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Abstract

This paper presents a simple rational expectations model of in-
tertemporal asset pricing. It shows that state-independent heteroge-
neous risk aversion of investors is likely to generate declining aggregate
relative risk aversion. This leads to predictability of asset returns and
high and persistent volatility. Stock market crashes may be observed if
relative risk aversion differs strongly across investors. Then aggregate
relative risk aversion may sharply increase given a small impairment
in fundamentals so that asset prices may strongly decline. Changes in
aggregate relative risk aversion may also lead to resistance and sup-
port levels as used in technical analysis. For numerical illustration we
propose an analytical asset price formula.

JEL classification: G12

Keywords: Aggregate relative risk aversion, Equilibrium asset price
processes, Excess Volatility, Return predictability, Stock market crashes
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FEmpirical research suggests that returns of broad based market indices as
the S&P 500 are predictable. This seems to contradict the efficient market
hypothesis. While it is controversial whether the predictability in returns is
economically significant - especially concerns related to data-snooping are
often expressed - studies on return volatility provide clear evidence against
constant volatility and therefore against the geometric Brownian motion of
asset prices. An extensive literature on excess volatility which was started
by Shiller (1981) and LeRoy and Porter (1981) claims that the volatility of
asset prices is too high to be consistent with classical asset pricing models.
Moreover, the occurrence of stock market crashes without any significant
news and the widespread use of technical analysis are often claimed to be
incompatible with rational, efficient markets.! To explain these findings
many researchers argue in favor of investor irrationality and new behavioral
postulates. Some models explain predictability and excess volatility through
path-dependent preferences. Other explanations rely on market imperfec-
tions such as information costs which may explain herding and positive
feedback trading.

It is not surprising that path-dependent utility functions generate path-
dependent stock returns. Therefore we refrain from path-dependent utility
functions. We also exclude market imperfections and “irrational behavior”
and still explain in our model return predictability, excess volatility and,
more importantly, stock market crashes. We show that a simple rational ex-
pectations model based on a perfect capital market and on state-independent
utility functions can explain these asset price characteristics if aggregate rel-
ative risk aversion is declining. If there exists a representative investor, then
her relative risk aversion would equal aggregate relative risk aversion (Rubin-
stein, 1974). In this paper no representative investor exists. Then aggregate
relative risk aversion depends on the equilibrium allocation and the rela-
tive risk aversion levels of the various investors. The level and variation of
aggregate relative risk aversion is controversial. Defining aggregate relative
risk aversion as the negative elasticity of the stochastic discount factor with
respect to the asset price, recent empirical studies estimate its level using op-
tion prices. The empirical results documented in Ait-Sahalia and Lo (2000),
Jackwerth (2000) and Rosenberg and Engle (2002) suggest extreme bounds
for aggregate relative risk aversion. Ait-Sahalia and Lo (2000), for example,
document levels up to 60 for S&P 500 index values about 15 percent below
the current future price. They conclude that declining aggregate relative
risk aversion appears to be more realistic than constant aggregate relative
risk aversion. The findings of Jackwerth suggest a decline to even negative

'For an overview on return predictability and return volatility as well as a discussion of
the methodological problems, see Campbell et. al. (1997) and Cochrane (2001). Ghysels
et. al. (1996) provide an extensive overview on the characteristics of return volatility.
Shiller (2000) provides evidence that stock market crashes may occur without significant
news. For a recent study on the effectiveness of technical analysis see Lo et. al. (2000).



aggregate risk aversion, that is risk loving, followed by a subsequent increase
to positive levels.? But little is known on the level of aggregate relative risk
aversion for index values more than 15 percent above or below the current
future price and the empirical estimates are subject to various methodologi-
cal concerns (see Barone-Adesi et. al. 2004, Bliss and Panigirtzoglou, 2004,
Hentschel, 2003, and Ang and Liu, 2004). Also there is little consensus on
risk aversion of individual investors. Most researchers agree, however, that
investors display declining absolute risk aversion and that their risk aver-
sion levels differ. Given different but state-independent utility functions of
investors, the first important result in this paper is that under these con-
ditions aggregate relative risk aversion is likely to decline. Therefore this
paper analyzes asset price processes under declining aggregate relative risk
aversion.

To analyze the effects of declining aggregate relative risk aversion on the
characteristics of the market portfolio return, we consider a model similar
to those of Wang (1996), Campbell and Cochrane (1999), Chan and Ko-
gan (2002), Brennan and Xia (2002) in which the dividend on the market
portfolio is governed by a geometric Brownian motion and the price of the
market portfolio equals the present value of these dividends. The price de-
pends on endogenous aggregate relative risk aversion. Since the dividend
is exogenously given, but prices are not, we prefer to define aggregate rela-
tive risk aversion as the negative elasticity of the stochastic discount factor
with respect to the dividend. In an intertemporal model this allows us to
characterize risk preferences independently of endogenous asset prices. If
aggregate relative risk aversion is constant, then the market return is identi-
cally and independently distributed ruling out return predictability, excess
volatility and stock market crashes. If, however, aggregate relative risk
aversion declines with increasing concurrent dividend, then an increase in
the dividend leads to an overproportional price increase because the risk
premium declines. Similarly, if the dividend declines, then the stock price
declines overproportionally because the risk premium increases. This sim-
ple intuitive reasoning implies excess volatility and predictability of market
returns.

If aggregate relative risk aversion declines rapidly in some dividend range,
then the risk premium declines strongly in this range so that the price of
the market portfolio increases rapidly given a small increase in dividends.
Conversely, a small decline in dividends then leads to a strong price decline,
similar to a crash. If the dividend happens to first increase and then to

2 Assuming constant aggregate relative risk aversion, Bliss and Panigirtzoglou (2004)
estimate aggregate relative risk aversion levels between 1.97 and 9.52. They find that risk
aversion declines with the forecast horizon and with the level of volatility. Analyzing the
cross section of industry portfolios Dittmar (2002) also provides evidence against constant
aggregate relative risk aversion.



decline, then we may observe a stock market movement which resembles a
bubble that bursts. In the language of technical analysis, the lower bound
of this critical dividend range may be interpreted as the support level and
the upper bound as the resistance level. We show that aggregate relative
risk aversion may strongly increase with declining dividend if relative risk
aversion levels differ strongly across investors. Thus, we provide a simple
explanation for stock market crashes.

These important results are new as shown by a brief discussion of the theoret-
ical asset pricing literature. For finite horizon models it is known from Bick
(1990) and Franke et. al. (1999) that if the price of the market portfolio is
governed by a geometric Brownian motion as in the Black and Scholes (1973)
model, then aggregate relative risk aversion is constant. Bick (1990) and He
and Leland (1993) derive characteristics of asset price processes which are
consistent with an equilibrium driven by a representative investor. They
show that such an equilibrium rules out widely used stochastic processes
such as the Ornstein-Uhlenbeck process and constant elasticity of variance
for market portfolio returns.

Many asset pricing models still assume constant aggregate relative risk aver-
sion. Among the few papers which analyze the impact of aggregate relative
risk aversion on return characteristics is the early paper of Stapleton and
Subrahmanyam (1990). They assume that the dividend process is governed
by a geometric [arithmetic] Brownian motion. They show that if aggregate
relative risk aversion [absolute risk aversion] is constant, the forward price
is governed by a geometric [arithmetic] Brownian motion. Franke et. al.
(1999) show that option prices are higher for declining than for constant
aggregate relative risk aversion and that asset returns are serially correlated
in case of declining aggregate relative risk aversion. Neither Franke et. al.
(1999) nor Stapleton and Subrahmanyam (1990) give a characterization of
the volatility function or the autocorrelation function. Also, they do not pro-
vide any quantification of the effects of aggregate relative risk aversion on
the asset price process. Wang (1996) uses a model similar to ours to analyze
the term structure of interest rates. He also assumes an exogenous dividend
process. Moreover, he considers an economy with investors who display con-
stant relative risk aversion, but at different levels. He shows that in a two
investor-economy the drift and the volatility of the instantaneous interest
rate depend on the relative consumption shares of the investors. Campbell
and Cochrane (1999) analyze a similar economy, but they assume a repre-
sentative investor with constant relative risk aversion whose utility depends
on current and past consumption (habit) so that it is path-dependent. This
allows them to explain return predictability and excess volatility. Chan and
Kogan (2002) combine the setup of Wang (1996) and that of Campbell and
Cochrane (1999). Their economy is populated with constant relative risk
averse investors whose level of risk aversion differs and whose utility de-



pends on aggregate consumption scaled by a weighted geometric average of
past aggregate consumption. This feature again implies path-dependence of
the utility function. It implies, moreover, that the conditional risk premium
and return volatility are negatively related to the level of stock prices.

