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Employee Stock Options: Much More Valuable Than You Thought 

 

 

 

Abstract 

 

 

Previous papers have argued that trading restrictions can result in a typical employee 

stock option having a subjective value (certainty equivalent value) that is substantially less than 

its Black-Scholes value. However, these analyses ignore the manager’s ability to (at least 

partially) control the risk level within the firm.  In this paper, we show how managerial control 

can lead to such options having much larger certainty equivalent values for employees who can 

exercise control.  We also show that the potential for early exercise is substantially less valuable 

with managerial control.   

 

The certainty equivalent value for a European option with managerial control can easily 

exceed the Black-Scholes value for a comparable option without control.  However, it is 

questionable whether Black-Scholes is an appropriate benchmark for an option where the 

underlying process exhibits controlled volatility.  We show how to obtain a risk-neutral valuation 

for such an option.  That risk-neutral value can be substantially greater or less than the Black-

Scholes value.  Furthermore, the option’s certainty equivalent value can also be greater or less 

than its risk-neutral value. 
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Employee Stock Options: Much More Valuable Than You Thought 

 

 It is widely recognized that restrictions on trading the underlying asset reduce the value of 

employee stock options from the perspective of the individual employee.  Numerous papers have 

addressed the valuation of such options.1  A typical approach has been to assume a utility 

function for the (representative) individual employee and to calculate a subjective certainty 

equivalent value (CEV) for the option.  Most papers have utilized power utility, which results in 

certainty equivalent values that depend importantly on the employee’s relative risk aversion and 

the fraction of his wealth tied up in the firm’s securities.  When the option is treated as European, 

previous papers have found its subjective value to be much less than the Black Scholes price for 

an otherwise equivalent tradable option.  With moderate risk aversion and a substantial portion of 

wealth (say 50%) in the firm’s securities, that subjective value can be less than half the Black-

Scholes price.2  Many employee stock options have American-style features and can be exercised 

early after a specified vesting period.  This increases the subjective value somewhat; but with the 

same wealth and risk aversion parameters, that value would still be well below the Black-Scholes 

price of a tradable European option.3   

 One reason for interest in the subjective value of employee stock options has been the 

accounting debate about how they should be valued for reporting purposes.  If an employee 

values an option at substantially less than what the firm uses to measure its cost, then that option 

becomes an expensive form of compensation.  There has also been interest in measuring that 

subjective value’s sensitivity to incremental stock price changes (analogous to delta) and using 

that result as an estimate of the option’s incentive effect for the employee.  There is also the issue 

that the option may not correctly align the employee’s preferences with those of shareholders – 

for example, see Lewellen (2003). 

The usual argument for employee stock options and shares is that they provide an 

incentive for firm managers to act in the shareholders’ interest.  As a practical matter, managers 

do take sequences of actions over time to “control” the firm’s profitability and risk.  This 
                                                 
1 A partial listing of such papers includes Carpenter (1998), Detemple and Sundaresan (1999), 
Hall and Murphy (2002), Huddart (1994), Ingersoll (2004), Kulatilaka and Marcus (1994), plus 
Lambert, Larcker, and Verrecchia (1991). 
2 For example, see Hall and Murphy (2002, Table 1) or Ingersoll (2004, Table 1). 
3 Unlike tradable options, it may be optimal on a utility maximization basis to exercise an 
employee stock option prior to maturity even if the firm’s stock does not pay dividends. 
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dynamic aspect of managerial control has been missing from previous attempts to value 

employee stock options which assume a fixed as opposed to a dynamically optimal control.  

Below, we develop a model where a single individual (the manager) can dynamically control the 

stochastic process for the firm’s value.  He does this in a manner that maximizes his expected 

utility of terminal wealth, which depends in part on the payoff from his restricted stock and 

incentive option positions.  Like most previous papers, we use power utility; although other 

utility functions would be possible with our approach.   

The fundamental difference between our model and previous work is that the manager can 

now dynamically influence the firm’s stock price.  Previous papers have recognized this issue but 

have been unable to deal with it.  For example, Huddart (1994, p. 211) explicitly states that his 

paper “assumes the parameters of the stock price process are stationary irrespective of employee 

actions.”    Carpenter (1998, p. 136) notes that the utility-maximizing model she uses “abstracts” 

from the complication that “the option holder has some control over the underlying stock price 

process.”  In contrast, allowing the manager to dynamically control the firm’s value process has 

important implications not only for how the firm is managed but for how one thinks about pricing 

securities whose value depends on that controlled process. 

As a starting point, think of the firm’s value as being like a portfolio comprised of a 

position in a risky technology plus a position in a riskless investment.  Assume that the manager 

can control the firm’s value process by adjusting the portfolio weight of the risky technology.  

There is a strong analogy to the portfolio investment problem of Merton (1969) where an 

individual with power utility optimally invests a constant fraction of his wealth in the risky 

security.  Indeed, under some simplified conditions, our manager would follow an analogous 

strategy.  However, once we introduce influences on managerial behavior such as incentive 

options or the possibility of losing one’s job, the manager’s behavior varies dramatically from the 

simple Merton-style solution. 

 An issue is how much control a manager can exercise in practice.  If the firm produces 

outputs or uses substantial amounts of inputs that have traded futures (or other financial 

contracts), its risk and expected return can be altered very quickly.  There are numerous examples 

such as utilities hedging (or not) in electricity as well as natural gas markets, airlines with 

aviation fuel, oil producers as well as refiners, agricultural firms, mining companies, etc.  

Furthermore, any firm with substantial foreign exchange exposure can effectively have its stock 

price process altered in a matter of minutes.   
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In this paper, we allow the manager to make weekly adjustments to the firm’s value 

process but limit the extent of those adjustments – analogous to limits on portfolio leverage.  

Tighter limits proxy for a manager who has less ability to control firm risk and return.  The 

manager’s control of the value process results in a terminal distribution that is decidedly not 

lognormal.  This should not be surprising since managerial control is intended to alter the 

outcome distribution.  However, it is rather striking that managerial control in response to an 

incentive option and the threat of possible dismissal can result in a trimodal distribution.  

Typically, the manager’s control ability allows him to dramatically increase the subjective value 

of his incentive option. 

Once we have determined the manager’s optimal control behavior, we can calculate the 

risk-neutral density of firm value and use this to obtain what FAS 123(R) calls “fair value” for his 

employee stock option.4  One can view the manager’s control behavior as altering firm volatility.  

This suggests the possibility of estimating fair value using the Black-Scholes model with a 

forecast of average volatility.  However, it turns out that things are not that simple; and such an 

approximation can contain substantial error. 

