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Optimal Convergence Rates in Nonparametric

Regression with Fractional Time Series Errors

Yuanhua Feng and Jan Beran

Consider the estimation of g(ν), the ν-th derivative of the mean function, in a fixed-

design nonparametric regression model with stationary time series errors ξi. We

assume that g ∈ Ck, ξi are obtained by applying an invertible linear filter to iid

innovations, and the spectral density of ξi has the form f(λ) ∼ cf |λ|−α as λ → 0

with constants cf > 0 and α ∈ (−1, 1). Under regularity conditions, the optimal

convergence rate of ĝ(ν) is shown to be n−rν with rν = (1−α)(k− ν)/(2k + 1−α).

This rate is achieved by local polynomial fitting. Moreover, in spite of including long

memory and antipersistence, the required conditions on the innovation distribution

turn out to be the same as in nonparametric regression with iid errors.

Keywords: Optimal rate of convergence, nonparametric regression, long memory,

antipersistence.

1 Introduction

Consider the estimation of g(ν), the ν-th derivative of the mean function g in the equidistant-

design nonparametric regression model

(1.1) Yi = g(xi) + ξi,

with xi = i/n, g : [0, 1] → < a smooth function and ξi a linear (second order and

strictly) stationary process generated by applying a linear filter to an iid series εi. For the

autocovariance function γ(k) = cov (ξi, ξi+k), it is assumed that γ(k) → 0 as |k| → ∞.

Equation (1.1) represents a nonparametric regression model with short memory (including

iid ξi as a special case), long memory and antipersistence. Here, a stationary process ξi

is said to have long memory (or long-range dependence), if
∑
γ(k) = ∞. A more specific

assumption is that the spectral density f(λ) = (2π)−1
∑
γ(k) exp(ikλ) has a pole at the

origin of the form

(1.2) f(λ) ∼ cf |λ|−α (as λ→ 0)

for some α ∈ (0, 1), where cf > 0 is a constant and ‘∼’ means that the ratio of the left

and the right hand sides converges to one (see Beran, 1994, and references therein). Note
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that, (1.2) implies that γ(k) ∼ cγ|k|α−1 (cγ > 0) so that
∑
γ(k) = ∞, i.e. ξi has long

memory. If (1.2) holds with α = 0, then 0 <
∑
γ(k) < ∞ and ξi is said to have short

memory. On the other hand, a stationary process is said to be antipersistent, if (1.2)

holds for α ∈ (−1, 0) implying that
∑
γ(k) = 0.

The aim of this paper is to investigate the minimax optimal convergence rate of a non-

parametric estimator of g(ν) (see e.g. Farrell, 1972, Stone, 1980, 1982 and Hall and Hart,

1990a for related work). For a summary of nonparametric minimax theory we refer the

reader to Hall (1989). Hall and Hart (1990a) derived the optimal convergence rate for esti-

mates of g in nonparametric regression with Gaussian stationary short- and long-memory

errors. More recently, Li and Xia (2007) investigated the optimal rates of convergence

of block thresholded wavelet estimators in nonparametric regression with long-memory

errors under weaker smoothness condition. In this paper a unified formula for the opti-

mal convergence rate for estimating g(ν) in nonparametric regression with short-memory,

long-memory and antipersistent errors is given. It is shown that this rate is achieved

by local polynomial estimates (Beran and Feng, 2002a). Our finding generalize previous

results in Stone (1980) and Hall and Hart (1990a) in several ways. A simple condition

under which a sequence n−rν forms a lower bound to the convergence rate is given for

nonparametric regression with stationary time series errors at any dependence level. Re-

sults are obtained for Gaussian and non-Gaussian error processes. The optimal rate of

convergence in models with long-memory errors turns out to be lower (i.e. slower) than

in the case of short memory, whereas the rate is higher in the presence of antipersistent

errors.

The study of antipersistent phenomena has gained increasing attention in recent years.

It has been realised that, when estimation of the memory parameter (i.e. d = α/2) is

discussed, the symmetric range d ∈ (−0.5, .5) instead of [0, 0.5) only, should be considered

(see e.g. Robinson 2005). In a recent publication, Tsai (2006) investigates continuous time

fractionally integrated ARMA models with long memory, short memory and antipersis-

tence. In practice, nonparametric regression with antipersistent errors plays an important

role in the context of over-differencing of integrated time series. Over-differencing often

occurs in the analysis of financial or economic time series (see e.g. Beran and Ocker

2001, Beran et al. 2003, Silverberg and Verspagen 2003). A number of recent publica-

tions demonstrate that instead of short or long memory, significant antipersistence can

be found in financial returns or residuals of certain financial time series models. This
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is in agreement with empirical findings of mean reversion in financial returns. Concrete

examples are, for instance, stock price series analyzed in Feng et al. (2006), the German

DAX index (Mungo and Härdle, 2006) and high-frequency foreign exchange rate series

(Karupiah and Los, 2005).

