the estimated regression
cross spectrum in figure 5¢ which shows a dominating frequency at j = 38
indicating a period of 453/38 ~ 12 months. In addition, a certain number of
moderate contributions are present at low frequencies. The slight influence
of low frequency components is also visible directly in the SOI series, in that
the mean and variability seem to be changing slowly. This feature is often

16



refered to in the literature as the El Nino effect. We now proceed as in the
simulated example. The estimated phase line in figure 5f is based on frequen-
cies where the amplitude spectrum is large. The corresponding points are
marked by black squares in figure 5e,f. Focussing on these points only, one
can detect a linear structure. We may thus assume that there is a frequency-
independent shift A. Linear regression yields a slope estimate of about 0.1,
and thus A = 0.1/(27) ~ 0.016 which corresponds to 453 - 0.1/(27) ~ 7.2
months. This indicates that the SOI signal leads the recruitment of new fish
by about seven to eight months.

However, in view of figure 5c, better insight may be gained by separating
high and low frequency components in the second series. We therefore carry
out the analysis at separate levels of resolution. Figures 6a and b show trend
estimates f; (SOI) and f; (fish recruitment) obtained by wavelet threshold-
ing with s20-wavelets. The second trend function is decomposed further by
separating the three coarsest resolution levels (figure 6¢) from the fourth
level (figure 6d). The fourth level represents the 12-month cycle, whereas
the coarser parts (levels one to three, D4-S6) represent four to five year cy-
cles that may be associated with corresponding cycles in the warming of the
Pacific Ocean. The estimated amplitude cross spectrum with significant fre-
quencies marked by black squares are displayed in figure 6e and the resulting
phase line with corresponding confidence intervals is presented in figure 6f.
One notices again the distinct linear structure over this particular set of fre-
quencies. The slope of this line is given by 0.17 indicating a lead of SOI of
453 -0.17/(27) ~ 12 months.

Because annual seasonality is the only common periodic oscillation be-
tween SOI and the component D3 (figure 6g), time delays between these two
series are estimated in the time domain. The regression correlations between
the SOI trend f; and the component D3 is displayed in figure 6h. The annual
seasonality of the number of fish turns out to lag behind the SOI by about one
month, indicating that an increased water temperature induces an increased
number of fish about one month later. This effect interferes with the El Nino
effect which has periods of abnormal warming of the sea every four to five
years. These results confirm similar findings on the interplay between water
temperature and fish recruitment by a number of authors such as Murawski
(1993), Victor et al. (2001), Shumway and Stoffer (2000), Rosen and Stoffer
(2007), among others.
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6 Final remarks

Analyzing multivariate dependence using the nonparametric regression spec-
trum is particularily useful when the observed series have strong deterministic
components. In this article we defined a simple estimator of the regression
spectrum based on the periodogram. In contrast to the method in Beran
and Heiler (2007) no trend estimation is required. Also, in contrast to the
stationary case, no smoothing of the periodogram is needed. In addition,
lag estimation in the time domain was considered in order to be able to deal
with cases where dependence between two series occurs for a small number
of frequencies only. The regression spectrum approach can be particular-
ily powerful when used in combination with multiresolution analysis. Often,
the strength, type and interpretation of dependencies differ at different levels.
The SOI/fish recruitment data is a typical example of multilevel dependence.
In future research, more formal methods should be developed for combining
regression spectrum estimation and wavelet decomposition.
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8 Appendix: Proofs

Proof 1 (of theorem 1) We have h,s(j) = a,(j)as(j), and

%AT(%)AS(%) — hys(j) = O(n7). (16)

Then

%]rs(wj) - hrs(])

= i[Br(wg')z‘ls(%') + Ay (w)) Ba(wy)] + Op (1) + O(n™")

n2

= 0,(n"1?).
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For the second part consider

B L)) = (A A05) + (B () Bl

= (hG) + O ) + 1 B(Ly(w).

Results from traditional spectral analysis show that E(I.,s(w;)) converges to
27 he,s(wj) uniformly for all frequencies w; so that 2) follows.
Note furthermore that

% () Balwy) + Br(wi)as(3) ) = alj) +i8()). (17)

where

- % > cos(wit)ar()es(t) + as (e (1)), (18)
- % Z sin(w;t)[a,(j)es(t) — as(f)er(t)]. (19)

Consider now the variance of the adjusted periodogram (the result for covari-
ances follows similarly):

var (™' I(wy)) = n~ Ella(j) +i6(5)|’]
+ cov(n s (w)), a(5) +iB(j))
+ cov(a(y )+zﬁ( )y s (w;))
+ var (n” eT’S(WJ))

