~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

During, Bertram

Working Paper
Asset pricing under information with stochastic volatility

CoFE Discussion Paper, No. 08/04

Provided in Cooperation with:
University of Konstanz, Center of Finance and Econometrics (CoFE)

Suggested Citation: During, Bertram (2008) : Asset pricing under information with stochastic
volatility, CoFE Discussion Paper, No. 08/04, University of Konstanz, Center of Finance and
Econometrics (CoFE), Konstanz,

https://nbn-resolving.de/urn:nbn:de:bsz:352-opus-116757

This Version is available at:
https://hdl.handle.net/10419/32164

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:bsz:352-opus-116757%0A
https://hdl.handle.net/10419/32164
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Asset pricing under information with stochastic volatility

Bertram D Uiring

Abstract Based on a general specification of the asset specific pri@ngel, we
develop a pricing model using an information process witlctsastic volatility. We
derive analytical asset and option pricing formulas. Treegaprices in this rational
expectations model exhibit crash-like, strong downwardienoents. The resulting
option pricing formula is consistent with the strong negatikewness and high levels
of kurtosis observed in empirical studies. Furthermore determine credit spreads
in a simple structural model.

Keywords Pricing kernel- stochastic volatility: asset pricing option pricing-
credit spreads

1 Introduction

Asset pricing for stocks, bonds, or derivatives is based xpee&ations about fu-
ture cash flows and risk preferences. This view is emphasiyeth equilibrium ap-
proach, the stochastic discount factor or pricing kerng@rragch, which goes back
to Rubinstein (1976) and Brennan (1979). Another, tradél@pproach is to specify
an asset price process exogenously and price by no-amérggments. The seminal
example of this approach is Black and Scholes (1973) pappricimg of European-
style options. Bick (1987) reconciles both approaches byaig that the geometric
Brownian motion is consistent with a representative irmestonomy and that given
the representative investor maximizes a von Neumann-Nhatgen utility function
over terminal wealth and the asset represents total wesalti, a stochastic process
implies constant relative risk aversion.

In this paper we follow the pricing kernel approach. The ipdgdkernel has the
important property that the forward asset price equalsxpeceted value of the prod-
uct of the terminal asset value and the pricing kernel. Matitecally, the pricing
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kernel characterizes the change from the subjective piiilyabeasureP to the risk-
neutral (or equivalent martingale) measQrdt is also known as the Radon-Nikodym
derivative ofQ with respect tdP. In this view, any pricing problem is completely de-
termined by the distribution of terminal asset value andstiagpe of the asset specific
pricing kernel (ASPK). The asset specific pricing kernelhis pricing kernel con-
ditioned on the payoffs of an asset. For a detailed discassfidhe pricing kernel
and the asset specific pricing kernel we refer the readeettetttbook of Cochrane
(2001) as well as to the articles ob@ara (2003, 2005).

Rubinstein (1976) and Brennan (1979) make explicit assiompton the dis-
tribution and the ASPK. More precisely, they assume a rgptesive investor and
thus the representative investor’s utility function cltéesizes the ASPK. Similar,
Black and Scholes (1973) assume that the underlying is logaity distributed, i.e.,
the information process follows a geometric Brownian muot&nd investors are con-
stant relative risk averse, or the asset specific pricingeddras constant elasticity
with respect to the underlying asset (see Bick, 1987; Frehké, 1999). These as-
sumptions lead to simple, explicit pricing formulas. Hoeewempirical research re-
vealed that they are not able to explain important effecteedal financial markets,
e.g. the volatility smile (or skew) in option prices, sefakrelation in asset returns
and excess and random volatility. One approach to explaih sffects was to incor-
porate learning effects (e.g. Campbell and Cochrane, 188@)irrational behavior
as overconfidence (e.g. Daniel et. al., 2001). Another venhliterature analyzes the
effect of risk preferences. Empirical studies by Ait-Sénahd Lo (2000), Jackwerth
(2000) and Rosenberg and Engle (2002) suggest that thagkernel is not of the
constant elasticity type.

Several papers have analyzed the impact of non-constasticitla on option
prices (see e.g. Benninga and Mayshar, 2000; Franke et%9)1Among others,
Franke et al. (1999),liders and Franke (2004) andifng and Lilders (2005) showed
that declining relative risk aversion leads to serial datien in asset returns and
smile effects in option implied volatility. Dring and lilders (2005) provided ex-
plicit, analytical option pricing formulas for ASPKs wittedlining elasticity, when
the underlying information process follows a lognormag)-lsamma, normal or uni-
form, with a single risk factor. Other authors (e.carara, 2003; Schroder, 2004;
Vitiello and Poon, 2006) recently also extended their apphes to alternative distri-
butions and utility functions, where they focus on prefesesiand distributions which
yield risk neutral valuation relationships, i.e. priciragrhulas without any preference
parameter.

However, all these models only includeiagle risk factor. In real financial mar-
kets, not only asset returns are subject to risk, but alsestimate of the riskiness
is typically subject to significant uncertainty. To incorate such additional source
of randomness into an asset pricing model, one has to inteodsecond risk factor.
This also allows to fit higher moments of the asset returrmritdigion. In the tradi-
tional pricing approach mentioned above, one of the moshrent works in this
direction is the Heston (1993) model. Based on an exogenssaet @rice process
with stochastic volatility, explicit option pricing fornhas are derived. The Heston
(2993) model can be used successfully and allows also toted fidt market data.
However, empirical tests of the model in Bakshi et al. (198aye shown that the



fitted parameters are not consistent with parameters froma series data. This is
economically unsatisfactory, since the model paramet&se their economic inter-
pretation. In particular, the model demands for unreaderiabels of correlation and
volatility of volatility to match the skewness and kurtosffects observed in market
option prices. Generally, an exogenously given price geceems unpleasant from
an economic point of view, since any price process which ctbe supported by an
economic model, lacks an economic justification and is sligethe objection of
being arbitrary.

