
Franke, Günter; Stapleton, Richard C.; Subrahmanyam, Marti G.

Working Paper

Incremental risk vulnerability

CoFE Discussion Paper, No. 05/08

Provided in Cooperation with:
University of Konstanz, Center of Finance and Econometrics (CoFE)

Suggested Citation: Franke, Günter; Stapleton, Richard C.; Subrahmanyam, Marti G. (2005) :
Incremental risk vulnerability, CoFE Discussion Paper, No. 05/08, University of Konstanz, Center of
Finance and Econometrics (CoFE), Konstanz,
https://nbn-resolving.de/urn:nbn:de:bsz:352-opus-17918

This Version is available at:
https://hdl.handle.net/10419/32163

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:bsz:352-opus-17918%0A
https://hdl.handle.net/10419/32163
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Incremental Risk Vulnerability1

Guenter Franke2, Richard C. Stapleton 3 and Marti G Subrahmanyam 4

September 23, 2005

1We are very much indebted to two unknown referees for their excellent comments. Section 3
has been added based on very detailed comments of one referee.

2Fakultät für Wirtschaftswissenschaften und Statistik, University of Konstanz, email:
guenter.franke@uni-konstanz.de

3University of Manchester and University of Melbourne, email
Richard.Stapleton1@btinternet.com

4Stern School of Business, New York University, email: msubrahm@stern.nyu.edu
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Abstract

We present a necessary and sufficient condition on an agent’s utility function for a simple
mean preserving spread in an independent background risk to increase the agent’s risk aver-
sion (incremental risk vulnerability). Gollier and Pratt (1996) have shown that declining
and convex risk aversion as well as standard risk aversion are sufficient for risk vulnerability.
We show that these conditions are also sufficient for incremental risk vulnerability.
In addition, we present sufficient conditions for a restricted set of stochastic increases in an
independent background risk to increase risk aversion.

Journal of Economic Literature Classification Numbers:
D 52, D 81
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1 new bit for introduction

In this paper, we consider a particular set of increases in an independent background risk.
In reality all investors face some level of background risk, so a relevant question is how they
would react to an increase in such a risk. We look for conditions on utility functions such
that an agent becomes more averse to a market risk given an increase in background risk.

This question has been considered previously by Kimball (1993) and by Eeckhoudt, Gollier
and Schlesinger (1996). Kimball considers the set of ’patent increases’ in background risk1.
He shows that standard risk aversion is a sufficient condition for ’incremental risk vulner-
ability’ for this set of increases. Eeckhoudt, Gollier and Schlesinger (1996), on the other
hand, consider the larger sets of first order and second order stochastic dominance increases
in background risk. They find that the conditions on utility functions are quite restrictive
and exclude many commonly assumed utility functions.

In this paper, we follow Kimball’s general approach by looking at the effect of particular
sets of increases in background risk. We begin with a set of non-stochastic mean-preserving
spread increases that we term ‘simple increases’. For this set, we derive a necessary and
sufficient condition for incremental risk vulnerability. We find in this case, a condition on
utility which is weaker than standard risk aversion.

An interesting subset of our simple increases is the set of monotonic increases in background
risk. This set is interesting, first, because it reflects the property that background risks in-
crease in scale. Second, this case generalizes naturally to the set of stochastic increases that
‘improve’ according to nth order stochastic dominance. Kimball (1993) has shown that, in
the case of stochastic increases that improve according to third-order stochastic dominance,
standard risk aversion is a sufficient condition for incremental risk vulnerability. Consider-
ing the case of n-th order improvements, we find a sufficient condition for incremental risk
vulnerability, which is less restrictive than standard risk aversion.

2 Introduction

Many economic decisions are made in a context where some of the risks are tradable, while
others are not. These non-tradable or background risks are not controllable by the decision-
maker and yet influence the agent’s risk-taking behavior with respect to the tradable claims.

1Patent increases are those such that an agent who is more risk averse than another, always requires a
larger risk premium to bear the increased risk than the other. See Kimball (1993), p 603.
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Eeckhoudt and Kimball (1992) and Meyer and Meyer (1998) demonstrate this for the de-
mand for insurance, Franke, Stapleton and Subrahmanyam (1998) for portfolio choice. A
central question, in this context, is whether an additive background risk makes the agent
more risk averse.