Using standard results from Brockwell and Davis (p.429) yields

Y + O(n™h); 0<wj=wy <m,
cov (Ieps(w;), Leps(wir)) = ZWZSIS + 3,8 + O(n™h); wj =wy €{0,7},
O(n™); wj # Wy,

where the remainders contain the fourth order cumulants between €,(i) and
€s(1). The covariances in (21) and (22) consist of terms of the form

cov (Ieps(wj), Br(wj)) Z exp(—iw;j(t —u+v))E(e(t)es(u)e (v))

tuv

_ B(e(1)%&(1)) iexp(iwjt) _
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where E(e,(t)%¢s(t)) is independent of t. Simple considerations show that the
2p-dimensional real valued random vector

w:) = n-1/2 > €(t) cos(w;t)
ol ( > €(t) sin(w;t) ) (24)

18 asymptotically normal with mean O and covariance matrix

B Unle)) =5 (5 5 )

Furthermore, for all Fourier frequencies w; # wjr,
E(Uy(w))Un(wy)") = 0. (25)
Therefore,
n~ E(B,(wj)Bs(w)))
=n"'cov (Z er(t)(cos(w;t) — isin(w;t)), Z €s(t)(cos(w;t) — isin(w;t)))
1
= _(Ers + EST) = Yrs.
2
Similarly, for all pairs (r,s), 1 <r # s <p,

var (n""?B,(w;)) = 8., and
cov (B, (w;), Bs(wj)) = cov(Bs(w;), By(w;)) = 0.

Noting that
> cos?uyt) = 2,
the variance in (20) follows f;;n
7a(j) = var(a(5))
1S RS )P + e )
1+tmcov<er<t>, (1)) + o (7)as()cov es(8), & (1)
= 5 (Cmlas()F + Zsslar()?) + ZpeRe{as(s)ar (7))
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Similarily,

75(7) = var (6(j)) = %(er!as(j)\Q + Bglar (7)) — BrsMe{as(5)ar(5)}
and

Ta,8(4) := cov(a(j), B(j))

n

= % Z cos(w;t) sin(w;t) cov(as(j)e-(t) + ar(f)es(t), ar(j)es(t) — as(j)e(t)),

where the covariance is independent of t. Using the orthogonality relations
for trigonometric functions we get that 7,3(j) = 0.
For the asymptotic distribution, write

V(- I(5) = hea(§) = 0(3) + iB0) + Opln ™).

According to (24) the asymptotic distribution of the real and the imaginary
part are both univariate normal. Moreover, a(j) and B(j) are uncorrelated
and hence asymptotically independent. Hence,

(5 ) =2 (o[ )

and a(j)+16(j) converges in distribution to a complex valued normal random
variable with mean 0 and variance

Tarig(l) = 720) + 7507) = Eprlas (1) + Bslar () (26)

This implies

\/ﬁ(%[m(%) = Ps()) 5 Nel0, Sl () + Saslar ()P (27)

The result for finite samples (wj,, . ..,w;,) follows as usually by applying the
Cramer-Wold device.

Proof 2 (of theorem 2)
The following lemma summarizes asymptotic results from Hannan (1970).
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Lemma 2 Assume that the sequence {€(i)}, i = 1,...,n, is of the form

e(i)= > A()Z(i—j), (28)

j=—o00

where A(j) = (Aik(J)) 1< p<p are p X p-matrices such that for all pairs (1, k),

> Aw()I1]2 < oo,

JEZ

and the sequence Z(1) is independent and identically distributed with mean 0
and non-singular covariance matriz 3.

Then,
o = (Y men) ) - (Bl )

with gy(w;) = (gi(wj), .., gp(w;))*, 1 € {1,2}, converges in distribution to
a 2p-dimensional random wvaritable with mean 0 and asymptotic covariance
matrix

(S E),

where he(w;) = 5(C(w;)—iQ(w;)) with C(w;) = [cers(Wi)];<, o<, and Qw)) =
[Gesrs(w))] <, s<p 18 the spectral density matriz of €(i) at Fourier frequency
wj = 2mj/n. Furthermore g(w;) and g(w;) are asymptotically independent

for w; # wjr.

We now turn to the proof of theorem 2. The first two parts of the proof are
similar to those of theorem 1. For the asymptotic distribution and variance
consider equations (20)-(23). Refer again to Brockwell and Davis (p. 431)

to get

(zﬁ)Qhe;rr(wj)he;ss(wj) + O(n—1/2);
0< wj =wjy <,
cov ([G;rs(wj>’ I€§7“S(wj')) = (QW)Q(he;rr(wj)he;ss(wj) + he;rs(wj)he;sr(wj))
+ (nfl/Q); w] — wj/ E {0,71’}7
O(n_l); w; #wj/-



Using the results of lemma 2,

var (=B, () = 2rhe(wy) (1< 7 < p), (29)

N

and use the notation
he;rr(wj) = Ce;TS(Wj) - iQe;TS(Wj)'

Then,

1 1
CO’U(%BT(W]‘), %Bs(wj))
= cov(g1r(w)) — igar(w;)), g1s(w;) + igas(w;))
= Cars(Wj) + ieirs(W)) — iGers(w)) — Cers(wy) = 0. (30)