The focus of this paper is to derive analytical asset priédngnulas which impose
as little as possible restrictions on the shape of the ASRKraziude a second, corre-
lated risk factor in the modelling of the information prose$o this end, we consider
an information process that is driven byveo-dimensional diffusion. Our approach
is based on a class of ASPKs with declining elasticity. Is tiass of ASPKs, we de-
rive analytical asset and option pricing formulas and chetiee credit spreads using
a structural model approach.

Our approach should not be confused with the (also calleshdimensional risk-
neutral valuation relationshipsiin Franke et al. (2007 ¥al, their approach is quite
different from ours. They use a (declining elasticity) prgc kernel with two pa-
rameters, whereas we employ the generalized pricing keorginally proposed in
Liders and Franke (2004). Moreover, Franke et al. (2007)g3®p generalized log-
normal distribution with two parameters. We use an infofamaprocess driven by a
two-dimensional diffusion with correlation, i.e. we inthace stochastic volatility as
an additional risk factor. Then we derive explicit formulasthe case of a non-central
chi-squared distribution of the volatility. We do not réstiourselves to risk-neutral
valuation relationships, but are interested in derivingliek formulas to obtain a
better understanding of the impact of investor preferencessset pricing.

The contribution of our pricing model to the existing asset aption pricing lit-
erature consists of several aspects: The enhanced flegxibilour two-dimensional
model allows for more accurate analytical and tractabletasd option pricing for-
mulas. For example, our model provides an explanation fstetike phenomena in
time series of asset prices based on a rational expectappmeach. It also seems to
be a promising approach for pricing options on a stock indetha S&P 500, since it
allows to fit reasonable levels of kurtosis and skewnessawlsing model parameters
from time-series data. Credit spreads computed from ouremoé simple structural
model framework show quantitatively and qualitativelyenfeatures. Moreover, our
approach provides a convenient and more precise way to znéhe quantitative
implications of non-constant elasticity of the ASPK. Alsince only the expected
terminal distribution of the underlying needs to be knowpriésents an interesting
model to price options when the underlying is not traded @sexample, with real
options.

The paper is organized as follows. Section 2 presents thketnarodel and the
class of generalized ASPKs. In Section 3 the general valnapproach using the
generalized characterization of the ASPK is shown. Basethisrclass of ASPKSs,
we derive analytical pricing formulas for assets and Euaopaptions, when the final
distribution at timeT is characterized by an information process that is driven by
a two-dimensional diffusion with stochastic volatilityufthermore, we determine



credit spreads in a simple structural model. In Section dimuestigate the influence
of non-constant elasticity of the ASPK and stochastic Vitkaof the information
process on asset and option prices and credit spreads. Pke ipacompleted by a
short conclusion.

2 The model

Throughout this paper we consider a market with a given tiorézbn T > 0. We
assume that the asset does not pay any dividends until t@roéeT. To simplify
the presentation we consider forward asset prices in tiisrpaAlternatively, one can
assume the riskless interest rate to be zero. The fundah@sseet pricing equation
states that in an arbitrage free market the price of an asgg@teén by the expected
future value of the asset, where the expectation is takearnsame equivalent mar-
tingale measur®. The equivalent martingale meas@eés defined by

Q(A):/qz; dP. VAe .7,
A

with the physical measurB and the asset specific pricing kernghk. Given the
equivalent martingale measure is defined by the ASPK the forward asset price
R for 0 <t < T can be written as

R=E9lr] =E[lrar| 7,

wherely is the value of an information process at the terminal dagnd the filtra-
tion % characterizes the information available at timg® < T. Here and in the
following E[-] denotes the expected value with respect to the subjectiasuneP.
The information process is exogenously given and definedeasdnditional expec-
tation of the terminal value of the underlying asset, l.e= E[Fr|.%]. Due to the
definition of the information proceds, the valuelt is equal to the terminal time
T value of the underlying. This may be either some liquidatrafue at timeT or
simply the asset price at time. Since the information process characterizes condi-
tional expectations, it is a martingale; its drift is zerah@wise, the investor could
improve his forecasts by anticipating the expected chandwsi forecasts. Assum-
ing such an exogenous information process to model thenrdtion in the economy
is common. The main advantages of this approach are thaaip&simonious and
intuitive way to characterize the filtration and that it hasegonomic interpretation,
see Franke et al. (1999).

It follows that the price of a European call option with stripriceK and expira-
tion dateT is given by

G =E[maxlt —K,0)@7|.%#], 0<t<T.

Throughout this paper, we will assume that the distributémy and the filtration
(‘%)te[oﬂ are exogenously given. Our emphasis is to analyze the ingptet ASPK
on asset prices, European option prices and credit spreads.



We do not restrict ourselves to a single investor. Given arbgeneous group of
investors, however, it is known that their aggregation tegresentative investor is
non-trivial. Therefore, we here do not derive an equilibrjuand will simply assume
the existence of a pricing kernel. Concerning the viabidligussion in two factor
models we refer to Pham and Touzi (1996). They derive vigbilonditions from
the representative investor’s optimality condition andvgithat viability in the two-
factor model implies that the pricing kernel is a deterntiniuinction of time, wealth
and volatility. Since we are interested in deriving explfarmulas, we neglect an
additional dependence of the ASPK on volatility in our asay In particular, we
follow L iiders and Franke (2004) who suggest to characterize the ASPK

N 3
@1 = iz Gily } 0<t<T, 1)

with a;,& € R, N € NU{»}. To generate arbitrage-free asset prices the only re-
striction which has to be imposed on the parameters is thagOr < o, P-a.s. This
specification is rather general so that many different diarstics of the ASPK can

be matched. Obviously the power function is a special caie Wi= 1 in equation

(1). This shape of the ASPK can either be related to a repratbaninvestor with
declining relative risk aversion or to the aggregatioiNafvestors with power utility
(see Diuring and lilders, 2005).