The estimator and the error process are defined in section 2. Section 3 describes

the conditions on the distribution and provides the main results. It turns out that the

required regularity conditions on the marginal innovation distribution are the same for

all α ∈ (−1, 1) and hence do not depend on the type of dependence structure. Some

auxiliary results that are needed for the proofs are given in section 4. Detailed proofs are

given in the appendix.

2 The estimator and the error process

2.1 The local polynomial fitting

Kernel estimation of g in nonparametric regression with short-memory and long-memory

errors was considered in Hall and Hart (1990a). Beran and Feng (2002b) extended the

results to nonparametric regression with antipersistence. Since kernel estimators are af-

fected by boundary problems, unless corrected by boundary kernels, attractive alternative

estimates are obtained by local polynomial fitting introduced by Stone (1977), and Cleve-

land (1979). Beran and Feng (2002a) studied local polynomial fitting in nonparametric

regression with short-memory, long-memory and antipersistent errors. In this paper we

will use the approach in Beran and Feng (2002a) to show the achievability of the optimal

convergence rate.

Let k ≥ 2 be a positive integer. The function class considered in this paper is Ck(B),

the collection of all k times differentiable functions g on [0, 1] which satisfy

sup
0≤x≤1

max
ν=0,1,...,k

|g(ν)(x)| ≤ B.

Let p = k − 1. Then g can be locally approximated by a polynomial of order p for x in

the neighbourhood of a point x0:

(2.1) g(x) = g(x0) + g′(x0)(x− x0) + ...+ g(p)(x0)(x− x0)
p/p! +Rp,
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where Rp is a remainder term. Let K be a second order kernel (a symmetric density)

having compact support [−1, 1]. Given n observations Y1, ..., Yn, we can obtain an

estimator of g(ν) (ν ≤ p) by solving the locally weighted least squares problem

(2.2) Q =
n∑

i=1

{
Yi −

p∑
j=0

βj(xi − x0)
j

}2

K

(
xi − x0

h

)
⇒ min,

where h is the bandwidth. Denote by β̂ = (β̂0, β̂1, ..., β̂p)
′ the solution of (2.2). Then

ĝ(ν)(x0) := ν!β̂ν is the local polynomial estimate of g(ν)(x0) (ν = 0, 1, ..., p).

2.2 The error process

In this paper, it is assumed that the spectral density of ξi has the form (1.2). Hence ξi

will be called a fractional time series error process. Moreover, ξi is assumed to be causal,

linear and invertible. That is, ξi can be expressed in two ways:

(2.3) ξi = ψ(B)εi,

and

(2.4) εi = ϕ(B)ξi,

where the innovations εi are iid zero mean random variables with var (εi) = σ2
ε < ∞.

Here, B is the backshift operator, and ψ(B) =
∑∞

j=0 ajB
j and ϕ(B) =

∑∞
j=0 bjB

j are

the characteristic polynomials of the MA and AR representation of ξi, respectively, with

a0 = b0 = 1,
∑
a2

j <∞ and
∑
b2j <∞. The causality of ξi is assumed for convenience.

Some properties of ξi can be understood more easily by means of its inverse process.

Following Chatfield (1979), the inverse process of ξi, denoted by ξI
i , is the process with

the same innovations εi but ϕ(B) and ψ(B) as its characteristic polynomials or the MA

and AR representation respectively. Thus, we have

(2.5) ξI
i = ϕ(B)εi,

and

(2.6) εi = ψ(B)ξI
i .

This implies (see e.g. Shaman 1975) the spectral density of ξI
i of the form

(2.7) f I(λ) = σ4
ε(2π)−2(f(λ))−1 ∼ cIf |λ|−αI

(as λ→ 0),
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where cIf = σ4
ε(2π)−2(cf )

−1 and αI = −α. Equation (2.7) implies that: 1. If ξi is a short-

memory process, then ξI
i also has short memory (in particular, the inverse process of an

iid process is the process itself); 2. If ξi is a long-memory process with 0 < α < 1, then

ξI is antipersistent with αI = −α, and vice versa.

From (2.3) we see that the autocovariances of ξi are γ(k) = σ2
ε

∑
ajaj+|k|. The inverse

autocovariances of ξi (Cleveland, 1972 and Chatfield, 1979), i.e. the autocovariances

of ξI
i , are given by γI(k) = σ2

ε

∑∞
j=0 bjbj+|k|. Hence we have

∑
γ(k) = σ2

ε(
∑
aj)

2 and∑
γI(k) = σ2

ε(
∑
bj)

2. This results in
∑
aj = ∞,

∑
bj = 0 for α > 0 and

∑
aj = 0,∑

bj = ∞ for α < 0. For α = 0 we have 0 <
∑
aj <∞ and 0 <

∑
bj <∞.