Examining incentive options with possible early exercise, we find surprisingly low 

subjective early exercise premiums for managers with low to moderate levels of risk aversion.  

For these individuals, the probability of getting deep enough in-the-money to warrant early 

exercise is quite low.  This occurs because the manager’s control ability considerably enhances 

the value of keeping his option “alive” and hence reduces the early exercise premium.   

Conversely, reducing the manager’s control ability increases the early exercise probability and 

hence the premium for an American-style option.  If the manager has a relatively high degree of 

risk aversion, the difference between certainty equivalent values for American and European 

options is relatively large.  Again, the reason has to do with control ability.  With relatively high 

levels of risk aversion, our limits on the manager’s control ability start to bind in areas of the state 

space that dramatically affect the early exercise premium. 

 In the next section, we describe the basic model and solution methodology for 

determining the manager’s optimal control.  Section II provides illustrative results for a base case 

set of parameter values.  The optimal control used by the manager is displayed as a surface of 

                                                 
4  In the finance literature, the terms “objective value” and “market value” have also been used 
instead of fair value.  Ingersoll (2004) reserves the term objective value for the risk-neutral 
valuation of a suboptimally exercised American-style employee stock option.  
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risk-taking which depends on the current firm value and time until the incentive option matures.  

We also display an example of the induced trimodal distribution of firm values at the option’s 

maturity date.  In Section III, we calculate values for the manager’s incentive option based on his 

expected utility maximizing control of the firm’s value process.  We explore how those values 

vary with his risk aversion and the degree to which his wealth is concentrated in firm stock.  We 

also examine the implications of his control ability both for certainty equivalent values of 

European options and for the desirability of early exercise.  Section IV discusses several issues 

surrounding the calculation of fair value.  Concluding comments are provided in Section V. 

 

I. The Basic Model and Solution Methodology5 

 

 In modeling managerial control, we attempt to introduce considerable realism while still 

retaining tractability.  We will first address the stochastic process for the firm’s value.  Next, we 

discuss the manager’s compensation conditional on both his pay package and the possibility of 

dismissal at a lower boundary.  Finally, we show how the manager optimally controls the firm 

value process to maximize his expected utility.  Our approach utilizes a numerical procedure, 

with details on the implementation available in Appendix A. 

 

A. The Stochastic Process for Firm Value 

Assume the firm’s operating assets are invested in a risky technology that over a time step  

∆t  generates normally6 distributed log returns with mean  21
2t tµ σ∆ − ∆   and volatility  tσ ∆ .  

Also assume there exist forward contracts which can be used to hedge (perhaps partially) the 

firm’s risk from this technology.  Let  X  denote the value of the firm’s assets and  κ  the fraction 

of those assets which are unhedged.  That is,  (1- κ)X  represents hedged assets, which are 

assummed to earn a constant riskless interest rate  r.   We have a single manager controlling  

                                                 
5 Parts of the following discussion are also covered in Hodder and Jackwerth (2004) where a 
related model is used to examine the impact of incentive contracts on the behavior of a hedge 
fund manager.  Compare also Judd (1998, ch. 12) for further details on numerical dynamic 
programming. 
6 Our approach is not restricted to the normal distribution, and we can add undiversifiable risk or 
jumps to generate more complicated discrete distributions.  The qualitative pattern of optimal risk 
taking remains the same; however, the manager acts more prudently if the new distribution 
increases the chance of dismissal.   
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κ, which is short for  κ(X,t).  Typically, some portion of the firm’s operations cannot be hedged.  

We model this situation by having a positive lower bound on  κ.  We also allow for the 

possibility that the manager can increase firm risk by choosing  κ  values greater than one.7  To 

model differing degrees of managerial flexibility, we will utilize differing upper and lower 

bounds on  κ. 

For a given control value  κ, the log returns on the firm value  X  are normally distributed 

over each discrete time step of length ∆t with mean 2 21
, 2[ (1 ) ]t r tκµ κµ κ κ σ∆ = + − − ∆   and 

volatility  , t tκσ κσ∆ = ∆ .  The following analysis uses weekly time steps; however, we have 

also conducted runs using time steps equal to one trading day with no change in our qualitative 

results. 

We discretize the log firm values onto a grid structure (more details are provided in 

Appendix A).  That grid has equal time increments as well as equal steps in  log X.8  From each 

grid point, we allow a multinomial forward move to a relatively large number of subsequent grid 

points (e.g. 41) at the next time step.  We structure potential forward moves to land on grid points 

and calculate the associated probabilities by using the discrete normal distribution with a 

specified value for the control parameter kappa. 

 

B. The Manager’s Compensation Structure 

 We assume the manager has outside wealth that is invested in the riskless asset.  At the 

horizon time  T,  that wealth has a value denoted by the symbol  a.  Some of that wealth could 

also be interpreted as a fixed salary component of the manager’s compensation.  He also owns a 

fraction  (b)  of the firm’s shares, which are restricted and cannot be sold prior to  T.  Finally, the 

manager has employee stock options for a further fraction  (c)  of the firm’s shares. These options 

have a maturity of  T  and are issued at-the-money. 

We allow the firm to dismiss the manager for poor performance.  This is modeled by 

having a lower boundary on  X,  where the manager is fired.  We denote that boundary by  Φ, and 

set it at  50%  of the initial firm value  X0.  There are a variety of assumptions one could make 

                                                 
7 An alternative way to think about this model structure is to interpret  κ  values greater than one 
as representing a levered firm, with the manager able to dynamically adjust the firm’s capital 
structure. 
8 To economize on notation, we assume the firm value  X  and the time  t  are always multiples of  
∆(log X)  and  ∆t  without the use of indices. 
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about the wealth impacts of being fired.  Many CEOs and other high-level executives have 

employment contracts that specify a severance payment in the event of termination.  If that 

payment is large, it is often described as a “Golden Parachute.”  On the other hand, the manager 

might lose any non-vested shares.  Also, being fired might negatively impact the manager’s 

human capital. 

The aggregate effect of these various possibilities represents a net penalty for hitting the 

lower boundary.  Increasing that penalty makes the manager more cautious near the lower 

boundary; however, this has only a minor impact on his subjective valuation of an at-the-money 

option.  Hence, we use a rather simple structure with no explicit penalty for hitting the boundary.  