Also the paper of Brennan and Xia (2002) implies path-dependence. They
analyze the effect of learning on return characteristics by assuming that
the representative investor cannot observe the growth rate of dividends but
estimates it from realized data. Their model can explain high volatility of
stock prices. Johnson (2002) builds on their results to show that stochastic
expected growth rates of the dividend process lead to momentum. Brennan
et. al. (2003) and Brennan and Xia (2003) also work within a similar
framework. They emphasize the importance of a time-varying investment
opportunity set to explain the predictability of asset returns.?

It is not surprising that path-dependent utility functions and learning lead
to autocorrelation in asset returns and return predictability. Therefore we
consider an economy with state-independent utility functions implying de-
clining aggregate relative risk aversion, ignoring learning. Not only does
this setup allow us to explain autocorrelation in returns, excess volatility
and return predictability, it also allows us to characterize situations which
can lead to a stock market crash. Therefore this paper provides important
new insights into asset return characteristics and its driving forces. Since
we provide an analytical solution for the price of the market portfolio, we
can easily illustrate our results through simulation.

With increasing aggregate consumption and declining aggregate RRA, our
model-economy converges to an economy with a low level of constant RRA.
Thus, the non-stationarity of asset returns would disappear for high levels
of aggregate consumption. Campbell and Cochrane (1999) and Chan and
Kogan (2002) dampen non-stationarity by assuming path-dependent utility
functions.

The remainder of the paper is organized as follows. In Section 1 the model is
introduced and declining aggregate relative risk aversion is shown to be the
normal case. Moreover, the general relationship between aggregate relative
risk aversion, the dividend and the price process of the market portfolio
is derived. In Section 2, predictability of excess returns, autocorrelation
of returns and excess volatility are shown. Section 3 discusses conditions
for stock market crashes. In section 4 an analytic formula for the price of
the market portfolio is presented together with simulations illustrating the
previous results. Section 5 concludes.

3See also Timmermann (1993), David (1997), Veronesi (2000) and Pastor and Veronesi
(2003) for the effect of learning on asset pricing.



1 The Economic Setting

Our aim is to analyze a simple model of investors preserving essential plau-
sible properties of a rational expectations equilibrium. Since asset pricing
depends on aggregate relative risk aversion, we first motivate our assump-
tion that aggregate relative risk aversion is declining. Then we analyze the
implications on asset pricing. We consider a continuous time-pure exchange
economy with a perfect and complete market. At each date, aggregate
consumption equals the dividend on the market portfolio. All agents have
homogeneous and rational expectations, but different utility functions.

Comparing the model setup of Wang (1996), Campbell and Cochrane (1999),
Brennan and Xia (2002) or Chan and Kogan (2002), our setup is closest to
Wang because we do not intend to generate results due to path-dependent
utility functions or imperfect information.

1.1 Investor Heterogeneity and Aggregate Risk Aversion

In this section we argue that declining aggregate relative risk aversion (RRA)
is the normal case. Aggregate RRA is the market’s relative risk aversion as
implied by the stochastic discount factor (pricing kernel) by which claims
to be paid at a given future date are valued in the capital market.* In
the case of risk neutrality the stochastic discount factor is constant. With
risk aversion, the stochastic discount factor is declining in some aggregate
variable like wealth or aggregate consumption. The negative elasticity of
the discount factor with respect to this variable defines aggregate RRA.
This variable is given in our model by the dividend of the market portfolio.

Aggregate RRA depends on investors’ RRA. There is little disagreement
that investors display declining absolute risk aversion. But it is controver-
sial whether they display declining RRA. While it is therefore difficult to
justify declining aggregate RRA in a representative investor economy (Ru-
binstein, 1974), we will show that declining aggregate RRA is likely to be
observed if a representative investor does not exist. Consider the following
setup. At each date 7, aggregate consumption equals aggregate dividend
D.. Each agent, indexed by ¢ = 1,...,n, has a time-additive von Neumann-
Morgenstern utility function. She has some initial endowment and trades
in a perfect, complete market. She may consume at each future date. As
shown by Wachter (2002), in a perfect, complete market an investor with
time-additive utility over consumption allocates wealth as if she saves for ev-
ery consumption date separately. Thus, the pricing of date 71-claims can be

4Since in this paper we consider only the characteristics of the market portfolio, we
do not differentiate between the pricing kernel and the asset specific pricing kernel. For a
discussion, see Camara (2003).



analyzed independently of that of 7»-claims subject to the usual no-arbitrage
requirement. At any date ¢, each agent can trade claims on aggregate con-
sumption of date 7,7 > t. Let x;(D,) denote the consumption of agent 4
at date 7 as a function of aggregate consumption D, and «;(D;) = z;/D-
her share of consumption. Then ), a;(D;) = 1 for every level of aggregate
consumption. As shown by Benninga and Mayshar (2000), in equilibrium
aggregate RRA ny/(D;) is related to the investors’ RRA by the harmonic
mean,

L/m(Dr) =Y (1/mi(:)) ai(Dx). (1)

%

ni(z;) is agent i’s RRA given her consumption x;. In order to find out
whether aggregate RRA declines in aggregate consumption D, we differen-
tiate equation (1) with respect to D,. As shown in the appendix, we obtain
the following result.

Proposition 1 The elasticity of aggregate RRA with respect to the aggre-
gate dividend is

Olmny(Dr) - Zm{(wz‘)
! )

D,)
O0ln D e x
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2
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The proposition shows that in equilibrium the elasticity of aggregate RRA
with respect to the aggregate dividend is the difference between two terms,
the first being the sum of weighted growth rates of individual RRA, the
second being a pseudo-variance of the inverse individual levels of RRA. If
every investor has a positive share of consumption «;(D;), then, apart from
[na (D)2, the last term in equation (2) has the properties of a variance
term. The more heterogeneous agents are in their preferences and, hence,
in their equilibrium levels of RRA, the higher is this pseudo-variance. It de-
pends on the equilibrium allocation of consumption since the shares o;(D;)
and the individual RRA n;(z;) are endogenous.

Hence, as already shown by Benninga and Mayshar (2000), aggregate RRA
is declining if every agent has constant RRA, ie. if nj(x;) = 0. Now
suppose 7.(z;) # 0. Then the first term on the right hand side of equa-
tion (2) multiplies the individual RRA growth rate n.(x;)/n;(z;) by 22 =
[ (D )nar (D7) /mi(z:))?. Note that Y,z = 1, by equation (1). Hence if



there are many investors, each having a positive consumption share, then
the average z; will be very small. This holds, a fortiori, for z? Therefore if
there are investors with increasing, with constant and with declining RRA,
then the first term on the right hand side is likely to be close to zero while
the positive second term is subtracted. The second term tends to be higher,
the more heterogeneous investor preferences are.’> Since this heterogeneity
appears to be strong in reality, we conclude that aggregate RRA is likely to
decline.