Due to lemma 2 and equations (29) and (30),

a(j) +iB(j) 5 N0, (2] as()Pher(@;) + 2]ar(7)Phess (@5))),

where a(j) + i6(j) is defined in (17). The remaining parts (21) and (22)
consist of terms of the form

cov (Lers(w;), Br(wj)) = Y exp(—iw;(t —u+v)) E(e,(t)es(u)er(v)),

t,u,v

with

E(er(t)es(u)er(v))

p

= Z E(Zm(l)Zm(l)er(l)) Z A’I‘,’/‘l (j)As,m(j +u— t)Ar,rs(j +v— t),

r1,r2,r3=1

where A,., () is the (r,r1)th entry of the matriz A(j) and E(Z,,(t)Z,,(t)Z,,(t))
is the third order cumulant between the components Z,,(t), Z.,(t) and Z,,(t)
of Z(t). Because €(i) is of the form (28),

|cov (Leps(wy), Br(wy))] < Z |E(er(t)es(u)e(v)| < oo,

t,u,v

so that T,(w;) = O(n™1).
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Proof 3 (of Theorem 3)

1. Results of Brillinger (1996) prove wavelet thresholding estimators to
be consistent of order O,(n~'/?). The regression cross covariance is a
continuous function of 8, the vector of wavelet coefficient of f, and fs,

so that the estimator 4" is a continuous function of 8. Consistency

ofé then implies consistency of u;.**

2. Due to (14) and (15),
A (@ 0) =0 and A (w7, 60y) = 0.
Applying the mean value theorem gives

Vs (75" 0) = g (i, 0) = 7 (s, ) (6,5 — wS™),

where @ lies on a line connecting 4"** and u):**. Therefore,

~max maxr __ ,74'8 (/U/T’msax7 6)
Upg  —Upg = = — .
Vs (Trs, 6)
Furthermore,
. o r
Trs (U3, 0) =Yg (15", 60) + <_7£5(U7§”v 0) ) (6 = 6o)
T 80 9:5
for suitably chosen 9~, and
N 1 a , )T .
U — i = —————— | =, (w0 0 —0,).
71/!5 (&rs: 0) (6 ( ) =0 ( 0)

~max

Due to consistency of 6 and ure,

Y (T, 0) = A2 (W™ 0g) + (Y (Tirs, 0) — 1y (ume®, 0))
(2 (w0 — A (ulT 6))
= A0 (U, ) + Op(n~Y2),

and

8 max a

/ _ / max —1/2
2 rs (u’/‘s ) ) = a5 Vrs (urs ) ‘9) +0 (TL )
00 o—g 00 =6 P
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Then,

1 d T
smax _, mar I maz g 6—6 1 O —1/2 )
i — e = e (S ) ) (0 )1+ 0,7
The central limit theorem for /n(0 —0y) implies that \/n(a7me — ymaer)
18 asymptotically normal with mean 0 and covariance

(Bt 0),_y,) var 0) (Gt oszee. )]y, )

var (urs ) = /y;ls(u%ax’QO)Q
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Figure 1: Simulated series of length n = 2048 (figures la,b), as defined in
section 5.1, trend components (figures 1c¢,d), and amplitude and phase of
the true regression spectrum (figures le,f). Estimates of the amplitude and
phase spectrum based on the periodogram are given figures 1g and h.
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Figure 2: Simulated and theoretical (red line) standard deviations for the am-
plitude spectrum for various sample sizes n = 512, 1024, 2048 and n = 4096.
For each sample size, 200 simulations were carried out at each individual
frequency.
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Figure 3: Estimates of the amplitude and phase spectrum based on the
periodogram for frequencies 7 = 1,...,50. Important common frequencies
are marked by black squares. The estimated phase line (solid line) is based
on these frequencies. The red lines represent 99% confidence intervals.
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Figure 5: Monthly SOI and numbers of new fish (figures 5a,b) for the period
1950-1987, estimated amplitude of cross-spectrum (figures 5¢,d), cross am-
plitude spectrum (figure 5e) with line representing three times the standard
deviation and phase spectrum (figure 5f). Important frequencies are marked
in both plots by black squares. Estimation of the phase line is based on these
frequencies. The red lines in figure 5f represent 99% confidence intervals for
the regression line.
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Figure 6: Wavelet estimates of trend components of SOI and the recruitment
of new fish are displayed in figure 6a and figure 6b. The series in 6b is
then decomposed into a long-term component (figure 6¢) given by the three
coarsest levels of wavelet decomposition and a 12-months cycle corresponding
to the fourth resolution level (figure 6d). The amplitude of cross-spectrum
of D4-56 with SOI is represented in figure 6e with the solid line given by
three times the standard deviation. Important frequencies are again marked
by black squares. The estimated phase line in figure 6f is based on these
frequencies. The level D3 essentially corresponds to a 12-month cycle which
is represented by a dominating frequency at j = 38 (figure 6e). Estimation of
the lag by periodogram analysis is inappropriate based on a single frequency.
Therefore, the cross-correlations of the D3-component is displayed in figure
6f.

31