Gollier and Pratt (1996) answer this question by considering an agent who starts without
background risk and then faces an independent background risk. They introduce the concept
of risk vulnerability and show that risk vulnerability is equivalent to the notion that an
undesirable risk can never be made desirable by the presence of an independent, unfair
risk. Furthermore, the background risk makes the agent more risk averse. Hence, such a
background risk reduces the agent’s demand for a risky asset, given a choice between a risky
and a risk-free asset. Gollier and Pratt derive a necessary and sufficient condition for risk
vulnerability. They show that a sufficient condition for risk vulnerability is either that the
absolute risk aversion of the agent is declining and convex or that the agent is standard risk
averse in the sense of Kimball (1993). In a recent paper Keenan and Snow (2003) relate
Gollier and Pratt’s condition of local risk vulnerability to compensated increases in risk,
introduced by Diamond and Stiglitz (1974). They show that the introduction of a small
fair background risk increases risk aversion of agents more, the higher is their index of local
risk vulnerability.

Usually, agents have to bear some background risk, but the level of this risk may change.
Therefore the relevant question is not so much whether the presence of background risk
makes the agent more risk averse, but whether an increase in this background risk makes
the agent more risk averse. Kimball (1993) analyzes patent increases in background risk.
He shows that such an increase raises the risk aversion of an agent if it raises the expected
marginal utility conditional on his tradable income and if the agent is standard risk averse.
Kimball argues that the background risk X is patently more risky than the background risk
x if X can be obtained from x by adding a random variable v such that the distribution of
v conditional on x improves for increasing x according to third-order stochastic dominance.
Eeckhoudt, Gollier and Schlesinger (1996) consider this issue in the context of increases in
an independent background risk that exhibit second order stochastic dominance. Given this
broad set of increases in background risk they derive necessary and sufficient conditions,
which leave room only for a small set of utility functions. Finally, Eichner and Wagener
(2003) discuss the conditions on two-parameter, mean-variance preferences such that the
agent is variance vulnerable, i.e. an increase in the variance of an independent background
risk induces the agent to take less tradable risk.

Intuitively, there must be an inverse relation between the set of admissible increases in
background risk considered and the set of utility functions that exhibit the characteristic of
increased risk aversion. Therefore, in this article we consider a smaller, but plausible set of
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increases in background risk, the benefit being obtaining a broader set of utility functions
that have the desired attribute.

Rothschild and Stiglitz (1970) define a mean preserving spread of an existing risk as a shift
in the probability mass from the center to the tails of the distribution. As pointed out by
Eeckhoudt, Gollier and Schlesinger (1996), this is equivalent to a second degree stochastic
dominance shift, provided the mean is fixed. To this definition we add the restriction
that the increase in background risk raises the non-tradable income in some states above
a threshold level and lowers it in some states below the threshold. We call this increase a
simple mean preserving spread.

Let y be the independent background risk with E(y) = 0, then a simple mean preserving
spread is a deterministic change in y, ∆(y), such that ∆(y) ≤ [=] [≥ ] 0 for y < [=] [> ] y0

for a given a threshold level y0, and E[∆(y)] = 0. In this case, note that the rank order of
outcomes below y0 may change, as well as the rank order of outcomes above y0.

We introduce the concept of incremental risk vulnerability. An agent is incremental risk
vulnerable if a simple mean preserving spread in background risk makes the agent more
risk averse. In section 2 we derive a necessary and sufficient condition for incremental
risk vulnerability. It turns out that the sufficient conditions for risk vulnerability given by
Gollier and Pratt are also sufficient for incremental risk vulnerability. However, declining
risk aversion is not required. All utility functions with a negative third and a negative
fourth derivative are also incremental risk vulnerable.

In section 3, we further consider a restricted set of stochastic increases in background risk
and derive sufficient conditions for risk aversion to increase. These conditions are illustrated
by examples.

3 Characterization of Incremental Risk Vulnerability

In this section we present a necessary and sufficient condition for the utility function to
exhibit incremental risk vulnerability. The agent’s income, W , is composed of the tradable
income w and the non-tradable income y, i.e. W = w + y. The non-tradable income
represents an additive background risk. y is assumed to be distributed independently of w
and to have a zero mean. Moreover, y is assumed to be bounded from below and above,
i.e. y ∈ (y

¯
, ȳ). Finally, W = w + y ∈ (W

¯
, W̄ ) is assumed. Let (Ω,F ,P) be the probability

space on which the random variables are defined.
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Definition 1 (A Simple Mean Preserving Spread in Background Risk)
Let y be a background risk with E(y) = 0. Then a simple mean preserving spread in the
background risk changes y to y + s∆(y), with E(∆(y)) = 0, where ∆(y) ≤ [=] [≥ ] 0 for
y < [=] [> ] y0 ,and s ≥ 0 denotes the scale of the increase.