The flexibility of the ASPK is of great importance for optioriging but also for
empirical investigations of option markets since recenpieical literature points to
very complicated functional forms of empirical ASPKs. Thaimadvantage of this
class of ASPKs, besides the fact that very flexible shapdsedad$set specific pricing
kernel can be well approximated, is that these ASPKs areactexized by a series of
non-central moments of the random variable. Hence, foeudifit,one-dimensional
distributions of the underlying asset, the ASPK and asse¢phave been computed
(Luders and Franke, 2004) and analytical option pricing féasibhave been derived
(During and lilders, 2005). Let us mention that in the literature thereatse other
parametric approaches to study the form of the ASPK, amohegrstthe orthogo-
nal polynomial approach of Rosenberg and Engle (2008jirg and Liiders (2005)
provides a discussion of the technical aspects of chaizaten (1) as well as a
comparison with other approaches to model the ASPK. Notectiaracterization (1)
can also be further generalized to allow for more flexibilittime by allowing the
coefficients to be functions of time rather than being camstaithout affecting the
main results of this paper. We give an example in Sectiohld.the following sec-
tion we derive analytical formulas for asset prices and peam option prices based
on this class of ASPK when the information process is a twoedisional diffusion
with stochastic volatility. We also consider credit spreada simple structural model
framework.



3 Asset prices, options and credit spreads

We consider a two-dimensional standard Brownian moténr= (V\4(l),V\4(2)) with
correlationde(l)dw(z) = pdt on a given filtered probability spade2,.7,.%,P)
where(%)te[qﬂ is the filtration generated BY augmented by all the#-null sets,
with % = .Z1. We assume that the value of the underlying asset at expirstgiven
by I+ which is characterized by

di = ﬁ'th\{(l)7
doi = a(oy) dt + b(c) dwy ?, 2)

for 0 <t < T with lg, g9 > 0. Intuitively, such an information structure models the
uncertainty about the “true” riskiness bf. Or, in other words, it accounts for the
fact that not only the terminal value itself but also the amtoof risk associated
with it is unknown. Different choices for the drift coeffitiea(c;) and diffusion
coefficientb(ot) will lead to different models. By introducing a second risictor
this characterization of the information process is morgilfle and realistic than
the ones used previously in the literature. Through apjatechoices for the drift
function a(at) it allows to introduce mean-reverting patterns of volgtilishocks’
which model information events like profit warnings.

3.1 The general pricing methodology

Our pricing methodology works in general as follows. In doitaage-free market the
value of a European call (with expiration datgat timet < T is given by

C(l,at,t) = E[max(lt —K,0) @ 1| %#].

Assume that the asset specific pricing kernel is charaegiiy equation (1) and
definep(t, &) = E[13].#;]. This yields

SNyt SN, aild
C(l, 0p,t) =E K 0
(et [max<zi“=1aiu<né> SN an,a)

(o)

%1 ®)

_ [ ahart DL
/ S o) J e YT

M@ R (i) s (a7 (T i)
ZiNzlaiu(tvd) ZiNzlai“(t?&)

where f (I1,t) is the conditional density function df whereoy is arbitrary. The
price of a European put can be determined similarly or froengtht-call parity. For
the underlying asset this equation further simplifies to

SNl SR aiu(t,§+1)
: lZiNlailJ(tad) t S aip(t, &)

f(lv,t)dly =K

)

(4)
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In the next two subsections we choose a specific form of tHe aréfficienta(or)
and the diffusion coefficiertt(ct). This allows us to derive analytical formulas for
asset prices and European call options. Moreover, we deteranedit spreads of
corporate bonds using a structural model approach.

3.2 Analytical formulas for asset and option prices

In the following we choose the drift and diffusion coefficiém (2) to be
a(a)=k(6—0a) and b(c)=v/0x,

respectively, where is the constant mean reversion spe@ds the long-run mean
of a;, andv is the constant volatility of volatility. Hence, the voléi is non-central
chi-squared distributed.

First, consider a European call option with strike priic¢hat expires at timd .
Then, from equation (3) and the fact thatis distributed according to (2) it follows
by rearranging the terms that option prices in this ASPK<te given by

N max(It —K,0)a;l?

Ei,\lzlail'?i 1%‘|
E[sN,ail? | 7]
=E ’ F
[-Zl el51yald| 7 |
_ Elail? | %] [max(lT K,0)ail? yl
D R o e

We prove in the appendix, that this can be understood as ahte€igum of option
prices,

C(l,a,t)=E [max(lT —K,0)

Itao.tv Zim C:I O‘t;t K) (5)

wherecwy are weights and the pric€ are given by

Ci (Ft(i)7 O-tvt; K) = Ft(i)jl - Kfz,

with (k= 1,2)
—i&In(K
2t / [ E)]df (6)
fi(€) =T 80 AT-10) BT LE:G0- BT LG HE M
s 1-g¢" Cbid1oé
ATE) =7 |brdr-2in(= 2 )| e =" 1 o
= g, d= \/(EZ—HE (1—26K)+5K(1_6K))V2+b2'

b=k—-pv(i§+&), =46+l &=4a,



The ‘virtual asset’ pricﬁ(i) is given by

o _ ENFA
E[1F]7]
— 1, MT 108+ -AT-t0:8)+a[BT-t0:3+1)-BT-10:8)]  g<t<T.
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t

We call this a virtual asset price sinEé') is the price that would hold if the elasticity
of the ASPK werej. The derivation of (7) is also given in the appendix.

To get a better understanding of equation (5), note tHdt# 1 andd = —1 then
the first term in equation (5) is one and the option price iegiby a formula, which
looks similar as the Heston (1993, p.331) option pricingrfola. However, recall that
in the present situation the ASPK is given by a power funcgtianile in the Heston
case it is not. So the formulas do not coincideNIf> 1 then the option price is a
weighted sum of option prices, where every prlq(aFé ai,t;K) corresponds to an
economy with constant elasticity. For very small levels of volatility of volatility,
i.e. asv — 0, the evolution of the volatility becomes deterministiende, formula
(5) approaches the values of the generalized Black-Scpdleag formula derived in
Diring and liiders|(2005) ag — 0, with time-averaged volatilitg = T—{t j;T o dr.

