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Forecasting Ethereum’s volatility: an expansive approach using HAR
models and structural breaks

Ruijie Chen

Mount Pavillia, Sai Kung, New Territories

ABSTRACT
Cryptocurrencies have become a popular investment option and the Ethereum has
become a mainstream cryptocurrency because of the additional functionality that can
be accomplished with the backing of the powerful Ethereum network compared to
Bitcoin. The high volatility of Ethereum offers both profits and risks, making it crucial
to improve the forecasting ability for its price volatility. The results of this study could
be useful for investors and policymakers who are interested in understanding and
managing the risks associated with investing in Ethereum. Several studies have
explored similar topics using heterogeneous autoregressive (HAR) models for crypto-
currencies, but this paper offers a more expansive approach. This paper employs five-
minute high-frequency data to construct 4 HAR models to predict the volatility of
Ethereum, taking into account the impact of structural breaks, Bitcoin, SP500 and VIX.
The model that considers all factors outperforms other models for out-of-sample pre-
dictions for the 1-week forecasting. Due to the nature of the Ethereum price, the
HAR-RV model has achieved a perfect fit in 1-day and 1-month forecasting. Therefore,
other models have a very small improvement in fitness and prediction accuracy. This
paper contributes to the understanding of Ethereum’s volatility and its impact on the
cryptocurrency market.
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1. Introduction

With the maturity of blockchain technology, cryptocurrencies have become an attractive investment option
for numerous investors. Ethereum is in the spotlight as a mainstream currency. Ethereum, unlike its com-
petitor Bitcoin, can not only perform the same functions as Bitcoin which are tradability and storage values
of cryptocurrency, but also carry out extra tasks including developing and running applications, signing
smart contracts, and carrying out different kinds of transactions that bitcoin lacks relying on Ethereum net-
work. From November 28, 2019 to January 5, 2023, the price of Ethereum experienced a trough of $122.17
and climbed to a peak of $4,644.43. Such high volatility offers both profits and risks. There is growing evi-
dence that Ethereum offers substantial diversification to investors when included in portfolios (Bhosale &
Mavale, 2018). However, the high volatility of Ethereum, partly due to the immaturity of the cryptocurrency
market and the lack of regulation, presents both profits and risks for investors. To effectively manage these
risks, it is crucial to improve the forecasting ability for the price volatility of Ethereum.

The study (Ftiti et al., 2021) found that the heterogeneous autoregressive (HAR) model is appropriate
for predicting future volatility. Furthermore, a seminal study in this area is the work of Shen et al. (2020)
showing that structural breaks should also be considered when predicting the volatility of cryptocur-
rency. Besides, a qualitative study by Imran et al. described how the major cryptocurrencies affected
each other by using high-frequency data. Mensi et al. (2019) show evidence of co-movements in time
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frequency space with leading relationships of Ethereum with Bitcoin. Moreover, Assaf et al. (2022) quan-
tify information flows between Bitcoin and Ethereum. This indicates that analyzing Ethereum’s volatility
is crucial for the cryptocurrency market. The paper (Akyildirim et al., 2020) claims the existence of time-
varying positive interrelationships between the conditional correlations of cryptocurrencies and financial
market stress (VIX). The inclusion of VIX in the analysis allows for a better understanding of how financial
market stress affects the volatility of Ethereum. Ghorbel et al. (2022) shed light on the relationship
between the stock market and cryptocurrencies. To build upon their research, we extend our analysis by
incorporating the SP500 index, thereby considering the potential impact of traditional stock market
dynamics on the cryptocurrency market.

Forecasting the volatility of Ethereum is an extremely complicated topic that necessitates consider-
ation of a multitude of variables and the underlying economic logic. Previous studies have explored
similar topics using heterogeneous autoregressive (HAR) models for cryptocurrencies (Ftiti et al., 2021)
and have considered structural breaks (Mensi et al., 2019). Opposed to just one or two factors examined
in previous studies, such as Omura et al. (2023) and Shen et al. (2020), this paper considers multiple
factors.

In particular, Shen et al. (2020) have studied Bitcoin by using HAR model and considering structural
breaks and jumps. Based on the similarity of the research hypothesis, we replicated the logical frame-
work of their study, for instance, the structure of the paper and some of the methods. But we took into
account other factors. Therefore, more complex comparison methods are needed, making our study
more comprehensive than theirs.

