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Impacts of seasonal climate variation on rice yield: Evidence from the
Central Coast of Vietnam

Phuong Thi Minh Nguyen , Phuc Trong Ho and Hung Xuan Pham

Faculty of Economics and Development Studies, University of Economics, Hue University, Hue City, Vietnam

ABSTRACT
This study investigates the impact of seasonal climate change on rice productivity in
Vietnam’s Central Coast, using 26 years of data from 1996 to 2021. To achieve this
objective, the study applies a Feasible Generalized Least Squares (FGLS) model to
obtain robust estimates for the panel analysis. The findings reveal the consequences
of climate variation on rice productivity throughout different seasons. Notably,
increases in maximum temperature during the winter–spring season and minimum
temperature during the summer–autumn season boost rice yields, while higher max-
imum temperatures in summer–autumn and minimum temperatures in winter–spring
reduce yields. Specifically, a 1% increase in maximum temperature improves winter–
spring yields by 1.66% but reduces summer–autumn yields by 1.01%, while a 1% rise
in minimum temperature decreases winter–spring yields by 0.30% but enhances sum-
mer–autumn yields by 3.32%. In addition, increases in both maximum and minimum
relative humidity positively impact yields. The study also finds that a 1% increase in
maximum precipitation slightly reduces summer–autumn yields. These findings pro-
vide important insights for developing strategies to improve the resilience of rice pro-
duction to climate change.

IMPACT STATEMENT
This study aims to provide reliable scientific evidence on the impacts of seasonal cli-
mate change on rice productivity over an extended period of time in the Central
Coast of Vietnam. Its findings can assist policymakers in proposing climate-adaptive
farming measures to mitigate adverse effects on rice production and may also serve
as a reference for regions with similar climates in other rice-producing countries.
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1. Introduction

Climate change has exerted a significant impact on agriculture worldwide and poses a serious threat to
global food security (Malhi et al., 2021; Tilahun, 2021; Emeru, 2022; Mubenga-Tshitaka et al., 2023). The
United Nations Framework Convention on Climate Change (UNFCCC) defines climate change as a phe-
nomenon resulting from human activities that alter the composition of the global atmosphere, leading
to shifts beyond the natural climate variability observed over comparable periods (WHO, 2016). These
changes are monitored through key indicators identified by the Global Climate Observing System
(GCOS), including surface temperature, ocean heat content, atmospheric CO2 levels, and sea levels,
Arctic & Antarctic sea ice extent, ocean acidification, and glacier (WMO, 2023). In light of the difficulties
in collecting comprehensive climate data, surface temperature is often used to assess the impact of cli-
mate change on agriculture. However, climate change is now reconsidered to refer to any alterations in
climatic indicators over time, such as temperature or precipitation (Li, 2023). According to NASA (2023),
the ten most recent years rank as the warmest on record, and Earth’s average temperature in 2023 was
approximately 1.36 �C higher than the late 19th century (1850–1900) preindustrial average. This indicates
that climate change will continue to be a worrying concern for global agriculture.
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Besides, among various crops, rice is the third-largest cultivated cereal crop worldwide (Bazargan
et al., 2014), and it serves as the fundamental food staple for more than half of the world’s population,
with an annual production of approximately 480 million metric tons of milled rice (Muthayya et al.,
2014; Irshad et al., 2018). During the early 1980s, Vietnam transitioned from its status as a food-
importing nation to emerging as one of the foremost rice exporters globally within a period of less than
two decades (Vu & Nguyen, 2021). By 2023, Vietnam surpassed Thailand to become the second-largest
rice exporter globally, with a total volume of 5.9 million tons (USDA, 2023). Rice cultivation in Vietnam
plays a pivotal role in enhancing global food security (Shrestha et al., 2016).

However, Vietnam is among the countries that are most vulnerable to the impacts of climate change
(Dasgupta et al., 2009; World Bank Group and Asian Development Bank, 2020; Nguyen and Scrimgeour,
2022; Anh et al., 2023). Nguyen et al. (2008) and Anh et al. (2023) indicated that Vietnam’s extensive
coastline, flanked by high mountains and flat floodplains, exposed over 70% of its population to various
natural hazards. Among these regions, the Mekong River Delta, the north-central region, and the central
coastal region face heightened vulnerability to the impacts of global warming. Given the challenges
posed by climate change, understanding its effects on rice production is vital for devising solutions to
enhance current food security and bolster the resilience of agricultural systems. Moreover, because
Vietnam has complex seasonal cropping systems, with crop calendars and patterns varying across agroe-
cological zones, it is crucial to assess these impacts within the context of specific seasonal variations to
effectively investigate the impacts of climate change on rice production (Trinh, 2018). Nevertheless,
research on the impact of climate variability on rice production in Vietnam, particularly in the central
regions, remains scarce (Chung et al., 2015).