If, additionally, N = 1 andd = —1, we recover the Black-Scholes formula.

The price of the underlying asset under the generalized ABRiven by the

weighted sum

a||&|/t

SE[gN, aily |/t

The proposed class of ASPKs therefore yields an analyticatdilas for asset prices
and for European options which are given by a weighted suneoélized prices
with stochastic volatility. Note that these formulas aréten in terms of the expected
terminal valud; of the underlying. This can be sometimes more conveniergnio
market price for the underlying is available but the investoave some knowledge
about the expected future payoff of the underlying. Moreopgcing formulas de-
pending explicitly on investors’ expectations and on theapeeters of the ASPK can
be applied as a tool to study the impact of expectations agfgnces on asset and
option prices. In the case that asset prices are availdt#eliservable price of the

underlying is given by (8).

3.3 Credit spreads in a simple structural model

The yield difference between corporate bonds and treasumgddue to credit risk
is called the credit spread. In this section we investigateglit spreads under the
generalized ASPK and the dynamics lpfas given above. Here, we will only be
concerned with the fraction of the credit spread that isdtétl by default risk. Other
important factors like illiquidity and asymmetric taxati@re not considered here.
We develop a simple structural model. We assume that a firaessa risky zero



coupon bondZ that can only default at maturity. The bond defaults if the firm
value at maturity is lower than a given default boundaryVe consider two different
scenarios of investor compensation in case of default:

1. In case of default, bond holders receiveastant recovery rate R< (0,1). Under
these assumptions we show in the appendix that the crediadis given by

——EInZ(I o, t ——Eh’] 1-(1—-R S Zi(l t;D (9)
y= T ts ta)_ T [ ( )I;m I(tao-tax )}

where each {1, ot,t; D) is corresponding to an economy with constant elasticity
& and it holds

_ 11 7 e 1€n(D) £ ()
ZI(Itvo-ht!D) - é + T[O/Re|:|5:| df)
f(&) = eA(Tft,E;d)fA(Tft,O;cﬁ)+at[B(Tft,é;c‘ii)7B(T7t.0;&)]+i5InI’
R 1-ge™r _ b+d 1—€"
A(T,&) = 3 [(b+d)r—2ln< 1-g >:|7 B(1,§) = V2 1_get
9= 0 d= /(€24 (1-26) +8(1-8) 12

b=k —pv(i&+3a).

2. In case of default, bond holders receiveoastant fraction R € (0,1) of the ter-
minal firm valueFy . Under these assumptions it can be seen that the credit spread
is given by

1 1 N
y=-ZIZ(, o) = —<In[1-(1-R Y @R, (o)

where R(l;, ai,t; D) are put option prices corresponding to an economy with con-
stant elasticityd. For very small levels of volatility of volatility, i.e. ag — 0,

the evolution of the volatility becomes deterministic. fThgEN =1 andd = —1,

the credit spreads of formula (10) approach the spreads ofomMé1974) with
averaged volatilityo = ¢ ;" o dr.

We close this section with a note on the implementation ofath@ve formulas. All
formulas can easily be implemented and efficiently compirtedal-time. However,
there are two subtle points to note. First, the integrangeagng in the numerical
integration which has to be performed can by highly osdiltatTherefore, the use of
an adaptive integration method is recommended. We use gisel&aul3-Lobatto
guadrature formula in our numerical simulations. The sddegsue is related to the
complex logarithm appearing in the formulas. Standardbakgje software will typi-
cally return the principal value of the complex logarithmigihhas a branch cut along
the negative real axis. If during numerical integration éingument in the complex
logarithm crosses this axis, numerical problems can o&iuarilar problems appear
in the numerical implementation of the Heston (1993) optoiging formula. Dif-
ferent solutions to it have been suggested in the literatfir&ahl and ackel (2005)
and Albrecher et al. (2007).
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4 Effects of different pricing kernels
4.1 Asset prices with excess volatility

To study the quantitative implications of non-constansttity of the ASPK and to
get a better understanding of the influence of the model patersy we first take a
look at the price of the underlying, given By (8). Figure 1whalots of the underly-
ing’s price for different parameter sets for

— a two-term pricing kernel with declining elasticity with=2, a; = 1, a2 =5,
& =-1, & =-10,and for
— a standard pricing kernel with constant elasticity with=1, a1 =1, & = —1.

The left plot shows prices for different values of volatilio; while the volatility
of volatility v = 0.1 is fixed. The right plot shows prices for different choices f
the volatility of volatility v while the actual volatility is kept constant et = 0.04.

In both plots, the time horizon i$ —t = 3 years, the long-run mean of volatility
6 = 0.04 and other parameter values are as shown in Table 1. Urel&SRK with
constant elasticity the information and the asset pricevsntnear dependence. For
the ASPK with declining elasticity the relationship becasé&ongly nonlinear, with
regions where an investor is only willing to pay a slightlgheér price for the assetin
spite of grown expectations on the asset’s terminal valugh® other hand, there are
regions, where the asset price that is rational under thestor preferences is rising
fast although little additional information is provided eVdbserve that the price of
the underlying is decreasing with increasing actual vithatio;. It also decreases
when volatility of volatility v is increased for both pricing kernels, although for the
standard pricing kernel the differences are very smalleNloat the plots display the
asset price depending on the information lelyedt the fixed timel —t = 3. With
time approaching maturity the ‘hump-shaped’ asset pridlesmioothly approach the
identity, since at maturity asset price and informatiorel@oincide, i.eFr =It. To
study the influence of the ASPK on the temporal evolution eéaprices we simulate
(2) using Monte Carlo simulation. We compute times seriea daily basis using an
Euler-Maruyama discretization. The time horizon is 3 year§56 business days.
For the current volatility and its long-run mean we uge- 6 = 0.016641. The other
parameters are as shown in Table 1. Some sample time sexishawn in Figure 2.
Below each time series plot daily log returns of the inforioratand the asset price
process are shown.