This study employs 5-minute high-frequency data to construct 4 Heterogeneous Autoregressive models
(HAR) to predict Ethereum’s volatility, incorporating the influence of structural breaks, Bitcoin, and the
Volatility Index (VIX). Our results indicate that the model incorporating structural breaks outperforms other
models in both in-sample analysis and out-of-sample forecasts, in the 1-week horizon. Given the peculiar
price dynamics of Ethereum, the HAR-RV model exhibits an excellent fit in both 1-week and 1-month fore-
casts, rendering any further enhancement of the all-inclusive model’s fitness and prediction accuracy trivial.
However, considering the influence of structural breaks, the VIX, S&P 500 volatility, and Bitcoin price volatil-
ity marginally improves the 1-month forecast accuracy, as indicated by the out-of-sample results.

The subsequent sections of this paper are organized as follows. Section 2 presents a detailed over-
view of the database employed in this study. Section 3 discusses the detection and interpretation of
structural breaks. We introduce the HAR-RV model as the benchmark model alongside three novel mod-
els, in Section 4. The analysis of in-sample and out-of-sample performance is evaluated in Section 5, and
the robustness of the models is examined in Section 6. Finally, Section 7 concludes with a concise sum-
mary of the primary findings and recommendations for future research.

2. Data description

Considering the accuracy of volatility prediction, this paper chose 5-min as the sampling frequency. The
transaction data is the price of Ethereum in USD from Bloomberg. The full sample period is from
November 28, 2019 to January 5, 2023. After computing the Realized Volatility and subtracting the
vacant value, 1119 trading days from December 12, 2019 to January 5, 2023 are obtained. Ethereum
trades 24 hours a day, seven days a week, and therefore we have a continuous time series throughout
our sample period.

To calculate the realized volatility from the 5-minute data, Andersen and Bollerslev (1997) defined
the daily realized volatility as the sum of the squared intraday returns rt, i at a given sampling frequency
1/N:

RVt ¼
XN

i¼1
rt, i2,

where rt, i ¼ 100� lnPt, i − lnPt, i−1ð Þ and Pt, i is the ith intraday closing price at day t.
Figure 1 illustrates that the price of ETH exhibited a steep ascent beginning in January 2021 and

reached its peak on July 10, 2021. Throughout this period, the volatility remained high and exhibited
some anomalous fluctuations. Notably, between mid-April and mid-May 2021, the price experienced a
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rapid increase followed by a sharp decline, indicating uncommon and dramatic fluctuations. From May
2022, the volatility stabilized gradually. Nevertheless, certain points of uncharacteristic volatility
persisted.

Figure 2 depicts the Autocorrelation Function (ACF) of daily realized volatility. The ACF is a common
technique used to determine the parameters of common time series models, such as p in an autoregres-
sive model (AR) and expresses the average relationship between data points in a time series and their
preceding data points. Based on Figure 2, we conjecture that standard time series models are inad-
equate for predicting ETH prices.

Figure 3 reveals the existence of volatility aggregation and asymmetry, as well as volatility structural
breaks, which refer to critical events that led to significant changes in economic conditions, such as pol-
icy transitions and natural disasters. In the following section, we will introduce the ICSS test, which aims
to identify structural breaks. Large economic events, such as a new wave of regulations implemented by
the Chinese government, can trigger substantial price volatility. Additional events are summarized in the
subsequent section. In other words, when modelling volatility, it is crucial to consider the impact of
structural breaks to improve forecasting accuracy.

Table 1 displays the mean, extreme values, and standard deviation of ETH price volatility, S&P500
volatility, the VIX index, and Bitcoin volatility. As shown, the volatility of ETH price ranges from 2.709 to
1330.177, with a wide range and intense volatility. These findings reinforce the argument that the vola-
tility of the ETH market fluctuates more dramatically than the SP500 volatility and the VIX index.

Figure 2. Autocorrelation function (ACF) of RV.

Figure 1. The price of ETH.
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Additionally, the variance of Bitcoin price volatility is larger than that of Ethereum price volatility. In sum-
mary, the mean and variance of Bitcoin, which is also a cryptocurrency, are relatively similar to those of
Ethereum, while the other two index funds exhibit relatively more consistent performance.

3. Structural breaks

Liu and Maheu (2008) and Choi et al. (2010) provide strong evidence of the presence of structural breaks
in high-frequency realized volatility. Furthermore, Shen et al. (2020) present a significant analysis and dis-
cussion on the structural breaks in the volatility of cryptocurrencies. While the focus of their study is on
Bitcoin, their findings are still illustrative of the importance of considering structural breakpoints in simi-
lar problems. These structural breakpoints indicate the response of the volatility to unexpected informa-
tion. This specific information may continue to affect Ethereum in the future. Therefore, considering
structural breaks may improve the in-sample and, more importantly, the out-of-sample performance of
HAR-RV models.

3.1. ICSS algorithm

To identify the breakpoints, we apply the iterative cumulative sum of squares (ICSS) approach which is
developed by Inclan and Tiao (1994). This algorithm calculates the standard deviations between the
change points to determine the number of structural breaks. Firstly, the cumulative sum of squares Ck
for all potential breakpoints observations 1 through k were found by using the model error terms.

