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Abstract

In this paper we develop a model for the conditional inflated multivariate density

of integer count variables with domain Z
n. Our modelling framework is based

on a copula approach and can be used for a broad set of applications where the

primary characteristics of the data are: (i) discrete domain, (ii) the tendency to

cluster at certain outcome values and (iii) contemporaneous dependence. These

kind of properties can be found for high or ultra-high frequent data describing

the trading process on financial markets. We present a straightforward method

of sampling from such an inflated multivariate density through the application

of an Independence Metropolis-Hastings sampling algorithm.

We demonstrate the power of our approach by modelling the conditional bivari-

ate density of bid and ask quote changes in a high frequency setup. We show how

to derive the implied conditional discrete density of the bid-ask spread, taking

quote clusterings (at multiples of 5 ticks) into account.

JEL classification: G10, F30, C30

Keywords: Multivariate Discrete Distributions, Conditional Inflation, Copula

Functions, Truncations, Metropolized-Independence Sampler



1 Introduction

In this paper a model for the conditional multivariate density of integer count vari-

ables with domain Z
n is developed. The model specification is suited to cope with data

obeying the following primary characteristics: first, their discrete domain, second, the

tendency to cluster at certain outcome values and third, their contemporaneous de-

pendence. We show that the model can be generalized by accounting for additional

characteristics such as truncation regions and error correction mechanisms.

Although econometric modelling of univariate processes with discrete supports has

been studied extensively, the multivariate counterpart is still underdeveloped. Most of

the existing approaches (e.g. Kocherlakota & Kocherlakota (1992), Johnson, Kotz &

Balakrishnan (1997)) concentrate on the parametric modelling of multivariate discrete

distributions with a nonnegative domain and a nonnegative contemporaneous depen-

dency only. Alternatively, Cameron, Li, Trivedi & Zimmer (2004) exploit the concept

of copula functions to derive a more flexible form of the bivariate distribution for

non-negative count variables that allows for both a positive or a negative dependence

between the discrete random variables.

In the univariate framework, inflated models, and especially the zero-inflated ones

(Mullahy (1986)) gained a large amount of attention in several academic disciplines

(e.g. Lambert (1986), Cheung (2002), Jang (2005)). However, there are only a few

contributions referring to their zero-inflated multivariate counterparts (Dixon & Coles

(1997), Li, Lu, Park, Kim & Peterson (1999), Wahlin (2001), Wang, Lee, Yau & Car-

rivick (2003)). A more general treatment of multivariate inflation models has been

proposed by Karlis & Ntzoufras (2003, 2005), who suggest an bivariate Poisson model

where the diagonal points of the probability table are inflated.

The inflated multivariate integer count hurdle model (MICH ) proposed here can be

viewed as an inflated version of a model being a combination of the copula approach

by Cameron et al. (2004) and the Integer Count Hurdle (ICH) model of Liesenfeld,

Nolte & Pohlmeier (2006) which allows for the dynamic specification of univariate

conditional distributions with discrete domain Z. In the inflated MICH model specific

outcomes on Z
n are allowed to be inflated unconditionally as well as conditionally

based on historical information.

Quite a number of applications of the inflated MICH model are conceivable. Most

apparent are applications to high frequent financial data, which are characterized by a

set of contemporaneously correlated trade marks, many of them are discrete in nature

at high or ultra high frequencies and tend to cluster at certain round values. In em-

pirical studies on financial market microstructure, characteristics of the multivariate

time-varying conditional densities (moments, ranges, quantiles, etc.) are crucial. For

instance, with our model we are able to derive multivariate conditional volatility or
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liquidity measures, such as the bid-ask spread and related figures.

The discreteness and the clustering of price and quote changes plays an important role

for financial theory and applications. Harris (1991), Christie & Schultz (1994) and

Christie, Harris & Schultz (1994) investigate clustering of bid and ask quote prices

at round tick sizes, which can be attributed to investor and market maker trading

preferences. Huang & Stoll (1994), Crack & Ledoit (1996) and Szpiro (1998) among

others, show that discrete price changes and price clustering at round ticks imply a

ray shaped pattern in the scatter plot of returns against one period lagged returns,

which is referred to as the “compass rose”. The compass rose can be found for many

financial instruments on different markets, such as futures (Lee, Gleason & Mathur

(1999)), exchange rates (Gleason, Lee & Mathur (2000), Szpiro (1998) ) and stocks

(Crack & Ledoit (1996), Antoniou & Vorlow (2005)).

It has several implications for the dynamics of the data generating process of asset

returns which may render naively applied statistical tests such as the Brock, Dechert,

Scheinkman & LeBaron (1996) test (Krämer & Runde (1997)), random walk tests or

simple autocorrelation estimates (Fang (2002)), invalid. Moreover, GARCH models

estimated for such data may be misspecified (Amilon (2003)) and the assumption of a

geometric Brownian Motion as the true price process can at least be questioned, which

has consequences, for instance, for option pricing (Ball (1988)) and the discrimina-

tion between the market microstructure noise and the underlying price process in the

realized volatility literature (Andersen, Bollerslev, Diebold & Labys (1999), Oomen

(2005), Hansen & Lunde (2006)). Furthermore, Vorlow (2004) analyzes to which ex-

tent such patterns can be exploited for forecasting issues. Our approach contributes to

this literature since the inflated MICH is able to pick up complex nonlinear structure

such as the compass rose in a multivariate setting.

In this paper, we demonstrate the power of our approach by modelling the bivariate

time series process of bid and ask quote changes sampled a high frequency. We show

how to derive the implied conditional discrete density of the bid-ask spread, which

itself or whose characteristics (e.g. quantiles) can be considered as trivial proxies of

market liquidity. The empirical application is based on bid and ask quote change data

for the Citicorp stock, traded at the NYSE over the period from 20th February 2001

to 23rd February 2001. The bivariate histogram of these data is depicted in Figure

1. The distinct features of these times series are: Firstly, bid and ask quote changes

are discrete because they are multiples of the tick size. Secondly, they tend to cluster

at distinct points, since the bid-ask spread tends to cluster at multiples of 5 ticks.

Thirdly, quotes changes reveal a strong instantaneous dependence, primarily because

of the potential existence of a long run equilibrium relationship between the bid and

ask quote processes. The fact that the bid-ask spread has to be positive additionally

implies a certain co-movement between the quote changes, as well. The positivity

constraint on the bid-ask spread, furthermore, implies a dynamic truncation region on

2



the conditional density of the bid and ask quote changes. In our model, we account

for this truncation region by using a truncated copula so that we can avoid imposing

restrictions on the marginal processes.

Figure 1: Histogram of bid and ask quote changes in number of ticks.

To evaluate the goodness-of-fit of our model, we propose to simulate the conditional

bivariate density of the bid and ask quote process, with the help of a Metropolized In-

dependence Sampling (MIS) algortihm of Hastings (1970). This approach allows us to

inspect both the dynamics and the bivariate density specification in a straightforward

way.

The paper is organized as follows. In Section 2 we describe the general modelling

framework. Section 3 contains the descriptive analysis of the bid and ask change

processes. In Section 4, we discuss specification issues and present the estimation

results, whereas Section 5 contains the description of the MIS algorithm and the model

evaluation. Section 6 concludes.