Table 1: Default parameters for numerical simulations.

Parameter Value

correlation p=-0.28
volatility of volatility v=0.1
mean reversion speed K =1.16
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Fig. 1: PriceR of the underlying asset as a function of the information lidvéor
a two-term pricing kernel (thick linedN =2, a3 =1,0, =5, & = -1, & = —10)
and for a standard pricing kernel with constant elastidityn(lines,N =1, a3 =1,
o = —1) The left figure shows prices for different values of voigtilo; and the
right for different choices for the volatility of volatiltv. The time to maturity is
T —t = 3 years and other parameter values are as shown in[Table 1.

The asset pric&; is always smaller or equal than the value of the information
process. Recall thd is the forward asset price and we have chosen a riskless bond
as numeraire. The gap between the forward asset priaad the information pro-
cessly, that quantifies the investors’ current expectation of #rentnal firm value,
can be interpreted as a deduction for risk. It is larger itestavith higher actual
volatility and approaches zero as time approaches maflrityhen the information
goes up, volatility is typically low, and the gap closes. Timee series for the asset
prices exhibit excess volatility and days with large negateturns although the in-
formation about the final firm value has only changed littlae3e negative shocks
are a result of the stochastic volatility which is negatvebrrelated with the infor-
mation process and the strongly nonlinear interplay betvisfrmation and asset
price process shown in Figure 1. Recall that our pricing rhizbased on rational
expectations. The shock-like, large negative returnsragithout exogenously added
jumps in the underlying diffusion processes and are nottreslearning or overcon-
fidence effects. They are completely endogenously explaiyerational behavior,
more precisely by the investor’s risk preference structunéch is characterized by
the shape of the ASPK. Our results are also in line with therttecal findings of
Franke et al.| (1999), who show (for an information procedteviocng a geometric
Brownian motion) that in the case of declining elasticibe variance of the forward
price increases relative to the constant elasticity case,adso that returns exhibit
negative autocorrelation.
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Fig. 2: Simulated time series for asset prigeand informationl; for a two-term
pricing kernel N =2, a1 = 1,0, =5, & = —1, & = —10). Logarithms of daily
returns fork andl; are shown below each graph. Time horizoTis-t = 3 years
(756 business days) and other parameter values are as smdablé 1 excepby =

6 =0.016641.
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Fig. 3: Simulated time series for asset piiigand informatiori; for atime-dependent
two-term pricing kernelll = 2, a1 = 1, a»(t) = 2.5[tanh(10(t — 1)) + tanh(—10(t —
2))], & = —1, & = —10). The ASPK switches smoothly from constant elasticity
to declining elasticity and back. Logarithms of daily retsifor i andl; are shown
below each graph. Time horizon 5—t = 3 years (756 business days) and other
parameter values are as shown in Table 1 exagpt 6 = 0.016641.
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In reality, investor preferences will not be constant ovweret They will change
when certain exogenous information events, favorable favanable, like profit warn-
ings or forecasts of economic stagnation or recession oticig possible to in-
corporate such changes in investor preferences in our niydemploying atime-
dependent ASPK. Since all integration in the pricing formulas are peried over
the information variable, we can introduce time-dependesfficientsa;(t), &(t) in
the specificatior] (1) of the ASPK.

To illustrate this, we repeat the simulation, but replaeettine-constant ASPK
by a time-dependent two-term ASPK with

ai(t) =1, aa(t) = 2.5[tanh(10(t — 1)) + tanh(—10(t — 2))], & = —1, & = —10.

This ASPK changes smoothly from constant elasticity dutimg first year to an
ASPK with declining elasticity during the second year andkh&ome sample time
series are shown in Figure 3. Below each time series ploy dagl returns of the
information and the asset price process are shown. We ab#feav during the first
year and the third, where the ASPK has constant elastiti¢yfarward asset price
R is always close to the information levkl However, in the second year, when
the investor changes his risk preference structure, dedtithe informationl; and
accompanying high levels of volatility can lead to strongvderard movements in
the forward asset price.

4.2 Option prices

Next we turn to the effect of different ASPKs on the optioncpriWe plot the price
difference between the prices from formiila (5) and Blachefes prices for different
pricing kernels in Figure/4 using the parameter values fratnid’1. These parameter
choices are motivated by the time-series estimates that elerined in Bakshi et al.
(2997) from daily returns and volatility changes of the S&® thdex during a period
from June 1988 to May 1991.

First, we use the standard pricing kernel with constantielgsi.e., we selN =1,

a =1, 0 = —1. The price differences compared to the Black-Scholeg gligplayed

in Figure[4 show that call option prices are significantlyhgin-the-money and
lower out-of-the-money. For a two-term ASPK with declinglgsticity N =2, a1 =
la,=5 & =-1, & = —3,—5) we observe that the option prices are higher and the
price difference is smaller out-of-the-money and more ptoted for in-the-money
options. Such patterns are also found in empirical studies.option prices increase
for smaller values ob. This is consistent with Theorem 1 in Franke et al. (1999)
who show that option prices are ceteris paribus higher uddelining elasticity of
the ASPK than under constant elasticity of the ASPK.

Stock return distributions observed in empirical studieasnegative skewness
and higher levels of kurtosis than explained by lognormatritiution used in the
standard Black and Scholes (1973) option pricing formulerpative models have
been proposed in the literature to address these issuesof@ne most successful
and widely accepted approaches is the stochastic votatilidel of Heston (1993).
However, empirical studies, e.g. Bakshi et al. (1997), skiwat the Heston (1993)
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Fig. 4. Option price differences between prices from foran(8) and the Black-
Scholes price for different pricing kernels: pricing kdrmgth constant elasticity
(N=1,a =1, 6 =—1), and two term pricing kernel with declining elasticity £ 2,
a1=10,=5 6 =-1 & =—3,-5). Option prices are ceteris paribus higher under
declining elasticity of the ASPK than under constant etitstof the ASPK.

model demands for unreasonable levels of correlgtiaand volatility of volatility
v to match the skewness and kurtosis effects observed in imgpkien prices. The
model seems to be misspecified, although this does not ihphthe model cannot
be applied successfully. In the following, we want to ilhasé how the option pricing
approach developed in the previous section can help toatéethis shortcoming.