Recent studies have explored the impact of climate change on agricultural production in Vietnam,
particularly emphasizing the cultivation of rice, given its significance as one of the world’s major rice-
producing regions. Despite many studies on the economic impact of climate change in many fields,
most of them used cross-sectional data and time series data (Chung et al., 2015; Huynh et al., 2020), and
a few used panel data (Trinh, 2018; Nguyen & Scrimgeour, 2022). In addition, most of these studies have
utilized Ordinary Least Square, fixed and random effect methods. To the best of our knowledge, there
are a limited number of studies in the existing literature that utilize feasible generalized least squares
(FGLS) models to examine the impacts of climate change. FGLS models are advantageous in dealing
with issues such as group-wise heteroscedasticity and autocorrelation within panels of the stochastic dis-
turbance term. These issues could deviate from the strict assumptions of traditional panel models,
potentially leading to biased estimations (Wu et al., 2021). Therefore, applying the model with the
strengths outlined above offers a promising approach to resolving existing challenges or issues left unre-
solved in previous studies in Vietnam. This application is expected to yield reliable results in assessing
the impact of climate on rice production in the study area, thereby enhancing the comprehensive
understanding and effective management of climate-related risks in the region’s agricultural sector.

The objective of this study is to employ a feasible generalized least squares model to examine how
climate change, with specific seasonal characteristics, affects rice productivity in the Central Coast of
Vietnam from 1996 to 2021. This study makes two main contributions to the existing literature: (i) this
study is the first to apply the FGLS model for more in-depth seasonal research of climate change
impacts over an extremely extended period of time in the Central Vietnam, while addressing both
group-wise heteroscedasticity and autocorrelation to obtain robust estimates for the panel analysis; and
(ii) the findings of this study provide scientific evidence for Vietnamese policymakers to propose appro-
priate farming measures to seasonal climate factors, aimed at adapting to and reducing the adverse
impact of climate change on the rice production sector. This scientific evidence can also be referenced
for regions with similar climate characteristics in other rice-cultivating countries in the world.

The remainder of this article is organized as follows. Section 2 reviews the literature. Section 3
describes the data sources and the methodology used. Section 4 represents and discusses the results.
Finally, Section 5 concludes the study with a summary of the findings and policy implications.
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2. Literature review

Researchers are increasingly directing their attention towards the economic consequences of climate change.
Previous research has yielded varying results regarding the anticipated response of rice to forthcoming cli-
mate change. Rayamajhee et al. (2021) highlighted the vulnerability of rural agricultural households in Nepal
to climate change. Employing the stochastic frontier function approach, their findings underscored the sig-
nificant negative effects on rice production resulting from alterations in both average and extreme precipita-
tion and temperatures. Emphasis was placed on the threats posed by irregular extreme rainfall patterns and
a sustained rise in average temperatures. Massagony et al. (2023) applied the feasible generalised least
squares (FGLS) model to examine the effects of climate change on rice production in Indonesia using histor-
ical data from 1986 to 2016. Their results revealed that increases in temperature and precipitation have
adverse effects on rice production, whereas higher relative humidity has a positive impact. Recognizing the
adverse impact of temperature changes on rice production, Mukhopadhyay and Das (2023) proposed a pro-
active solution and found that the adoption of new rice seed varieties with heightened temperature toler-
ance is more effective in mitigating the challenges posed by climate change.

Numerous studies have examined the impacts of climate change on rice production and yield, span-
ning diverse scopes (Kontgis et al., 2019), including national (Felkner et al., 2009; Nahar et al., 2018,
Firdaus et al., 2020), regional (Matthews et al., 1997; Li et al., 2017; van Oort & Zwart, 2018) and global
levels (Olszyk et al., 1999; Lobell & Gourdji, 2012). The primary tools for assessing the effects of climate
change on crop yield are crop simulation and statistical models (Shi et al., 2013). These models integrate
scientific principles from agronomy, agrometeorology, physiology, and soil science to simulate the com-
plex interactions between rice crops and their environments (Chavas et al., 2009; Shabbir et al., 2020;
Solaymani, 2023). On the other hand, statistical models for estimating the impact of climate change on
rice yields which involve using quantitative methods to analyze historical data (Trinh, 2018; Rayamajhee
et al., 2021; Tan et al., 2021). These models employ techniques such as regression analysis or other
machine learning algorithms to identify patterns and correlations between climate variables and crop
production (Elbasi et al., 2023). Unlike mechanistic crop simulation models, statistical models do not
simulate the underlying physiological processes but focus on empirical relationships within the data.
They provide valuable insights into how climatic factors influence crop yields, aiding in the assessment
of potential impacts under changing climatic conditions (Lobell & Burke, 2010).