2 General Modelling Framework

Let Yt = (Y1t, . . . , Ynt)
′ ∈ Z

n, with t = 1, . . . , T , denote the multivariate process of

n integer count variables and let Ft−1 denote the associated filtration at time t − 1.

Moreover, let F (y1t, . . . , ynt|Ft−1) denote the conditional cumulative density function

of Yt and f(y1t, . . . , ynt|Ft−1) its conditional density. Furthermore, let gh ≡ gh(Ft−1)

denote mappings from Z
n into a subset Bh ⊂ R, where h = 1, . . . , H , i.e. gh : Z

n → Bh

and assume that Bh ∩Bh′ = ∅ for h 6= h′. Thus, the functions gh(Ft−1) define distinct

events at time t − 1 on which we can condition at time t.
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We assume, given condition gh(Ft−1) ∈ Bh, that certain outcomes (Yt|gh(Ft−1) ∈
Bh) are inflated. With Ah ≡ Ah|gh(Ft−1) ∈ Bh ⊂ Z

n we denote the sets of these

points, which should be inflated and we specify the conditional density of Yt given the

information up to Ft−1 as:

f(y1t, . . . , ynt|Ft−1) =
H
∑

h=1

∑

(i1,...,in)∈Ah

ωi1,...,in|Bh
· 1l{Y1t = i1, ..., Ynt = in} · 1l{gh(Ft−1) ∈ Bh}

+



1 −
H
∑

h=1

∑

(i1,...,in)∈Ah

ωi1,...,in|Bh
· 1l{gh(Ft−1) ∈ Bh}



 · f ∗(y1t, . . . , ynt|Ft−1)

(1)

where ωi1,...,in|Bh
∈ (0, 1), with h = 1, . . . , H , represents the inflation probability of a

certain point (i1, ..., in) contained in Ah, given g(Ft−1) ∈ Bh, and f ∗(y1t, . . . , ynt|Ft−1)

denotes a discrete multivariate density that is modelled with a multivariate integer

count hurdle (MICH) specification as presented below. The multivariate density in

equation (1) is generated by a mixture distribution consisting of a multivariate degen-

erate distribution and the multivariate density f ∗(y1t, . . . , ynt|Ft−1).

In order to illustrate the setup of the model, consider the following example which

we will elaborate on in the empirical application below. Assume, that in a bivariate

setting, Y1t and Y2t denote bid and ask quote changes of a given stock. gh(Ft−1) ∈ Bh

could then denote the conditioning events of 5-tick-wide or 10-tick-wide bid-ask spreads

at time t − 1. Conditional on these events, the outcomes Ah = {(0, 0), (−5, 0), (0, 5)}
of the bivariate (Y1t, Y2t) process appear relatively more frequent than other outcomes.

Thus, the probabilities referring to the set of outcomes Ah should be appropriately

inflated at time t.

As a benchmark specification for the joint density f ∗(y1t, . . . , ynt|Ft−1) we propose

the standard MICH model, where each of the marginal processes, Ykt, k = 1, . . . , n

is assumed to follow a dynamic integer count hurdle (ICH) process as described in

Liesenfeld et al. (2006) whereas the dependency between the marginals is modelled with

a copula function, as in Cameron et al. (2004). Thus, in opposite to most of the existing

approaches for discrete distributions modelling (e.g. Kocherlakota & Kocherlakota

(1992), Johnson et al. (1997)), we neither restrict the domain of marginal densities to

be nonnegative, nor we preclude negative contemporaneous dependence between them.

In the following, we briefly describe the theoretical framework behind the standard

MICH approach, where we first present the ICH model for the marginal densities.

Second, we describe how to account for the contemporaneous dependence between the

marginal processes with the help of a copula function.
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2.1 Marginal Processes

The ICH model, is based on the decomposition of the process of discrete integer valued

variables into two components, i.e., a process indicating whether the integer variable is

negative, equal to zero or positive (the direction process) and a process for the absolute

value of the discrete variable irrespective of its sign (the size process). We present here

the simplest form of the ICH model and we refer to Liesenfeld et al. (2006) for a more

elaborate presentation.

Let πk
jt, j ∈ {−1, 0, 1} denote the conditional probabilities of respectively: a negative

P(Ykt < 0|Ft−1), a zero P(Ykt = 0|Ft−1) or a positive P(Ykt > 0|Ft−1) value of the

integer variable Ykt, k = 1, . . . , n, at time t. The conditional density of Ykt is then

specified as

f(ykt|Ft−1) = πk
−1t

1l {Ykt<0} · πk
0t

1l {Ykt=0} · πk
1t

1l {Ykt>0} · f|Ykt|(|ykt| |Ykt 6= 0,Ft−1)
(1−1l {Ykt=0}),

where f|Ykt|(|ykt| |Ykt 6= 0,Ft−1) denotes the conditional density of the size process with

support N \ {0}. To get a parsimoniously specified model, we adopt the simplification

of Liesenfeld et al. (2006), that the conditional density of an absolute value of a vari-

able stems from the same distribution irrespective of whether the variable is positive

or negative.

The conditional probabilities of the direction process are modelled with the autoregres-

sive conditional multinomial model (ACM) of Russell & Engle (2002) using a logistic

link function given by

πk
jt =

exp(Λk
jt)

∑1
j=−1 exp(Λk

jt)
(2)

where Λk
0t = 0, ∀t is the normalizing constraint. The resulting vector of log-odds ratios

Λk
t ≡ (Λk

−1t, Λ
k
1t)

′ = (ln[πk
−1t/π

k
0t], ln[πk

1t/π
k
0t])

′ is specified as a multivariate ARMA(1,1)-

type model:

Λk
t = G1Z

k
t−1 + λk

t with Λk
t = µ + B1Λ

k
t−1 + A1ξ

k
t−1. (3)

The vector Zk
t−1 contains further explanatory variables and G1 denotes the correspond-

ing coefficient matrix, µ denotes the vector of constants, and B1 and A1 denote 2 × 2

coefficient matrices. In the empirical application, we put the following symmetry and

diagonality restrictions b
(1)
11 = b

(1)
22 and b

(1)
12 = b

(1)
21 = 0 on the B1 matrix to obtain a par-

simonious model specification. The innovation vector of the ARMA model is specified

as a martingale difference sequence in the following way:

ξk
t ≡ (ξk

−1t, ξ
k
1t)

′, where ξk
jt ≡

xk
jt − πk

jt
√

πk
jt(1 − πk

jt)
, j ∈ {−1, 1}, (4)
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and

xk
t ≡ (xk

−1t, x
k
1t)

′ =







(1, 0)′ if Ykt < 0

(0, 0)′ if Ykt = 0

(0, 1)′ if Ykt > 0,

(5)

denotes the state vector, whether Ykt decreases, stays equal or increases at time t.

Thus, ξk
t represents the standardized state vector xk

t .