The agent’s utility function is u(W ). We assume that the utility function is state-independent,
strictly increasing, strictly concave, and four times differentiable on W ∈ (W

¯
, W̄ ). We as-

sume that there exist integrable functions on ω ∈ Ω, u0 and u1 such that

u0(ω) ≤ u(W ) ≤ u1(ω)

We also assume that similar conditions hold for the derivatives u′(W ), u′′(W ) and u′′′(W ).
The agent’s expected utility, conditional on w, is given by the derived utility function, as
defined by Kihlstrom et al. (1981) and Nachman (1982):

ν(w) = Ey[u(W )] ≡ E[u(w + y)|w] (1)

where Ey indicates an expectation taken over different outcomes of y. Thus, the agent with
background risk and a von Neumann-Morgenstern concave utility function u(W ) acts like an
individual without background risk and a concave utility function ν(w). The coefficient of
absolute risk aversion is defined as r(W ) = −u′′(W )/u′(W ) and the coefficient of absolute
prudence as p(W ) = −u′′′(W )/u′′(W ). The absolute risk aversion of the agents derived
utility function is defined as the negative of the ratio of the second derivative to the first
derivative of the derived utility function with respect to w, i.e.,

r̂(w) = −ν ′′(w)
ν ′(w)

= −Ey[u′′(W )]
Ey[u′(W )]

(2)

It is worth noting that, in the absence of background risk, r̂(w) is equal to r(w), the
coefficient of absolute risk aversion of the original utility function.
We are now in a position to define incremental risk vulnerability.

Definition 2 (Incremental Risk Vulnerability)
An agent is incremental risk vulnerable if a simple mean preserving spread in background
risk increases the agent’s derived risk aversion for all w.

This definition also includes the case in which the agent initially has no background risk.
This case is analyzed by Gollier and Pratt (1996). Hence incremental risk vulnerability
implies risk vulnerability subject to E[∆(y)] = E[y] = 0. Gollier and Pratt allow also for
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a non-random negative y which then necessitates declining risk aversion. Since we only
consider fair background risks, declining risk aversion is not implied by incremental risk
vulnerability.

The main result of this paper is the following proposition which presents a necessary and
sufficient condition for a marginal simple mean preserving spread in background risk to
raise derived risk aversion, i.e. ∂r̂(w)/∂s > 0.

Proposition 1 (Derived Risk Aversion and Simple Mean Preserving Spreads in Back-
ground Risk)

If u′(W ) > 0 and u′′(W ) < 0, then for any simple mean preserving spread in background
risk,

∂r̂(w)/∂s > [=][<] 0, ∀(w, y, s) ⇐⇒

u′′′(W2) − u′′′(W1) < [=][>] − r(W )[u′′(W2) − u′′(W1)],

∀ (W,W1,W2),W¯
< W1 ≤ W ≤ W2 < W̄ ,W2 − W1 < ȳ − y

¯
.

Proof: See Appendix 1.

Proposition 1 allows us to analyze the effect of any simple mean preserving spread in an
independent background risk. Since a finite increase in background risk is the sum of
marginal increases, the sufficiency condition in Proposition 1 also holds for finite increases
in background risk.

In order to interpret the necessary and sufficient condition under which a simple mean
preserving spread in a background risk will raise the risk aversion of the derived utility
function, first consider the special case in which background risk changes from zero to a
small positive level. This is the case analyzed previously by Gollier and Pratt (1996) and
by Keenan and Snow (2003). In this case, we have

Corollary 1 Starting with no background risk, for any marginal increase in background
risk,

r̂(w) > [=][<] r(w) if and only if
∂θ

∂W
< [=][>] 0, ∀ W

where θ(W ) ≡ u′′′(W )/u′(W ).
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Proof: Let W2 − W1 → dW . In this case, u′′′(W2) − u′′′(W1) → u′′′′(W )dW . Similarly
u′′(W2) − u′′(W1) → u′′′(W )dW .
Hence, the condition in the Proposition yields, in this case, u′′′′(W ) < [=][>] −r(W )u′′′(W ).
This is equivalent to ∂θ/∂W < [=][>] 0, ∀ W 2