According to Wu et al. (2021), previous studies indicated that statistical models exhibit strong
explanatory capabilities and surpass simulation models in accurately assessing data at specific spatial
scales. Additionally, the results generated by crop simulation models are sensitive to factors such as soil
conditions, weather, and management indices (Shi et al., 2013), whereas studies lack reliable data on soil
and management, offering ‘best-guess’ estimates with limited information on uncertainties from model
choices (Schlenker & Lobell, 2010). In addition, climate change has gradually unfolded, and its impact is
not immediately apparent. A model must be applied over an extended period of time to capture and
understand these effects. Hence, panel data analysis enhances the efficiency and consistency in estimat-
ing parameters, particularly when dealing with smaller sample sizes, leading to more robust and reliable
results (Baltagi, 2008; Hsiao, 2014).

Nevertheless, conventional panel models, including pooled Ordinary Least Squares (OLS), fixed effects,
and random effects models are influenced by strict assumptions, such as the absence of group-wise het-
eroscedasticity, and autocorrelation within panels of the stochastic disturbance term (Wu et al., 2021).
Violating these assumptions can result in biased and inefficient parameter estimates (Wooldridge, 2010).
Thus, it is important to apply a model that overcomes these limitations described above (Wu et al.,
2021). Internationally, several studies have used the FGLS model to investigate the impacts of climate
change (Ali et al., 2017; Kassaye et al., 2021; Wu et al., 2021; Massagony et al., 2023).

3. Materials and methods

3.1. Study area

To analyze the impact of climate change on rice yield in Central Coast of Vietnam, we utilized a panel
dataset of the 9 district-level units in Thua Thien Hue Province throughout 1996 to 2021. We chose to
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study in Thua Thien Hue Province because it is one of Vietnam’s most climate-vulnerable areas and is
often affected by natural disasters such as drought, typhoons, and flooding (Phuong et al., 2018; UNDP,
2018).

As shown in Figure 1, Thua Thien Hue Province is located in the Central Coast region, covering about
5025 km2: It borders Quang Tri Province to the north and Da Nang City to the south, shares a 81 km
boundary with Laos to the west, and has a 120 km coastline to the east. The province’s territory extends
in a northwest-southeast direction, with the longest section reaching 120 km along the coast and the
shortest, 44 km, in the west. Horizontally, it spans a northeast-southwest direction, with the widest part
measuring 65 km and the narrowest, in the southernmost area, approximately 2 to 3 km (TTHPPC, 2024).

3.2. Data collection

This study used the entire secondary dataset collected from various issues of the Thua Thien Hue
Statistical Yearbook, which is published annually from 1996 to 2021 by Thua Thien Hue Statistical Office
to reflect the local social, economic, and climatic situations. The data on rice yield were collected for
both the winter–spring and summer–autumn seasons from the nine district-level units of the province
represented three types of areas: coastal plains, midlands, and highlands. The monthly climatic data
were provided by the three-land based meteorological stations from Center for Hydrometeorological
Forecasting, located in three areas in Thua Thien Hue Province. The monthly data on meteorological var-
iables, such as temperature and relative humidity, were the averages of daily temperatures and daily
relative humidity within each month. The monthly data on precipitation were the total precipitation of
all days in the month. The daily data, collected using measurement methods, techniques, and precise
equipment, are aggregated into representative average monthly data by meteorological experts and offi-
cially published by the Thua Thien Hue Statistics Office, ensuring a certain level of reliability in the study.
Furthermore, the long-term research period is designed to offer a comprehensive view of climate
change impacts, so minor errors, if present, are considered acceptable.

Besides, minimum and maximum climatic variables used in this study are crucial for understanding
the impact of climate change on rice production. Extremes in weather conditions often contribute to
variations in rice production and may exert a greater influence on yields (Saud et al., 2022). Additionally,
different crops have distinct optimal minimum and maximum climatic conditions, such as temperature
and rainfall (Kumar et al., 2021). Therefore, understanding these impacts is necessary for establishing an
early warning and forecasting system for extreme weather events (Saud et al., 2022).

Figure 1. Map of the study area. Source: Wolf et al. (2021).
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Table 1. Descriptive statistics of variables used in the winter–spring season model and summer–autumn season
model.
Variable Definition Mean Std.Dev Minimum Maximum

Winter–spring
RY Rice yield (ton/ha) 5.22 0.92 2.87 7.79
Tmin Minimum temperature (�C) 19.27 1.46 15.1 21.8
Tmax Maximum temperature (�C) 27.67 1.44 23.1 29.6
Prmin Minimum precipitation (mm) 30.62 29.11 1.6 161.1
Prmax Maximum precipitation (mm) 428.56 248.67 24.4 1218.8
Hmin Minimum relative humidity (%) 82.37 3.20 75 89
Hmax Maximum relative humidity (%) 93.51 1.99 87 98
Summer–autumn
RY Rice yield (ton/ha) 4.81 0.98 2.03 6.49
Tmin Minimum temperature (�C) 26.90 1.58 20.2 29.4
Tmax Maximum temperature (�C) 28.84 1.28 24.7 31.1
Prmin Minimum precipitation (mm) 54.18 48.50 1.7 217.8
Prmax Maximum precipitation (mm) 257.37 136.14 52.6 650
Hmin Minimum relative humidity (%) 77.05 3.04 71 84
Hmax Maximum relative humidity (%) 83.93 2.81 76 91

Source: Authors’ estimation results.