The conditional density of the size process is modelled with an at-zero-truncated Neg-

ative Binomial (NegBin) distribution:

f|Ykt|(|ykt| |Ykt 6= 0,Ft−1) ≡
Γ(κ + |ykt|)

Γ(κ)Γ(|ykt| + 1)

(

[κ + ωk
t

κ

]κ

− 1

)−1(

ωk
t

ωk
t + κ

)|ykt|

, (6)

where |ykt| ∈ N \ {0}, κ > 0 denotes the dispersion parameter. The scaling parameter

ωk
t is parameterized using the exponential link function with a generalized autore-

gressive moving average model (GLARMA(1,1)) of Shephard (1995) in the following

way:

ln ωk
t = δD̃t + λ̃k

t with λ̃k
t = µ̃ + Sk(ν, τ, K) + β1λ̃

k
t−1 + α1ξ̃

k
t−1.

where D̃t ∈ {−1, 1} indicates a negative or positive value of Ykt at time t with the

corresponding coefficient denoted by δ. µ̃ denotes the constant term. β1 as well as α1

denote coefficients and ξ̃k
t being constructed as

ξ̃k
t ≡ |Ykt| − E(|Ykt| |Ykt 6= 0,Ft−1)

V(|Ykt| |Ykt 6= 0,Ft−1)1/2
,

is the innovation term that drives the GLARMA model in λk
t . The conditional moments

of the at-zero-truncated NegBin distribution are given by

E(|Ykt| |Ykt 6= 0, Ft−1) =
ωk

t

1 − ϑk
t

,

V(|Ykt| |Ykt 6= 0, Ft−1) =
ωk

t

1 − ϑk
t

−
(

ωk
t

(1 − ϑk
t )

)2(

ϑk
t −

1 − ϑk
t

κ

)

,

where ϑk
t is given by ϑk

t = [κ/(κ + ωk
t )]

κ. The Fourier flexible form

Sk(ν, τ, K) ≡ ν0τ +

K
∑

l=1

ν2l−1 sin(2π(2l − 1)τ) + ν2l cos(2π(2l)τ) (7)

captures potential diurnal seasonality evident in intraday high frequent financial data,

where τ is the intraday time standardized to [0, 1] and ν is a 2K + 1 dimensional

parameter vector.
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2.2 Copula Function

The contemporaneous dependence between the n marginal processes is modelled through

a copula function. Sklar (1959) introduced the copula concept and Patton (2001)

extended it to conditional distributions. Within that framework the marginal distri-

butions and/or the copula function can be specified conditional on Ft−1, so that the

conditional multivariate distribution of Yt can be modelled as:

F (y1t, . . . , ynt|Ft−1) = C(F (y1t|Ft−1), . . . , F (ynt|Ft−1)|Ft−1), (8)

where F (ykt|Ft−1) denotes the conditional distribution function of the kth component

and C(·|Ft−1) the conditional copula function defined on the domain [0, 1]n. This

approach provides a flexible tool for modelling multivariate distributions as it allows

for the decomposition of the multivariate distribution into the marginal distributions,

which are interconnected by a copula function, being solely responsible for their con-

temporaneous dependence.

If the marginal distribution functions are continuous, the copula function C is unique

on its domain [0, 1]n, because the random variables Ykt, k = 1, . . . , n are mapped

through the strictly monotone increasing functions F (ykt|Ft−1) onto the entire set

[0, 1]n. The joint density function can then be derived by differentiating C with respect

to the continuous random variables Ykt, as:

f(y1t, . . . , ynt|Ft−1) =
∂n

C(F (y1t|Ft−1), . . . , F (ynt|Ft−1)|Ft−1)

∂y1t . . . ∂ynt
, (9)

However, if the random variables Ykt are discrete, F (ykt|Ft−1) are step functions and

the copula function is uniquely defined not on [0, 1]n, but on the Cartesian product of

the ranges of the n marginal distribution functions, i.e.,
⊗n

k=1 Range(Fkt) so that it is

impossible to derive the multivariate density function using equation (9). In order to

overcome this problem, we apply a finite difference approximation to the derivatives

of the copula function (e.g. Meester & J.MacKay (1994) and Cameron et al. (2004))

f(y1t, . . . , ynt|Ft−1) = ∆n . . .∆1C(F (y1t|Ft−1), . . . , F (ynt|Ft−1)|Ft−1), (10)

where ∆k, for k ∈ {1, . . . , n}, denotes the kth component first order differencing oper-

ator being defined through

∆kC(F (y1t|Ft−1), . . . ,F (ykt|Ft−1), . . . , F (ynt|Ft−1)|Ft−1) =

C(F (y1t|Ft−1), . . . , F (ykt|Ft−1), . . . , F (ynt|Ft−1)|Ft−1)

−C(F (y1t|Ft−1), . . . , F (ykt − 1|Ft−1), . . . , F (ynt|Ft−1)|Ft−1).

The conditional multivariate density of Yt can therefore be derived by specifying the

cumulative distribution functions F (y1t|Ft−1), . . . , F (ynt|Ft−1) and the copula function

C in equation (10).
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3 Bivariate Density of Bid and Ask Quote Changes

The inflated MICH model is particularly suited for the analysis of market microstruc-

ture effects using high-frequency data. A particular feature of such data, especially

with respect to the changes of transaction prices or quotes, is their discreteness which

precludes modelling methods that rely on continuous distributions. On a high fre-

quency level, prices change as multiples of a minimum tick size, which implies only a

few stepwise downward or upward movements within a short time interval.

We apply our model to the bivariate process of bid and ask quote changes, (Cb
t , C

a
t ),

where Cb
t = Qb

t −Qb
t−1, Ca

t = Qa
t −Qa

t−1 and Qb
t and Qa

t denote the bid and ask quotes

at time t. In our analysis we use quote data of the Citigroup Inc. (C) stock, for the

period from the 20th to the 23rd February 2001 traded at the New York Stock Exchange

(NYSE). Citigroup is a very actively traded stock with a mean inter-quote duration

of 8.2 seconds and a very high market capitalization of 231.14 bn. USD. The bid and

ask quote series have been extracted from the Trades and Quotes (TAQ) Database

of the NYSE. We sample the data at a frequency of 30 seconds, as on the one side

– it allows to preserve the discrete nature of data, especially its clustering to round

numbers, whereas and on the other side – the frequency is low enough to preserve a

high correlation between the two marginal processes.

Figure 1, in the Introduction, presents the bivariate histogram of the bid and ask quote

changes. We observe that the most frequent outcome is (0, 0) which corresponds to

simultaneous zero movement on both market sides. Besides the discreteness of the

data, its most striking feature is clustering to round values. In the histogram we can

observe many picks corresponding to the outcomes: (−5, 0), (0, 5), (5, 0), (5, 5), (10, 0),

(0, 10), which means that bid and ask quotes evidence some tendency to gravitate or

rather stick to ’round’ states. After the decimalization at the NYSE on the 29th

January 2001, those states are given by multiples of 5 ticks. Quote clustering, that

takes place on a grid that is much rougher than mandated by the existing tick size,

is a well-recognized topic in a market microstructure literature. Studies on that issue

date back to times long before the decimalization, when the tick size at the NYSE

accounted to one-eight of a dollar. Harris (1991) states for example:

“Stock prices cluster on round fractions. Integers are more common than halves; halves

are more common than odd quarters; odd quarters are more common than odd eights;

other fractions are rarely observed. The phenomenon is remarkably persistent through

time and across stocks (...) Clustering on larger fractions can be explained if traders

sometimes choose to restrict further their terms of trade to the sets of quarters, halves,

or whole numbers. The use of these smaller sets may be result of explicit agreements

among traders”.