Ck ¼
Xk
t¼1

e2t , k ¼ 1, 2, T:

The cumulative sum of squares should be normalized and centralized, using the partial series CSS, Ck,
and the full series CSS.

Dk ¼ Ck
CT

−
k
T
:

Figure 3. Daily realized volatility.

Table 1. Descriptive statistics of variables.
Mean Standard deviation Minimum Maximum

ETH vol 32.208 76.6784 2.709 1330.177
S&P500 vol 2.60458 9.442623 7.296309e-07 162.95069
VIX index 24.95 8.95617 12.10 82.69
BTC vol 18.9591 86.32096 3.747882e-06 2159.7414
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Furthermore, the potential breakpoint should be found, k�, which is the location in the series of the
maximum absolute value of the centralized cumulative sum of squares Dk: Finally, the IT with the follow-
ing formula must be checked, if IT exceeds the critical value of the limiting distribution, then k* repre-
sents a statistically significant breakpoint. In this paper, 1.628 (Gong & Lin, 2021) was selected as the
approximate threshold at the 99th percentile of the asymptotic distribution of IT.

IT ¼
ffiffiffi
T
2

r
�Dk:

Figure 4 plots the daily realized volatility of ETH with breakpoints and ± 3 standard deviation bands.
Table 2 reports the number and start time of structural breaks in volatility that are identified by the ICSS
algorithm. The price volatility differs significantly at different stages.

3.2. Identification

The consistency of the ICSS algorithm is demonstrated through its ability to identify specific events that
correspond to structural breaks. For example, on April 16, 2020, the scaling down of Facebook-backed
Libra caused panic in the cryptocurrency market, leading to the occurrence of a structural breakpoint.
Surprisingly, volatility remained stable within an acceptable range until January 4th, 2021, when the
interest from investors seeking fast gains and protection against inflation caused a rapid surge in the pri-
ces of various digital currencies, including Ethereum, leading to another structural breakpoint.

Table 2. Structural breaks of the price volatility of ETH.
The number of structural breaks The start date The corresponding RV The standard deviation

1 2019/12/13 2.68305724 295.651204779579
51 2020/3/12 1149.39232 62177.3108302296
75 2020/4/16 52.6640161 188.543492847102
256 2021/1/4 303.189407 6090.06181303180
291 2021/2/24 67.755719 1934.32046950623
350 2021/5/19 1330.17719 200512.850868375
357 2021/5/28 96.4865332 739.206107114457
374 2021/6/23 31.2711186 184.801051255078
426 2021/9/7 360.55141 12712.3531384881
435 2021/9/20 62.5920544 200.527839435528
595 2022/5/9 66.5191775 2890.35130621410
622 2022/6/16 75.8704794 640.129340713273
722 2022/10/25 37.2680671 0

Figure 4. The daily realized volatility of ETH with breakpoints and ± 3 standard deviation bands.
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Subsequently, the price of Ethereum experienced a rapid rise, culminating in a structural breakpoint on
February 24th, since traditional financial institutions began accepting it as a routine payment vehicle
and asset. However, on May 19th, Ethereum experienced a sudden drop, with a volatility break point
attributed to institutional investors shifting their focus from cryptocurrencies to gold, amidst growing
regulatory concerns. Notably, regulatory concerns from authorities in China and the United States con-
tributed to the weakness observed. On 28th May and 23rd June, two new breakpoints emerged respect-
ively, revealing the significant fluctuation in the price of Ethereum. On September 7th, Saldova
established cryptocurrencies as legal tender, leading to heightened volatility and a significant break
point in the cryptocurrency market. On September 20th of the same year, signs of stress in China’s credit
markets led to bearish sentiment in global markets, triggering a massive sell-off in cryptocurrencies with
substantial price fluctuations and a breakpoint. Tightening monetary policy in response to inflationary
pressures has dissuaded investors from speculative assets, resulting in ETH’s volatility once again occur-
ring a breaking point on May 9th, 2022. On June 16th, due to the precarious and often perilously
unstable junction between emerging technologies and traditional currency, the instability of ETH’s price
led to a corresponding breakpoint. The period we chose happened to coincide with the COVID-19 pan-
demic. From a macroeconomic perspective, we cannot overlook the sudden uncertainty brought about
by this unprecedented event. This helps explain the occurrence of numerous structural breaks in the
short term. Additionally, the rapid development of the cryptocurrency market and its own unique char-
acteristics further contribute to the emergence of a significant number of structural break points.