We compute the prices from the generalized prices from ftartk) and Hestaon
(1993) prices. First, we use the standard pricing kerneh witnstant elasticity i.e.
we setN =1, a =1, d = —1. The price differences compared to the Black-Scholes
price displayed in the left plot of Figute 5 show that callioptprices are higher
in-the-money and lower out-of-the-money. Prices are viemjlar as from the Heston
(2993) formula. We used the same parameter values, cuokiility g; = 0.04, time
to maturityT —t = 0.5 and the other parameters as given in Table 1 for both models,
although we increase the long run mean slightly frérs 0.04 to 6 = 0.043 for the
Heston model so that both models match at the money.

Next, we would like to generate the strong negative skewaesishigh levels
of kurtosis that are present in empirical data with bothipgdormulas. Using the
Heston model, we can achieve this by changing the paramé&eexample, to

6 =0.07,p = —0.5,v=0.15, (11)

since these control the moments of the underlying distidbutncreasing these three
values is what typically is necessary to match market ogtiices with the Heston
(1993) formula. However, these parameter values are nowmgel consistent with
time-series estimates, e.g. such a strong negative coretaannot be found in typi-
cal data. Interestingly, similar prices can be found usorgitila [(5), if we use a two-
term ASPK with declining elasticityN =2, a; = 1,02, =5, & = —1, & = —5.5)
and still retain the more realistic parameter values uséatr®eThe price differences
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Fig. 5: Option price differences with respect to the Bladh@es price of gener-
alized prices from formuld (5) and Heston (1993) prices fiffiecent pricing ker-
nels: standard pricing kernel with constant elasticty=£ 1, a = 1, d = —1, left),
two term pricing kernel with declining elasticitN(= 2, a1 = 1,02 =5, & = —1,
&, = —5.5, right). To generate the negative skewness in the rigltt thle parameters
in the Heston (1993) model have to be set to unrealistic galhat are no longer
consistent with time-series data. For the generalizedgrimm formula/(b) this is
done by choosing an appropriate ASPK while retaining réalisodel parameters.

compared to the Black-Scholes price are displayed in tHs pbpt of Figure 5 for
both approaches. The differences between the two appre@achemall, and the qual-
itative behavior is very similar.

We also compute the implied volatilities of the option psaesing the following
iteration procedure. Le¥ be the option price computed by one of models and let
09 be a given starting value. Then,

— For a given volatilityc™ compute the Black-Scholes option pricéa"),

1 _ C(aM)—%
— Computeg™ = g — e

— Setn:=n+1, repeat cycle.

Let ai(”) denote then" iterate of the implied volatility at grid poirli. We stop the
iteration procedure when thgnorm of the update defined by

1
N 2 2
&= (h Z}‘Gi(ml) — g™ )
i=
becomes less than 18

Using the above setting we compute the implied volatilif@sthe two settings
above: The Heston (1993) model with realistic and unrealizhrameters on one
hand, and the pricing formulal(5) with realistic parametgsing the two different
pricing kernels, one with constant, the other with declinghasticity. The results are
shown in Figuré 6. For the Heston model with realistic partansefrom Table 11 and
for the pricing formula (5) with the constant elasticity A§Rhe implied volatility is
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more or less flat (see left plot of Figuire 6). Empirical daidglly show a significant
volatility skew, i.e. the implied volatility for in-the-mwy calls (i.e. out-of-the-money
puts) is significantly higher than the implied volatility af-the-money calls and out-
of-the-money calls. In the Heston model such a shape israatdiy increasing the
parameters to the unrealistic values (11), see the rightoplBigure’ 6. For formula
(5) using the two-term ASPK we find implied the volatility skéo be similar with
higher volatilities for out-of-the-money calls.

0.22 0.22
—formula (5
0.215 ---Heston 93 0.215
£ £
o~ o~
> 0.21 > 0.21
8 0.205 8 0.205
o S L
> >
0.2/ 0.2 —formula (5
019 019 ---Heston 93
’ 8.9 1 1.1 ' 8.9 1 1.1
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Fig. 6: The figure shows the implied volatilities for the twiferent settings: Heston
model with realistic parameter values from Table 1 and theeprfrom formulal(5)
using a pricing kernelN = 1, o = 1, 6 = —1) with constant elasticity (left plot),
Heston (1993) model with unrealistic parameter values badtices from formula
(5) using a two term pricing kerneN(=2, a1 =1,a, =5, & = —1, & = —5.5 (right
plot).

This illustrates, that using formulal(5) with parametemrtime-series data we
can compute option prices that are consistent with empfiiedings. Moreover, from
a modeling point of view it has the advantage that the modelrpaters are clearly
separated from the fitting parameters. The model parametets p, v, Kk can be
chosen from suitable estimates, e.g. of historic timeesatdata. To fit the model to
the market, one can then choose suitable values, @ in the specification (1) of the
ASPK.

4.3 Credit spreads

Structural models for determining credit spreads (Mert®74; Longstaff and Schwartz,
1995) predict that the term structure of spreads is upwiapirgy for high-grade
bonds and downward-sloping for low-grade bonds. The iistuifor a downward-
slope is that low-grade bonds have a chance to upgrade. Howéis is rejected
by practitioners who claim that the term structure shouldagks be upward slop-
ing. The firm’s leverage in the Merton (1974) model is imghcifalling since the
firm value is drifting upwards at the riskless interest ratéhie risk-neutral world. If
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one maintains a constant leverage ratio, this results getaspreads and a upward-
sloping term structure (Collin-Dufresne and GoldsteirQBP0This is e.qg. justified by
the assumption that firms issue additional debt or retirstanting debt to maintain
a target leverage ratio. In contrast, our model is based @imformation procesk
that reflects the investor’s expectation of the terminal fuaiue. This information
process has no drift, hence our model guarantees a corstanade ratio implicitly.
A second shortcoming of structural models is that the ptedispreads are too low.
In our approach the size of the spreads is related to thetowpseferences through
the specific shape of the ASPK. To illustrate this, we repame results of numerical
experiments we carried out.