Because of trading convenience market participants prefer to trade at round prices, thus

the quotes in the limit order book tend to cluster at round numbers. This phenomenon

8



can also clearly be observed in the histograms of the marginal processes in Figure 2.

We see that both processes have a fairly large discrete support between between -20

and 20 ticks, but the frequencies of the 5, 10, 15 or 20-tick-large quote changes are far

above the frequencies, which would be predicted from any smooth univariate discrete

distribution.

Bid Quote Changes Ask Quote Changes

Figure 2: Histogram of bid and ask quote changes in number of ticks. Citigroup Inc. stock,

traded at the NYSE, 20th to the 23rd February 2001, number of observations: 3104

Gravitating of quote changes to round values has a tremendous influence on the values

of the bid-ask spread. Its distinctly multimodal histogram, presented in Figure 3,

shows that nearly 12% of all observed spread values accounted to 5 ticks, about 18%

to 10 ticks and about 10% and 8% percent to 15 and 20 ticks, respectively. Thus,

even having in mind a stepwise bid-ask spread change induced by the tick size, the

roughness of its distribution is much more severe. Non-round values of the variable

occur very rarely in comparison to round ones.

Figure 3: Histogram of the bid-ask spread in ticks.
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Bid-ask spread clustering has also been analyzed in several market microstructure

studies. Hasbrouck (1999) investigates spread clustering on the USD/DM exchange

market and hypotheses, that this phenomenon can reflect a multimodal cost scheme,

as there are certain regimes in which cost of market making fixes at round values.

He also notes that spread clustering stems from bid and ask quote clustering that

is not independent, but takes place simultaneously on both market sides. Thus, if

the bid quote lies on a 5 tick multiple, there is in comparison a relatively higher

probability, that the ask quote also lies on a five-tick multiple. This observation can

also be deduced from our data. In the Figure 4 we present the frequencies (y-axis) of

the round (±30,±25, . . . ,±5) realization of the bid (left panel) and ask (right panel)

quote changes at time t, once the spread of a given size (x-axis) has been observed in

time t − 1. We observe, that once a round value of the bid-ask spread stabilizes, the

transmission to those states, where the bid-ask spread takes on round value again is

more probable than the transmission to the remaining non-round states.

Bid Quote Changes Ask Quote Changes

Figure 4: Histogram of round quotes changes conditional on a previous round bid-ask

spread of the given size.

The simultaneous clustering on both market sides is also clearly visible in Figures 5

and 6. Here we plotted the bivariate histograms of bid and ask quote changes given a

previous bid-ask spread of 5 and 10 ticks, respectively. Our modelling scheme, where

particular states are conditionally inflated can be easily justified. For example, given a

previous spread equal to 5 ticks, the bid and ask quote changes cluster mainly at two

outcomes (−5, 0) and (0, 5), which in fact results in a spread equal to 10 ticks (Figure

5). Given a spread equal to 10 ticks, the quote changes tend to cluster on a wider grid

course, that is for example (−5, 0) and (0, 5) – which leads to a spread of 15, (5, 0) and

(0,−5) – which leads to a spread of 5 ticks (Figure 6).
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Figure 5: Bivariate histogram of bid and ask quote changes in

number of ticks, conditional on a previous spread equal 5 ticks.

Figure 6: Bivariate histogram of bid and ask quote changes in

number of ticks, conditional on a previous spread equal 10 ticks.

The dynamic properties of our process are reflected by the multivariate autocorrelation

function between the bid and ask quote changes presented in Figure 7. We see that

both marginal processes are positively cross-correlated and we observe in Figure 8 that

the bid and ask quotes move together. The series Qb
t and Qa

t are non-stationary, but

there must exist a long-run equilibrium between the two processes, as the size of the

bid-ask spread, being the function of contemporaneous and lagged quotes changes,

cannot increase or decrease infinitely over time.
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Figure 7: Multivariate autocorrelation function for bid and ask quote changes.

Upper left panel: corr(ca
t
, ca

t−l
); upper right panel: corr(ca

t
, cb

t−l
); lower left panel:

corr(ca

t−l
, cb

t) and lower right panel: corr(cb
t , c

b

t−l
). The dashed lines mark the

approximate 99% confidence interval ±2.58/
√

T .

The particular behavior of the marginal processes leads to the strong positive auto-

correlation of the bid-ask spread, which has been depicted in Figure 9. We therefore

conclude, that the periods in which the observed difference between the quotes’ levels

is relatively wide (narrow) cluster together.

Figure 8: Bid and ask quote levels for the first 100 observations of

the data sample.
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Figure 9: Autocorrelation function of bid-ask spread. The dashed line marks

the approximate 99% confidence interval ±2.58/
√

T .

4 Specification Issues

In the following we focus on two specifications that clarify the necessity of augmenting

the bivariate density of the bid and ask quote changes by conditionally inflating certain

quote change probabilities and by including an error correction mechanism:

1. Standard MICH model (without inflated outcomes and error correction mecha-

nism.)

2. Inflated MICH model (augmented by inflated outcomes and error correction

mechanism).

The first specification simply corresponds to the component f ∗(y1t, . . . , ynt|Ft−1) of the

equation (1) and can be perceived as a benchmark model, as it is a standard MICH

model, in which we restrain ourselves from inflating any states. The inflated MICH

model is an augmented specification as it relies on the whole parametrization stated in

equation (1) and has been motivated by the time-varying modi of the bivariate density

as well as the comovement between the levels of the bid and ask quotes. In order to

reflect the clustering schemes in a possibly careful manner (see Figures 5 and 6), we

adapt the following specification of equation (1). gh(Ft−1) = Qb
t−1 − Qa

t−1 denotes the

function providing the size of the previous bid-ask spread and gh(Ft−1) ∈ Bh denotes

the event that the bid-ask spread is equal to Bh ticks at time t−1, where h = 1, . . . , 4.

Conditional on the value of the previous spread Bh, we inflate selected round outcomes

Ah of the bid and ask quote change process. The detailed definition of the sets Bh

(size of the bid-ask spread in t−1) and Ah (set of inflated outcomes in t) are presented

in Table 1.
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h Bh Ah

1 B1 = {5} A1 = {(0, 0), (−5, 0), (0, 5), (−10, 0), (0, 10)}
2 B2 = {10} A2 = {(0, 0), (−10, 0), (−5, 0), (0,−5), (0, 5), (5, 0), (5, 5)}
3 B3 = {15} A3 = {(0, 0), (0,−5), (5, 0)}
4 B4 = {20} A4 = {(0, 0), (0,−10), (0,−5), (5, 0), (10, 0)}

Table 1: Definition of the inflated outcomes.