4. Method

This section presents four HAR-type models designed to forecast the volatility of ETH, consisting of ori-
ginal HAR-type models (HAR-RV) as benchmark models, and three improved HAR-type models (i.e., HAR-
RV-VBS, HAR-RV-SB, HAR-RV-SB-VBS) that incorporate structural breaks, the VIX index, the S&P500 index,
and the price volatility of Bitcoin.

The first model introduced is the classical HAR-RV model, which employs a linear form to determine
whether the RV provides sufficient information. Subsequently, the HAR-RV-SB model is developed by
incorporating the effects of structural breaks. Additionally, the HAR-RV-VBS model is presented, which
incorporates the VIX and S&P500 indices, representing investor sentiment and market conditions,
respectively, along with the price volatility of Bitcoin, to enhance forecasting accuracy. Finally, an
improved HAR-RV-SB-VBS model is established by considering all the above factors simultaneously.

The subsequent sections provide detailed explanations of each of these models.

4.1. HAR-RV

We use the simple AR-type model established by Corsi (2008). In the data description section, we men-
tioned how to calculate daily realized volatility. Therefore, the weekly RV and the monthly RV of the
trading day t, denoted as RVt,w and RVt,m, respectively, are defined as follow.

RVw
t ¼ RVd

t þ RVd
t−1 þ :::þ RVd

t−6
7

;

RVm
t ¼ RVd

t þ RVd
t−1 þ :::þ RVd

t−28
29

:

In addition, the linear form of the HAR model is expressed as

RVd
tþ1 ¼ bdRV

d
t þ bwRV

w
t þ bmRV

m
t :

4.2. HAR-RV-VBS

In this section, we aim to investigate the impact of the S&P500 index, the VIX index, and the volatility of
Bitcoin price on the volatility forecasting of ETH price through the implementation of the HAR-RV-VBS
model.
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Sovbetov (2018) found that S&P500 index has a positive long-run effect on Ethereum, and Yousaf and
Ali also found that S&P 500 impacted the volatility of the Returns of Ethereum. Therefore, we hypothe-
size that the price volatility of ETH is influenced by the S&P500 index, and thus we introduce the histor-
ical volatility of S&P500 into the model.

In addition, it is well-established that the prices of cryptocurrencies are interrelated, with Bitcoin and
Ethereum exhibiting co-movements (Mensi et al., 2019). Furthermore, Beneki et al. (2019) found that
Bitcoin volatility has a delayed response on Ethereum returns, while Meynkhard (2020) suggested that
Bitcoin plays a significant role in guiding the cryptocurrency market. Therefore, we argue that incorpo-
rating Bitcoin price volatility into the model will enhance our ability to predict the price volatility of ETH.

Moreover, the VIX index is widely regarded as one of the most crucial market uncertainty indices
(Adrian et al., 2019). Leirvik (2022) found that the VIX index has a negative impact on the returns of
Ethereum. Thus, we theorize that including the VIX index into the model could improve the volatility
forecasting model for ETH.

In conclusion, building upon the HAR-RV model, we further introduce the S&P500 index, VIX index,
and Bitcoin price volatility into our model. As a result, we present the HAR-RV-VBS model, which can be
expressed as follows.

RVd
tþ1 ¼ bdRV

d
t þ bwRV

w
t þ bmRV

m
t þ bvVIXt þ bbicR

2
t þ bspR

2
t :

4.3. HAR-RV-SB

Structural breaks are a ubiquitous feature in the high-frequency volatility of financial markets.
Ignoring structural breaks tends to overestimate the long memory of volatility and consequently
results in unreliable forecasting outcomes. Therefore, when modeling volatility, it is imperative to
account for the effects of structural breaks. To this end, we identify 11 structural break points
through a test conducted in Section 3 and incorporate them into the HAR-RV model in the form of
dummy variables.

Building upon the HAR-RV model, we establish a linear form of the HAR-RV-SB model by incorporat-
ing the effects of structural breaks, as follows:

RVd
tþ1 ¼ bdRV

d
t þ bwRV

w
t þ bmRV

m
t þ

Xn
i¼1

biDi:

The variable n represents the number of structural break points, while Di (i¼ 1, 2, … , n) denotes the
dummy variable for the ith structural break point in the price volatility of ETH, which is obtained
through the ICSS algorithm. We assign the value of 1 to Di after the ith structural break point to reflect
the notion that the corresponding event at that break point affects price volatility from that day forward.
Otherwise, the Di value should be assigned as 0. Comparing the coefficients of the dummy variables
allows for a comparison of the influence of each event. As outlined in Section 3, the volatility sequence
contains 12 break points, thus n¼ 12.