Figure 2. The variations in climatic factors affecting rice yield from 1996 to 2021 in Thua Thien Hue Province. Source:
Authors’ calculation results.
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The dataset was collected annually in accordance with the summer–autumn and winter–spring sea-
sons and was compiled over the complete a 26-year period. The data for the winter–spring model were
obtained over a 6-month period, spanning from December to May of the subsequent year. The data for
the summer–autumn model were acquired over a 4-month period, ranging from May to August. The
total dataset was complete, and no missing data were imputed in this study. Finally, a panel dataset of
234 observations for each season model was used in this study, as shown in Table 1.

As demonstrated in Table 1, the minimum and maximum relative humidity indices in the winter–
spring season are 82.37 and 93.51, respectively, surpassing those in the summer–autumn season, which
stand at 77.05 and 83.93, respectively. While the minimum precipitation in the summer–autumn season
(54.18mm) exceeded that in the winter–spring season (30.62mm), the maximum precipitation in the
winter–spring season (428.56mm) surpassed the minimum precipitation in the summer–autumn season
(257.37mm). Furthermore, the minimum and maximum temperature indices in the winter–spring season
are 19.27 �C and 27.67 �C, respectively, both lower than those in the summer–autumn season, 26.9 �C
and 28.84 �C, respectively.

Figure 2 illustrates the trends of climatic factors from 1996 to 2021 in the Central Coast of Vietnam,
with the dotted lines indicating the trends of these factors. As shown in Figure 1, there were upward
trends in the maximum temperature in both seasons. Over the 26-year period, the maximum tempera-
ture increased by 1.8 �C in the summer–autumn season and 1.9 �C in the winter–spring season. During
the summer–autumn season, declines were observed in both maximum precipitation and maximum rela-
tive humidity, whereas in the winter–spring season, both climate indicators showed increasing trends.
The minimum temperature, precipitation, and relative humidity exhibited fluctuations across most sea-
sons, except for the upward trend of minimum temperature in the summer–autumn season by 3.4 �C.
Regarding precipitation, the maximum precipitation index with the greatest fluctuations was observed in
2005–2010 in the summer–autumn season, and in 2015–2020 in the winter–spring season. In fact, during
the aforementioned periods, the province experienced extreme weather events, especially in 2009/2010
and 2016/2017, with unusually high rainfall of up to 1176.3mm (2017), leading to historic floods that
greatly affected rice production and the livelihoods of farming households.

3.3. Model specification

Based on the literature review, the variables were used in the models including temperature, precipita-
tion, and humidity (Ali et al., 2017; Kumar et al., 2021; Massagony et al., 2023; Tan et al., 2021; Li, 2023).
The general form reflecting the relationship between rice yield and climatic factors in this study is
written as:

RYit ¼ f Tminit , Tmaxit ,Prminit,Prmaxit ,Hminit ,Hmaxitð Þ (1)

where RY denotes the dependent variable, rice yield, in District i at time t; Tmin denotes minimum tem-
perature; Tmax denotes maximum temperature; Prmin denotes minimum precipitation; Prmax denotes
maximum precipitation, Hmin denotes minimum relative humidity; Hmax denotes maximum relative
humidity. i represents the district and t represents time. Eq. (1) is transformed into an econometric
model in the logarithmic form denoted by Eq. (2), as:

lnRYit ¼ b0 þ b1lnTminit þ b2lnTmaxit þ b3lnPrminit þ b4lnPrmaxit
þb5lnHminit þ b6lnHmaxit þ lit (2)

where b0 represents the constant term; while b1, b2, b3, b4, b5, and b6 stand for the coeffi-
cients associated with explanatory variables; and lit signifies the error term.

3.4. Econometric methods

For empirical analysis using panel data, two commonly used models are the fixed effects model (FE) and ran-
dom effects model (RE). However, it is necessary to conduct a robustness check of these models to validate
the results derived from the appropriate model (Wu et al., 2021). The findings show that the results derived
from these two traditional models cannot address the issues of group-wise heteroscedasticity or
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autocorrelation within panels. According to Wooldridge (2010), effectively addressing extensive datasets and
challenges related to heteroscedasticity and autocorrelation can be achieved by employing the Feasible
Generalized Least Squares (FGLS) method. Considerable focus has been directed towards FGLS in recent
years, with several studies employing this method to examine the impact of climate change on agricultural
output (Reed & Ye, 2011; Ali et al., 2017; Kumar et al., 2021; Massagony et al., 2023).