However, the manager’s option position (which is out-of-the-money) is cancelled.  His restricted 

shares are also immediately liquidated at the prevailing price; but he does not receive the 

proceeds until time  T.  This represents a modest penalty in the sense of receiving no interest on 

those funds during that period.  However, losing the ability to manage the firm and hence 

influence the value of his shares and options represents an even larger implicit penalty.  In 

summary, if the lower boundary is hit at time  τ, the manager’s wealth at  T  will be: 

 

TW a bXτ= +              (1) 

 

On the other hand, when the manager is not dismissed, his wealth at  T  equals: 

 

  0( )T T TW a bX c X X += + + −      (2) 

 

C. The Optimization of Expected Utility  

We assume the manager seeks to maximize expected utility of terminal wealth  WT  and 

has a utility function that exhibits constant relative risk aversion  γ  (an assumption that can 

readily be relaxed): 

   
1

1

γ

γ

−

=
−
TWU       (3) 
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For each terminal firm value, we calculate the manager’s wealth and the associated utility.  

We then step backwards in time to  T-∆t.  At each possible firm value within that time step, we 

calculate the expected utilities for all control values  (κ)   in a discrete choice set.  For our 

standard case,  κ  (which measures the manager’s risk taking) can lie between  0.7  and  1.5  at 

steps of  0.1.    We choose the highest of those expected utilities as the optimal indirect utility for 

that firm value and denote its value as  JX,T-∆t.  We record the optimal indirect utilities and the 

associated optimal risk taking for each firm value within that time step and then loop backward in 

time, repeating this process through all time steps.9  This generates the indirect utility surface and 

optimal risk-taking values for our entire grid.  Formally: 

   

, , , ,;     max [ ]

where  t  takes the values ,..., 2 , ,0 one after another.
X T X T X t X t tJ U J E J

T t t t
κκ +∆= =

− ∆ ∆ ∆
   (4) 

 

II. Some Illustrative Results 

 

As an illustration, we calculate the manager’s optimal control behavior using the set of 

parameters in Table 1.   

Table 1 

Standard Parameters 

 

Time to maturity    T 1   Interest rate  r 0.02  

Log value steps below/above X0  40/80  Initial firm value X0 1.00 

Risk aversion coefficient   γ 2  Mean    µ 0.092 

Number of time steps   n 52  Volatility  σ 0.30 

Manager’s outside wealth   a 0.0050  Min control value κ  0.70 

Manager’s shares   b 0.0050  Max control value κ  1.50 

Manager’s options   c 0.0040  Exit boundary  Φ 0.50  

Future nodes for the Normal approx.  1+2×20 = 41 

Log X step     (log (1/0.5))/40 ≈ 0.01733 

 

                                                 
9 The treatment of boundary layers is described in Appendix A. 
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The horizon is one year with weekly adjustments of risk taking.  The starting firm value 

of  1  equals the strike price for the manager’s incentive options.  The risky technology has a 

mean return of  9.2%  and a volatility of  30%.  The riskless asset yields  2%.  This combination 

of annual mean returns and volatility implies a Sharpe Ratio of  0.24.  There are a total of  120  

log steps for the firm value between the lower and upper boundaries with the initial firm value  

X0  being 40 log steps above the lower boundary.  The risk aversion coefficient of the manager’s 

power utility is  γ = 2.  For our standard parameters, we use bounds on  risk taking  of  0.7  and  

1.5.   Compared with an unhedged position (κ =1),  our standard parameter structure allows the 

manager to reduce but not eliminate the firm’s risk.  He can also increase that risk but in a limited 

manner. 

Before examining the manager’s behavior with our full set of standard parameters, it is 

useful to build intuition by looking at a situation with relaxed kappa constraints.  We do this in 

Figure 1, where we allow kappa to be chosen as low as  0  (using steps of  0.01).   We maintain 

the upper bound on risk taking at 1.5; however, it is quite clear in Figure 1 where relaxing that 

upper bound would cause the manager to choose higher kappa values.  The other parameters are 

the same as in Table 1.  The optimal risk taking of a manager in Figure 1 exhibits essentially four 

different areas of economic behavior. 

“Suicide Ridge” at the far left front of Figure 1 is not surprising.  Here the manager is in a 

situation well before  T  that could be described as “heads: I win, tails: I don’t lose very much.”  

The winning is associated with a large up-move which increases the value of both his shares and 

the possibility of his employee stock option finishing in the money. The losing is associated with 

being dismissed right away, which is only slightly worse then sitting just above the dismissal 

boundary with essentially no chance of having his option finish in-the-money.  Although he is 

risk averse, the manager typically desires having a substantial portion of his total wealth invested 

in risky assets.  Since his outside wealth is invested in the riskless asset, this also motivates him 

toward having a high kappa near the lower boundary for the relatively modest wealth he has 

invested there in firm shares.  The combination of these two forces causes him to gamble with a 

very large kappa near the lower boundary.  Here we have limited the kappa values to a maximum 

of  1.5, but he would utilize a much higher value if that were allowed.  Nevertheless, even with 

the limited kappa range, his gambling behavior is pronounced.  
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Figure 1.  Optimal Risky Investment Proportion  (κ)  with minimal allowed kappa = 0 

We depict the optimal kappa surface using the standard parameters from Table 1 except that the 
manager is allowed to choose kappa values as low as zero.  To increase smoothness, the kappa 
levels in this graph are  0.01  apart and can range from  0  to  1.5.  
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The “Valley of Prudence” in Figure 1 can be interpreted as a region where the manager 

chooses a very low kappa in order to dramatically reduce the chance of hitting the lower 

boundary at an early date.  Hitting that boundary early incurs an implicit cost since the manager 

is no longer able to potentially improve his compensation by continuing to manage the firm.  

Approaching the terminal date, the remaining potential for gaining from continued management 

becomes progressively smaller.  

Toward the center of Figure 1 there is a region of high kappa values, which we labeled 

“Option Ridge”.  This region is centered just below the option strike price of  1.   Again, the 

manager dramatically increases the firm’s riskiness, but now the motivation is to increase the 
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chance of finishing with his option substantially in-the-money.  Again, he would like to increase 

kappa even further but is limited by the maximum of  1.5.  That restriction leads to the flat top for 

Option Ridge in this figure.  

Somewhat above the strike price, Option Ridge declines toward what we have called 

“Merton Flats.”  The allusion here is to a result from Merton (1969).  In that paper, an individual 

(analogous to our manager) dynamically chooses the optimal allocation of available funds 

between risky shares and the riskless asset. In the case where there is no intermediate 

consumption (between  0  and  T), he chooses that investment strategy to maximize his expected 

utility of terminal wealth  (WT).  Merton’s analysis is in continuous time (as opposed to our 

discrete-time framework); however, that description approximates the situation of our manager 

for high  X  values.  There, the employee stock option is sufficiently deep in-the-money that it 

starts to behave almost like a share position.  Also, the manager is far enough from the lower 

boundary that the possibility of dismissal plays virtually no role in his optimal decision.  

Moreover, his outside wealth has a relatively minor effect on the optimal kappa choice in that 

region.   