In Corollary 1, θ(W ) = u′′′(W )/u′(W ) is a combined prudence/risk aversion measure. This
measure is defined by the product of the coefficient of absolute prudence and the coefficient
of absolute risk aversion. The corollary says that for a small background risk derived risk
aversion exceeds [is equal to] [is smaller than] risk aversion if and only if θ(W ) decreases
[stays constant] [increases] with W . Hence, it is significant that neither decreasing prudence
nor decreasing absolute risk aversion is necessary for derived risk aversion to exceed risk
aversion. However, the combination of these conditions is sufficient for the result to hold,
since the requirement is that the product of the two must be decreasing. The condition
in corollary 1 is thus weaker than standard risk aversion, which is characterized by both
absolute risk aversion and absolute prudence being positive and decreasing. Note that
the condition in this case is the same as the ’local risk vulnerability’ condition derived by
Gollier and Pratt (1996). Local risk vulnerability is r′′ > 2rr′, which is equivalent to θ′ < 0.
Keenan and Snow (2003) define −θ′ as the local risk vulnerability index. They show for a
small background risk that the difference between derived risk aversion and risk aversion
increases in this index.

Since an interior maximum of r(w) implies r′(w) = 0 and r′′(w) < 0, it rules out local risk
vulnerability. Therefore, we have

Corollary 2 Risk vulnerability and incremental risk vulnerability rule out all utility func-
tions with an interior maximum of absolute risk aversion.

An alternative way to interpret Corollary 1 and Proposition 1 is to assume u′′′ > 0. In
this case, Corollary 1 states that a marginal increase in background risk, starting with
no background risk, makes the agent more risk averse if and only if temperance t(W ) =
−u′′′′(W )/u′′′(W ) exceeds risk aversion r(W ) everywhere. Proposition 1 states that a simple
mean preserving spread in background risk makes an agent more risk averse if and only if
−[u′′′(W2) − u′′′(W1)]/[u′′(W2) − u′′(W1)] > r(W ), for W1 ≤ W ≤ W2. The left hand side
of this inequality can be interpreted as an average temperance over the range [W1,W2]. In
their analysis of second order stochastic dominance shifts in background risk, Eeckoudt,
Gollier and Schlesinger (1996) find the much stronger condition t(W ) ≥ r(W ′),∀(W,W ′).

We now apply Proposition 1 to show that standard risk aversion is sufficient for incremental
risk vulnerability.
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Corollary 3 Standard risk aversion is a sufficient condition for derived risk aversion to
increase with a simple mean preserving spread in background risk.

Proof: Standard risk aversion requires both positive, decreasing absolute risk aversion and
positive, decreasing absolute prudence. Further, r′(W ) < 0 ⇒ p(W ) > r(W ) and hence
u′′′(W ) > 0. It follows that the condition in the Proposition for an increase in the derived
risk aversion can be written as 2

u′′′(W2) − u′′′(W1)
u′′(W2) − u′′(W1)

< −r(W1)

or, alternatively,

p(W1)
[
1 − u′′′(W2)

u′′′(W1)

]
/

[
1 − u′′(W2)

u′′(W1)

]
> r(W1)

Since p(W1) > r(W1), a sufficient condition is that the ratio of the square brackets exceeds
1. This, in turn, follows from decreasing absolute prudence, p′(W ) < 0. Hence, standard
risk aversion is a sufficient condition 2

Gollier and Pratt (1996) showed not only that standard risk aversion is sufficient for risk
vulnerability, but so also is declining and convex absolute risk aversion r(w). The next
corollary shows that the latter condition is also sufficient for incremental risk vulnerability.

Corollary 4 Declining and convex absolute risk aversion is a sufficient condition for de-
rived risk aversion to increase with a simple mean preserving spread in background risk.