Specifically, FGLS is particularly advantageous, producing efficient and consistent estimates of stand-
ard errors provided that the panel time dimension (T) is greater than the cross-sectional dimension (N)
(Beck & Katz, 1995; Naveen et al., 2021). This condition is satisfied when N< T, where N represents the
number of cross-sectional units (districts in our case) and T is the time period. In our study with nine dis-
tricts, the cross-sectional dimension (N) was less than the time period (T¼ 26), confirming the feasibility
of the FGLS method.

Therefore, we utilized the feasible generalized least square (FGLS) method in this study. Following
Kumar et al. (2021), the general model suggested by Parks (1967) can be expressed as follows:

b̂FGLS ¼ X
0
X̂

−1
X

� �−1
X

0
X̂

−1
y (3)

Var b̂FGLS

� �
¼ X

0
X̂

−1
X

� �−1
(4)

where X̂ is the assumption of autocorrelation and heteroscedasticity, b̂FGLS denotes the FGLS estimator
of b, y denotes the dependent variables, X denotes the vector of independent variables, and X

0
denotes

the transpose of X.

3.5. Diagnostic tests

Conducting diagnostic tests is crucial to ensure the robustness of the model. The primary tests con-
ducted in this study were as follows:

To determine whether to employ fixed or random effects models, researchers frequently utilize the
Hausman test proposed by Hausman in 1978. Nonetheless, it is important to recognize that the
Hausman test may not always offer a conclusive decision, as its validity is contingent upon stringent
conditions (Buckley et al., 2013). Therefore, we employed a Hausman-like alternative test, known as xto-
verid, which presents the Sargan–Hansen test of overidentifying restrictions for a panel data estimation
statistic (Schaffer & Stillman, 2016). The null hypothesis states that there is no systematic difference in
the coefficients.

To ensure the robustness of the applied panel regression, the Wooldridge’s (2010) test was employed
to detect autocorrelation. This is necessary because autocorrelation can result in biased standard errors
and a reduction in the efficiency of the parameter estimates (Hamilton, 1994). The null hypothesis of the
Wooldridge test is that there is no first-order autocorrelation.

The Modified Wald test, as proposed by Baum (2000), is a statistical test used to assess the presence
of panel groupwise heteroscedasticity in the fixed-effect regression model. The null hypothesis indicates
panel group-wise homoscedasticity and the alternative hypothesis signifies the existence of group-wise
heteroscedasticity within the model.

In light of the aforementioned validation, the feasible generalized least squares (FGLS) model was
employed to address the autocorrelation and groupwise heteroscedasticity issues of the models.

4. Results and discussions

4.1. Correlation analysis

Tables 2 and 3 show the pairwise correlation matrices between variables used in the models for the
summer–autumn and winter–spring seasons, respectively. The primary method for detecting multicolli-
nearity is through a pairwise correlation analysis using a correlation matrix. The results highlight the
nonexistence of a high correlation between the variables, effectively mitigating concerns regarding mul-
ticollinearity within the dataset. Commonly accepted thresholds, such as 0.8 and 0.9, are employed to
identify significant bivariate correlations, as they indicate strong linear associations or a high degree of
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correlation between two regressors (Mason & Perreault, 1991; Chan et al., 2022). Since the correlation
coefficients between pairs of variables are less than 0.8, there is an absence of multicollinearity among
the independent variables. In addition, a Variance Inflation Factor (VIF) test for multicollinearity was con-
ducted to eliminate any uncertainty regarding potential multicollinearity. Variance Inflation Factor is
described as a measure that quantifies the extent to which the variance of a regression coefficient is
increased due to the linear association between the predictor and other variables, compared to the vari-
ance if it were uncorrelated (Chatterjee & Hadi, 2006). A VIF value below 10 is generally considered
acceptable because higher values may indicate that multicollinearity is causing poor estimation of the
associated regression coefficients (Chatterjee & Hadi, 2006; Montgomery et al., 2012). The resulting mean
VIFs of 2.99 in the summer–autumn and 1.85 in the winter–spring models were significantly lower than
10, indicating that multicollinearity was unlikely to be an issue in this case.

4.2. Diagnostic tests

In our initial investigation, we employed panel data models, including both fixed effects (FE) and ran-
dom effects (RE). Table 4 presents the results of the panel regression. Variables Hmin, Hmax, Prmax,
Tmin and Tmax were statistically significant in the FE regression (summer–autumn season), whereas
Hmax, Prmax, and Tmin variables were statistically significant in the RE regression (summer–autumn sea-
son). In the winter–spring season, Hmin, Hmax, Prmax, Tmin and Tmax were statistically significant in
both FE and RE regressions.

Upon estimating the FE and RE models, we conducted a Sargan–Hansen test. As shown in Table 4,
the p-value of 0.000 was less than 0.05, leading to the rejection of the null hypothesis at the 5% level of
significance. This indicates that the fixed effects regression model was more appropriate for the research
Summer–Autumn dataset than the random effects regression model. In addition, with a p-value of 0.000
lower than 0.05, the null hypothesis was rejected at the 5% level of significance, indicating that the fixed
effects model was appropriate for the winter–spring model.