In Merton’s framework, the optimal proportion allocated to the risky investment would be 

constant, and using parameters from Table 1 implies: 

 

     2

( -r)=  = 0.4µκ
γσ

.      (5) 

 

The optimal kappa surface exhibits a slight downward slope in the Merton Flats area as optimal 

kappas decline toward  0.4  in the limit. 

 In Figure 2, we increase the minimum allowed kappa to 0.7  (the range of permissible 

kappas is now  0.7  to  1.5).  That lower limit could be either due to fixed assets in place which 

cannot be completely hedged or to the manager having less ability to alter the firm’s positions.10  

As a result, we find that the Valley of Prudence is now limited to a depth of  0.7  and that the 

Merton Flats region toward the right of Figure 2 is also forced up to a level of  0.7. 

 

 

                                                 
10 In the limit, a manager with no control ability would be unable to adjust kappa. 



11  

Figure 2.  Optimal Risky Investment Proportion  (κ)  with minimum allowed kappa = 0.7 

We depict the optimal kappa surface using the standard parameters from Table 1.  The kappa 
levels in this graph are  0.01  apart (to increase smoothness) and can range from  0.7  to  1.5.  
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In Figure 3, we depict the return distribution at time  T  resulting from the manager 

optimally adjusting the risk level during the period from  0  to  T  (as shown in Figure 2).  For 

comparison in Figure 3, we also plot a lognormal distribution using  µ = 0.092  and  σ = 0.3  (the  

same volatility and drift parameters as our risky technology).  There is a pronounced trimodality 

in the managed return distribution, with the bottom spike corresponding to the probability of 

hitting the dismissal boundary of  0.5  on or before time  T.  The trimodality is driven in part by 

the manager’s desire to move his employee stock option into the money.  The resulting high 

kappa values on Option Ridge lead to probability mass being shifted either upwards or 

downwards into regions where the risk-taking is lower.  The high kappa values along Suicide 
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Ridge lead to probability mass being shifted either upward toward the middle mode of the 

distribution or downward into the “dismissal” spike. 

 

Figure 3.  Terminal Value Distribution of the Optimally Managed Firm 
 
We depict the terminal value distribution of the firm, when the manager optimally manages the 
risk taking to maximize his expected utility.  The spike at and slightly below the lower boundary 
of  0.5  represents situations where the manager hits the boundary and is dismissed.  Presumably, 
the firm continues to operate with a new manager from that hitting time until time  T;  however,  
we have not modeled that portion of the value process and simply report the value at the hitting 
time.  The manager receives the standard compensation contract as specified in Table 1 with the 
minimum allowed kappa at  0.7.  For comparison, we include a graph of the corresponding 
lognormal return distribution using  σ = 0.3  and  µ =  0.092.  
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III. Subjective Valuation and Early Exercise with Managerial Control 

 

We are now ready to embark on valuing the employee stock option position of the manager.  We 

compute the certainly equivalent values by working out the marginal value of one small unit of 
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option to the manager, given the standard parameters from Table 1.11  We collect these values for 

varying upper limits on risk taking in Table 2.  The employee stock option in the standard case 

(kappa can range from  0.7  to  1.5)  is worth  0.1253.  Further limiting the manager’s ability to 

control firm risk and return via adjusting kappa will reduce the certainty equivalent value of his 

option.  For example, constraining the maximum kappa at  1.0  (with the minimum kappa still at  

0.7) corresponds to a situation where he can partially hedge the firm’s risk but cannot increase it 

above the unhedged level  (κ = 1.0).  Under these conditions, his certainty equivalent value falls 

to  0.1048  – a reduction of over  16%.  Allowing the manager to have greater flexibility by 

relaxing the upper limit so that kappa can be above  1.5  allows him to increase his certainty 

equivalent value.  However, using the other standard parameters from Table 1, there is essentially 

no further gain in the certainty equivalent value (to four decimal places) from allowing kappa to 

exceed  5.  Later we will consider some situations where the manager is stripped of all control.  

This corresponds to his having to maintain κ = 1.0, with neither an ability to hedge nor to 

increase the firm’s risk.  For a fixed  κ = 1.0, his certainty equivalent value drops to  0.0990  (not 

shown in Table 2). 

  The bottom row of Table 2 displays option values allowing for early exercise 

(computational details are in Appendix B).  The values displayed in Table 2 are based on 

exercising for stock, which continues to be held.  Exercising for cash yields similar values, given 

our other parameters.  Interestingly, the possibility of early exercise has only a minor effect on 

the option values in Table 2.  The manager’s ability to adjust kappa not only enhances the 

certainty equivalent value of his incentive option but also reduces the attractiveness of early 

exercise, since early exercise eliminates his continued control and the possibility of utility 

improving future risk taking.   

 

                                                 
11 To compute the certainty equivalents, we calculate the lump-sum amount of money at time  0  
which, invested at the risk free rate until time  T, would yield the same indirect utility as having 
the contract specified in Table I.  That calculation considers outside wealth as well as restricted 
shares and the option.  We next compute the numerical sensitivity of that lump-sum amount for 
an increase in the option position of  1%.  This proxies for the marginal value of adding a small 
option position, expressed in certain wealth at time  0.  For the parameters of Table 1, this 
marginal value is very close to the average certainty equivalent value. The marginal and average 
values differ more when the manager has very little wealth other than the option. 
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Table 2 

Certainty Equivalents for Varying Caps on Risk Taking 

We report the certainty equivalent value (CEV) of a marginal employee stock option struck at-
the-money.  In this table, the manager’s maximum kappa level is allowed to go up to  10.  Other 
parameter values are from Table 1.  Due to the high kappa values examined here, we use  201  
probability states in order to allow for improved moment matching of the discrete normal 
distribution.   
 

Option Values         Maximum Allowed Kappa
1 1.5 2 5 10

European CEV 0.1048 0.1253 0.1328 0.1399 0.1399

American CEV 0.1049 0.1254 0.1330 0.1400 0.1400  

 

 Despite the small valuation effect in Table 2, early exercise can occur over a rather wide 

range of firm values.  This is illustrated in Figure 4 using the same parameters that generated the 

values in Table 2 and focusing on a maximum allowed kappa of  1.5.     

 The seeming disparity between Table 2 and Figure 4 is explained by the rather small 

probability of starting at-the-money and winding up in the early exercise region within one year.  

Longer maturities and/or higher volatilities can substantially increase that probability.  Also, 

restricting the manager’s control by fixing  κ = 1  leads to much more wide-spread early exercise 

behavior. 
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Figure 4.  Optimal Early Exercise of the Employee Stock Option   

We depict the optimal early exercise decision of a manager who receives the standard 
compensation contract as specified in Table 1.  The initial firm value is  1.  The kappa is 
restricted to be between  0.7  and  1.5.   To better illustrate the early exercise boundary, we utilize 
2500 time steps in the underlying calculations. 
 