We decide to inflate the most common outcomes of the bivariate quote processes con-

ditionally on the value of the bid-ask spread. For example, we inflate the outcome

Cb
t = −5 and Ca

t = 0, given that the spread at time t − 1 accounts to 5 ticks. In

order to improve the goodness-of-fit of the inflated MICH model, we also decide to

inflate certain univariate outcomes of the marginal distributions governed by the ICH

specifications. In the light of the histograms presented in Figure 2, we also inflate the

outcomes of the absolute quote changes from the set C = {5, 10, 15, 20}. The condi-

tional probability of the absolute bid quote changes (ask quote changes analogically)

then takes the following form:

f̃|Cb
t |
(|ct| |Cb

t 6= 0,Ft−1) =

4
∑

h=1

∑

k∈C

(

(γb
0|k + γb

1|k · 1l{gh ∈ Bh})1l{|ct| = k} + (1 − γb
0|k − γb

1|k · 1l{gh ∈ Bh})

· f|Cb
t |
(|ct| |Cb

t 6= 0,Ft−1)

)

(11)

where gh(Ft−1) ∈ Bh, h = 1, ..., 4 (see Table 1), γb
0|k and γb

1|k denote additional in-

flation parameters and the density f|Cb
t |
(|ct| |Cb

t 6= 0,Ft−1) has been already specified

in equation (6). The round values of absolute bid quote changes can therefore be

generated either by the truncated-at-zero Negbin distribution, which is specified by

f|Cb
t |
(|ct| |Cb

t 6= 0,Ft−1) or they can stem from degenerated distributions with a prob-

ability γb
0|k + γb

1|k · 1l{gh ∈ Bh} for every k ∈ C. We decide to use the time-varying

specification of the inflation component γb
0|k + γb

1|k · 1l{gh ∈ Bh}, because after a round

value of the spread at time t − 1 the round quote changes at time t appear relatively

more frequent (see Figure 4). Inflating the marginal processes as presented in equation

(11) yields additional flexibility, because it allows us to inflate round outcomes of the

two marginal processes separately. Moreover, inflating the marginal processes enables

a more parsimonious specification by reducing the number of multivariate inflation

parameters ωi1,i2|Bh
. However, inflating the marginal densities solely turns out to in-

sufficient.

In order to provide a more parsimonious specification of the inflated MICH model, we

impose in Table 2 the following parameter restrictions for the bivariate density ωi1,i2|Bh

and for the marginal densities γb
0|k and γb

1|k:
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ω−5,0|5 = ω0,5|5,

ω−10,0|5 = ω0,10|5,

ω−10,0|10 = ω−5,0|10 = ω0,−5|10 = ω0,5|10,

ω5,0|10 = ω5,5|10,

ω0,−5|15 = ω5,0|15,

ω0,−10|20 = ω0,−5|20 = ω5,0|20 = ω10,0|20,

γb
0|k = γa

0|k,

γb
1|k = γa

1|k,

Table 2:Parameter restrictions for k ∈ {5, 10, 15, 20}.

4.1 Long-Run Comovement

We account for the comovement of the bid and ask quotes, by including an error

correction type mechanism into the inflated MICH specification. The intuition behind

such a solution stems from the usual error correction reasoning for linear models, where

ǫ̂t = Qa
t − γ̂1Q

b
t − γ̂0 (12)

is the estimated deviation from the long-run relationship between the bid and ask

quotes. A potential asymmetric adjustment to the equilibrium is captured by includ-

ing the generated regressors: Zt−1,1 = |ǫ̂t−1|·1l{ǫ̂t−1 > 0} and Zt−1,2 = |ǫ̂t−1|·1l{ǫ̂t−1 < 0}
into the ACM submodel for the direction of bid and ask quote changes (see equation

(3)). For the ask quote process for example, we would await a negative (positive) im-

pact of Zt−1,1 on the conditional probability of an upward (downward) price movement.

A symmetrical influence of this regressor is expected for the bid quote. Thus, if during

the last period the difference between the bid and ask quotes has been higher than the

“equilibrium value”, the expected positive impact of the variable Zt−1,1 on the upward

probability of the bid quote would narrow the current bid-ask spread. For Zt−1,2 we

expect the opposite effect.

4.2 Copula Function

With the copula approach we can model the joint bid and ask quote change process in a

flexible way without restricting the direction of the dependency. Moreover, truncations

on the support of the joint density caused by the non-negativity of the bid-ask spread

can easily be accounted for. More precisely, for the quote changes from t − 1 to t, we

need to ensure that:

Ca
t − Cb

t > Qb
t−1 − Qa

t−1, (13)

holds. We model the joint density f(cb
t , c

a
t |Ft−1) with a truncated bivariate copula,

based on the Joe-Clayton copula:

C̃(u, v; τU , τL) = 1 − (1 − {[1 − (1 − u)ηU ]−ηL + [1 − (1 − v)ηU ]−ηL − 1}
−1

ηL )
1

ηU (14)
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with ηU = 1
log2(2−τU )

and ηL = −1
log2(τL)

. u = F (cb
t |Ft−1), v = F (ca

t |Ft−1) and τU , τL ∈
(0, 1) denote the upper and lower tail dependency parameters of the Joe-Clayton cop-

ula. The Joe-Clayton copula is attractive for two reasons. First, contrary to elliptical

copulas it has a simple form that does not involve double integrals and is therefore

easy to estimate. Second, it allows for different upper and lower tail dependency. In

our setup, upper (lower) tail dependency is a measure of a probability, that we observe

an extreme large upward (downward) movement of the bid quote simultaneously with

an the extreme large upward (downward) movement of the ask quote. The truncated

Joe-Clayton copula accounting for the non-negativity restrictions takes the form

C(u, v; τU , τL|Ca
t − Cb

t < Qa
t−1 − Qb

t−1) =
C̃(u, v; τU , τL)

P(Ca
t − Cb

t < Qa
t−1 − Qb

t−1)
. (15)

Note, that as defined in equation (8), C(·) is by construction a conditional on Ft−1

copula, implying a time varying dependency.

Due to the specification of the models which involve inflation points and finite differ-

ence approximations of the copula derivatives, it is necessary to perform a one step

Maximum Likelihood estimation. The copula function is given by equation (14) and

the distribution functions F (cb
t |Ft−1) (and analogously F (ca

t |Ft−1)) can be derived in

the following way

F (cb
t |Ft−1) =

cb
t
∑

k=−50

πb
−1t

1l {k<0} · πb
0t

1l {k=0} · πb
1t

1l {k>0} · f|k|(|k| |k 6= 0,Ft−1)
(1−1l {k=0})

where we set the lower bound of the summation to −50. The probabilities of the

downward, zero and upward movement of the bid or ask quote are specified with the

logistic link function, as given in equation (2) while the density for the absolute value

of the quote change is specified as a conditional NegBin distribution, as shown in

equation (11).

4.3 Estimation and Simulation Results

The estimation results for the standard and the inflated MICH model are presented

in Table 3. The Schwarz Information Criterion and the Wald tests reveal that the in-

flated MICH model captures the data generating process significantly better than the

standard MICH model. Both the error correction parameters as well as the conditional

inflation parameters turn out to be jointly highly significant. ω0,0|5, for example, shows

that given a bid-ask spread equal to 5 ticks at time t−1 the (0, 0) outcome is addition-

ally, to the (0, 0) outcome being generated by the standard MICH model, inflated by

18%. Given a spread equal to 20 ticks the number of additional (0,0) outcomes rises

even to more than 34 % (see ω0,0|20).
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Regarding the estimates for the ACM submodels of both specifications, we observe

a significant persistency pattern (B̂1 matrix) of the direction processes and we can

conclude, that if the probability of an quote change has been high in the previous

period, it is also expected to be high in the next period. Moreover, in the inflated

MICH model we can easily confirm the existence of an error correction mechanisms.

The parameters on the impact of Zt−1,1 and Zt−1,2 on the probability, that the quote

moves down (up) are denoted by g1d and g2d (g1u and g2u) and reveal an asymmetric

error correction mechanism.