The intuition for this result can be obtained from the following reasoning.
Given an optimal allocation of claims, a highly risk averse investor i tends
to buy claims x;(D;) which increase only little with aggregate dividend
D;. Her demand curve x;(D;) is rather flat. Hence her share «;(D;) =
x;(D;)/D+ tends to be high [low] when D, is low [high]. The opposite is
true of an investor with low RRA. Therefore in the low dividend states the
highly risk averse investors dominate the market so that aggregate RRA
turns out to be high. In the high dividend states low risk averse investors
dominate the market so that aggregate RRA turns out to be low. Thus,
aggregate RRA tends to decline with increasing dividend.

It should be noted that the same pattern of aggregate RRA can also be ob-
tained in an economy with a representative investor. However, a represen-
tative investor-economy cannot explain the large trade volume in financial
markets. Moreover, it is controversial what patterns of RRA individuals
display. In an economy with heterogeneous agents, dynamic stock/bond-
strategies imply large trading volumes and naturally motivate declining ag-
gregate RRA. The following proposition reinforces our view that declining
aggregate RRA is the normal case, it rules out any shape of aggregate rela-
tive risk aversion other than declining if at any future date aggregate RRA
is declining.

Technically, aggregate RRA is given by 77;I> ’D, the negative elasticity of the
stochastic discount factor for claims to be paid at date ¢t with respect to the
dividend D;.% The date t-stochastic discount factor for claims contingent on
some state at date s is exp (=7 (s —t)) @45, where the instantaneous risk-
free rate ry is assumed non-random. In an arbitrage-free, complete market
this function is unique. No-arbitrage also implies that ®¢; is a martingale

5The second term approaches zero if one investor buys a very large fraction of the ag-
gregate dividend and the other investors buy very little. This can happen if the aggregate
dividend is very low or very high and marginal utility of consumption of the first investor
relative to that of every other investor goes to infinity for very low resp. very high levels
of consumption.

50ne way to interpret this stochastic discount factor is to assume that at each date
aggregate consumption equals the aggregate dividend. Then the stochastic discount factor
mirrors aggregate marginal utility of consumption. Alternatively, investors may use the
aggregate dividend as an index of welfare with a higher index lowering the stochastic
discount factor.



and ®; s = ®g s/Po;. We assume that the dividend represents the only risk
factor in the market, hence ®g; can be characterized as a function of the
dividend. In addition, we assume that the dividend or aggregate consump-
tion is governed by an exogenous diffusion process with non-accelerating
growth rates, i.e. with gx’g)g <0, for s > t. This appears as a rather weak
assumption on the behavior of aggregate consumption, which is consistent
with many economic models. The geometric Brownian motion which is a
widely used model for aggregate consumption, for example, is consistent

with this assumption.

Proposition 2 Suppose that aggregate consumption D, is governed by a
diffusion process with non-accelerating growth rates and that there are no
other risk factors. Then declining aggregate RRA at some date s implies
declining aggregate RRA at every preceding date t.

This proposition is proved in the appendix. It shows that declining aggregate
RRA at some date also implies declining aggregate RRA at every preceding
date. Conversely, increasing aggregate RRA at some date does not imply
increasing aggregate RRA at all preceding dates. As can be seen from the
appendix, it is well possible that aggregate RRA increases at some date, but
declines at a much earlier date. Hence, increasing aggregate RRA is not a
time-invariant property, in contrast to declining aggregate RRA.

Propositions 1 and 2 show that declining aggregate RRA is likely to hold.
On the empirical side, Ait-Sahalia and Lo (2000) support declining aggregate
RRA. Also the overpricing of out-of-the-money put options (see, for example,
Jackwerth, 2000, and Diiring and Liiders, 2005) makes a strong case for
declining aggregate RRA. Therefore for the rest of the paper we will focus
on declining aggregate RRA.

1.2 A simple model for the price of the market portfolio

We investigate the pricing of the market portfolio in a perfect and complete
capital market. We consider a continuous time economy with an infinite
horizon. Since we are interested in the pricing impact of declining aggregate
RRA, we take the instantaneous risk-free rate ry as exogenously given and
non-random.” This is in strong contrast to Wang (1996) and close to Camp-
bell and Cochrane (1999). They show that this assumption holds even in a
production economy if the technology of the economy generates a constant
real risk-free return and the capital stock is subject to exogenous additive
endowment shocks. As in Wang (1996), Campbell and Cochrane (1999),

"The impact of heterogeneous time-preferences of investors on the term structure of
interest rates is analyzed in Lengwiler (2005), for example.



Chan and Kogan (2002), the market portfolio pays an exogenously given
dividend stream which is governed by a geometric Brownian motion

th = /,LDDtdt + O'DDtth s 0 <t < oo, (3)

where the instantaneous drift up and the instantaneous volatility op are
assumed constant. W; is a one-dimensional standard Brownian motion and
the initial dividend Dy is positive. This represents a simple setting with the
dividend being the only risk factor. The price of the market portfolio at
date t, S, is the present value of all future dividends

o0

Si=F /exp (=rp(s—1)) Ds®Pyods| Dy | . (4)
t

This price is finite given a sufficiently high risk-free rate and aggregate risk
aversion. Since the dividend is the only risk factor in the market, ®¢; can
be characterized by

Ao, = —npPop®odW;
(I)O,() = 1.

If aggregate RRA is time-homogeneous, the asset price Sy is a time-homogeneous
function of the dividend at date ¢t and can be characterized by the following
stochastic differential equation

ds; = nPPnPPodS, — Dy +rpSpdt + 10 op S, dW. (5)
~~ S——
=ps(St)St =X5(St)St

s (St) denotes the instantaneous drift which equals the expected instanta-
neous excess return plus the risk-free rate ry. Xg (S¢) denotes the instan-
taneous volatility. Both, volatility and drift depend in general on the asset
price S;. nf P denotes the elasticity of the asset price Sy with respect to the
dividend Dy.

2 Predictability of Excess Returns and Excess Vola-
tility

We begin the analysis of return characteristics by looking at the elasticity
of the asset price with respect to the dividend. If this elasticity is equal



to 1, then the asset price also follows a geometric Brownian motion since
the dividend is governed by a geometric Brownian motion. If the elasticity
is higher than 1, then the spot price overreacts compared to a geometric
Brownian motion. The following proposition establishes the relationship
between the overreaction and aggregate RRA.

Proposition 3 (Overreaction)Assume that at each date aggregate RRA
1s declining in the dividend and that the dividend is governed by a geometric
Brownian motion with constant instantaneous volatility and constant in-
stantaneous drift. Then the elasticity of the asset price with respect to the
dividend is higher than 1.8

This proposition is proved in the appendix. To get the intuition for the
overreaction, think about aggregate RRA in terms of RRA of a represen-
tative investor. A representative investor with decreasing RRA requires a
lower excess return for the same risk, the wealthier he is, i.e. the higher the
dividend is. Compared to an investor with constant RRA, her required risk
premium decreases, the wealthier she is. Hence, the price she is willing to
pay for the asset increases with increasing dividend more than under con-
stant RRA. Thus, with declining aggregate RRA an increase in the dividend
induces a decline in the required risk premium which reinforces the purely
fundamental increase of the asset price so that the asset price overreacts
compared to constant aggregate RRA. Similarly, a decline in the dividend
induces an overproportional decline in the asset price.

To draw conclusions about the behavior of excess returns we need to derive
the behavior of the total return index (performance index) V;. Since the total
return index includes the reinvested dividend payments, its return minus the
risk-free rate is the excess return that we are interested in,

dV; dsS; Dy

— —redt = — + —dt — redt.

7 rf S, + S, Ty
Note that V; = S with a; being independent of D;. Therefore gllr?gtt =
ny’D = nf’D = gllr? lé;tt This implies that Proposition 3 holds equally for the

elasticities nts D and 172/ D Hence, declining aggregate RRA implies that
the total return index also overreacts. This overreaction translates into
an increase in the instantaneous volatility of returns as the instantaneous
volatility of the total return index is the product Sy (Sy) = n,"”op. This
equals the instantaneous volatility of stock returns g (S;) = nts Lop. The
following proposition establishes that declining aggregate RRA also raises

8The corresponding result that asset returns underreact if aggregate RRA is increasing
is shown in the appendix.
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the variance of asset returns over finite periods. Hence, declining aggregate
RRA explains the well documented excess volatility.