An example of processes having property (1.2) is the class of FARIMA(p, d, q) (frac-

tional ARIMA) processes (Granger and Joyeux, 1980 and Hosking 1981), with d ∈
(−0.5, 0.5) denoting the fractional differencing or memory parameter.

3 Optimal convergence rates

3.1 Assumptions on the innovation distribution

Consider the problem of proving that a given sequence is a lower bound to the convergence

rate in nonparametric regression with error process ξi. In the following it will be shown that

this prove is similar to the case of nonparametric regression with iid errors εi. Furthermore,

it turns out that the required conditions on the marginal distribution of εi under model

(1.1) are the same, independently of α ∈ (−1, 1) i.e. of the type of long-term dependence.

In the following we will adapt the regularity conditions of Stone (1980, 1982) to fixed-

design nonparametric regression. Assume that Z(g) is a real random variable depending

on g ∈ <. It is assumed that the density function f(z, g) is strictly positive and that

f(z, g) = f(z − g, 0), where g is the mean function of Z(g), i.e.∫
zf(z, g)dz = g

for all g ∈ <. Furthermore, we assume that the equation∫
f(z, g)dz = 1

can be twice continuously differentiated with respect to g, yielding∫
f ′(z, g)dz = 0
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and ∫
f ′′(z, g)dz = 0.

The iid innovations εi are generated by the marginal distribution with density f(z, 0),

which will be simply denoted by f(z) in the following. Using this notation the density of

Z(g) may be represented as f(z, g) = f(z − g). Set l(z, g) = log f(z, g). It is assumed

that there are positive constants τ0, C and a function M(z, g) such that for g ∈ <

|l′′(z, g + τ)| ≤M(z, g) (for |τ | ≤ τ0)

and ∫
M(z, g)f(z, g)dz ≤ C.

Note that the last condition holds, if l′′(z, g) is bounded.

Remark 1. It is easy to show that the conditions hold, if Z(g) is Gaussian with

f(z, g) = (2πσ2
ε)
− 1

2 exp{−1

2
(z − g)2/σ2

ε} (−∞ < z, g <∞)

or if the innovations εi are tm−distributed with m ≥ 3, i.e.

fm(z, g) =
Γ[(m+ 1)/2]

Γ(m/2)
√
mπ

(
1 +

(z − g)2

m

)−(m+1)/2

(−∞ < z, g <∞).

Remark 2. Note that some of the other distributions considered in Stone (1980), such

as the exponential distribution, do not satisfy the regularity conditions above. If εi are

iid exponentially distributed with E(εi) = 0 and var (εi) = λ, then the density function

of Z(g) is given by

f(z, g) = λ−1exp{−(z + λ− g)/λ}, (−∞ < g <∞, g − λ ≤ z <∞)

and zero otherwise. Thus, the support of f > 0 depends on g.

3.2 Lower bounds to convergence rates

For the minimax optimal convergence rate we will use the following definition (see e.g.

Farrell, 1972, Stone, 1980 and Hall and Hart, 1990a). Let ν < k be a nonnegative integer,

rν a positive number, and let g̃
(ν)
n denote a generic nonparametric estimator of g(ν) based

on (Y1, ..., Yn). The sequence n−rν is called a lower bound to the convergence rate at x0 if

(3.1) lim inf
n

sup
g∈Ck

P (|g̃(ν)
n (x0)− g(ν)(x0)| > cνn

−rν ) > 0

7



for cν sufficiently small. Moreover, n−rν is called an achievable convergence rate if there

is a sequence of estimators ĝ
(ν)
n such that

(3.2) lim
cν→∞

lim sup
n

sup
g∈Ck

P (|ĝ(ν)
n (x0)− g(ν)(x0)| > cνn

−rν ) = 0.

Also, the sequence n−rν is called the optimal convergence rate if it is an achievable

lower bound to the convergence rate. The optimal convergence rate for a nonparamet-

ric regression estimator of g(ν) with iid errors is n−(k−ν)/(2k+1) (Stone, 1980). Moreover,

n−(k−ν)/(2k+1) is also the optimal convergence rate for estimating g(ν) in nonparametric

regression with short-memory errors (results for ν = 0 may be found in Hall and Hart,

1990a). In the case with 0 < α < 1, Hall and Hart (1990a) showed that the optimal

convergence rate for estimating g is n−(1−α)k/(2k+1−α). In this paper, we will show that

n−rν with rν = (1−α)(k− ν)/(2k+ 1−α) is the optimal convergence rate for estimating

g(ν), uniformly for α ∈ (−1, 1). The following theorem shows at first that n−rν is a lower

bound to the convergence rate, i.e. n−rν satisfies (3.1).