The outcomes of the diagnostic tests are shown in Table 5. The Modified Wald test was conducted to
assess the issue of group-wise heteroscedasticity in the summer–autumn season model using fixed-
effects regression. With a p-value of 0.000, the model was statistically significant, which indicates that
the null hypothesis was rejected at the 5% level of significance, meaning that group-wise heteroscedas-
ticity existed in the model. Similarly, the test was conducted to check the issue of group-wise heterosce-
dasticity in the winter–spring season model using fixed effects regression. The model had p-value of
0.0000, which was less than 0.05, indicating that the null hypothesis of homoscedasticity was rejected at

Table 3. Correlation matrix of winter–spring season.
lnRY lnTmin lnTmax lnPrmin lnPrmax lnHmin lnHmax

lnRY 1.0000
lnTmin 0.0798 1.0000
lnTmax 0.4376 0.6378 1.0000
lnPrmin −0.0409 0.0077 −0.1622 1.0000
lnPrmax 0.1530 −0.0990 −0.1558 0.0774 1.0000
lnHmin −0.2122 −0.3481 −0.7075 0.1108 0.1914 1.0000
lnHmax 0.1724 −0.3327 −0.3283 0.1368 0.4562 0.3460 1.0000

Source: Authors’ estimation results.

Table 2. Correlation matrix of summer–autumn season.
lnRY lnTmin lnTmax lnPrmin lnPrmax lnHmin lnHmax

lnRY 1.0000
lnTmin 0.6349 1.0000
lnTmax 0.4640 0.7899 1.0000
lnPrmin −0.2439 −0.3599 −0.5460 1.0000
lnPrmax −0.3452 −0.4707 −0.3374 0.4533 1.0000
lnHmin −0.0895 −0.2011 −0.4562 0.7648 0.2923 1.0000
lnHmax −0.2245 −0.5225 −0.5341 0.4473 0.5850 0.4925 1.0000

Source: Author’s estimation results.
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the 5% level of significance. This result implies that there was an issue of group-wise heteroscedasticity
in the model.

Subsequently, Wooldridge test was performed to check for the presence of autocorrelation in the
models. The summer–autumn season model had the test results of F(1,8) ¼ 5.053 and Prob >F¼ 0.0547,
which was greater than 0.05. This was not statistically significant, and the null hypothesis was accepted
at the 5% level of significance, implying that there was no autocorrelation in the model. In contrast, the
winter–spring season model had the test results of F(1,8) ¼ 32.819 and Prob >F¼ 0.0004 which was
smaller than 0.05. This indicated that the null hypothesis was rejected at the 5% level of significance;
hence, the model suffered the issue of autocorrelation.

The diagnostic tests revealed that the summer–autumn season model employing FE regression exhib-
ited group-wise heteroscedasticity, whereas the winter–spring season model utilizing FE regression
encountered both group-wise heteroscedasticity and autocorrelation issues. Therefore, to ensure reliable
and effective estimates, FGLS was used in this study to mitigate the limitations observed in the afore-
mentioned panel models.

4.3. FGLS estimation results

Table 6 illustrates the estimation results examining the impacts of climate change on rice yields in Thua
Thien Hue Province, employing the feasible generalized least squares (FGLS) model analysis. The findings
showed that in the winter–spring season, the estimated coefficient of Tmax is positive and statistically
significant at the 1% level. The value of the coefficient of Tmax reveals that the winter–spring rice yield
is expected to increase by 1.6581%, with every 1% increase in Tmax. In contrast, the estimated coeffi-
cient of Tmax during the summer–autumn season is negative and statistically significant at the 5% level.
Specifically, for every 1% rise in Tmax, the summer–autumn rice yield decreased by 1.0047%.

Table 5. Results of diagnostic tests.
Season Test Statistics

Summer–Autunm Modified Wald Test Chi2(9) 140.10
Prob> chi2 0.0000

Wooldridge Test F(1,8) 5.053
Prob> F 0.0547

Winter–Spring Modified Wald Test Chi2(9) 218.29
Prob> Chibar2 0.0000

Wooldridge Test F(1,8) 32.819
Prob> F 0.0004

Source: Authors’ estimation results.

Table 4. Panel regression results for summer–autumn and winter–spring seasons.