0.5 0.7 0.9 1.1 1.4 1.9 2.4 3.1

Firm Value

1

Time

0

Early ExerciseNo Early Exercise
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Table 3 

Certainty Equivalents for Differing Risk Aversion and Initial Wealth Structures  
with 1-Year Maturity Options 

 

We report the certainty equivalent value of a (marginal) employee stock option struck at-the-
money for various levels of Relative Risk Aversion (gamma) and initial wealth distributions        
[ b/(a′+b) ]. Other parameters are as specified in Table 1.  Values in the right half of the table are 
for American options. 
 

W ealth in
Stock (% ) 0.5 2 4 0.5 2 4

European Options American Options

20 0.2238 0.1584 0.1107 0.2238 0.1584 0.1152
50 0.2102 0.1259 0.0647 0.2102 0.1260 0.0711
80 0.1988 0.0863 0.0425 0.1988 0.0882 0.0523

Relative Risk Aversion Relative Risk Aversion

 1 Year CEV  1 Year CEV

  
 

In Table 3, we explore the effect of altering the manager’s risk aversion as well as the 

distribution of his initial wealth.  First, let us define his initial outside wealth  a′  as the value of 

his terminal wealth  a, discounted at the risk free rate.  Then, we can define the wealth 

distribution as the initial value of the manager’s shares  (bX0)  divided by his initial outside 

wealth plus shares  (a′ + bX0).  Since  X0 = 1,  this ratio reduces to  b/(a′+b).  Increasing this ratio 

decreases the certainty equivalent value of his employee stock option.  The effect is more 

pronounced for higher levels of relative risk aversion. 

 Increasing his relative risk aversion dramatically reduces the certainty equivalent value of 

his option.  It also increases the probability of early exercise -- compare the American option 

values when relative risk aversion is  4  with those for the European option.  The difference is due 

to the increased probability of early exercise as compared with the situation when his relative risk 

aversion is lower.  Recall that with our standard parameters (including  50%  of initial wealth in 

the firm’s stock and  γ = 2) there was a large region of early exercise illustrated in Figure 4 but a 

relatively small probability of reaching that region from the initial starting point.  Increasing the 

manager’s risk aversion greatly increases the size of that region and thus the probability of 

reaching it.  Having more initial wealth in the firm’s stock amplifies this effect.    
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Table 4 

Certainty Equivalents for Differing Risk Aversion and Initial Wealth Structures  
with 10-Year Maturity Options 

 
We report the certainty equivalent value of a (marginal) employee stock option struck at-the-
money for various levels of Relative Risk Aversion (gamma) and initial wealth distributions 
[b/(a′+b)].  A 10 year maturity with  520  time steps is used, while other parameters are as 
specified in Table 1.  Values in the right half of the table are for American options.  In the lower 
panel we provide the ratios of the 10 year certainty equivalent values to their 1 year counterparts. 
 

W ealth in
Stock (% ) 0.5 2 4 0.5 2 4

European Options American Options

20 1.0009 0.3968 0.1757 1.0090 0.3970 0.2051
50 0.9178 0.2887 0.0756 0.9178 0.2942 0.1147
80 0.8527 0.2009 0.0288 0.8527 0.2153 0.0707

20 4.47 2.51 1.59 4.51 2.51 1.78
50 4.37 2.29 1.17 4.37 2.33 1.61
80 4.29 2.33 0.68 4.29 2.44 1.35

Relative Risk Aversion Relative Risk Aversion

 10 Year CEV

10 Year CEV/1 Year CEV 10 Year CEV/1 Year CEV

 10 Year CEV

  

 

 As seen in Table 4, a 10-year horizon results in substantial increases for most option 

values.  In the lower portion of the table, we scale the 10-year certainty equivalent values by the 

corresponding value for an otherwise identical 1-year option.  It shouldn’t be surprising that most 

of these ratios are substantially above 1.  After all, we have both a longer maturity option and a 

situation where the manager can exercise control over that longer time period.  What is perhaps 

surprising is the strong role of risk aversion in determining those ratios and that one ratio is below 

1.  This is caused primarily by restricting the minimum kappa to be at least  0.7.  Recall that with 

our standard parameters (including γ = 2), the unrestricted location of Merton Flats is at 0.4.   

Thus, our minimal kappa constraint is forcing a moderately risk averse manager to deviate 

from his optimal kappa in both the Valley of Prudence and in Merton Flats (see Figure 2).  This 

dampens the benefits of a longer maturity.  For a manager with high risk aversion (γ = 4), the 

constraint is even more restrictive; and over a period of 10 years, this has a major negative impact 

on his subjective option valuation.  Again, more initial wealth in the stock amplifies this effect.  

The manager is being forced to follow what he considers to be seriously sub-optimal behavior 
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regarding both his stock and option positions.  Indeed, relaxing the lower constraint on kappa 

results in ratios for a highly risk-averse manager (γ = 4) that are similar to those for a manager 

with low risk aversion (γ = 0.5). 

Note that for low and moderate risk aversion levels in Table 4, the American certainty 

equivalent value remains close to its European counterpart.  In other words, the early exercise 

premium for these options remains small, despite the 10-year maturity.  With greater risk 

aversion (γ = 4), this is no longer the case.  Furthermore, larger restricted stock positions 

substantially increase the more risk-averse manager’s willingness to exercise early.  Again, this 

result is being driven by constraining that manager to have a minimum kappa at 0.7 which is 

considerable different from what he would prefer for a substantially in-the-money option located 

in Merton Flats.  We explore these issues further by considering an option which was issued at-

the-money with a 10-year maturity five years ago.  That option now has  5  years remaining to 

maturity and may be substantially in-the-money.  Moreover, any vesting period (typically  4  

years or less) has presumably passed; and an American-style option could be exercised 

immediately. 