Proposition 4 (Excess Volatility) Suppose that at each date aggregate
RRA is declining in the dividend and that the dividend is governed by a geo-
metric Brownian motion with constant instantaneous volatility and constant
instantaneous drift. Then the conditional (T >t = 6) and the unconditional
(1 >t > 0) variance of the total return index exceed the dividend variance,
i.e.

Var (InV; —InV;| Dg) > Var (In D, — In D;| Dy) . (6)

Proposition 4 is proved in the appendix.® The conditional variance Var(In V; | D;)
exceeds the dividend variance Var(ln D;|D;) because of overreaction. The
same is true of the unconditional variance. Therefore excess volatility is
obtained.

We have seen that asset returns under declining aggregate RRA overreact
compared to constant aggregate RRA. Does the overreaction render asset
returns predictable? First, notice that the instantaneous drift of the total
return index py (St) equals the instantaneous drift of stock returns plus the
dividend yield. Hence the instantaneous Sharpe ratio

pv () —ry _#s(SE 5 =1 e
Yy (St) Y5 (St) !

depends negatively on Dy for declining aggregate RRA, nf) "D Therefore the
Sharpe ratio can easily be predicted knowing the current dividend. The pre-
dictability of the Sharpe ratio would directly translate into predictability of
excess returns if the instantaneous return volatility 3y (S¢) was non-random.
But changes in volatility might disturb this relationship, the exception being
that the volatility does not increase with the dividend.

Instead of using the fundamental variable, in our model the dividend, for
forecasting excess returns, many forecasts are based on past excess re-
turns. This is successful if excess returns are either positively or nega-
tively autocorrelated. To analyze the serial return dependence, we con-
sider the covariance between the excess return over the time span [t, 7], i.e.
CER,; = [] d“/f — [[ r¢ds, and the instantaneous expected excess return
at time 7, i.e. py (1) —rp.10

9Proposition 4 assumes declining aggregate RRA. It does not hold in an analogous
manner for increasing aggregate RRA.
0For a similar analysis see Johnson (2002).
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Proposition 5 (Predictability of asset returns) Suppose that at each
date aggregate RRA is declining in the dividend and that the dividend is gov-
erned by a geometric Brownian motion with constant instantaneous volatility
and constant instantaneous drift. Then, the cumulated excess return and the
instantaneous expected excess return are negatively correlated if the volatility
of excess returns does not increase with the dividend.'!

This proposition is proved in the appendix.'? It shows that excess returns are
negatively autocorrelated if aggregate RRA is declining, provided that the
volatility of excess returns does not increase with the dividend. The intuition
for the negative autocorrelation is that if past returns have been strongly
positive, investors are better off implying lower aggregate RRA. Hence, the
required risk premium decreases which lowers future expected excess returns.
This leads to negative autocorrelation. However, Proposition 5 reveals that
autocorrelation might be positive if the volatility of excess returns strongly
increases with the dividend so that the required risk premium increases, too.
This will be illustrated later in our simulations.

To sum up, this section has shown that return predictability, excess volatil-
ity and autocorrelation in returns follow from declining aggregate RRA.
The latter is motivated by investors with different, state-independent utility
functions. Therefore there is no need to use path-dependent utility func-
tions or learning to get similar results as in Campbell and Cochrane (1999),
Chan and Kogan (2002), Brennan and Xia (2002). Our framework also
permits an explanation for stock market crashes without advocating market
imperfections or “irrational behavior”!3 as will be shown in the next section.

3 Stock Market Crashes

In this section we analyze aggregate RRA in more detail and provide an
explanation for stock market crashes in our simple rational expectations
model. Often a stock market crash like that at the beginning of this decade
is associated with a previous price bubble. Such a bubble is created by a
strong stock price increase which is not driven by a strong improvement in
fundamentals, and a subsequent strong price decline aligning the stock price
again to fundamentals. It is difficult to explain bubbles in a rational expec-
tations framework. Many explanations are based on behavioral departures
from ”rationality” or market imperfections. The explanation of crashes in
this paper relies neither on irrationality nor on market imperfections.

"'The corresponding result for increasing aggregate RRA is shown in the appendix.
12The conditions established in Proposition 5 are sufficient but not necessary.
3For an excellent overview of such models consider Brunnermeier (2001).
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We define a crash as a situation in which a small decline in the funda-
mentals triggers a strong decline in the stock price. Conversely, a small
improvement in the fundamentals may trigger a strong increase in the stock
price. A bubble that bursts, thus, might be observed if a small improvement
in fundamentals leading to a strong price increase is followed by a small de-
cline in fundamentals leading to a strong price decline. Such phenomena
will be shown to be fully consistent with a rational expectations equilibrium
in a perfect market. Strongly declining aggregate RRA in a small range of
fundamentals may be viewed as a shift from a high risk aversion regime to
a low risk aversion regime or vice versa. This regime shift causes the crash.

To illustrate the regime shift, first, consider a market with constant aggre-
gate RRA, 7. Then in an infinite horizon model in which the aggregate divi-
dend follows a geometric Brownian motion, the stock price at date ¢, S, is a
multiple of the dividend at date ¢, Sy = Dy /k with 14+k = exp[r+ij 0% —pup].

To make things simple, suppose 7y equals pp. Empirical estimates of the
dividend volatility of the market portfolio are around 12.8 percent. Then the
price dividend ratio would be around 60.5 for constant aggregate RRA of 1.
Now suppose that unexpectedly aggregate RRA increases from a constant
level of 1 to a constant level of 10. Then the price dividend ratio would
drop to 5.6, i.e. the price would drop by roughly 90 percent. Hence the shift
from the low to the high risk aversion regime induces a stock market crash.
In the following, we analyze equilibria with the potential for a stock market
crash.

The property required for a crash is that aggregate RRA stays almost con-
stant in the range of low aggregate dividends, then drops sharply with an
increase in dividends and, again, almost stays constant in the upper range.
Even though a precise characterization of the conditions implying these
properties is difficult, we present (1) a condition implying that aggregate
RRA almost stays constant for the low and the high aggregate dividend
range, and (2) characterize the minimal elasticity of aggregate RRA with
respect to the aggregate dividend. Given a sufficiently negative elasticity,
we may observe a stock market crash. We assume in line with the literature
that all investors have constant RRA, but the level of RRA differs across
investors. Investors with the same level of RRA belong to one group of
investors.

Lemma 1 Consider an equilibrium allocation with investor groups i (i =
1,...,n) ordered by declining level of constant relative risk aversion. Then
the slope of the aggregate RRA curve relating aggregate RRA to the aggregate
dividend approaches zero for high levels of the aggregate dividend. The same
is true for very low levels if the constant RRA of investor group 1 is higher
than twice the constant RRA of every other investor group.
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This lemma which is proved in the appendix characterizes situations in which
aggregate RRA is almost constant for high and for low levels of the aggre-
gate dividend. Whereas the latter is always true if each investor group has
constant RRA, the former requires that the constant RRA of the most risk
averse investor group is much higher than that of the other investor groups.
Then there exists a range of low aggregate dividend in which the most risk
averse investor group buys a high share of the available claims so that the
aggregate RRA approaches its high level of constant RRA. This group dom-
inates the market in this range. In the range of high dividends, this group
buys a small share of the available claims so that its influence on the market
disappears. In this range the least risk averse investor group dominates the
market. Hence there is a shift from a high risk aversion to a low risk aversion
regime.