Proof: From

r̂(w) = Ey

[
u′(W )

Ey[u′(W )]
r(W )

]
,

∂r̂(w)/∂s = Ey

[
u′(W )

Ey[u′(W )]
r′(W )∆(y)

]
+ Ey

[
r(W )

∂

∂y

[
u′(W )

Ey[u′(W )]

]
∆(y)

]
(3)

As shown in the appendix, it suffices to consider a three-point distribution of background
risk (y1, y0, y2) with y1 < 0, y2 > 0, y1 < y0 < y2 and ∆(y0) = 0,∆(y1) < 0,∆(y2) > 0.
The first term in equation (3) is positive whenever r is declining and convex. This follows
since E(∆(y)) = 0 and ∆(y2) > ∆(y1) implies that E[r′(W )∆(y)] ≥ 0. Since u′(W ) is

2Note that whenever r′(W ) has the same sign for all W , the three-state condition in the Proposition (i.e.
the condition on W , W1, and W2) can be replaced by a two-state condition (a condition on W1 and W2).
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declining, it follows that the first term in (3) is positive. Now consider the second term:
∂[u′(W )/Ey[u′(W )]]/∂y ∆(y) is positive for y1 and negative for y2 and has zero expectation.
Therefore a declining r implies that the second term is positive. Hence a sufficient condition
for ∂r̂(w)/∂s > 0 is a declining and convex r 2

Although corollaries 3 and 4 use the property of declining risk aversion, this property is
clearly not required for incremental risk vulnerability, as already noted by Gollier and Pratt.

Corollary 5 : For every utility function with u′′′(W ) < 0 and u′′′′(W ) ≤ 0 a simple mean
preserving spread in background risk raises derived risk aversion.

Proof: u′′′′(W ) ≤ 0 implies that the left hand side of the condition in Proposition 1 is non-
positive. u′′′(W ) < 0 implies that the right hand side is positive 2

A utility function with u′′′(W ) < 0 exhibits negative prudence and increasing risk aversion.
Yet this utility function has the property of incremental risk vulnerability if the fourth
derivative is also negative. In terms of equation (3), the second term is now negative, but
it is overcompensated by a strongly positive first term due to strong convexity of r.
An example of a utility function with the properties stated in corollary 5 is the HARA-
function

u(W ) =
1 − γ

γ

[
A +

W

1 − γ

]γ
,where γ ∈ (1, 2),W < A(γ − 1) .

4 Stochastic Increases in Background Risk and Risk Aver-

sion

A simple mean preserving spread in background risk is a deterministic change relating ∆(y)
to y. A natural generalization is to consider a stochastic change e such that y is replaced
by (y + e) with e being distributed independently of w, but perhaps dependently on y.
In the case of dependence, the distribution of e is assumed to improve with increasing y
according to second-order stochastic dominance, i.e. the distribution of e conditional on y
second-order stochastically dominates the distribution conditional on a smaller y. It will be
assumed throughout that this improvement can be captured by the differential ∂e/∂y. This
differential is zero in the case of independence. We, first, derive sufficient conditions on e
and on absolute risk aversion to ensure an increase in derived risk aversion and, second,
illustrate these conditions.
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We analyse the agent’s derived risk aversion r̂(w) in the presence of only the y-risk and the
derived risk aversion ˆ̂r(w) in the presence of the (y + e)-risk. For this purpose we define
re(w + y) as the derived risk aversion over the e-risk, given the income (w + y).

re(w + y) ≡ Ee[−u′′(w + y + e)]
Ee[u′(w + y + e)]

; ∀(w + y).

Proposition 2 provides sufficient conditions for the e-risk to raise the agent’s risk aversion.

Proposition 2 Let e be a random variable which is distributed independently of w, but per-
haps dependently on y. In case of dependence, the distribution of e improves with increasing
y according to second-order stochastic dominance.
Then

ˆ̂r(w) ≥ r̂(w), ∀ w,

if

re(w + y) ≥ r(w + y), ∀ (w + y), (4)

and

dre(w + y)/dy ≤ 0, ∀ (w, y). (5)

This proposition is proved in Appendix 2. Condition (4) requires the risk aversion of an
agent with income w + y to be higher in the presence of the background risk, e. Condition
(4) rules out a subset of the second-order stochastic dominance increases in background
risk as analysed by Eeckhoudt, Gollier and Schlesinger (1996). It also rules out a simple
mean preserving spread since y2 > y1 does not imply y2 + ∆(y2) > y1 + ∆(y1). Condition
(5) requires the derived risk aversion re(w + y) to decline. For a small e-risk, condition
(5) implies declining risk aversion of u. Hence condition (5) requires this property to be
preserved under the e-risk.