In the GLARMA parts of the MICH models, the values of the dispersion parameters

κ−0.5 are significantly different from zero, allowing the rejection of the null hypothesis

of an at-zero-truncated Poisson distribution in favor of at-zero-truncated Negbin one.

The GLARMA models are characterized by high persistency, reflected by high values

of β1. Jointly significant coefficients of the seasonal component S(ν, τ, 2) indicate also,

that there exists a diurnally seasonality pattern for the absolute bid and ask quote

changes. We observe also the significant impact of the direction variable Dt on the

size of the absolute price change. This impact is different for the absolute bid and ask

quote changes and can be treated as a quasi additional correction mechanism. For the

ask quote we observe that if the quotes move up, the absolute value of that movement

is larger than if it moves down. For the bid quote change the opposite is true, as

the downward movements are significantly bigger than the upward ones. This seems

to be a natural mechanism to limit the eventual number of negative spread outcomes

being predicted by the model. In the GLARMA part of the inflated MICH model

the inflation parameters are also highly significant, which confirms the observations

deduced from the descriptive analysis.
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Standard MICH Model Inflated MICH Model

ASK BID ASK BID

parameter estimate std. estimate std. estimate std. estimate std.

ACM Model Parameters ACM Model Parameters

µ1 -0.1308 0.0484 -0.1339 0.0468 0.0267 0.0226 -0.0432 0.0177

µ2 -0.1865 0.0680 -0.1092 0.0385 -0.0946 0.0400 0.0205 0.0136

b11 0.7527 0.0885 0.8032 0.0672 0.7759 0.0661 0.8913 0.0290

a11 0.0189 0.0304 0.0929 0.0328 0.0141 0.0336 0.0659 0.0277

a12 0.1136 0.0336 0.1406 0.0378 0.0910 0.0343 -0.0078 0.0284

a21 0.0894 0.0353 0.0350 0.0288 -0.0941 0.0406 -0.0211 0.0267

a22 0.1190 0.0373 0.1066 0.0314 0.1543 0.0420 0.1424 0.0304

ACM Error Correction Parameters ACM Error Correction Parameters

g1d -1.3350 0.7861 -6.7183 1.2555

g2d -7.5018 1.6373 6.2232 1.6305

g1u -8.2129 1.1318 0.1917 0.9080

g2u 4.4870 1.6312 -13.2031 1.7727

GLARMA Model Parameters GLARMA Model Parameters

κ0.5 0.8282 0.0243 0.8480 0.0250 1.2385 0.0694 1.4007 0.0928

µ̃ 0.0312 0.0067 0.0317 0.0061 0.0693 0.0235 0.0293 0.0106

β1 0.9869 0.0033 0.9897 0.0025 0.9679 0.0116 0.9902 0.0040

α1 0.0261 0.0045 0.0211 0.0042 0.0905 0.0203 0.0343 0.0095

ν0 0.0155 0.0097 -0.0020 0.0077 0.0417 0.0297 -0.0024 0.0155

ν1 0.0041 0.0013 0.0036 0.0011 0.0148 0.0061 0.0054 0.0023

ν2 -0.0006 0.0010 -0.0004 0.0008 0.0028 0.0034 -0.0003 0.0015

ν3 0.0008 0.0030 -0.0046 0.0024 0.0024 0.0091 -0.0070 0.0048

ν4 0.0007 0.0017 -0.0014 0.0015 0.0012 0.0051 -0.0021 0.0029

δ 0.0631 0.0247 -0.1261 0.0253 0.0471 0.0475 -0.2354 0.0494

GLARMA Inflation Parameters GLARMA Inflation Parameters

γ1|5 0.2130 0.0192 0.2130 0.0192

γ1|10 0.0850 0.0091 0.0850 0.0091

γ1|15 0.0972 0.0137 0.0972 0.0137

γ1|20 0.0571 0.0066 0.0571 0.0066

γ0|5 0.0315 0.0076 0.0315 0.0076

γ0|10 0.0128 0.0038 0.0128 0.0038

γ0|15 0.0087 0.0059 0.0087 0.0059

γ0|20 0.0124 0.0035 0.0124 0.0035

Joint Inflation Parameters Joint Inflation Parameters

estimate std.

ω0,0|5 0.1808 0.0329

ω0,0|10 0.2892 0.0278

ω0,0|15 0.2140 0.0350

ω0,0|20 0.3441 0.0404

ω−5,0|5 0.0184 0.0096

ω−10,0|5 0.0120 0.0062

ω−10,0|10 0.0191 0.0042

ω5,0|10 0.0335 0.0068

ω0,−5|15 0.0343 0.0117

ω0,−10|20 0.0396 0.0114

ω5,0|20 0.0187 0.0089

Copula Parameters Copula Parameters

estimate std. estimate std.

τL 0.0535 0.0201 0.1762 0.0321

τU 0.2491 0.0278 0.3504 0.0264

# of obs. 3104 3104

Mean log-likelihood -4.8402 -4.3827

SIC 9.7736 8.9285

Wald Test (Significance Error Corr. Param., df= 8) 574.19 (0.0000)

Wald Test (Significance Inflation Param., df= 19) 1832.3 (0.0000)

Wald Test (Significance Error Corr. & Inflation Param., df= 27) 2590.2 (0.0000)

Table 3: Maximum Likelihood estimates of the standard and the inflated MICH model.
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5 Simulation and Model Evaluation

5.1 Metropolis-Hastings Algorithm

The evaluation of the goodness-of-fit of the two models in terms of the conditional

joint distribution relies on a simulation strategy. We simulate the two conditional

density specifications (N draws from each) at every available data point t of our sam-

ple. Application of the Metropolis-Hastings drawing algorithm allows us to derive the

truncated density, that accounts for the necessary time-varying restrictions to ensure

a positive bid-ask spread. Based on the simulated conditional densities at every point

t, we evaluate, whether the assumed parametrization of the inflated MICH model cap-

tures the dynamical behavior of the joint bivariate conditional density of the bid and

ask quote change satisfactorily. This is achieved by applying a modified version of

Diebold, Gunther & Tay (1998) density forecasting test suggested by Liesenfeld et al.

(2006) to each component of the decomposition of the joint bivariate density into its

marginal and conditional densities. Moreover, we are able to investigate the residual

series for both specifications in a straightforward way. Having simulated the bivariate

density for every data point, we are able to derive a conditional as well as unconditional

density, not only for the marginal processes, but also for every function of them. A

natural example of such a function is the bid-ask spread. Thus, we are able to evalu-

ate, whether the proposed specification appropriately accounts for the bid-ask spread

properties: its strong positive autocorrelation and the clustering schemes, leading to a

sharply multimodal distribution.

Let f(cb
t , c

a
t |Ft−1) denote the conditional target density function of (Cb

t , C
a
t ) from which

we want to sample using the Metropolized Independence Sampler (MIS) of Hastings

(1970). The proposed density, denoted by f̃(cb
t , c

a
t |Ft−1) is generated from an un-

restricted MICH model with the same data generating processes for the marginal

processes, but governed by a simple Gaussian copula with dependency parameter (cor-

relation coefficient) ρ = 0.3. The algorithm of the MIS can then be summarized in the

following steps, for i = 1, . . . , N :

Given the current state of vector (Cb
i,t, C

a
i,t) at time t:

1. Draw a candidate (Cb
t , C

a
t ) from the proposed density f̃(cb

t , c
a
t |Ft−1) in the fol-

lowing way:

• compute Cholesky decomposition A (2 × 2) of the correlation matrix R,

where R =

(

1 ρ

ρ 1

)

.