Huang and Huang (2003) collected a number of historical datkerlying their
calibration study of different models. For B rated firms thegort the average yield
spread to be 470 basis points (bps) at 4 and 10 years. Basbdioddta we choose
the leverage ratio to be @b, i.e. we look at B rated bonds, and fix the recovery rate
atR=0.5. We setg; = 6 = 0.016641 and the other values as given in Table 1. We
use two ASPKs,

— a standard pricing kernel with constant elasticity with=1, a3 =1, & = —1,
andd = —-10, and
— a two-term pricing kernel declining elasticity with=2, a1 =1, a, =5, & =
-1, 6 =-33
Then we compute the credit spreads using formjula (9). Thetieg credit spreads
are shown in Figure!7.
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Fig. 7: The figure shows the credit spreads for B rated bonagated from formula
(9) using two different pricing kernels: one with constalaisticity (dashed line), the
other with declining elasticity (solid line). The spreads apward-sloping. Using the
ASPK with declining elasticity they are of the order of higtal estimates.

The spreads are upward sloping, unlike in the Merton (197%ehbut in agree-
ment with practitioner’s claims. Under the ASPK with comgtalasticity they are
rather small and increase only slowly. Using the ASPK witblidéng elasticity how-
ever, they are show a steep ascent and then increase onlyatelgeThe order of
the spreads in this case agrees quite well with the hist@&tanates.
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To understand better the possibilities and limitations wf aedit spread model
it would be interesting to perform an empirical analysiswdger, empirical stud-
ies of credit spreads using structural models are ratheramad are complicated by
additional issues like coupon payment. On the other hardfatus of this paper is
on modelling investor risk preferences and understandiagrterplay of the ASPK,
risk preferences and asset and option prices and credadsrdherefore, we are
rather interested in pricing methodology and modeling steeexpectations and re-
frain from an empirical study which would be beyond the scofihis paper.

5 Conclusion

In this paper we presented a pricing approach for assetepEan options and credit
spreads based on a generalized specification of the ass#icspeécing kernel (ASPK).
The underlying information process is modelled by a two-atisional diffusion. This
rather general information process with stochastic vdiatillowed us to derive an-
alytical asset and option pricing formulas as well as tomeitge credit spreads in a
simple structural model. The main observations can be suinetkas follows. First,
the asset prices in this rational expectations model sho@ssvolatility and exhibit
crash-like patterns in the asset price. Second, the regudfition pricing formula is
consistent with the strong negative skewness and highs@fédurtosis observed in
empirical studies. Third, the credit spreads derived imgp& structural model yield
gualitatively and quantitatively promising results. Oppeoach may also be useful
to infer empirical ASPK from option prices and credit spreadls in existing para-
metric approaches it would allow to fit the ASPK to market datd could therefore
be used for an empirical analysis of ASPKSs.

A Mathematical proofs and formulas

A.1 Asset price formula (7)

First, we address the formula (7). The virtual asset pﬁ%is given by

o EIA
CERA]

Hence, we need to compute= E[Iﬂ%] for arbitrary 8. Assuming tha =V(I, o,t) and sufficiently

smooth, so that by &s lemma we obtain (note that in the following and in the reshif section subscripts
denote partial derivatives)

av = (Vi+ %Iza\/” + pb(0)v/GIVio+ %b?(a)v.m +a(0)Vo ) dt-+ Va1V, W™ + b(0)Vo W2
Taking expectations on both sides we get the following pbdiiferential equation
1 1
\/t+§|20\/|. +pb(a)ﬁ|\/|g+ébz(a)vgg+a(o)vg =0, (12)

which has to be solved fdr o > 0,0 <t < T with final conditionV(l,0,T) = 12, Similar as in Heston
(1993) we guess that the solution is of the farre: 1 9P. Performing the transformation of variabbes: In|
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andf = T —t (we immediately drop the tilde in the following) and substitgtthis functional form into
(12), we arrive at

1 1
R-50 [P« — R — 80P — p/ob(0)Pg — ébz(cr)PUU
- [a(o) + pv/ob(0)d]Ps — %06(6 -1)P=0, (13)
Introducing the Fourier transform &

P&, 0,t)= /é‘fXP(x,a,t)dx
R

under which differentiation with respect faturns into multiplication with—i&, we obtain the following
equation

A~ 1 . . 5
B = ébz(a)ng + [a(0) + p/ab(0)5 —i&py/ab(o)]Ps
1, . 1 1 .
- baé +|z(5_ 5)cr+§5(5_1)a B, (14)
In the following we assume that(o) = k(6 — o) andb(o) = vy/o. This allows us to solve explicitly
for the characteristic function d?. Otherwise, one could resort to solVe (14) numerically. Bsening
the ansat® = eMt:£:0)+0BLES)HEX with A0, &;5) = B(0,&;3) = 0 into (14) we get the two ordinary
differential equations’ = d/dt)
A =k06D,
L2 [k pvei e ie(s oY s
B = 2sz [k —pvé—i&pv|B 26 +|E(6 2) + 26(6 1),
subject toA(0) = B(0) = 0, which can be solved yielding

k0 1—gett b+d 1—¢t
A:?[(bm)t_zln( g )] B=" 0 1 gait (15)
where
b+d - .
9= ﬁ d=1/[E2+iE(1-20) + 5(1- &N +B2, b=k~ pV(iE + ).
Note that sincé(x, 0,0) = 1 it holds
B(.0,0) = /éfXP(x, 0.,0)dx = 213 (£),
R
wheredy(-) is the delta distribution with zero mean. This can easily e $eom
P(x,0.,0) = %T/e’ifxﬁ(f,o,O)df - /e*ifxéo(f)df —-1
R R
Hence, we obtain
P(x,0,T —t) = / So(&)NLED)HOBILED) HEX gg _ gAL0D)+0B(LOD) (16)
i

Finally, we are able to compute the virtual asset price

E[2M A
SU— — 1, AT-LOG+1)-AT—1,0:8)+ o [B(T-1.0:3 +1)—B(T—1,0:8)]

E[2 |4



21

A.2 Option pricing formulal (b)
Now, we turn to formuld (5). The term which is left to be compuited
W(l,0,t) = E[I€ max(lt — K,0)|#].
Applying Itd’s lemmaW(I, o,t) has to solve (12) with final condition
W(l,0,T) =1%max| —K,0).