 In Table 5, we  examine the early exercise premium with both moderate risk aversion     

(γ = 2)  and relatively high risk aversion (γ = 4).  Throughout, we have  50%  of the manager’s 

wealth in the firm shares.  For the column labeled Managerial Control, the kappa value can be 

optimally adjusted between  0.7  and  1.5.  Consider first, the upper panel with  γ = 2.  Even for a 

relatively deep-in-the-money option with a firm value of  2,  the difference between the American 

and European certainty equivalent values is only about  2%.    Now consider the same situation 

except that the manager is precluded from exercising any control – kappa is fixed at  1.0.  All 

certainty equivalent values are lower, since the manager can no longer benefit from exercising 

control.   Note, however, that the impact on the European CEV is substantially more than on the 

American counterpart.  Early exercise becomes much more valuable.  Indeed, with a firm value 

of   2,  the American and European CEVs exhibit a difference of almost  24%.  In other words, 

reduced managerial control can dramatically increase the premium for an American option (and 

the probability of early exercise).   
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Table 5 

Certainty Equivalents with  5  Years to Maturity   
with and without Managerial Control  

 
We report the certainty equivalent values of a (marginal) employee stock option struck at  X0 = 1  
with  5  years remaining to maturity (and  260  time steps) but which are now at varying levels of 
moneyness.  Values in the right half of the table are for options where kappa is fixed at  1.0  and 
not subject to managerial control.  The upper portion half of the table uses relative risk aversion 
(gamma) of  2  while the lower half uses relative risk aversion of 4.  Other parameters are as 
specified in Table 1.   
 

F irm  V a lu e

E u ro p e a n  A m er ic a n  E u r o p ea n  A m e r ica n  
C E V C E V C E V C E V

0 .6 9 5 0 .0 7 2 6 0 .0 7 3 0 0 .0 5 6 6 0 .0 6 2 8
1 0 .2 2 0 5 0 .2 2 2 8 0 .1 7 0 9 0 .1 9 4 7
2 1 .0 1 4 2 1 .0 4 3 5 0 .7 5 1 5 0 .9 4 1 8

0 .6 9 5 0 .0 2 1 1 0 .0 2 5 3 0 .0 1 3 8 0 .0 2 3 4
1 0 .0 8 2 1 0 .1 0 8 6 0 .0 4 5 4 0 .0 9 0 0
2 0 .5 2 5 8 0 .8 6 2 8 0 .2 3 2 6 0 .6 6 6 9

g a m m a  =  4 g a m m a  =  4

M a n a g er ia l C o n tro l

g a m m a  =  2

N o  M a n a g e r ia l C o n tro l

g a m m a  =  2

 

 

Now consider the lower panel, where the manager is considerably more risk averse (γ = 

4).   Recall in Table 4 that with relatively high risk aversion, the early exercise premium became 

substantial – even with only 50% of the manager’s wealth in restricted shares.  We see the same 

situation in Table 5.  For a firm value of  2 and  γ =4,  the premium for an American option is 

now  64%.  The same situation without managerial control results in an American option being 

worth almost 3 times its European counterpart.  Once again, it is not risk aversion per se that 

causes these large early exercise premiums.  Rather, the lower bound on kappa is forcing the 

more risk averse manager to deviate markedly from his desired behavior which dramatically 

enhances the attractiveness for him of early exercise. 
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IV.  Fair Value for an Employee Stock Option with Managerial Control 

 

 To provide a comparison with previous papers, we report in Table 6 the European 

certainty equivalent values for the one-year option from Table 3 scaled by the Black-Scholes 

price calculated using parameter values from Table 1.12  In particular, an at-the-money call option 

using an initial stock price of  1,  one year to expiration, a  2%  riskfree rate,  and  30%  volatility 

has a Black-Scholes price of  0.1282.  

 

Table 6 

Certainty Equivalents for Differing Risk Aversion and Initial Wealth Structures  
with 1-Year  Maturity Options 

 

We report the certainty equivalent value of a (marginal) employee stock option struck at-the-
money for various levels of Relative Risk Aversion (gamma) and initial wealth distributions        
[ b/(a′+b) ]. Other parameters are as specified in Table 1.  The Black-Scholes value of this option 
is 0.1282.   
 

W ealth in
Stock (% ) 0.5 2 4

European Options

20 0.2238 0.1584 0.1107
50 0.2102 0.1259 0.0647
80 0.1988 0.0863 0.0425

20 1.75 1.24 0.86
50 1.64 0.98 0.50
80 1.55 0.67 0.33

Relative Risk Aversion

 1 Year CEV

 1 Year CEV/BS Price

 
 
 
 

 It’s clear from the results in Table 6, that managerial control can result in certainty 

equivalent values which exceed the Black-Scholes price by substantial margins.  However, there 

                                                 
12 In previous papers, Black-Scholes prices have presumably been used for comparison because 
that model is widely known and the prices are easily calculated.  It also is consistent with a 
discrete-time economy and incomplete markets when the manager has power utility if risk taking 
is held constant --see Rubinstein (1976). 
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is an issue as to whether that Black-Scholes price represents an appropriate yardstick for 

measuring the value of an option when the manager can exercise control over the firm’s value 

process.  One way to think about the situation is that by controlling kappa, the manager controls 

volatility.  Hence, the constant volatility assumption in Black-Scholes is inappropriate.   

The Financial Accounting Standards Board (FASB) has recently specified that firms 

should expense newly granted employee stock options based on their fair value.  When possible, 

fair value is to be determined from the market price of the same or similar option.  Absent the 

availability of such a market price, fair value is to be estimated using an option pricing model.  If 

volatility were held constant, the Black-Scholes price would be a good starting point for a 

European option.  In our situation, there is clearly a problem with that approach because of the 

expectation of non-constant volatility resulting from managerial control.   

One might consider estimating an expected average volatility over the option’s life and 

using that average as the volatility parameter in a Black-Scholes calculation.  There would clearly 

be some problems with estimating an expected average volatility.  An estimate based on 

historical volatility would be assuming that history was a good representation of the future in an 

expectation sense.  If there had been a change either in managers or the incentive aspects of the 

manager’s compensation contract, that assumption would be highly questionable.  Even if no 

such changes had occurred, the historical volatility pattern over say the last year is analogous to 

one path through the state space grid for the next year.  This does not seem like an estimate in 

which one should put much faith. 

An alternative thought would be to back out the implied volatility from the market price 

of a traded option.  One issue would be maturity.  Employee stock options frequently have ten-

year maturities, while traded options with maturities beyond one year are very illiquid.  A second 

issue is that Black-Scholes assumes a lognormal density for the share value at maturity, where we 

have a potentially very different distribution as illustrated in Figure 3. There is also an issue that 

the lower boundary (where the manager gets fired) effectively turns the employee stock option 

into a knock-out call.  In summary, estimating an implied volatility using the Black-Scholes 

model doesn’t sound like an effective solution. 

The most straight-forward approach is risk-neutral valuation using our model.  Once we 

have the manager’s optimal kappa choices at each grid point, we can calculate the risk-neutral 

density of the firm values at time  T.  We then calculate the risk-neutral expectation of the 

employee stock option payoff and discount it to the present at the riskless rate.  This then 



22  

provides an estimate of fair value which incorporates the manager’s expected behavior as well as 

the knock-out characteristics of his option.  In Table 7, we display such values for the same range 

of risk aversion parameters and wealth distribution as in Tables 3 and 6. 