4.4. HAR-RV-SB-VBS

In order to comprehensively examine the factors that influence the volatility forecasting of the Ethereum
market, we develop a HAR-RV-SB-VBS model class that incorporates structural breaks, the VIX index, the
volatility of the S&P500, and the volatility of Bitcoin prices into the corresponding original HAR-type
models. By doing so, we aim to better capture the complexities and nuances of the Ethereum market
and enhance our ability to forecast its volatility. As a result, we present the HAR-RV-SB-VBS model, which
can be expressed as follows.

RVd
tþ1 ¼ bdRV

d
t þ bwRV

w
t þ bmRV

m
t þ bvVIXt þ bbicR

2
t þ bspR

2
t þ

Xn
i¼1

biDi:
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5. Result analysis

5.1. In-sample analysis

In this section, we employ the ordinary least squares (OLS) method to estimate the parameters of four
heterogeneous autoregressive models of realized volatility (HAR-RV) type, following Corsi (2008).
Furthermore, we compare the predictive performance of four HAR models, namely, HAR-RV, HAR-RV-SB,
HAR-RV-VBS, and HAR-RV-SB-VBS, with the aim of testing the impact of structural breaks, the VIX index,
and the volatility of both SP500 and Bitcoin prices. Table 3 summarizes the parameter estimates for the
four models when forecasting the volatility of ETH at three different horizons, i.e., daily, weekly, and
monthly.

The estimation results from the HAR-RV model indicate that only weekly volatility is statistically sig-
nificant in predicting one-day volatility. However, for the 1-week forecast, the realized volatility (RV) at
all three time periods is significantly positive. The adjusted R-squared value of 0.2549 suggests that the
HAR-RV model is not adequately informative for 1-day volatility prediction. Moreover, the findings reveal
that the monthly volatility of the ETH market contains a substantial amount of information for predicting
long-term RV. This result implies the existence of long memory in the RV of ETH. In other words, the
ETH market is heterogeneous.

The findings from the estimation results of the HAR-RV-VBS model suggest that the coefficients asso-
ciated with the daily, weekly, and monthly lags are statistically significant associated with the 1-day and
1-week volatilities of ETH price. The parameter estimation results further reveal that the VIX index exerts
a positive and significant influence on the short-term and mid-term forecasting results. Additionally, our
analysis shows that the S&P500 volatility contains relevant information for short-term forecasting.
Furthermore, the volatility of Bitcoin price appears to have a statistically significant effect on ETH volatil-
ity at all three forecasting horizons, indicating that it is important to take into account when predicting
ETH volatility. Therefore, we conclude that the inclusion of the VIX index, Bitcoin price volatility, and
S&P500 volatility in the forecasting model can improve the accuracy of the ETH volatility forecasts.

The estimation results of the HAR-RV-SB model indicate that most of the coefficients of daily, weekly,
and monthly volatility are statistically significant, which is consistent with the results of the HAR-RV
model. Additionally, we conduct an analysis of the coefficients associated with the structural breaks (Di).
This analysis reveals that only half of the coefficients of Di are statistically significant, indicating that
financial events have limited impacts on ETH volatility. Through a thorough examination of coefficients,
we discover that the structural breaks which are statistically significant provide crucial information. It is
noteworthy that the majority of the events that affect long-term volatility are also present in short-term
forecasting. Therefore, we can infer that the detection of structural breaks may not be entirely precise,
as Ethereum’s volatility experiences drastic fluctuations. Consequently, it is still essential to consider the
impact of structural breaks on volatility.

The estimation results of the HAR-RV-SB-VBS model demonstrate that structural breaks, the VIX index,
and the volatility of BTC and SP500 exhibit analogous effects as in our analyses using the HAR-RV-SB
and HAR-RV-VBS models. This finding strengthens the argument that these factors should not be disre-
garded when predicting the volatility of ETH. The impact of some structural breaks, however, does not
remain statistically significant according to the HAR-RV-SB-VBS model, contrary to the HAR-RV-SB model.
We can speculate that the Bitcoin volatility, the VIX index and SP500 volatility may have the same infor-
mation with the structural breaks. Additionally, Figure 5 illustrates the in-sample adjusted R-squared val-
ues of the four models for varying time horizons, further highlighting the necessity of considering these
factors.