We make use of the ansatz
W =19(1P, —KP) a7

with Py »(1,0,T) = 1;>k. Thus,P.» can be interpreted as the conditional probabilities thatdption
expires in the money. Equatidn (12) is linear, hence both tef(37) have to satisfy (12) separately.
Applying the transformations as above and inserting eadrspparately into (12), we obtain two equations
like (13) for Py 2, whered has to be replaced hy+ 1 in case ofP,. Performing now a complex Fourier
transform (also called extended transform), §.es C, we find thatP; , have to solve (14).

To continue, we need the transformed payoff given by

- - - 7 —Ki¢
FL2(§.0.0) = [¥Pr2(¢.0.0)dx= [€¥Lendx— [ &ax— e

R R InK

with x=In(I) and subject to Irf€ ) > 0. Inverting the characteristic function we obtain the debspeoba-
bilities

17, . )i
PLa(x 0T 1) = 5 [ Pup(8. 0,000 oBLED) Hibxgg

3

1 —Ki¢ . sy
- (1,£:8)+0B(t.£:8)+iEx
2n / ié ¢ dé

—o0

©

1 7 e-i€inkK . o
_ AL.E:0)+0B(L.E:8)+iEx g
2 / i& ¢

_Li1 /Re{ﬂe/-\(175;6)+cB(t.§;6)+iEx dE,
m i ’

whered = § + 1 in case of, andd = § for P,. From
W(l,0.t) = E[If max(lt —K,0)|.#] =1°(IP(x, 0,t) — KPx(x, 0,1))

and from|(16), we conclude that

E{max(lT —K,0)a1?

4 _ E[max(it —K,0)i7 | #]

Elaiif 7] B[} 7]
_ tPi(Inlt, 0,t) —KPy(Inlt, 0,t)
B P(Inl,0,t)
=R K,

where.#; and.# are given by((6) anEt(i) by (7). Thus, formuld (5) is proved.
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A.3 Credit spreads

We assume that the risky zero coupon b@hdan only default at maturity. The bond defaults if the
firm value at maturity is lower than a given default boundaryn case of default, bond holders receive a
constant recovery ra € (0,1). Thus, the bond’s cash flow at maturity is given by

Z(|T,O'T,T) =1- (17 R)1IT<D~

In the spirit of Merton|(1974), the bond price under the gatised ASPK is then obtained by

Z(h,01,) =E[ (1- (1-R)1;<p) @7| A
=1-(1-RE[L;<p @ 1| A

o ol
—1-(1 R)E{l”@ E[zi'\lzlzil'lé-r"%]

N 1popailf }
=1-(1-RE — %
=R a;E[ziN:lailﬂﬁa} t
[} 19
1 R Zl C{|| |/1 E[ 1|T<[;a.IT %]
E{Z L aily )1] E[aiIT |%]
N
:l_(l_R)Zlm Zi(It,0t,t;D), (18)

wherew are the weights and;t, a;,t; D) are corresponding to an economy with constant elast&ity
The Z(I, o, t; D) still need to be specified. To this end we need to complitg, Epl¢|%;] for arbitrary
4. From It9’s lemma follows, thag; solves[(12) with final condition

z(1,0,7) =1%1; <.

We make use of the ansatz
Z =1%p
with P3(1,0,T) = 1,.p. Thus,P; is the conditional probability that default occurs. Applgithe trans-

formations as above, we obtain an equation [ike (13P§oM/e continue as above and find ttgthas to
solve (14). Here, the transformed initial condition is givmn

R ) - D¢
By(£,0.0) = [@OP(x0.0)dx= [ Lnpix— T
R R
with x=In(I) and subject to Irf€ ) < 0. Inverting the characteristic function we obtain the debsjgeoba-
bilities

Py(x,0,T —t) = Zi/ (57070)@(t‘5:5)+08(t,5:6)+i5xdE
L e
- = (t,£:0)+0B(t,&;0)+iéx
2n / i€ ¢ dé

e|<fInD .
_ 7+ /Re{ At.€:8)+0B(t,§;0)+iéx dé.

From

Zi(1,0,t) =E[1f1; .p| A] = 1°Ps(x 0. 1)
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and from|(16), we conclude that

(19 E[L, <pld| .5
Zi(|t70t7t;D)_E|: l'nga'lI f/‘t} _E sl ;' _ ?(II:I"’;”:).
Elaily | 7] E[I9|A] (Inl,0.t)
Summing up, thg; are given by
1 1 « —i&In(D
Zi(l,0,5D) = 5 H/ { ]dé (19)
0
£(£) = AT-LER)-AT-L08)+01[B(T-1£:8)-BT-L0&)+i& !
.G 1—gedr _ b+d 1€
A1,€) = < [(b+d)T—2In( g )] B(T.8) =" 1 g (20)
Cbtd T
— o 4= /(@ iE (1-28)+ 5(1-8) @2,

b=k—pv(iE+a).

Thus, formulal (18) is fully proved.
Writing the bond in terms of its yield to maturitg,= e YT, the credit spread is given by

1 1 N .
y=—7IZ(,0.t) = f?ln[lf(lfR)Zioq zi(|1,o—1,t,D)].
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