Theorem 1 Consider model (1.1) with g ∈ Ck. Let x0 ∈ (0, 1) be an interior point of the

support of g. Furthermore, let ν < k and rν = (1− α)(k − ν)/(2k + 1− α). Assume that

the regularity conditions on the marginal distribution of the innovations given in section

3.1 hold. Then n−rν is a lower bound to the convergence rate for estimating g(ν)(x0).

The proof of Theorem 1 is given in the appendix.

Theorem 1 extends previous results as obtained by Stone (1980) and Hall and Hart

(1990a) in different ways. The results in Stone (1980) are extended to nonparametric

regression with fractional time series errors. The results by Hall and Hart (1990a) are

generalized in the following way: 1. Theorem 1 is derived for all α ∈ (−1, 1) including the

antipersistent case; 2. The results are obtained for non-Gaussian error processes satisfying

regularity conditions on the marginal innovation distribution; 3. Estimation of derivatives

is also considered.

Remark 3. The sequence n−rν as defined in Theorem 1 is of course also a lower bound

to the convergence rate for the estimation at the two boundary points x0 = 0 or x0 = 1,

since the set of all measurable functions of observations at x0 = 0 (rep. x0 = 1) under

the restriction that there are no observations on the left (right) hand side is a subset of

all measurable functions.
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Remark 4. In the proof of Theorem 1 a two-point discrimination argument is used. It

will be shown that the probability on the right hand side of (3.1) can be made arbitrarily

close to 1
2
. If a more sophisticated multi-point discrimination argument is used as in Stone

(1980), then it can be shown that

(3.3) lim
cν→0

lim inf
n

sup
g∈Ck

P (|g̃(ν)
n (x0)− g(ν)(x0)| > cνn

−rν ) = 1.

Remark 5. Results of Theorem 1 are in general not available for random design

nonparametric regression or density estimation with dependent observations, since the

effect of dependence in such cases tends to weaker than in the model discussed here (see

e.g. Hall and Hart 1990b and Csörgö and Mielniczuk, 1995a, b).

3.3 Achievability

Beran and Feng (2002a) showed that for g ∈ Ck with k− ν even, the uniform convergence

rate of the local polynomial estimator ĝ(ν) is of order n−rν for all x ∈ [0, 1], if a bandwidth

of the optimal order n−(1−α)/(2k+1−α) is used, with r as defined in Theorem 1 (see Theorem

2 in Beran and Feng, 2002a). Similar results hold for the function class Ck with k − ν >

0 odd. This result can be used to show the achievability of the lower bound to the

convergence rate as defined in Theorem 1. In other words, (3.2) holds for the local

polynomial estimator ĝ(ν) with n−rν , including the two boundary points x0 = 0 and

x0 = 1. We thus have

Theorem 2 Let x0 ∈ [0, 1]. Under the conditions of Theorem 1, n−rν is the optimal

convergence rate for estimating g(ν)(x0).

The detailed proof of Theorem 2 is straightforward (as outlined here) and is therefore

omitted to save space.

Remark 6. The convergence rate n−rν as defined in Theorem 1 may be achieved

under much weaker conditions. It is clear that, (3.2) holds, if ĝ(ν) is asymptotically

normal. Sufficient conditions under which ĝ(ν) is asymptotically normal are given, for

instance, in Beran and Feng (2001). These conditions are much weaker than those in

section 3.1.
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4 Auxiliary results

4.1 Notations

Note that rν < 1 for all α ∈ (−1, 1) and that the interpolation error is of order n−1, and

is hence negligible. We thus may assume without loss of generality that x0 is of the form

i0/n. It is notationally convenient to have x0 = i0/n = 0, so that we will consider the

shifted model

Yi = g(i/n) + ξi, i = −n, ...,−1, 0, 1, ..., n,

and estimate g(ν) at the origin. Moreover, we shall assume that both, the infinite past

and the infinite future, are given, i.e. we observe

(4.1) Yi = g(i/n) + ξi,−∞ < i <∞.

Model (4.1) is assumed only for notational convenience, which helps us to save symbols

for distinguishing finite and infinite sample paths. It turns out that the extra information

is of negligible benefit for the derivation of a lower bound to the convergence rate.