• simulate x = (x1, x2) from the 2-dimensional standard normal distribution,

• set y = Ax,
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• set u1 = Φ(y1) and u2 = Φ(y2) where Φ denotes the univariate standard

normal distribution function,

• set Cb
t = F−1

1 (u1|Ft−1) and Ca
t = F−1

2 (u2|Ft−1) where F1 and F2 denotes the

marginal cumulative distribution functions of the bid and ask quote changes

respectively.

2. Simulate u from the Uniform[0,1] and let

• set (Cb
i+1,t, C

a
i+1,t) = (Cb

t , C
a
t ) if u ≤ min

(

1,
w(Cb

t ,Ca
t )

w(Cb
i,t,C

a
i,t)

)

,

• set (Cb
i+1,t, C

a
i+1,t) = (Cb

i,t, C
a
i,t) otherwise

where w(Cb
t , C

a
t ) =

f(cb
t ,ca

t |Ft−1)

f̃(cb
t ,ca

t |Ft−1)
is the usual importance sampling weight.

We simply conduct dependent draws from a candidate density which is non-truncated

(and thus may generate negative bid-ask spreads), non-inflated, whose marginal distri-

butions are given by F (cb
t), F (ca

t ), and a dependency being governed by the Gaussian

copula function with correlation matrix R. The target density f(cb
t , c

a
t |Ft−1), however,

accounts through the copula function (see equation (13)) for the truncations on the

outcome space implied by the positive bid-ask spread. For every vector (Cb
i,t, C

a
i,t) that

does not fulfil the restriction (13), the target density f(cb
t , c

a
t |Ft−1) is equal to zero.

5.2 Model Evaluation

Based on the simulation results, we compare both specifications, assess the necessity

of the conditional inflation, and evaluate to what extend the inflated MICH model is

able to capture the discussed features of the data generating process. In Figure 10 we

depict the histograms of the simulated marginal quote change processes for the stan-

dard MICH model and in Figure 11 for the inflated one. If we compare the obtained

histograms with those of the raw series (see Figure 2), we easily observe that contrary

to the standard MICH model, the latter specification successfully reflects the tendency

to cluster at round bid and ask quotes changes.

The goodness-of-fit of the unconditional bivariate density can be studied in the light of

the bivariate histograms depicted in Figures 12 and 13. There, we present the differ-

ences between the frequencies of the empirical and the simulated data points, in order

to infer at which points (i, j) the estimated unconditional probabilities differ. To assess

these differences graphically, we plotted absolute values of the negative differences in

the left panel and positive differences in the right one. We see that the standard MICH

model clearly underestimates the round outcomes of the quote changes, since in the

right panel peaks of around 2 percent at multiples of 5 ticks are clearly visible. More-

over, since the MICH model tries to account for these inflated outcomes by adjusting

and distorting the naturally smooth shape of the GLARMA density, it overestimates
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the neighbor states of the inflated states clearly (for example (0,4), (-6,0)- see left panel

of the Figure 12).

Bid Ask

Figure 10: Histogram of simulated bid and ask quote changes in number of ticks for the

standard MICH model.

Bid Ask

Figure 11: Histogram of simulated bid and ask quote changes in number of ticks for the

inflated MICH model.

The application of the inflated MICH model improves the overall goodness-of-fit con-

siderably. In the left panel of Figure 13, we see that we strongly limited or even entirely

eliminated the picks induced by the simultaneous quote change clustering. The surface

of the histogram for positive errors becomes much more plane, but the goodness-of-fit

is still not perfect, since we overestimate the (0, 0) outcome of the unconditional den-

sity by about 1.3 percent.
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Figure 12: Bivariate histogram of the positive (left panel) and the negative (right panel)

differences between the empirical and the simulated bivariate histogram of the quote changes

for the standard MICH model.

Figure 13: Bivariate histogram of the positive (left panel) and the negative (right panel)

differences between the empirical and the simulated bivariate histogram of the quote changes

for the inflated MICH model.

Given the simulated conditional densities for the bid and quote changes we are able to

derive the conditional density of the bid-ask spread at every time point t as well. The

histograms of the simulated bid-ask spread process are depicted in Figure 14. We see

that contrary to the basic specification, the inflated MICH model mirrors the spread

clustering scheme quite successfully. Bid-ask spread values stick to multiples of 5 ticks,

and the shape of the frequency bar is very near to the histogram of the empirical bid-

ask spread series (compare Figure 3). However, the unconditional probability for a

very narrow spread values (1 and 2 ticks) are under-predicted by our model.
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Figure 14: Histogram of the simulated bid-ask spread for the standard (left panel) and the

inflated (right panel) MICH model specification.

For finance applications the goodness-of-fit of the unconditional bivariate distribution

is of minor importance. More interesting is the fit of the model with respect to the

conditional density and its implied dynamics. First, we check the bivariate autocorre-

lation function of the residual series for the simulated marginal processes, ε̂t = (ε̂b
t , ε̂

a
t )

′

depicted in Figures 15 and 16. We can see, that in contrary to the standard MICH

model, the inflated specification almost entirely eliminates the strong cross correla-

tion pattern that has been a leading feature of the bivariate quote change processes

(see Figure 7). The adequacy of the dynamic specification can be checked by plotting

the autocorrelation function of the bid-ask spread residuals. As shown in Figure 17,

owing to the inflated model specification, we totally eliminate the significant positive

autocorrelation that characterized the raw spread data series (compare Figure 9).

Figure 15: Multivariate autocorrelation function for residuals of bid and ask quote

changes for the standard MICH model. Upper left panel: corr(εa
t , εa

t−l
); upper right panel:

corr(εa
t
, εb

t−l
); lower left panel: corr(εb

t−l
, εa

t
) and lower right panel: corr(εb

t
, εb

t−l
). The

dashed lines mark the approximate 99% confidence interval ±2.58/
√

T .
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Figure 16: Multivariate autocorrelation function for residuals of bid and ask quote

changes for the inflated MICH model. Upper left panel: corr(εa
t
, εa

t−l
); upper right panel:

corr(εa
t , εb

t−l
); lower left panel: corr(εb

t−l
, εa

t ) and lower right panel: corr(εb
t , ε

b

t−l
). The

dashed lines mark the approximate 99% confidence interval ±2.58/
√

T .

Figure 17: Autocorrelation function for the residuals of the bid-ask spread for the standard

(left panel) and the inflated (right panel) MICH model specification. The dashed lines mark

the approximate 99% confidence interval ±2.58/
√

T .