This shift may explain a crash if in some dividend range in between ag-
gregate RRA declines very rapidly. To characterize this decline, consider a
market with two investor groups, the first with constant RRA ny, the sec-
ond with 7. The two investor groups’ market shares add up to one, i.e.
a1(D;) + az(D;) = 1. Then the elasticity of aggregate RRA with respect
to the dividend, d1nny/01n D;, is minimal for of (D7) = n1/ (m + n2) with
dlnnt, /0D, =1— (1 +n1/m2)%/ (4m /1) (see Addendum to Appendix).
It shows that the minimal elasticity of aggregate RRA with respect to the
aggregate dividend depends only on the ratio of the two RRA levels. A
higher ratio lowers the minimal (negative) elasticity. This equals —0.125 for
n/n2 = 2, but for 71 /n2 = 20 it drops to a very low level of about —4.5.
This would generate a crash. In the following we will illustrate this by simu-
lating the equilibrium allocation, the corresponding aggregate RRA and the
pricing of the market portfolio.

4 Simulation

In this section we illustrate our results by some simulations. First, we derive
aggregate RRA assuming investors with constant RRA, but the level of RRA
varies across investors. Second, we discuss the procedure used for simulation.
Third, we present the simulation results.

4.1 Aggregate Relative Risk Aversion

The simulation approximates the valuation in an infinite horizon setting by
a finite horizon setting. The price of the market portfolio at the horizon is
approximated by a function of the aggregate dividend paid at the horizon.
Investors trade claims on the dividends paid until the horizon and claims
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on the horizon market portfolio. Once the stochastic discount factor for the
horizon date is known, the stochastic discount factors for the preceding dates
can be derived from no-arbitrage. Therefore we need to derive the stochastic
discount factor for the horizon date or, equivalently, the aggregate RRA for
the horizon date. Assume that there are three investor groups (for short
investors) with different levels of constant relative risk aversion. (y1,72,73)
denotes the vector of these levels. We derive the pareto-efficient allocation
of claims on the horizon market portfolio by using the social planner model.
The planner allocates these claims to the investors so as to maximize the
weighted sum of the investors’ utility subject to the constraint that the sum
of all claims equals the exogenous supply of claims. (1/);) is the state-
independent weight attached by the social planner to investor i. A;/\; can
be interpreted as the ratio of investor i’s over investor j’s expected marginal
utility in equilibrium. A; is higher, the smaller the wealth that investor ¢
allocates to claims on the horizon market portfolio. Since this wealth is
determined by the equilibrium allocation, this is also true of A;. Yet, the
simulation takes \; as exogenous. Later on, sensitivity of the results with
respect to A\; will be discussed.

As discussed before, empirical results on investors’ risk aversion are mixed.
To determine the values for the risk aversion parameters we refer to recent
empirical estimates of aggregate RRA implied by option prices, but stick to
relatively conservative specifications.

-insert Figures 1 to 3 here-

Figures 1 to 3 illustrate the simulation results. The upper graph shows the
shares of claims bought by the three investors as a function of the aggregate
supply of claims. These shares always add up to 1. The lower graph shows
the implied aggregate RRA as a function of the aggregate supply of claims
(fat curve) and an approximation of the fat curve (thin curve) which is used
later. Note that the scale of X, the aggregate supply of claims, is irrelevant
since all investors have constant RRA.

Figure 1 may be viewed as the "normal” case. The three investors have
RRA levels (5;3;1). The weights (1/\) are given by the vector (1;3/5;1).
As indicated in the upper graph, given a very low aggregate supply of claims,
the most risk averse investor 1 buys almost all available claims, but her share
declines quickly since, first, investor 2 with RRA 3 quickly raises her share
and, second, the least risk averse investor also increases her share gradually.
The RRA-vector (5;3;1) violates the condition for a risk aversion regime
shift given in Lemma 1. Therefore the slope of the aggregate RRA curve
does not approach zero for low levels of supply. The lower graph shows that
aggregate RRA is basically a smoothly declining convex curve. Hence, in
this setting there is no room for a crash.
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In Figure 2 we raise investor 1’s RRA from 5 to 20 so that (y) = (20;3;1).
(1/X) = (1073;20;1) so that the expected marginal utility of investor 1 is
very high indicating a small amount of wealth allocated to claims on the
horizon market portfolio. Yet the upper graph in Figure 2 shows that she
buys almost all claims as long as the supply of claims stays below 1. The
second and third investor come into play at higher supply levels. Therefore,
as stated in Lemma 1, aggregate RRA stays almost constant at a level of
20 for the entire (0;1) range of claims supply. Then it declines sharply in
the range (1;1.5) and thereafter slowly approaches the level 1, the RRA of
the least risk averse investor. An approximation to the strongest decline
in elasticity assumes just two investors with RRA of 20 and 2. Then the
minimal elasticity of aggregate RRA with respect to the dividend is about
—2. This situation paves the ground for a crash. Important is the sharp
decline in aggregate RRA. This reflects the high pseudo-variance of the
investors’ inverse RRA levels, i.e. the second term in equation (2).

Consider the third example in Figure 3. Now there exist two investors with
high RRA 20 resp. 18 and one investor with RRA 1; (y) = (20;18;1) and
(1/X) = (10;6;1). In this case the expected marginal utilities of the highly
risk averse investors are relatively low indicating relatively high amounts
of wealth allocated to claims on the horizon market portfolio. The lower
graph shows that aggregate RRA is almost constant at a level of 19 for a
wide range of claims supply (0;1.3). Then it drops sharply to a level of 7
in the range (1.3;1.8) and then gradually approaches the level 1. Again,
an approximation just assumes two investors with RRA 19 and 1. Then
the minimal elasticity of aggregate RRA with respect to the dividend is
even much stronger at about —4.25 than in the previous example. The
interesting result is that even though the condition in Lemma 1 does not
hold, aggregate RRA basically stays constant in a wide range of low claims
supply. The reason is that the two highly risk averse investors dominate the
market and change their shares of claims relatively little implying aggregate
RRA to be roughly equal to the average of their risk aversion levels. Again,
we may observe a crash.

How robust are the results shown in Figures 2 and 37 Additional simulations
indicate several properties. First, if as in Figure 3, there are 2 investors such
that their levels of RRA are higher than twice the level of the third investor,
then the aggregate RRA curve is similar to that in Figure 3. Second, if
the weights (1/\) for the three investors are changed, then the shape of the
aggregate RRA curve remains similar, but the low supply range with almost
constant aggregate RRA will be shorter or longer depending on the wealth
of the most risk averse investors. Third, if there are many investors instead
of one with the same constant RRA +, this has no effect on aggregate RRA
as long as the sum of the \/7 across these investors stays the same. The
intuition is that all investors with the same RRA buy the same portfolio
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Figure 1 Figure 2 Figure 3
Y1 5 (51 4.5 Y1 20 (51 20 Y1 20 51 19
Y2 3 52 3 Y2 3 52 12 Y2 18 52 6
Y3 1 (53 1.2 Y3 1 53 2 Y3 1 53 2
MY L oar L[[ATT 1077 e LA 10 o 1
St 6 ar 1A 20 ap 1At 6 ap  0.001
NP1 oaz 2 At 1 a3 01| A1 1 az 0.0001

Table 1: For each figure the table shows the RRA of the three investors
(7) and their relative expected marginal utility (A~!). The parameters used
in the polynomial approximation of the stochastic discount factor are the
exponents (0) and the weights («).

of claims up to multiplicative factors reflecting the levels of their initial
endowments.

Therefore, the shape of aggregate RRA shown in Figures 2 and 3 appears
to be robust to a wide set of parameter changes. The crucial condition
for a sharp decline of aggregate RRA in some range of the supply of claims
appears to be that the investors can be split into two groups, the first having
high levels of RRA and the second having low levels of RRA such that the
high levels exceed twice the low levels.