 

Table 7 

Fair Values for Differing Risk Aversion and Initial Wealth Structures  
with 1-Year  Maturity Options 

 

We report the fair value of an employee stock option struck at-the-money for various levels of 
relative risk aversion (gamma) and initial wealth distributions  [b/(a′+b)]. Other parameters are as 
specified in Table 1.  The fair value is calculated as the discounted risk-neutral expectation of the 
terminal option payoff with managerial control.  In the lower panel, we report the European 
certainty equivalent values divided by the fair value for that option. 
 

W ealth in
Stock (% ) 0.5 2 4

1 Year European Options

20 0.1862 0.1779 0.1631
50 0.1861 0.1693 0.1135
80 0.1860 0.1281 0.0941

20 1.20 0.89 0.68
50 1.13 0.74 0.57
80 1.07 0.67 0.45

Relative Risk Aversion

Fair Value

 CEV/Fair Value

 
 

In examining Table 7, recall that the Black-Scholes price for the comparable one-year 

option with a fixed volatility of 30%  is  0.1282.  The upper panel of this table clearly indicates 

that it is possible to have a Fair value which is substantially greater or less than Black-Scholes 

price.  The higher values are driven by lower risk aversion resulting in higher kappa values, with 

the largest effect coming from the Merton Flats area.  There is also the knock-out characteristic of 

the employee stock option which reduces all of the fair values compared with Black-Scholes.  For 

the manager with the lowest risk aversion, the higher average kappa more than overcomes the 

knockout adjustment, resulting in fair values substantially above Black-Scholes. 
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The lower panel of Table 7 indicates that it is possible to have a subjective (CEV) option 

value which exceeds the fair value.  This may seem surprising at first, but consider a simple 

example.  Suppose the manager were personally risk neutral.  He would discount the true 

expected payoff (generated with µ=0.092) using the riskless rate of 2%.  Clearly, that value will 

exceed the similarly discounted risk-neutral expectation generated with a risk-neutral drift 

parameter of  0.02.  

 

V.  Concluding Comments 

 

 The main message of this paper is that managerial control can dramatically affect the 

value of employee stock options.   This is true both from the subjective (CEV) perspective of the 

manager and in terms of the option’s fair value if its payoff pattern were priced in the market.  

The driving force here is the manager’s ability to dramatically alter the distribution of potential 

firm values as illustrated in Figure 3.  

 Since the main rationale for using employee stock options is presumably to provide an 

incentive for improved performance, it is important to examine how that performance affects the 

option value.   Here we take a relatively simple approach to modeling the manager’s control 

ability, but one that seems reasonable for top management.  Lower level employees would 

individually have less ability to alter firm-wide prospects.13  However, if their behaviors were 

highly correlated, the overall firm-wide effects could be similar to what we have modeled.   

 The comparative statics of our model are fairly straightforward.  Increased risk aversion 

reduces the manager’s subjective valuation of his incentive option.  Having a larger fraction of 

his wealth tied up in the firm’s stock has an analogous effect.  Moreover, these two 

characteristics reinforce each other and can collectively reduce the manager’s subjective 

valuation by a factor of  3  or more.  When the incentive option is substantially in-the-money, the 

manager has less incentive to alter kappa.  In the limit, he winds up in Merton Flats and pursues a 

constant-kappa strategy.  Hence, his control ability plays less of a valuation role for in-the-money 

options.  In that situation, fair value for his option will approach a Black-Scholes price using the 

volatility associated with the manager’s optimal kappa from Merton Flats.  Symmetrically, 

                                                 
13 An exception would be a lower level employee who controls large “hedge” positions.  We 
know from situations such as the Baring’s debacle that relatively low level employees can 
dramatically alter the riskiness of a major firm via large positions in financial contracts. 
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managerial control plays a larger role in valuation for near-the-money and out-of-the-money 

options. 

 As illustrated in Tables 3 - 5, early exercise value depends on the manager’s risk aversion, 

the degree to which his wealth is tied up in firm shares, and the moneyness of the option.  

Interestingly, it depends even more on his control ability.  For comparably in-the-money options 

and equivalent other parameters, a manager with less control is more inclined to early exercise.  

This suggests that a typical lower level employee (with less control over the firm value process) 

is more inclined to early exercise than a top manager.  This is an interesting and possibly testable 

implication of our model.  The challenge will be to control for potentially differing risk aversion 

and wealth distributions – both of which are difficult to observe.14 

 Another potentially testable implication of our model is that share price volatility should 

decline (due to declining kappa) as the manager’s incentive option position moves into-the-

money.  The challenges here will include estimating changing volatility as well as disentangling 

the effects of possibly multiple options with differing strikes and maturities.  Furthermore, the 

volatility of volatility should increase as firms use more option compensation. 

A related issue concerns how managerial control should influence the price of tradable 

derivatives.  One can conceptually determine a pricing model for tradable derivatives conditional 

on knowing the manager’s control behavior.  The risk neutral pricing (fair value) we develop here 

for the manager’s option is effectively a knock-out call that could be used to estimate an implied 

(average) volatility consistent with the manager’s behavior. 

 There are also interesting issues regarding variations in the combination of incentives and 

controls in a dynamic framework such as ours.  For example, the manager’s risk taking on Option 

Ridge can be curtailed by limiting  κ  or by altering the relative mix of shares and incentive 

options.  If the manager has a minimum (reservation) expected utility level for accepting 

employment, then decreasing (for example) his incentive option position may need to be 

compensated via increasing either his restricted shares and/or fixed wages.  How his 

compensation package is adjusted will influence the manager’s risk taking not only on Option 

Ridge but in other portions of the state space.  Moreover, his risk aversion and outside wealth will 

                                                 
14 Bettis, Bizjak, and Lemmon (2003) provide regression estimates that CEOs tend to exercise 
their options about four months later than other senior executives and six months later than non-
management directors.  They view these results as due to differences in outside wealth and 
possibly risk aversion.  Our model suggests an alternative explanation based on differing control 
abilities, with CEOs having the most control and non-management directors the least.  
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play important roles, with differing managers having potentially very different responses to 

seemingly identical incentives.  This opens up questions of how best to “manage the manager.”  

We have not explored such issues here but intend to do so in the future.    