5.2. Out-of-sample analysis

This paper evaluates the forecasting power of four models for the volatility of ETH through the use of
different loss functions, referencing Witt and Witt (1992). It is important to note that when conducting
out-of-sample forecasting, we do not consider structural breakpoints that were not present at the time
of the forecast. Specifically, we employ the mean square error (MSE), root mean squared error (RMSE),
mean absolute error (MAE), mean absolute percentage error (MAPE) and quasi-likelihood (QLIKE) loss
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function to evaluate the performance of the models. A smaller value for these loss functions indicates
better forecasting performance. Furthermore, we use R-squared (R2) as a metric to reflect the goodness
of fit of the model. The numerical value of R2 indicates the extent to which an independent variable in
a regression model explains the variation of a dependent variable. A value closer to 1 implies better pre-
dictive power of the model. The definitions of R-squared, MSE, RMSE, MAE, MAPE and QLIKE are pro-
vided below,

R2 ¼ 1 −

Pn
i¼1 ŷ i − yið Þ2Pn
i¼1 y − yi
� �2 ,

MSE ¼ 1
n

Xn
i¼1

ŷ i − yið Þ2;

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ŷ i − yið Þ2
s

;

MAE ¼ 1
n

Xn
i¼1

ŷ i − yij j;

MAPE ¼ 1
n

Xn
i¼1

ŷ i − yi
yi

���� ����;
QLIKE ¼ 1

n

Xn
i¼1

yi
ŷ i
�log

yi
ŷ i
− 1

� �
;

where ŷ i is the predicted value and yi is the real value.
To ensure the accuracy of our findings, we conduct out-of-sample predictions and calculate loss func-

tions for both 15-day and 30-day horizons. Tables 4 and 5 summarize the results obtained. As shown in
Table 4, the ability to forecast daily volatility remains inadequate, regardless of the model utilized. This
outcome is in line with the findings of Table 5. Except for the HAR-RV-SB model, which exhibits a higher
out-of-sample forecast R-squared value than the benchmark model HAR-RV, all the loss function values
are larger than those of the benchmark model, indicating greater forecast bias. Nonetheless, our analysis
surprisingly reveals that the HAR-RV-SB-VBS model has a lower loss function value for 1-week forecast-
ing, both in-sample and out-of-sample testing. In other words, for 1-week forecasts, the HAR-RV-SB-VBS
model provides the most accurate predictions of ETH prices.

Figure 6 provides a visual comparison of the predicted and actual values of the four models, which
yields further insights into the prediction outcomes. The comparison reveals that the HAR-RV model has
a high level of forecasting accuracy for both the 1-day and 1-month forecasts. Conversely, the

Figure 5. The in-sample adjusted R-squared values.
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Table 4. Loss function values of different models (15 days).
Models R2 MAE MSE RMSE MAPE QLIKE

1-DAY HAR-RV 0.2556232 5.030887 43.723431 6.612370 1.156446 7.864924
HAR-RV-VBS 0.2726917 10.696708 134.871020 11.613398 4.136963 5.882498
HAR-RV-SB 0.3768803 4.6361775 57.4482277 7.5794609 0.6233423 85.03268
HAR-RV-SB-VBS 0.09637671 4.5716742 53.3189320 7.3019814 0.8183098 49.26835

1-WEEK HAR-RV 0.4814256 0.8004395 1.2116307 1.100741 0.1387946 4.489524
HAR-RV-VBS 0.6505875 1.4198022 2.5287691 1.5902104 0.2700986 4.482155
HAR-RV-SB 0.454408 0.6837248 1.4625435 1.2093566 0.1147395 4.557017
HAR-RV-SB-VBS 0.7440659 0.5788957 0.4925055 0.7017874 0.1022475 4.399877

1-MONTH HAR-RV 0.8955474 0.478313 0.5226664 0.7229567 0.0617387 5.031602
HAR-RV-VBS 0.8959978 0.64246405 0.73216299 0.85566523 0.08411879 5.037181
HAR-RV-SB 0.8960296 0.66351365 0.55682399 0.74620640 0.08827835 5.041423
HAR-RV-SB-VBS 0.8918273 0.64099466 0.54794074 0.74023019 0.08496546 5.040975

Table 5. Loss function values of different models (30 days).
Models R2 MAE MSE RMsE MAPE QLIKE

1-DAY HAR-RV 0.01247072 3.333826 23.996671 4.898640 1.256157 5.360493
HAR-RV-VBS 0.005392847 10.80667 129.689750 11.388141 6.758444 5.540398
HAR-RV-SB 0.02334532 3.893775 35.316023 5.942729 1.249304 53.31885
HAR-RV-SB-VBS 0.01156551 3.580830 34.975000 5.913967 1.049793 44.07986

1-WEEK HAR-RV 0.7416594 0.6758517 0.9844192 0.9921790 0.1506025 3.769224
HAR-RV-VBS 0.7875997 1.540061 3.026488 1.739680 0.482804 3.941041
HAR-RV-SB 0.7456736 0.7206301 1.1549796 1.0746998 0.1803232 3.862043
HAR-RV-SB-VBS 0.8110957 0.6474996 0.7299848 0.8543915 0.1650774 3.740789

1-MONTH HAR-RV 0.9606352 0.29405589 0.27217478 0.52170373 0.04233162 4.554424
HAR-RV-VBS 0.9607979 0.47904064 0.42136446 0.64912592 0.07589582 4.560791
HAR-RV-SB 0.9608473 0.7452121 0.6279802 0.7924520 0.1348420 4.610126
HAR-RV-SB-VBS 0.9583689 0.7275258 0.6127803 0.7828028 0.1311025 4.60565

Figure 6. Predict results of 4 models.
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information added to the model did not significantly improve the accuracy of daily volatility forecasts.
Furthermore, the figure shows that forecasting mid-term volatility for Ethereum necessitates considering
the effects of structural breakpoints, the VIX index, S&P 500 volatility, and Bitcoin price volatility.