Variable

Summer–autumn Winter–spring

Fixed effect Random effect Fixed effect Random effect
Coefficient Coefficient Coefficient Coefficient

lnTmin 1.9913���
(0.3204)

2.3946���
(0.3288)

−0.7362���
(0.1610)

−0.7589���
(0.1635)

lnTmax 3.4800���
(0.7917)

0.6542
(0.5665)

4.3170���
(0.4678)

3.6641���
(0.3977)

lnPrmin 0.0023
(0.0172)

−0.0046
(0.0179)

0.01435
(0.0104)

0.0127
(0.0105)

lnPrmax −0.0640��
(0.0263)

−0.0510�
(0.0274)

0.0394��
(0.0164)

0.0372��
(0.0167)

lnHmin 1.3924���
(0.4841)

0.4539
(0.4754)

1.4524���
(0.4057)

1.1258���
(0.3843)

lnHmax 0.9370��
(0.4621)

1.1392��
(0.4785)

2.0992���
(0.5322)

2.0205���
(0.5387)

Constant −26.5592���
(3.784)

−15.2545���
(3.0492)

−26.7221���
(3.8858)

−22.6733���
(3.5362)

R2 0.3626 0.4236 0.3559 0.3680
Sargan-Hansen Statistic

P-value
36.583
0.000

110.866
0.000

Note. ���p< 0.01, ��p< 0.05, �p< 0.1. The standard errors are shown in parentheses.
Source: Author’s estimation results.
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In addition, the estimated coefficient of Tmin in the winter–spring season is negative, whereas it is
positive in the summer–autumn season, both of which are statistically significant at the 1% level. The
values of the coefficients reveal that a 1% increase in Tmin decreases rice yield by 0.3035% in the win-
ter–spring season. In contrast, for every 1% increase in Tmin, the rice yield in summer–autumn season is
estimated to increase by 3.3186%.

Regarding precipitation, the estimated coefficient of Prmax in the summer–autumn season is negative
and statistically significant at the 10% level. The value of Prmax justifies that a 1% increase in Prmax
decreases in the summer–autumn rice yield by 0.0386%.

For humidity, in the spring–winter season, the estimated coefficient of Hmin is positive and statistic-
ally significant at the 1% level. The coefficient of Hmin shows that spring–winter rice yield increases by
0.8557%, with a 1% increase in Hmin. This indicates that the minimum humidity has a positive impact
on rice yield during the spring–winter season. Moreover, the estimated coefficients of Hmax in both
models are positive and statistically significant at the 1% level. Specifically, a 1% rise in Hmax would
increase the winter–spring and summer–autumn rice yields by 1.2912% and 1.4363%, respectively.

4.4. Discussion

Over the 26-year period, the climate change factors exhibited annual variations (see Figure 2). The aver-
age annual maximum temperature increased by 0.069 �C during the summer–autumn season and by
0.073 �C during the winter–spring season. The average annual minimum temperature rose by 0.131 �C in
the summer–autumn season, while it decreased by 0.023 �C in the winter–spring season. Additionally,
the annual maximum precipitation decreased by 6.5mm during the summer–autumn season. For relative
humidity, the average annual maximum decreased by 0.154% during the summer–autumn season and
increased by 0.138% during the winter–spring season. Conversely, the average annual minimum relative
humidity declined by 0.127% during the winter–spring season.

Based on the findings of this study in Table 6, the maximum temperature positively affects rice yield
in the winter–spring season. This is likely due to the fact that in the winter–spring crop, the highest tem-
perature remains relatively low. Consequently, warmer temperatures are expected to positively influence
on the growth and development of rice plants. In fact, the rice yield increased from 5.54 tonnes to 5.62
tonnes over the 2009–2010 period (TTHSO, 2010). This finding supports the empirical results found in
previous studies of Ali et al. (2017) and Li (2023). By contrast, the maximum temperature has a negative
impact on the rice yield during the summer–autumn season. This is likely due to the fact that the
Summer–Autumn rice crop is the hottest season of the year, causing the increase in maximum tempera-
ture to adversely affect rice growth, as evidenced by a decline in rice yield from 6.07 tonnes to 5.75
tonnes during the 2018–2019 period (TTHSO, 2019). The result is in line with those of previous studies
(Shabbir et al. 2020; Massagony et al. 2023; Solaymani, 2023).

While the minimum temperature has a negative impact on rice yield in the winter–spring season, it
positively affects rice yield in the summer–autumn season. This is consistent with the typical weather
conditions of the winter–spring season, which are characterized by low temperatures; hence, warmer
weather during this period would consequently have a detrimental effect on rice growth. Indeed, this is

Table 6. Results of FGLS estimation.

Variable

Winter–spring Summer–autumn

Coefficient Standard error Coefficient Standard error

lnTmin −0.3035��� 0.0847 3.3186��� 0.3407
lnTmax 1.6581��� 0.2955 −1.0047�� 0.4383
lnPrmin −0.0022 0.0052 −0.0093 0.0165
lnPrmax 0.0122 0.0092 −0.0386� 0.0230
lnHmin 0.8557��� 0.2271 0.1501 0.4244
lnHmax 1.2912��� 0.3203 1.4363��� 0.4068
Constant −12.6592��� 2.5077 −12.7490��� 2.4154
Wald chi2(6)

Prob> chi2
64.17
0.000

270.97
0.000

Note. ���p< 0.01, ��p< 0.05, �p< 0.1. The standard errors are shown in parentheses.
Source: Authors’ estimation results.
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reflected by the reduction in the rice yield from 6.62 tonnes to 5.9 tonnes over the 2019–2020 period
(TTHSO, 2019). The finding is consistent with that of Lobell and Gourdji (2012), Ali et al. (2017), and
Massagony et al. (2023). Conversely, the summer–autumn season is typically characterized by warm wea-
ther, which makes an increase in minimum temperature conducive to rice growth and improved yield. It
is consistent with the findings of Tan et al. (2021) and Li (2023).