The main idea to prove Theorem 1 is to construct two sequences of functions. If

these two sequences are “hard to distinguish”, then their difference will form a lower

bound to the convergence rate. If they are “far apart” at the same time, then their

difference will form an achievable convergence rate, and we will therefore obtain the

optimal convergence rate. Following Stone (1980) and Hall and Hart (1990a), let Ψ ≥ 0

be a k + 1-differentiable function on (−∞,∞), vanishing outside (−1, 1) and satisfying

Ψ(ν)(0) > 0 for ν = 0, 1, ..., k. Set

B′ = sup
0≤x≤1

max
ν=0,1,...,k

|ψ(ν)(x)|,

and choose a > 0 so small that aB′ < B. Moreover, let 0 < s < 1, set h = n−s and define

(4.2) gθ(x) = θahkΨ(x/h).

Then gθ(x) for θ ∈ {0, 1} are two sequences of functions in Ck.

In the following we will denote the limits lim
n→∞

n∏
i=−n

and lim
n→∞

n∑
i=−n

by
∏

and
∑

for

simplicity. For −∞ < i < ∞, define the doubly infinitive column vectors ξ = (ξi),

ε = (εi), g = (g1(i/n)), and the doubly infinite matrices Σ = (γ(i− j)), Γ = (γI(i− j)),
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Ω = (ai−j) and Λ = (bi−j), where ai = bi = 0 for i < 0. The explicit form of Λ is given

in (A.6) in the appendix. Then we have ξ = Ωε and ε = Λξ. For Y = (Yi) we have

Yθ = θg+ξ. Also, defining Xθ = ΛYθ = θη +ε, with η = Λg, we have X0 = ε, Y0 = ξ.

Moreover, X1 is a sequence of independent random variables.

4.2 The likelihood functions and the error probabilities

Let L0 and L0 denote the likelihood functions of X0 = ε and Y0 = ξ, respectively.

Observe that L0(x) =
∏
f(xi), where x = (..., x−1, x0, x1, ...)

′ is a doubly infinite vector

and f is the marginal density function of εi. The following lemma gives the relationship

between these two likelihood functions.

Lemma 1 For the fractional time series process defined by (2.3) and (2.4), and a doubly

infinite real vector y we have

(4.3) L0(y) = L0(x) =
∞∏

i=−∞

f(xi),

where x = Λy with xi =
∑∞

j=−∞ bjyi−j, −∞ < i < ∞, and f is the marginal density

function of εi.

The proof of Lemma 1 is given in the appendix. Lemma 1 shows that L is uniquely

determined by L. Note that, the opposite is also true, i.e. L is uniquely determined by

L. Following Lemma 1 estimation of the likelihood function of an invertible stationary

time series is equivalent to that of the corresponding iid innovations. The idea behind

this lemma plays a very important role for the derivation of asymptotic results in non-

parametric regression with dependent errors. Discussions on asymptotic results in this

case may therefore often be reduced to those for models with iid errors after a suitable

transformation. Note finally that Lemma 1 only holds for causal processes.

Let L1 and L1 denote the likelihood functions of X1 = ε + η and Y1 = ξ + g,

respectively. To prove Theorem 1 we need to estimate P (L0 < L1|θ = 0) and P (L0 >

L1|θ = 1). The following corollary of lemma 1 reduces the estimation of these error

probabilities to the case of independent sequences Xθ.

Corollary 1 Let Xθ and Yθ are defined above. Let y is a doubly infinite real vector.

Then, under the assumptions of Lemma 1, we have

P (L0(y) < L1(y)|θ = 0) = P (L0(x) < L1(x)|θ = 0)
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and

P (L0(y) > L1(y)|θ = 1) = P (L0(x) > L1(x)|θ = 1),

where x = Λy.

The proof of Corollary 1 is given in the appendix. Following Corollary 1, a method for

estimating the error probability developed for nonparametric regression with iid errors

could be adapted to the current case. We will do this, adapting the methodology proposed

by Stone (1980). Note that η, the deterministic part of X1, does not necessarily have the

same smoothness properties as g, the deterministic part of Y1. However, this does not

affect the estimation of the error probability.

4.3 A sufficient condition

Let Υn = 1
2
g1(0) = 1

2
aΨ(0)hk = c0h

k, where c0 = 1
2
aΨ(0). Moreover, set Υν

n = cνh
(k−ν),

where cν = ν!
2
aΨ(ν)(0) for ν < k. If ξi in model (1.1) are iid, then, following Stone (1980),

it can be shown that a sufficient condition, under which Υν
n is a lower rate of convergence

for estimating g(ν), is that there is an M > 0 such that
∑
g2(i/n) < M (see equation

(2.1) in Stone, 1980). The following lemma gives a simple extension of this result to the

case where ξi are fractional stationary time series errors defined by (2.3) and (2.4).