Although the loss function approach enables us to determine which model performs better from dif-
ferent perspectives, it has a limitation in that it does not indicate whether the results can be considered
trustworthy.

5.3. DM test

The DM test, introduced by Diebold and Mariano (1995), is a statistical method widely used to compare
the forecasting performance of two models (Sadorsky, 2006). This technique is based on the loss func-
tions which can quantify the difference between the forecasted and actual values. The null hypothesis
of the DM test is that the two models have the same predictive accuracy. The DM statistic is calculated
as follows:

DM ¼ dtffiffiffiffiffiffiffiffiffiffiffibVar dtð Þ
T

r ! N 0, 1ð Þ:

where dt denotes the mean of dt , and dt is the difference of the loss function. In this part, we use MSE,
RMSE, MAE, MAPE and QLIKE as the loss function. cVar dtð Þ represents the robust estimate of the asymp-
totic variance for dt , with heteroscedasticity and autocorrelation. If the DM test statistic exceeds the crit-
ical value, the predictive performance of the models is deemed significantly different. When DM-value is
greater than 0, the new model is better than the previous one. Therefore, the DM test is a valuable tool
for assessing the relative forecasting power of different models. Nevertheless, in this study, we have
actually employed the modified test proposed by Harvey et al. (1997), which enhances robustness.

To evaluate the performance of various Ethereum forecasting models, we established the HAR-RV
model as a benchmark and conducted a DM-test to investigate whether the forecasting accuracy of the
HAR-RV-VBS, HAR-RV-SB, and HAR-RV-SB-VBS models was significantly improved. The results of the DM-
test are presented in Table 6.

Table 6 reveals that the various HAR-type models exhibit distinct forecasting accuracy. Regardless of
the loss function selected (MSE, MAE, MAPE, RMSE and QLIKE), all three models perform worse than the
HAR-RV model in terms of 1-day and 1-month ETH volatility forecasting. This outcome aligns with in-
sample forecasting. In addition, different loss functions do not get consistent conclusions. Based on the
DM-test results of QLIKE, we can find that In 1-week forecasting, the HAR-RV-SB-VBS model outperforms
the benchmark model.

In summary, we posit that considering all factors within the original HAR-type model (i.e., HAR-RV-SB-
VBS) yields the most precise out-of-sample forecasting of all models we have established in 1-week fore-
casting. This finding indicates that the combination of the market information effectively enhances the
accuracy of 1-week ETH volatility forecasting. Additionally, the HAR-RV model is the optimal model for
ETH 1-month and 1-day forecasting. Incorporating other factors into the prediction may disturb the effi-
cacy of the HAR-RV model.

5.4. Model Confidence Set (MCS) Procedure

To evaluate the performance of various Ethereum forecasting models, we employ the Model Confidence
Set (MCS) Procedure. The MCS test, introduced by Hansen et al. (2011), is based on the loss function. It
offers an alternative approach to assessing predictive performance compared to simple comparisons of
loss functions. It addresses the issue of ‘outliers leading to a significant increase in the loss function’,
resulting in more robust and reliable results. A large amount of research, such as Huang et al. (2021)
and Liu and Lee (2021), have demonstrated the robustness of this method.

In simpler terms, the MCS test is a significance test where a set of volatility forecasting models,
denoted as M0. The test aims to remove models with poor predictive ability from the set M0. In each
test, the null hypothesis assumes that two volatility forecasting models within M0 have the same
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predictive ability for future volatility, which can be expressed as follows:

H0,M : E di, uvð Þ ¼ 0:

The variable di, uv represents the difference in loss functions (MSE) between two volatility forecasting
models, u and v. The models are continuously tested using the equivalence test dM and the elimination
rule eM: The testing process ends when no models are eliminated from the set. The MCS test involves
multiple complex statistical measures, including the maximum deviation to the average loss (maxT), the
traditional quadratic-form test (chi), the chi test with sample size correction (F), the deviation from the
common average (ComAve), the range-based statistic (Range), and the semi-quadratic statistic (SemiQ).
Due to the small differences in the results of these statistical measures, this study only employs the
commonly used range-based statistic as the test statistic, which can be defined as:

Range ¼ max
u, v2M

di, uv
�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðdi, uv

p Þ

If the range-based statistic (Range) exceeds a given critical value, the null hypothesis is rejected. The
true distribution of the Range statistic is complex as it depends on the ‘aversion parameter’. In empirical
applications, the value of the range-based statistic (Range) and the corresponding test can be obtained
through bootstrapping. Typically, when the p-value is greater than the commonly set threshold of 0.1, it
indicates that the criterion model exhibits good predictive ability. A higher p-value suggests a greater
likelihood of strong predictive ability.