 

Appendix A:  Numerical Procedure for Generating the Optimal Control Surface 

 

 The basic structure of our model uses a grid of firm values  X  and time  t,  with  ∆(log X)  

constant as well as time steps  ∆t  of equal length.  The initial firm value  X0  is on the grid.  To 

calculate expected utilities, we will need the probabilities of moving from one firm value at time  

t  to all possible firm values that can be reached at  t+∆t.  The possible  log X  moves are  

(log )i X∆ .  We use  i  to index the grid points to which we can move.  In the current 

implementation,  the range for  i  is from  –20, …, 0, …, 20.  The probabilities for those possible 

moves depend on the choice of kappa which determines the process for  X  over the next time 

step.  For a given kappa, the log change in  X  is normally distributed with mean  
2 21

, 2[ (1 ) ]t r tκµ κµ κ κ σ∆ = + − − ∆   and volatility  , t tκσ κσ∆ = ∆ .  Note that this mean and 

variance do not depend on the level of  X.  They do depend on  ∆t  but not on  t  itself.  Since the 

normal distribution is characterized by its mean and variance, the probabilites we need are solely 

functions of  κ  and not the grid point. 

 We now use the discrete normal distribution to generate the move probabilities.  For a 

given kappa, we calculate the probabilities based on the normal density times a normalization 

constant so that the computed probabilities sum to one: 
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We keep a lookup table of the probabilities for different choices of kappa, which we vary 

in our standard case from  0.7  to  1.5  in steps of  0.1.  Particularly when using wider bounds on 

kappa, the ends of this range are problematic and can result in poor approximations to the normal 
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distribution. For low kappa values, the approximation suffers from not having fine enough value 

steps. For high kappa values, the difficulty arises from potentially not having enough offset range 

to accommodate the extreme tails of the distribution.  

To insure reasonable accuracy, we compare the standardized moments of our 

approximated normal distribution  ˆ jµ   with the theoretical moments of the standard normal, 

1 3 ... ( 1) j jµ = ⋅ ⋅ ⋅ − for  j  even and  0jµ =   for  j  odd. In particular, we calculate a test statistic 

based on the differences of the first 10 approximated and theoretical moments scaled by the 

asymptotic variance of the moment estimation – see Stuart and Ord (1987, p. 322): 
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After some experimentation, we discard distributions with a test statistic of more than  

0.01.  For the model parameters in Table 1, we do not need to eliminate any kappa levels due to 

this approximation issue.  This process results in a matrix of probabilities with a probability 

vector for each kappa value in our choice set. 

We now calculate the expected indirect utilities after initializing the terminal indirect 

utilities  JT  to the utility of wealth of our manager  UX,T(WT),  where his wealth  WT  is 

determined by  XT  and his compensation scheme.  Our next task is to calculate the indirect utility 

function at earlier time steps as an expectation of future indirect utility levels.  We commence 

stepping backwards in time from the terminal date  T  in steps of  ∆t.  At each firm value within a 

time step  t, we calculate the expected indirect utilities for all kappa levels using the stored 

probabilities and record the highest value as our optimal indirect utility, JX,t.  We continue, 

looping backward in time through all time steps. 

In our situation, using a lookup table for the probabilities associated with the kappas has 

two advantages compared with using an optimization routine to find the optimal kappa.  For one, 

lookups are faster although coarser than optimizations.  Second, a sufficiently fine lookup table is 

a global optimization method that will find the true maximum even for non-concave indirect 

utility functions.  In such situations, a local optimization routine can get stuck at a local 

maximum and gradient-based methods might face difficulties due to discontinuous derivatives.   
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When implementing our backward sweep through the grid, we have to deal with behavior 

at the boundaries. The terminal step is trivial in that we calculate the terminal utility from the 

terminal wealth. The lower boundary is also quite straightforward.  We stop the process upon 

reaching or crossing the boundary and calculate the utility associated with hitting the boundary at 

that time (τ).  In that situation, the manager’s terminal wealth has the known value of  

TW a bXτ= +   for which we can calculate the utility.  We use this lower boundary value in 

calculating the expected indirect utility at earlier time steps.  

 For the numerical implementation, we also need an upper boundary to approximate 

indirect utilities associated with high firm values.  We use a boundary 40 steps above the initial  

X0  level.  For firm values near that boundary, our calculation of the expected indirect utility will 

try to use indirect utilities associated with firm values above the boundary.  We deal with this by 

keeping a buffer of firm values above the boundary so that the expected indirect utility can be 

calculated by looking up values from such points.  We set the terminal buffer values simply to the 

utility for the wealth level associated with those firm values.  We then step back in time and use 

as our indirect utility the utility of the following date times a multiplier which is based on the 

optimal Merton (1969) solution without consumption and outside wealth: 
2 2exp[ ( ) (1 ) /(2 )]t rµ γ γσ∆ − − .  We do not assume that these values are correct (they are based on 

a continuous time model while we work in a discrete time setting) but they work very well.  This 

approach is potentially suboptimal, which biases the results low. However, the distortion ripples 

only a few steps below the upper boundary, affecting mainly the early time steps.  
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Appendix B:  Numerical Procedure with Possible Early Exercise 

 

With early exercise, there is path dependence in the problem since the optimal decision 

after an early exercise will depend on how much the manager gained (in stock or cash) in the 

early exercise.  That will in turn affect the kappa surface.  The way we proceed is to construct a 

surface of optimal indirect utilities, conditional on having exercised at that particular grid point. 

This surface is based on an adjusted payoff function.  When the manager exercises for shares, his 

share position becomes  0( )c X Xb
X

τ

τ

−
+ .    We alternatively consider his exercising for cash with 

those proceeds held until  T  without any interest payment.  This results in an adjusted outside 

wealth position of  0( )a c X Xτ+ − .   

Note that these adjusted values depend on the firm value  Xτ  where exercise occurs but 

do not depend on the exercise time  τ.  This feature allows us to keep the problem 

computationally manageable.  Namely, we can construct an optimal indirect utility surface (for 

all states and time steps) conditional on having exercised at the firm value  Xτ.  For example, 

when exercising for shares, we adjust the manager’s share position and sweep backward through 

the  (X, t)  grid, calculating the optimal kappa and indirect utility at each node.  This results in a 

surface of indirect utilities and kappas which is optimal for that  Xτ   value.   We repeat this 

procedure for each  X value greater than the strike price.  From each of those surfaces, we use the 

row of  X  values which has  X =  Xτ,  to  build a composite surface of indirect utility values 

conditional on having exercised (at some  Xτ). 

Then, we work out the optimal final indirect utility surface, determining at each node 

whether or not it is preferable to exercise.  We start at time  T  with a live option and work 

backward.  We compare the indirect utility of continuing with a live option to the indirect utility 

of early exercise (from our composite surface).  If early exercise is preferred, we insert that 

indirect utility at the relevant node and continue looping backwards to the beginning of the grid. 
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