Both conditions are quite natural given a utility function with declining risk aversion. The
following corollaries illustrate Proposition 2.

Corollary 6 The increase in background risk from y to (y+e) raises the derived risk aver-
sion if e is a random variable, distributed independently of y, with nonpositive expectation
and if the agent is risk vulnerable.
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Proof: Risk vulnerability and nonpositive expectation of e imply condition (4). Since e is
independent of y and declining risk aversion is preserved under background risk, condition
(5) holds 2

Next, consider the case in which the distribution of e depends on y such that the distribution
of e improves with increasing y according to a second-order stochastic dominance shift.

Corollary 7 Assume r′ < 0, r′′ > 0 and E(e|y) ≤ 0 ∀y. Moreover, the distribution of e
may improve with increasing y according to second-order stochastic dominance. Then the
increase in background risk replacing y by (y + e) raises the derived risk aversion.

Proof: From Gollier and Pratt(1996), r′ < 0, r′′ > 0 and E(e|y) ≤ 0 imply risk vulnerability
and, hence, condition (4). In Appendix 2 condition (5) is shown to hold, too 2

5 Conclusion

This paper considers the effect on derived risk aversion of increases in background risk. We
first take the case of deterministic increases which are simple mean preserving spreads. We
present a necessary and sufficient condition for such an increase to raise the derived risk
aversion of an agent. Standard risk aversion and declining, convex risk aversion are shown
to be sufficient conditions.

We then analyse the effect of stochastic increases in background risk. If such an increase
is independent of the existing background risk and has a non-positive expectation, it raises
derived risk aversion if the agent is risk vulnerable. If the distribution of the increase
improves with increasing realisations of the existing background risk according to second-
order stochastic dominance and the conditional expectation of the increase is non-positive,
then the derived risk aversion of an agent with declining, convex risk aversion increases.
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Appendix 1

Proof of Proposition 1

From the definition of r̂(w),

r̂(w) =
Ey[−u′′(W )]
Ey[u′(W )]

(6)

we have the following condition. For any distribution of y and for any s ≥ 0,

∂r̂(w)/∂s > [=][<] 0 ⇐⇒ f(w, y, s) > [=][<] 0, (7)

where f(w, y, s) is defined as

f(w, y, s) ≡ Ey
[
∆(y)

{
−u′′′(W ) − u′′(W )r̂(w)

}]
. (8)

Necessity

We now show that

f(w, y, s) > [=][<] 0 =⇒
u′′′(W2) − u′′′(W1) < [=][>] −r(W )

[
u′′(W2) − u′′(W1)

]
,∀ W1 ≤ W ≤ W2

Consider a background risk with three possible outcomes, y0, y1, and y2, such that
y1 < y0 < y2 and ∆(y1) < ∆(y0) = 0 < ∆(y2). Define

Wi = w + yi + s∆(yi), i = 0, 1, 2,

and let qi denote the probability of the outcome yi. For the special case of such a risk,
equation (8) can be written as

f(w, y, s) = q1|∆(y1)|
{
−u′′′(W2) + u′′′(W1) − [u′′(W2) − u′′(W1)]r̂(w)

}
(9)

since

E[∆(y)] =
2∑

i=0

qi∆(yi) = 0
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so that
q1|∆(y1)| = q2∆(y2)

Now r̂(w) can be rewritten from (6) as

r̂(w) = Ey

{
u′(W )

Ey[u′(W )]
−u′′(W )
u′(W )

}

= Ey

{
u′(W )

Ey[u′(W )]
r(W )

}
(10)

Hence, r̂(w) is the expected value of the coefficient of absolute risk aversion, using the
risk-neutral probabilities given by the respective probabilities multiplied by the ratio of
the marginal utility to the expected marginal utility. Thus, r̂(w) is a convex combination
of the coefficients of absolute risk aversion at the different values of y. For the three-
point distribution being considered, r̂(w) is a convex combination of r(W0), r(W1), and
r(W2). Suppose that y0 = 0. Then q0 → 1 is feasible. Hence, as q0 → 1, r̂(w) → r(W0).
Therefore, in condition (9) we replace r̂(w) by r(W0). Since W0 can take any value in
the range [W1,W2], f(w, y, s) must have the required sign for every value of r(W0), where
W1 ≤ W0 ≤ W2. Thus, since q1|∆(y1)| > 0, the condition as stated in Proposition 1 must
hold. As y ∈ (y

¯
, ȳ), W2 − W1 < ȳ − y

¯
.