We can also investigate the fit of the conditional densities through the application of

integral density forecasting (IDF) testing procedures. IDF can be perceived as a way

of deriving i.i.d U(0,1) distributed variables from any sample of variables with a known

distribution. Since the joint density of (Cb
t , C

a
t ) can be decomposed into a marginal and

conditional component as: f(cb
t , c

a
t ) = f(cb

t)f(ca
t |cb

t) or as f(cb
t , c

a
t ) = f(ca

t )f(cb
t |ca

t ), the

corresponding density forecast transformations of the vector (Cb
t , C

a
t ) can be defined

for the first decomposition as

u1(c
b
t) = P (Cb

t ≤ cb
t) = F (cb

t), (16)

u2(c
a
t |cb

t) = P (Ca
t ≤ ca

t |Cb
t = cb

t) = F (ca
t |cb

t),
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and analogously for the second decomposition. In a continuous variable setting, under

the null hypothesis of a perfect fit (i.e. the correct bivariate density for the data gener-

ating process), u1 and u2 should be both uniformly and independently distributed on

the set [0, 1]. As we operate in a discrete variable framework, the variables u1 and u2,

obtained by equation (16) are step functions, so they are obviously not continuously

distributed on [0, 1]. We, therefore use the modification by Liesenfeld et al. (2006) for

a discrete density setup.

Relying on N simulated vectors (Cb
i,t, C

a
i,t), i = 1, ..., N which correspond to the sim-

ulated bid and ask quote changes at time point t, we can define the variables ul
b, uu

b ,

and ul
a|b , uu

a|b (analogously for the second decomposition) as:

ul
b(C

b
t ) =

1

N

N
∑

i=1

1l{Cb
i,t ≤ cb

t − 1} (17)

ul
a|b(C

a
t ) =

1
∑N

i=1 1l{Cb
i,t = cb

t}

N
∑

i=1

1l{Ca
i,t ≤ ca

t − 1} · 1l{Cb
i,t = cb

t}

uu
b (C

b
t ) =

1

N

N
∑

i=1

1l{Cb
i,t ≤ cb

t} (18)

uu
a|b(C

a
t ) =

1
∑N

i=1 1l{Cb
i,t = cb

t}

N
∑

i=1

1l{Ca
i,t ≤ ca

t } · 1l{Cb
it = cb

t}

Note, that the upper bound variables uu
b , uu

a|b are derived according to equation (16),

respectively as F (cb
t), F (ca

t |cb
t), whereas the lower bound variables ul

b, ul
a|b as F (cb

t −1),

F (ca
t − 1|cb

t), respectively. If the model is correctly specified, the random variables ub
t

and u
a|b
t , drawn from the uniform distributions as ub

t ∼ U(ul
b, u

u
b ) and u

a|b
t ∼ U(ul

a|b, u
u
a|b)

should be uniformly and independently distributed on [0, 1]. A similar statement can

be made for the variables ua
t , u

b|a
t stemming from the second decomposition.

We have plotted the quantile–quantile (QQ) plots of the normalized variables ub
t , u

a|b
t ,

ua
t and u

b|a
t of the standard MICH model in Figure 18 and of the inflated MICH model

in Figure 19. We have mapped these modified density forecast variables into a standard

normal distribution so that under the correct model specification they should be i.i.d.

standard normally distributed. We see that the deviations from normality are quite

striking especially with respect to the upper and lower tails of the standard MICH

specification. The inflated MICH model leads to some improvements especially with

respect to the specifications of the marginal distributions, which can be seen in the

upper panel of the Figure 19. If the joint density specification is correct, the normalized

density forecast variables should be also independent. In order to test this aspect, we

plot the multivariate cross correlation function for vectors (ua
t , u

b|a
t ) (the figures for

(ub
t , u

a|b
t ) lead to the same conclusion and are therefore omitted) in Figures 20 to 21.

Here, the improvements achieved by the inflated MICH model are also clearly visible.
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Figure 18: QQ plots of the normalized density forecast variables for the standard MICH

model. Upper left panel: ua
t
; upper right panel: ub

t
; lower left panel: u

b|a
t

and lower right

panel: u
a|b
t .

Figure 19: QQ plots of the normalized density forecast variables for the inflated MICH

model. Upper left panel: ua
t
; upper right panel: ub

t
; lower left panel: u

b|a
t

and lower right

panel: u
a|b
t .

26



Figure 20: Multivariate autocorrelation function for normalized density forecast vari-

ables of the standard MICH model. Upper left panel: corr(ub
t
, ub

t−1
); upper right panel:

corr(ub
t , u

a|b
t−1

); lower left panel: corr(ub
t−1

, u
a|b
t ) and lower right panel: corr(u

a|b
t , u

a|b
t−1

). The

dashed lines mark the approximate 99% confidence interval ±2.58/
√

T .

Figure 21: Multivariate autocorrelation function for normalized density forecast variables of

the inflated MICH model. Upper left panel: corr(ub
t , u

b
t−1

); upper right panel: corr(ub
t , u

a|b
t−1

);

lower left panel: corr(ub
t−1

, u
a|b
t ) and lower right panel: corr(u

a|b
t , u

a|b
t−1

). The dashed lines

mark the approximate 99% confidence interval ±2.58/
√

T .

Finally, we check the validity of the error correction mechanism. As before we start

from simulating a sample of N possible realization of the bivariate quote processes

for a given time point t. Then, we randomly choose one realization of the simulated

vectors, (Cb
t , C

a
t ) and given this outcome we recursively recalculate the conditional

mean of both marginal processes and the bid and ask quote levels at time t. Relying

on the implied value for the bid-ask spread we simulate the conditional density for time

t + 1. We perform 2000 iterations of such a recursive simulation strategy. Possible

trajectories of the bid and ask quote levels derived by such a simulation procedure

are presented in Figure 22. In order to compare the achieved results with the real
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data we also present the empirical time series of the bid and ask quote levels for the

first 2000 observations of our sample in Figure 22. We observe, that in particular

the omission of the error correction variables results in an unnaturally wide bid-ask

spread induced by the standard MICH model (Figure 22, left panel). On the contrary,

with the inflated MICH approach containing an error-correction mechanism, both time

series move together and ensure a stationary bid-ask spread process.

Figure 22: True bid and ask quote levels (left panel) as well as simulated trajectory of

the bid and ask quote levels for the standard (middle panel) and the inflated (right panel)

MICH model.

6 Conclusion

In this paper we propose a modelling approach for complex multivariate processes of

discrete random variables. Combining the approach by Cameron et al. (2004) with the

ICH model by Liesenfeld et al. (2006) and allowing for inflated outcomes, truncation

regions and error correction mechanisms, we model the joint process of discrete bid

and ask quote changes in a high frequency setup.

The discrete bivariate quote change process is characterized by the following properties:

i) clustering at round events (multiples of 5 ticks), ii) strong instantaneous dependence

and iii) co-movement of both components as well as iv) truncations, since the implied

bid-ask spread has to be positive.

We show that even without an extensive model selection procedure in comparison to

the standard MICH model its inflated specification explains the underlying bivariate

data generating process in terms of the dynamics and the density specification very

well. We use the conditional bivariate density of bid and ask quote changes in order

to derive the conditional density of the bid-ask spread, which can serve as a proxy for

market liquidity. The data generating process of the bid-ask spread is also successfully

captured by the proposed specification.

The potential merits of our approach should be checked in the light of real world

applications such as the measurement of multivariate conditional volatilities and the
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quantification of liquidity or value-at-risk applications. Obviously, our approach can

easily be extended to the most general case of mixed multivariate distributions for con-

tinuous and discrete random variables. In the light of market microstructure studies,

such an extension is particularly attractive, as it enables the joint analysis of several

marks of the trading process (volumes, price and volume durations, discrete quote

changes etc.).
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