4.2 Simulation Procedure

For the simulation of equilibrium price processes we approximate aggregate
RRA by approximating the equilibrium stochastic discount factor through
a sum of power functions. Let Sy be the value of the market portfolio
at some horizon date t + h which defines the aggregate supply of claims at
that date. The random part of the stochastic discount factor, ®; ;44 (St+n),
is approximated by the generalized polynomial

N —0;
By yip = Dim1 @i S,
tth = N 511’
B[}l St—i—h‘Dt]
with «a;, §; € R. This specification is quite general. Since the §;’s are not
required to be integers, this approximation is at least as good as a Taylor-
series approximation. We use polynomials with N = 3 terms. Table 1
displays for each figure of the previous section the parameters of the investors
and the parameters §; and «o; used in the generalized polynomial.

The table shows that the exponents §; and §3 used in the polynomial approx-
imation of the stochastic discount factor correspond closely to the RRA v,
resp. 3. The quality of the approximation can be seen in the lower graphs
of Figures 1 to 3 depicting aggregate RRA derived from the social planner
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model (fat curve) and aggregate RRA derived from the approximation (thin
curve). The approximation appears to be quite good. It could be further
improved by using more than three power functions (see also Diiring and
Liiders, 2005).

The simulation of the process of the price of the market portfolio can be
facilitated strongly if the price at any time can be derived analytically. To
achieve this, we approximate the infinite horizon setting by a finite horizon
setting. The date t price of the market portfolio is the present value of future
dividends. We approximate this value by the present value of dividends until
a given horizon ¢t + h and a suitable approximation for the horizon wealth
generated by subsequent dividends. The horizon h is constant over time so
that £+ h moves over time. The asset price at the horizon is a deterministic
function of the dividend paid at the horizon, Sy = Sppn(Desn) consistent
with the infinite horizon model. The approximation used here is that at
the horizon the elasticity of the asset price with respect to the dividend is
assumed to be constant, i.e. Sy1p = dpr - dp is a kind of price dividend
ratio. The exponent ¥ is assumed to be greater or equal to 1 indicating
declining or constant aggregate RRA (see Proposition 1). Since we use a
very long horizon of 240 months, we expect the impact of this approximation
on our simulation results to be very small.'

Analyzing the annual S&P 500 real price and price-dividend data for the
time period 1871-2002 ', one finds that the price-dividend ratio is reason-
ably approximated by A%t = 7.27TADP® with an R? of almost 40 percent
where AD; = 12Dy is the annual and D; the monthly dividend . This implies
for the numerical simulation based on monthly data Sy,; = 325.6D§f3. The
real interest rate is set to 2.5 percent p.a. which is consistent with the his-
torical average (see Brennan and Xia, 2002). Consistent with the historical
mean and volatility of real monthly dividend growth we choose op = 0.037
and pup = 0.002. The initial dividend Dy is set to 1 or 4. The asset price is

given by the present value of future dividends:

t+h
Sp = > exp(rs(t— s))E (Ds®y 4| D) (7)

+ exp(=17h)E (dp DYy ®1en D)

Using the stochastic discount factor polynomial, E(Sy1p®P¢ 4| Dy) is a weighted
average of means of power functions of S;yp. Since Syip is a power func-
tion of Dyyp and Dyyp is lognormally distributed, E(Siyp®Pt1yn|Dy) can
be derived analytically. The same is true of E(Ds®;¢|D;) since &y =

“Purther numerical simulations based on a finite horizon model that are not shown in
this paper support this view.
5Source: Shiller (http://www.econ.yale.edu/ shiller/data.htm)
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E(®:¢11|Ds) by no-arbitrage. Hence the price S; can be derived analyti-
cally as a function of the dividend D; as shown in the appendix.

We use simulation to derive the properties of the price process. In each
simulation run, we generate 240 observations of the dividend process. This
corresponds to 20 years of monthly data. Given a constant investment hori-
zon of h = 240 months, we obtain a sequence of 240 asset prices, derived from
equation (7). For every model specification we run 1000 simulations. The
parameters of every specification 1 to 3 are given in Table 1, approximating
aggregate RRA in Figures 1 to 3.

4.3 Simulation Results

First, consider Figure 4 illustrating the relationship between the asset price
and the concurrent dividend.

- insert Figure 4 here -

In the benchmark case of constant aggregate RRA the asset price increases
linearly in the dividend. In specification 1, the rather mild decline in aggre-
gate RRA produces a convex curve which mildly contrasts with the bench-
mark case. Specifications 2 and 3 deviate strongly from the benchmark case.
For low dividends, the asset price increases very little with the dividend, then
around a dividend level of 4, it increases strongly and, thereafter, it increases
almost proportionally as in the benchmark case. Hence, specifications 2 and
3 show the potential for a stock market crash, in contrast to the benchmark
case and specification 1. If, given specification 3, the dividend declines from
4.3 to 3.8, then the price of the market portfolio crashes from about 1,400 to
around 260. A small decline (less than 12 percent) in the dividend, the fun-
damental variable, triggers a very strong decline in the market value (more
than 80 percent). The reason is that the stock market switches from a low
to a high risk aversion regime. The mildly risk averse investors dominating
the market in the high dividend range basically disappear from the market
and the very risk averse investors take over and dominate the market. They
strongly pull down the asset price. If the dividend happens to first increase
from 3.8 to 4.3 and then to fall back to 3.8, then the asset price increases
from about 260 to 1,400 and then falls back to about 260. This can be
viewed as a bubble. Technicians would call 260 a support level and 1,400 a
resistance level.

The crash potential of specifications 2 and 3 is also illustrated by the strong
variability in the elasticity of the asset price with respect to the dividend
as shown in Figure 5. This elasticity varies only little with levels between
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1 and 2 in specification 1, but it increases dramatically to more than 16 in
specifications 2 and 3 around a dividend level of 4 so that the local return
volatility will be quite high.

- insert Figure 5 here -

Figure 4 also illustrates return predictability. This exists if expected asset
returns depend on the dividend level or on the asset price. In Figure 4, the
expected asset return is reflected in the slope of the asset price curve. This
slope varies except for the benchmark case, its variation is particularly strong
for specifications 2 and 3, due to the crash potential. Another indicator of
predictability is the Sharpe-ratio. The simulation shows that except for the
benchmark case the Sharpe-ratio declines with increasing dividend, similar
to the aggregate RRA. This decline is particularly strong for specifications
2 and 3.

Although the equity premium puzzle is not at the center of our study we
would like to point out that declining aggregate RRA may also explain this
puzzle. Note that for declining aggregate RRA Sharpe ratios are high for
low dividend levels and low for high dividend levels. For instance, for Spec-
ification 3 the average Sharpe ratio is around 0.18 given an initial dividend
Dg = 4. For Dy = 1, we find an astonishingly high average Sharpe ratio
of about 2.65. These fluctuations of the Sharpe ratio may explain why for
certain time periods empirical studies find such high equity premia.

- insert Table 2 here -

More information on the characteristics of the asset price process is provided
in Table 2. This table presents measures of return volatility and of auto-
correlation in returns and return volatility for the benchmark case and for
specifications 1 to 3. The results are given for initial dividends of 1 and 4.
The initial dividend is relevant since it determines the likely dividend paths
underlying the simulation results. Regarding return predictability, the au-
tocorrelation of returns is important. All displayed return autocorrelations
are negative. Figure 6 reveals that the serial return covariance is slightly
negative everywhere for specification 1, but this is not true for specifications
2 and 3. Here the autocorrelation becomes positive at a dividend level of
about 3.5, reaches a peak at about 3.7 resp. 3.9 and then turns strongly
negative before it moves back close to zero. The intuition for this surprising
result is as follows. When the dividend moves up from, say, 3.8 to 4.2, then
the asset return is strongly positive as it is when the dividend moves further
up in the next period from 4.2 to 4.7 implying positive autocorrelation. But
when it moves further up from 4.7 to 5.2, then the return will be small im-
plying negative autocorrelation. Hence even though Table 2 shows negative
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autocorrelations, this only indicates that the local negative autocorrelations
dominate the positive ones in our simulations. These results seem to be in
line with empirical research suggesting short-term momentum and long-term
reversals. !0

- insert Figure 6 here -

Finally, Table 2 illustrates excess volatility and volatility clustering. The
volatility of asset returns equals the dividend volatility of 12.8 percent in
the benchmark case. But it is higher for specifications 1 to 3 because of
declining aggregate RRA. For specification 1 and an initial dividend of 1
the return volatility is 16.7 percent on a monthly basis and 16.6 percent on
a 4-year basis. These figures are higher for specifications 2 and 3. They in-
crease dramatically if the initial dividend is 4, i.e. in the center of the crash
potential. The strong price movements in this region produce a predictable,
high volatility. All the autocorrelations in return volatility shown in the last
two rows of Table 2 are positive indicating volatility clustering. Again, this
does not rule out varying signs of local autocorrelation.The autocorrelations
are small for specification 1, but quite high for specifications 2 and 3. The
high volatility in the crash region reinforces volatility clustering. To con-
clude, this section has demonstrated that declining aggregate RRA makes
excess returns overreact, makes expected excess returns and return volatil-
ities predictable, generates excess return volatility and volatility clustering,
and, perhaps most importantly, can explain stock market crashes.