Lemma 2 Let ξi be defined by (2.3) and (2.4). Consider the estimation of g(ν). Then

Υν
n is a lower rate of convergence, if there is an M > 0 such that

(4.4)
∞∑

i=−∞

η2
i = g′Λ′Λg < M,

where ηi are the elements of η = Λg.

The proof of Lemma 2 is given in the appendix. Note that g0 ≡ 0 and hence g is the

difference sequence between the two functions g0 and g1. Lemma 2 shows that this se-

quence will form a lower rate of convergence for estimating g, if the transformed difference

sequence η is square summable. From Lemma 2 we can also see that, if Υn is a lower

rate of convergence for estimating g, then Υν
n, the sequence of the ν-th derivative Υn, is

a lower rate of convergence for estimating g(ν) provided that Ψ(ν)(0) > 0.

It is easy to show that condition (4.4) is equivalent to

(4.5) g′Γg < σ2
εM
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and further equivalent to

(4.6) g′Σ−1g < σ−2
ε M.

Proofs of (4.5) and (4.6) are given in the appendix. These two representations are easy to

understand. Equation (4.6) directly shows the change in this sufficient condition caused

by the dependence structure. The following remarks clarify the results further.

Remark 7. For iid errors ξi = εi we have Λ = I, Γ = σ2
εI and Σ−1 = σ−2

ε I, where I

denotes the doubly infinite identity matrix. In this case we have simply
∑
g2(i/n) < M .

Note that D =
√∑

g2(i/n) is the L2-norm of g. Lemma 2 implies that any method of

deciding between θ = 0 and θ = 1, i.e. of deciding between the vector g and the zero

vector, must have overall positive error probability, if the norm of g is bounded.

Remark 8. Assume that εi are normal. Following Hall and Hart (1990a) it can be

shown that, the overall error probability of any estimator of θ based on Y is at least

(4.7) Pa = 1− Φ
((

g′Σ−1g
)1/2
)
,

where Φ is the standard normal distribution function. The error probability Pa will be

positive, if g′Σ−1g is finite. Pa in (4.7) can be made arbitrarily close to 1
2

by choosing the

constant a in (4.2) so that a→ 0 and hence g′Σ−1g → 0.

13



Appendix: Proofs

Proof of Lemma 1. It is well known that, under standard conditions, the likelihood

functions of two random vectors forming a reciprocal one-to-one mapping are uniquely

determined by each other (see e.g. Theorem 2 of Section 4.4 in Rohatgi and Saleh, 2001,

pp. 127ff). Note that this result can be extended to doubly infinite random vectors. To

prove Lemma 1 it is therefore sufficient to check that all conditions of this theorem hold.

At first, ε = Λξ form a doubly infinite dimensional reciprocal one-to-one-mapping with

the inverse transformation ξ = Ωε, where both, the original function and the inverse

transformation are linear. Hence, conditions (a) to (c) of Theorem 2 of Section 4.4 in

Rohatgi and Saleh (2001) hold. Furthermore, Λ is also the matrix of the partial deriva-

tives of ε with respect to ξ. Also, the Jacobian J of the inverse transformation is the

determinant |Λ| = 1, since Λ is a (doubly infinite) lower triangle matrix, whose diagonal

elements are identically equal to one. The relationship between L0 and L0 as given in

Lemma 1 holds. 3

Proof of Corollary 1. Observe that X1 = X0 +η and Y1 = Y0 +g. Hence we have,

L1(x) = L0(x−η) and L1(y) = L0(y−g). From Lemma 1, it follows that, for any doubly

infinite dimensional real vectors y and g,

L1(y) = L0(y − g)

= L0(x− η)

= L1(x) =
∞∏

i=−∞

f(xi − ηi),(A.1)

where x = Λy, η = Λg and f is the marginal density function of εi. Equations (4.3) and

(A.1) together imply that L0(y) < L1(y) (or L0(y) > L1(y), or L0(y) = L1(y)), if and

only if L0(x) < L1(x) (or L0(x) > L1(x), or L0(x) = L1(x)), where x = Λy. Corollary 1

then follows. 3

The proofs given in the following are related to those in Stone (1980) and Hall and

Hart (1990a). Some details will therefore be omitted to save space (we refer the reader

to the proofs in these papers). We also refer the reader to Theorem 1 in Hall (1989) and

its proof. Note that the definition of α used here differs from Hall and Hart (1990a).

Proof of Lemma 2. Let Υν
n be as defined in Lemma 2. Note that

sup
g∈Ck

Pg{|g̃(ν)
n (0)− g(ν)(0)| ≥ Υν

n} ≥ max
θ=0,1

Pθ{|g̃(ν)(0)− g
(ν)
θ (0)| ≥ Υν

n}.