Sufficiency

To establish sufficiency we use a method similar to that used by Pratt and Zeckhauser
(1987) and Gollier and Pratt (1996).

a) We first show

u′′′(W2) − u′′′(W1) < −r(W )
[
u′′(W2) − u′′(W1)

]
, ∀ W1 ≤ W ≤ W2

=⇒ f(w, y, s) > 0, ∀ (w, y, s)

We need to show that f(w, y, s) > 0, for all non-degenerate probability distributions of y.
Hence, we need to prove that the minimum value of f(w, y, s) over all possible probability
distributions {qi}, with E(∆(y)) = 0, must be positive. In a manner similar to Gollier
and Pratt (1996), this can be formulated as a mathematical programming problem, where
f(w, y, s) is minimized, subject to the constraints that all qi are non-negative and sum
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to one, and E(∆(y)) = 0. Equivalently, this can be reformulated as a parametric linear
program where the non-linearity is eliminated by writing r̄ as a parameter

min
{qi}

f(w, y, s) =
∑

i

qi
[
∆(yi)

{
−u′′′(Wi) − u′′(Wi)r̄

}]
(11)

s.t. ∑

i

qi∆(yi) = 0 (12)

∑

i

qi = 1, (13)

the definitional constraint for the parameter r̄

r̄
∑

i

qiu
′(Wi) = −

∑

i

qiu
′′(Wi) (14)

and the non-negativity constraints
qi ≥ 0, ∀i. (15)

Consider the optimal solution. Since this optimization problem has three constraints, there
are three variables in the basis. Number these as i = 1, 2, a, with ∆(y1) < 0 < ∆(y2)
and y1 + s∆(y1) < y2 + s∆(y2). The associated probabilities are q1, q2, qa, such that
q1∆(y1) + qa∆(ya) + q2∆(y2) = 0. There are two possibilities with respect to the state
a.

Either:
a = 0. Then ∆(ya) = ∆(y0) = 0. Hence, we immediately obtain equation (16).

or:
a 6= 0. In this case we drop the constraint on q0 ≥ 0 (with all the other qis staying
non-negative). Hence the probability associated with y0 can be negative. Dropping this
constraint will lead to a condition that is too demanding. However, since we are searching
for a sufficient condition, this is fine. In the original optimisation, all the non-basis variables
had nonnegative coefficients in the objective function in the final simplex tableau. Allowing
q0 < 0 must result therefore in q0 replacing either q1, q2 or qa in the optimal basis. Also,
the new f -value is either lower or the same as before.

Suppose, first, that q0 replaces qa in the optimal basis. Then the new basis variables
are q1, q2 and q0. Since ∆(y0) = 0, we can write the objective function (11) as
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f∗(w, y, s) = q1∆(y1)
[
−u′′′(W1) − u′′(W1)r̄

]
+ q2∆(y2)

[
−u′′′(W2) − u′′(W2)r̄

]
(16)

Since q1∆(y1) + q2∆(y2) = 0, it follows that (14) can be rewritten as

f∗(w, y, s) = q1∆(y1)
[
(−u′′′(W1) − u′′(W1)r̄) − (−u′′′(W2) − u′′(W2)r̄)

]
(17)

Hence
u′′′(W2) − u′′′(W1) < −r̄

[
u′′(W2) − u′′(W1)

]
(18)

is a sufficient condition for f∗ > 0, given r̄.

As shown in equation (10), r̄ is a convex combination of r(Wa), r(W1) and r(W2) with
W1 < Wa < W2, hence r̄ ∈ {r(W )|W ∈ [W1,W2]}. Hence, a sufficient condition for (18) is
that

u′′′(W2) − u′′′(W1) < −r(W )
[
u′′(W2) − u′′(W1)

]
(19)

for all {W1 ≤ W ≤ W2} as given by the condition of Proposition 1.