5 Conclusion

This paper argues that in a perfect capital market with rational, heteroge-
neously risk averse investors asset pricing is likely to be characterized by de-
clining aggregate relative risk aversion (RRA). Therefore the paper analyzes
the impact of declining aggregate RRA on asset returns in a simple ratio-
nal expectations model. Investors’ utility functions are state-independent.
Hence if aggregate RRA were constant and the aggregate dividend is the
fundamental variable, driven by a geometric Brownian motion, then asset
prices were also governed by a geometric Brownian motion. Declining ag-
gregate RRA can lead to short-term momentum, long-term reversals as well
as high and persistent volatility of excess returns. Declining aggregate RRA
even provides a rationale for chart analysis in an efficient market. In con-
strast to other papers, these findings do not depend on path-dependence of
utility or on learning.

8 There are different definitions of momentum and reversals. In this paper we define
positive [negative] serial correlation as momentum [reversal].
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The asset price reaction to a dividend change depends on the dividend level.
In certain dividend ranges the asset price reaction is weak while it can be
quite strong in others. A small decline in the dividend can trigger a strong
decline in the price of the market portfolio as in a stock market crash.
This requires that aggregate RRA declines strongly in some dividend range.
It is likely to happen when there are two groups of investors, one with
a high level of RRA and the other one with a much lower level. Hence
explaining a stock market crash neither requires ”irrational behavior” nor
market imperfections.

The findings of the paper are consistent with many empirical findings on
stock returns. In contrast to mainly empirically motivated time-series mod-
els, the model in this paper has a solid economic foundation and in contrast
to many theoretical models analytical asset price functions are derived. The
model setup is deliberately chosen to be simple to pinpoint the importance
of aggregate RRA for asset return processes. Therefore future research is
needed to investigate more complicated models taking into consideration
more realistic settings. For example, this model does not deal explicitly
with heterogeneous expectations of investors. Also, this model only ana-
lyzes the return of the market portfolio neglecting single stocks.

6 Appendix

6.1 Proof of Proposition 1

Investor ¢ derives her optimal portfolio of date T-claims from

max Flu;(z;)]  st.  Elx;¢(D;)] = wor.

wo; 18 the investor’s endowment reserved for buying claims on D,. ¢(D;) is
the stochastic discount factor, i.e. ¢(D;) = ®¢ - exp(—rs7). The FOC for
x; is (A; denotes the Lagrange-multiplier of the budget constraint)

ul(z;) = Nip(Dy) 3V Dy

Differentiate the log of this equation with respect to In D,. This yields

dlnz;

dln D,

ni(z) =nu(Ds) ;Y D (8)
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Since dInx;/dIn Dy = (dx;/dD;)/oi(D~) and ), dx;/dD; = 1, aggregating
equation (8) across all investors yields

1 . Oéi(DT)
(D7)~ 2 e ¥

Differentiate equation (9) with respect to D,. This yields

1 (Dr) _ ni(z;)  du; ' 1 )
[7]]\]/\[4(7137-)]2 B ; [77@(332)]2 dDTOKz(DT) - ; Th(l’l)al(DT) (10)

The first term on the right hand side of equation (10) can be rewritten using
(8) as

ni(wi) dln; 2 _ 1 ni(wi) o nu (D) 2
2 e D, P = 5 2 G o

The second term on the right hand side of equation (10) can be rewritten
as (since ), o/ (D;) = 0)

, R S O D)y [ 1 __ 1|,
zi:ai(DT) <m(az¢) UM(DT)> D, Z (D)DT[ i(23) nM(DT)] ()
dlnozl
dlnD ni(@; 77MD)

_nM(DT) 11 204‘
D zi:[m‘(xi) nM(D’T‘):| (D7)

The last equation follows from d1na;/dIn D; = dInx;/dIn D; —1 and equa-
tion (8) which implies dIn o /dIn D; = np (D7) [1/n:i(zi) — 1/nar(D7)].

Multiplying equation (10) by nas(D,)D;, proves Proposition 1. |

6.2 Proof of Proposition 2

Intertemporal no-arbitrage implies for dates s and ¢ with s > ¢

q)O,t(Dt) = E[(I)O,S(Ds)‘Dt]‘
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Taking logs and differentiating with respect to In D; yields
81n<I>0’t N 8IH(I)075 8lnDs (I)()’S D
dmD;, | dlnD, dlnD, &g, 1 |
This may be written as
®,D Oln D

with ®; 3 = ®g /P . Differentiating 7, ®D with respect to In Dy yields

8ln77;b’D o oneP (ENDDS)Q’D VB Da In D,
omD, ~|omD, "'ompb,’ I s oinD,2
@DalnD381n®t7s

+FE |:77$ ’ (I>t75

Dy| (11
3lnDt 8lnDt t:| ( )
Because of the martingale property ®¢; = E [®g s|D;] and @ = ®g 5/ Po 4
the elasticity of the (forward) stochastic discount factor ®; ; with respect to
the dividend Dy is given by
Olndys Olndg s dIn Dy Oln®y s 0In D, D
dlnD;,  9lnD, dlnD; O0lnDg 0ln Dy ¢
@t,s\Dt} . (12)
Dt:| )

where Variance® [.] is the variance under the equivalent martingale measure
P defined by ®; .

(Pt,s

_ 3p0InDy o.p0In Dy
s 5 D, s 9D,

Hence, the last term in equation (11) equals —Variance® [nf Dgﬁgt

Regarding the sign of 877?’D/8ln D, as given by (11), if 877?’[)/8 InDg <
0, then the first term is negative. The second term is negative for non-
accelerating aggregate consumption, %Ql#g:; < 0. Since the variance is al-
ways positive, the third term is also negative. This proves the proposition.

6.3 Proof of Proposition 3

Differentiating the logarithm of equation (4) with respect to In Dy and using
0lnDs/0In Dy = 1 and (12) yields after some manipulation
)| i) ds

S exp(=rp(s =) E (Ds‘1>t,s (—nf’D +E (nf’Dq%,s

= 1+

St

B /cov 5,775 \Dt)ds
N exp (rg(s—1t)) S

)

t
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where cov? (.) is the covariance under the martingale measure P. Thus,

if n?’D is constant, then nf - gllr?gi = 1. Declining aggregate RRA,

917 0, implies cov®(Dy,nP|Dy) < 0 and, h SD 5 1. Increasi

a5 < 0, implies cov™ (Ds,ms "~ |Dy) < 0 and, hence, 1" > 1. Increasing
®,D

aggregate RRA, BgsDS > 0, implies nf Pt [ |

6.4 Proof of Proposition 4

We know that for constant aggregate RRA

D
Dt) =Var <IDDZ

By Proposition 1, for declining aggregate RRA ngI> ’D, the elasticity nf S|
so that the conditional variance of asset returns is higher than the (condi-
tional) variance of the dividend process, i.e.