In terms of precipitation, the maximum precipitation has a negative impact on rice yield during the
summer–autumn season. This was likely due to the frequent occurrence of heavy rains, storms and
floods during the middle and end of the season (from August to September), coinciding with the rice
flowering and ripening period, thereby resulting in drowning or damage to rice plants, ultimately reduc-
ing yields. This is indicated in the decline in rice yield from 5.33 tonnes to 5.07 tonnes over the period
of 2009–2010 (TTHSO, 2010). The result is consistent with that of Zhao et al. (2022), Tan et al. (2021),
and Massagony et al. (2023).

In relation to humidity, the maximum relative humidity also positively impacts on rice yield in both
seasons. This can be explained by the fact that maintaining relative humidity ensures the presence of
adequate moisture in the air, thereby alleviating water stress on rice plants, particularly in regions sus-
ceptible to drought caused by escalating temperatures. Consequently, an increase in humidity levels
may enhance rice yields. For instance, this is evidenced by the increase in winter–spring rice yield from
6.07 tonnes to 6.24 tonnes during the 2016–2017 period (TTHSO, 2017). It is consistent with the findings
of Zhang et al. (2017) and Massagony et al. (2021). Specifically, Zhang et al. (2017) and Massagony et al.
(2023) highlighted the significance of additional climatic factors, such as humidity, for crop growth,
because neglecting this variable could lead to biased predictions of the impacts of climate change on
crop yields.

Overall, this study showed that the impact of climate change on rice productivity is complex and
multifaceted. Notably, while climate change can have detrimental effects on rice yields, it may also exert
positive influences in certain situations, depending on the specific seasonal rice crops under consider-
ation. The study’s significant findings indicate that an increase in maximum temperature and minimum
temperature is beneficial to rice yields during the winter–spring and summer–autumn seasons, respect-
ively. This result contrasts with the findings of a previous study conducted in Central Vietnam by Chung
et al. (2015). Furthermore, the increase in both maximum and minimum relative humidity has been iden-
tified as having a positive effect on rice yields. This finding underscores the critical importance of humid-
ity in rice production, which is rarely mentioned in previous studies conducted in the study area (Chung
et al., 2015; Trinh, 2018; Nguyen & Scrimgeour, 2022).

5. Conclusion and policy implications

Climate change, with its profound impact on agricultural production, has emerged as a global con-
cern, largely due to the critical importance of food security. In response to this growing issue, the
study examines the impacts of seasonal climate change on rice productivity in the Central Coast of
Vietnam. In general, the results of this study revealed the distinct impacts of climatic variation on
rice yield across different seasons. Furthermore, the study highlighted significant findings that
increases in maximum and minimum temperatures, are not only detrimental but also beneficial for
rice yields, considering different crop seasons. It also provided evidence emphasizing the crucial role
of humidity in rice production.

Specifically, during the winter–spring season, it was observed that the minimum temperature nega-
tively impacts rice yield, while both minimum and maximum relative humidity, along with the maximum
temperature, were found to exert a positive influence on rice yield during this period. Conversely, in the
summer–autumn season, the maximum relative humidity and minimum temperature positively affected
rice yield. However, elevated levels of maximum precipitation and maximum temperature during this
season were identified as detrimental factors that negatively impacted rice yield.

These findings underscore the significance of recognizing seasonal variations in weather dynamics
when assessing the rice cultivation productivity, thereby emphasizing the need for tailored agricultural
strategies based on prevailing climatic conditions. The study recommends that rice producers enhance
the resilience of rice production to climate change, which necessitates the improvement of water
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supply and drainage systems in low-lying areas and regions adjacent to the lagoon. Second, priority
should be given to ensuring adequate moisture levels for the crops, particularly during the dry season.
Thirdly, disseminating adaptive rain and storm warning information to communities and introducing
drought-resistant and flood-tolerant rice varieties represent effective measures to promote the increased
adaptability of rice production to climate change.

This study offers valuable insights into the impact of climate indicators on rice productivity. However,
certain limitations, such as data constraints, should be addressed in future research. Although the study
highlights the seasonal impact of climate change on rice crops, the available data did not allow for a
more intensive analysis of the effects on each growth stage of the rice plant. Future studies that inte-
grate specific farming techniques may help overcome this limitation, leading to the development of a
more detailed climatic warning system for rice farmers and policymakers.
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