14



Let θ̃n = 0 or 1 depending on which value minimizes |g̃(ν)
n (0) − g

(ν)

θ̃
(0)|. Then θ̃n 6= θ

implies |g̃(ν)
n (0)− g

(ν)
θ (0)| ≥ Υν

n, and hence

max
θ=0,1

Pθ{|g̃(ν)(0)− g
(ν)
θ (0)| ≥ Υν

n} ≥ max
θ=0,1

Pθ(θ̃ 6= θ)

≥ 1

2
{P0(θ̃ = 1) + P1(θ̃ = 0)}

≥ 1

2
{P0(θ̂ = 1) + P1(θ̂ = 0)},(A.2)

where θ̂ is the maximum likelihood estimator of θ (or the likelihood ratio discriminator) in

the two-parameter problem. The last inequality follows from the Neyman-Pearson lemma.

From Corollary 1 we have

max
θ=0,1

Pθ{|g̃(ν)(0)− g
(ν)
θ (0)| ≥ Υν

n} ≥ 1

2
(P0(L0 < L1) + P1(L1 < L0))

=
1

2
(P0(L0 < L1) + P1(L1 < L0)).(A.3)

Let LR denote the likelihood ratio L1/L0. By calculations similar to those given on

pages 1352 - 1353 of Stone (1980), it can be shown under the regularity conditions on the

marginal distribution of εi given in Section 3.1, that there is a positive constant M1 such

that

(A.4) E0| log(LR)| < M1

and

(A.5) lim
a→0

E0| log(LR)| = 0.

Similar formulas as given in (A.4) and (A.5) hold for the expectation under θ = 1 with

another positive constant M2. Let M0 = max(M1,M2). Then we can find an integer K ≥
2 and 0 < τ < 1

2
such that if LR > (1− τ)/τ or LR < τ/(1− τ), then | log(LR)| ≥ KM0.

Following the Markov inequality, we obtain

P0

(
τ

1− τ
≤ LR ≤

1− τ

τ

)
>
K − 1

K

and

P1

(
τ

1− τ
≤ LR ≤

1− τ

τ

)
>
K − 1

K
.

Assigning priori probabilities 1/2 to θ = 0 and θ = 1, we have

P (θ = 1|Y) =
1
2
L1

1
2
L1 + 1

2
L0

=
LR

LR + 1
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and

P (τ ≤ P (θ = 1|Y) ≤ 1− τ) = P

(
τ ≤ LR

LR + 1
≤ 1− τ

)
= P

(
τ

1− τ
≤ LR ≤

1− τ

τ

)
=

1

2
P0

(
τ

1− τ
≤ LR ≤

1− τ

τ

)
+

1

2
P1

(
τ

1− τ
≤ LR ≤

1− τ

τ

)
≥ K − 1

K
.

Thus, the error probability of θ̂ is at least K−1
K
τ . Note that K−1

K
τ can be made arbitrarily

close to 1
2

as δ → 0 by choosing K sufficiently large and τ sufficiently close to 1
2

at the

same time. 3

Proof of equations (4.5) and (4.6). The explicit form of the matrix Λ is

(A.6) Λ =



· · · ...
...

...
...

...
... · · ·

· · · 1 0 0 · · · 0 0 · · ·
· · · b1 1 0 · · · 0 0 · · ·
· · · b2 b1 1 · · · 0 0 · · ·

· · · ...
...

...
. . .

...
... · · ·

· · · bn−1 bn−2 bn−3 · · · 1 0 · · ·
· · · bn bn−1 bn−2 · · · b1 1 · · ·

· · · ...
...

...
...

...
... · · ·


.

Ω has an analogous form but with bi−j being replaced by ai−j. Following the definition

of γI(i − j) we have Γ = σ2
εΛΛ′. Furthermore, it can be shown that ΛΛ′ = Λ′Λ. The

equivalence between (4.4) and (4.5) follows from this fact. The equivalence between the

two conditions (4.5) and (4.6) is due to the fact that Σ−1 = σ−4
ε Γ in the sense that

ΣΓ/σ4
ε = I (see e.g. Shaman 1975 and Beran 1994, pp. 109 ff.). 3

Proof of Theorem 1. Without loss of generality we will assume that σ2
ε = 1 for

convenience. For ν = 0 let Υn = c0h
k equal to the rate c0n

−r0 , where r0 = (1−α)k/(2k+

1− α) is as defined in Theorem 1. Then we have h = n−s with s = (1− α)/(2k + 1− α).