D,
Dt> > Var (ln E

Consider now the unconditional variance (i.e. § = 0):

v,
Var < In Vt

Dt> y t<T.

Var (ln “2

Dt> L t<T. (13)

Vr
Var (ln V> = Var(E(InV;|Dy) —InV;) + E (Var (InV;| Dy))(14)
t

with

T

E(nV;| D)) -V, = FE /(,uv(SS)—;ZV(SS)2> ds| Dy | .(15)

We need to show that Var <ln %) is greater than
t

D
Var (ln D> = Var(InD.|Dy) . (16)

From (13) it follows that the second term on the right hand side of equa-
tion (14) exceeds Var (ln %I). As the first term on the right hand side of

equation (14) is also positive, we are done. The proof is the same for the
variance conditional on Dy; 0 < 6 < ¢. |
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6.5 Proof of Proposition 5

Since by definition CER,; = [ (dSs/Ss) + [ (Ds/ Ss —r§)ds, and the
riskless rate 7 is assumed constant, the covariance is given by

Dy
Cov (CERy -, pv (Sr) —r¢| Dy) = Cov /dS / ds /duv Dy

/dS /ds— /dss /ds

T

< / duy (8~ B | [ duy (5| D ||| D

t t

By equation (5), uy(St) = n, anDUD + ¢ and Xg(S;) = nf’DJD. Since

Vi = a4St, we obtain 77tS’D = 17t D and Yy (Sy) = Xs(Sy) = ntV’DUD. Hence
we can rewrite the covariance as

A . an: ®,D 817V’D
S S
E /n;/’DUDdWS /{n;/D 3D —l—nf’D 3D }O‘%Ddes Dy
S S

t t
Dt) dS,

A aﬁ@,D 8nV,D
D s d.D S 4 D

since by Ito’s Lemma the stochastic part of duy (S;) is given by

U )
DydW,.
8Dt OpLUJt t

The elasticities ny " and no? are positive. Hence, Cov (CERy ,pv (V1) —r¢| D) <
[>]0 if aggregate RRA is declining [increasing] and ni"" is non-increasing
[non-declining] in Dg. The latter condition is equivalent to the condition that
the instantaneous volatility of the return index, ¥y (Ss), is not increasing
[not declining] because Sy (Ss) = n¥ Pop. [ |

6.6 Proof of Lemma 1

Let X denote the aggregate supply of claims. Then equation (9) yields for
?72(.%'1) = ’yi,i =1...n

1 . OAZ(X)
WM(X)_Z Y o

%
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Differentiating with respect to X yields

(X)) — o(X)
[UM(X)]Q_Z Y o

Hence 7),(X) — 0 if of(X) — 0,V 4. The first order condition for an
optimal portfolio of claims is

i

27 = N - o(X); V(i X).

Hence

so that a;(X)e(0,1).
Differentiating In(a;(X)) with respect to In(X) yields

o = § () -1 (17)

As shown by Benninga and Mayshar (2000), 7,(X) < 0 and for X — oo,
o, — 1, so that ny(X) — ~,. Hence, for X — oo, af(X) — 0,Vi, and
’Iﬁw(X) — 0.

Now consider X — 0. Then n},(X) — 0 if of(X) — 0, i = 2,..,n, since
>, @(X)=0. From the first order condition, optimal risk sharing implies

1
-1 1
o= (2} T
=
A1 !
v

xo(X) (N _viz:cfi’
X2 X \\ X2

or

As shown by Benninga and Mayshar (2000), a;(X) — 1 for X — 0 so that
Ny (x) — vy and 1 — X. Hence the last equation yields for X — 0
(673 (X) )\i 2

1 m 5 .
—) WX Tji=2,.,n.

X _’(Al

This term goes to zero for X — 0 if 71 > 2v;,7 = 2,..,n. Then, by equation
(1), &f(X) — 0 for X — 0,7 =2,...,n. Hence 7),;(X) — 0 for X — 0. [ |

)
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6.7 The Price of the Market Portfolio

The price of the market portfolio at date ¢, S, is

t+h
Sy = > exp(rs(t — $))E[Ds®y o|Dr) + exp(—rsh)E(dpDy, By p4n|Dr)
s=t

t+h N

= AY exp(rs(t—s)) Z D; "By,
ei;:[(tl — 0id(s — t)){zl) — 8907 /2}]
+A exp(—rsh) i DY s dp' =
exp[(1 - 5i)19h{;:; = [(1 = 6:)9 — 1o /2}]

with
N
—1 _ —8;9 i
A7t = Y DB,
i=1

Bi, = B dp%exp[-8;0(t +h — s){up — [6:9 + 1]o}/2}]
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Figures

Figures 1 to 3 depict in the upper graph the shares of claims bought by
the three investors in equilibrium for different levels of aggregate supply
of claims, X. The fat (thin) curve in the lower graph depicts the implied
(approximated) aggregate RRA with respect to X. () denotes the assumed
vector of the constant RRA of the three investors, (1/A) denotes the vector
of weights attached to these investors by the social planner.
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Figure 1: (v) = (5;3;1) and 1/ = (1;3/5;1)
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Figure 4: Asset price as a function of the concurrent monthly div-
idend.

The figure shows for four different specifications the asset price as a function of
the concurrent monthly dividend. The first graph (left) shows the benchmark case
of constant aggregate RRA. The other graph shows the asset prices for declining
aggregate RRA as shown in Specification 1 (gray line), Specification 2 (black line)
and Specification 3 (dotted line)(Figure 1-3).
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Figure 5: Elasticity of the asset price with respect to the concurrent
monthly dividend.

The figure shows the elasticity of the asset price with respect to the concurrent
monthly dividend for declining aggregate RRA as shown in Specification 1 (gray
line), Specification 2 (black line) and Specification 3 (dotted line) (Figure 1-3).
The benchmark case of constant aggregate RRA (not shown in the figure) yields a
constant elasticity of 1.
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Figure 6: Serial covariance of the asset return as a function of the
monthly dividend.

The figure shows the instantaneous serial covariance of the monthly asset return
as a function of the monthly dividend for declining aggregate RRA as shown in
Specification 1 (gray line), Specification 2 (black line) and Specification 3 (dotted
line) (Figure 1-3). In the benchmark case of constant aggregate RRA there is no
serial correlation. The instantaneous serial covariance, covi(CERy ., (7)) with
T — t, is the cross variation between the expected excess return and the cumulated
excess return.

Start value Dg = 1 Start value Dg = 4
BM
Specification 1 2 3 1 2 3 G
mean annualized volatility 0.167 | 0.192 | 0.201 | 0.178 | 0.843 | 0.774 | 0.128
of monthly returns
mean annualized volatility 0.166 | 0.168 | 0.181 | 0.177 | 0.624 | 0.583 | 0.128

of 4-year returns
mean autocorrelation (lag 1) | o 592 | _0.015 | -0.011 | -0.002 | -0.028 | -0.023 | 0
of monthly returns

mean autocorrelation (lag 1)
of 4-year returns
autocorrelation (lag 1) in 0.064 | 0.900 | 0.890 | 0.006 | 0.966 | 0.964 | 0
monthly return volatility
autocorrelation (lag 4) in
monthly return volatility

-0.019 | -0.031 | -0.055 | -0.015 | -0.168 | -0.179 0

0.094 0.891 0.895 0.040 0.963 0.959 0

Table 2: Characteristics of excess returns and excess return volatil-
ity.

The table shows the mean annualized volatility of monthly and 4-year-returns, the
lag 1-serial correlation of these returns as well as lag 1- and lag 4-serial correla-
tions in return volatility. For comparison we also show the theoretical values for a
geometric Brownian motion (constant aggregate RRA). Results are shown for two
different start values (Dy = 1 and Dy = 4) of the dividend process. Specifications
1 to 3 correspond to the aggregate RRA shown in figures 1 to 3.
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