Alternatively, suppose that q0 replaces either q1 or q2 in the optimal basis. In this case the
above argument remains the same with qa instead of either q1 or q2, in equation (16).

b) By an analogous argument, it can be shown that ∂r̂(w)/∂s < [=] 0 is equivalent to
u′′′(W2) − u′′′(W1) > [=] − r(W )[u′′(W2) − u′′(W1)] ∀ {W1 ≤ W ≤ W2} 2

Appendix 2

Proof of Proposition 2

We need to show that conditions (4) and (5) are sufficient for ˆ̂r(w)− r̂(w) ≥ 0. Ev[·] denotes
expectations over v. From the definition of the twice derived risk aversion, ˆ̂r,

ˆ̂r(w) = Ey+e

[
u′(w + y + e)

Ey+eu′(w + y + e)
r(w + y + e)

]

= Ey

[
Eeu

′(w + y + e)
Ey+eu′(w + y + e)

Ee

{
u′(w + y + e)

Eeu′(w + y + e)
r(w + y + e)

}]
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= Ey

[
Eeu

′(w + y + e)
Ey+eu′(w + y + e)

re(w + y)

]
,

where re(w + y) is as defined on page 9. Hence

ˆ̂r(w) − r̂(w) = Ey

[(
Eeu

′(w + y + e)
Ey+eu′(w + y + e)

− u′(w + y)
Eyu′(w + y)

)
re(w + y)

]

+ Ey

[
u′(w + y)

Eyu′(w + y)
(re(w + y) − r(w + y))

]

Condition (4) implies that the second term is positive or zero. The first term is similar
to a covariance term since the term in ( ) has zero expectation. Hence the first term is
nonnegative if the term in ( ) is single crossing downwards and re(w + y) is declining in y.
The latter is implied by condition (5). Therefore, to complete the proof we have to establish
the single crossing downward property. For notational simplicity, let Z(w + y) denote the
term in ( ),

Z(w + y) =
Eeu

′(w + y + e)
a

− u′(w + y)
b

,

with a and b being appropriately defined constants.

Differentiating with respect to y yields

Z ′(w + y) =
Eeu

′′(w + y + e)(1 + ∂e
∂y )

a
− u′′(w + y)

b

= −Eeu
′(w + y + e)

a
re(w + y) +

u′(w + y)
b

r(w + y) +
Eeu

′′(w + y + e) ∂e
∂y

a
.

For Z = 0 it follows that sgnZ ′(w + y) = sgn[r(w + y) − re(w + y) + [Eeu
′(w + y +

e)]−1Eeu
′′(w+y+e)(∂e/∂y)]. Hence condition (4) implies Z ′(w+y) ≤ 0 at a crossing point

if e is distributed independently of y, i.e. ∂e/∂y ≡ 0. Then only one crossing point exists,
therefore Z(w + y) is downward sloping. If the distribution of e improves with increasing y
according to second-order stochastic dominance, then Eeu

′′(w+y+e)(de/dy) < 0 if u′′′ > 0.
u′′′ > 0 follows from condition (5) because dre(w + y)/dy ≤ 0 holds for a small risk only if
r′ < 0. Hence, at a crossing point, Z ′(w + y) ≤ 0. 2
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Proof of Corollary 7

We need to show that condition (5) holds if the distribution of e improves with increasing
y according to second-order stochastic dominance. Since

re(w + y) = Ee

[
u′(w + y + e)

Eeu′(w + y + e)
r(w + y + e)

]
,

dre(w + y)
dy

= Ee

[
u′(w + y + e)

Eeu′(w + y + e)
dr(w + y + e)

dy

]

+ Ee

[
d

dy

(
u′(w + y + e)

Eeu′(w + y + e)

)
r(w + y + e)

]
.

The first term is a ”risk-adjusted” expectation of dr(w+y+e)/dy. If e were distributed inde-
pendently of y, then r′ < 0 would imply a negative expectation. This is reinforced for r′ < 0
and r′′ > 0 if the distribution of e improves according to second-order stochastic dominance.

Now consider the second term. Using the proof technique of Gollier and Pratt (1996,
p. 1122) it follows that this term is negative if it is for every binomial distribution of e.
Suppose that e is distributed independently of y. Then u′′ < 0 and u′′′ > 0 imply that
u′(w + y + e)/Eeu

′(w + y + e) declines [increases] in y for the lower [higher] realization of e.
Hence r′ < 0 implies that the second term is negative. This is reinforced if the distribution of
e improves according to second-order stochastic dominance. Hence dre(w+y)/d(w+y) ≤ 0
2
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