Following Lemma 2, in order to see that cνn
−rν is a lower rate of convergence for estimating

g(ν), we have to show that the sequence g under this choice of h satisfies e.g. the condition∑
η2

i = g′Λ′Λg <∞,
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Let m = [nh] be the integer part of nh. Let υi = Ψ(i/m), −∞ < i < ∞, and let

υ = (υi) denote the corresponding doubly infinite vector. Then we have

g′Λ′Λg =
1

4
h2kΨ2(0)υ′Λ′Λυ.

Observe that υi = 0 for i < −m or i > m. We have

υ′Λ′Λυ =
∞∑

j=−∞

(
m∑

i=−m

υibi+j

)2

= (2m+ 1)
2m∑

k=−2m

γI(k)
1

2m+ 1

m∑
j=−m

Ψ(j/m)Ψ{(j + k)/m)}.(A.7)

Equation (A.7) can also be obtained by directly analyzing υ′Γυ.

Based on (A.7) we can obtain results for the cases α = 0, 0 < α < 1 and −1 < α < 0

separately. Note that the methodology used in the proof of Theorem 3.1 in Hall and Hart

(1990a) for the case with 0 < α < 1 is based on the assumption b−i = bi for i = 1, 2, ...,

and is hence not suitable for the causal error process in this paper, since now we have

bi = 0 for i < 0. The methodology used in the following is developed based on the

property (1.2) of a fractional time series, which does not involve the exact structure of bi.

Assume that α = 0. In this case
∑
γ(k)I > 0 and

∑
|γ(k)I| <∞. From (A.7) we have

υ′Λ′Λυ
.
= (2m+ 1)

(∑
γI(k)

)∫ 1

−1

Ψ2(u)du.

Note that h = n−1/(2k+1) and m = nh = n2k/(2k+1) = h−2k for α = 0, whence

1

4
h2kΨ2(0)υ′Λ′Λυ <∞.

In the case with 0 < α < 1 the inverse process ξI is an antipersistent process with

the parameter −1 < αI = −α < 0 in (2.7). Hence, for |k| sufficiently large, we have

γI(k) ∼ cIγ|k|−α−1, where cγ = 2cIfΓ(1 − αI) sin(παI/2) < 0 (see Beran, 1994 and Beran

and Feng, 2002a). This implies that γI(k) are ultimately negative for |k| sufficiently large.

Furthermore, we have
∑
γI(k) = 0 and hence

∑m
k=−m γ

I(k) = −2
∑

k>m γ
I(k) = O(m−α).

From (A.7) we then have

υ′Λ′Λυ = (2m+ 1)
2m∑

k=−2m

γI(k)
1

2m+ 1

m∑
j=−m

Ψ(j/m)Ψ{(j + k)/m)}

≤ (2m+ 1)
m∑

k=−m

γI(k)
1

2m+ 1

m∑
j=−m

Ψ(j/m)Ψ{(j + k)/m)}

= (2m+ 1)O

(
m∑

k=−m

γI(k)

)
= O(m1−α).
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Now h = n−(1−α)/(2k+1−α) and m = nh = n2k/(2k+1−α), so that m1−α = h−2k and

1

4
h2kΨ2(0)υ′Λ′Λυ = h2kO(h−2k) <∞.

If −1 < α < 0, the inverse process ξI is a long-memory process with the parameter

0 < αI = −α < 1 in (2.7). Hence, as |k| → ∞, γI(k) ∼ cIγ|k|−α−1 with cγ = 2cIfΓ(1 −
αI) sin(παI/2) > 0, so that γI(k) > 0 for |k| sufficiently large. Furthermore, we have∑
γI(k) = ∞ with

∑2m
−2m γ

I(k) = O(m−α). Note that Ψ can be chosen so that, for large

k,
∑m

j=−m Ψ(j/m)Ψ{(j + k)/m)} <
∑m

j=−m Ψ2(j/m). Hence we have

υ′Λ′Λυ = (2m+ 1)
2m∑

k=−2m

γI(k)
1

2m+ 1

m∑
j=−m

Ψ(j/m)Ψ{(j + k)/m)}

≤ (2m+ 1)
2m∑

k=−2m

γI(k)
1

2m+ 1

m∑
j=−m

Ψ2(j/m)

.
= (2m+ 1)

2m∑
k=−2m

γI(k)

∫ 1

−1

Ψ2(u)du

= O(m1−α).

In summary, we have

υ′Λ′Λυ = O(m1−α)

uniformly for α ∈ (−1, 1). Note, however, that the derivation of this result was different

for the three cases. From h = n−(1−α)/(2k+1−α) and whence m1−α = h−2k, we now have

1

4
h2kΨ2(0)υ′Λ′Λυ = h2kO(h−2k) <∞,

and the proof of Theorem 1 is completed. 3
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