Table 7 presents the results of the MCS test, conducting consistent findings with the DM test. The
data provides evidence that in mid-term forecasting, the volatility of Ethereum is significantly influenced
by both traditional financial market information (S&P500 and VIX), Bitcoin and structural breaks.

6. Robustness test

This section aims to assess the robustness of both the in-sample and the out-of-sample forecasting by
altering the sample range. While the forecasting results are consistent with those presented in Sections
5 and 6, this section will solely focus on the robustness of the results obtained.

6.1. In-sample

To determine the reliability of forecasting outcomes across different samples, a division of the total 722
samples into two sub-samples was conducted. Subsample 1 contains samples 1 to 360, while Subsample
2 comprises samples 360 to 722. Following this, an in-sample regression analysis was performed on
both subsamples, and the adjusted R-squares were calculated as an indicator of the model’s predictive
accuracy. The results of this analysis are presented in Table 8.

Table 8 displays the results of the estimation of 1-day volatility by using four models on two subsam-
ples, namely subsample 1 and subsample 2. The adjusted R-squares in subsample 1 and subsample 2
exhibit considerable disparity and lack robustness, implying that these models are sensitive to the selec-
tion of data in estimating 1-day volatility. Conversely, the adjusted R-squares in the medium-term and
long-term volatility estimation demonstrate consistent and stable results for both subsamples, indicating
that each model performs reliably in these horizons. Consequently, we infer that the four models are
robust for the medium-term and long-term volatility estimation of Ethereum.

Table 7. MCS test results for out-of-sample forecasting.
MODEL DAILY WEEKLY MONTHLY

HAR-RV 1.000 0.358 1.000
HAR-RV-VBS 0.000 0.000 0.028
HAR-RV-SB 0.063 0.363 0.098
HAR-RV-SB-VBS 0.257 1.000 0.054
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6.2. Out of sample

To assess the accuracy of out-of-sample forecasts within the Ethereum market, the rolling window was
altered from 1046 days to 846 days, covering the period from December 12, 2019 to April 8, 2022.
Consequently, a predicted sample of observations spanning the time period from April 8, 2022 to March
30, 2018 was obtained. The outcomes of this analysis are presented in Table 8, which showcases the
results of four loss functions.

Analysis of Table 9 reveals that, on the whole, the loss function values exhibit a marginal decrease
following the change in window size; however, the overall trend remains consistent with the previous
outcomes.

7. Conclusion

This study aims to provide a novel perspective on Ethereum (ETH) price forecasting, building upon exist-
ing literature (Ftiti et al., 2021) by utilizing a HAR-type model that considers the impact of various factors
on ETH prices. The improved HAR-type model in this study incorporates structural breaks to enhance
the robustness and validity of predictions. Furthermore, the study expands upon the HAR-RV model by
investigating the impact of the VIX and S&P500 indices, which represent investor sentiment and market
direction, respectively, contributing to the existing literature. Besides, the volatility of Bitcoin which is
closely connected with ETH volatility is also considered. We establish three novel models, namely HAR-
RV-SB, HAR-RV-VBS, and HAR-RV-SB-VBS, which are utilized in both in-sample and out-of-sample analysis
of the RV of Ethereum prices. Based on our analysis, we propose several conclusions.

Our results demonstrate that the HAR-RV model achieves a perfect fit in 1-week and 1-month fore-
casting due to the characteristics of Ethereum itself. The model that considers all factors has only a small
improvement in fitness and prediction accuracy. However, in out-of-sample forecasting, considering the
effects of structural breakpoints, VIX, S&P 500 volatility, and Bitcoin price volatility improves the accuracy
of 1-week forecasts, albeit marginally.

Despite these findings, three main limitations of this study should be acknowledged. Firstly, we did
not consider simple models such as HAR-RV-VIX and HAR-RV-SP, which do not sufficiently analyze the
impact of individual factors but rather include all factors, resulting in increased complexity. Secondly, we
need to consider the duration of the impact of different structural breakpoints. Some breakpoints occur
merely due to unforeseen financial events and do not have a lasting influence. Finally, we did not
decompose the volatility component further to capture the volatility of Ether more accurately, which

Table 8. Adjusted R-squares of sample 1 and sample 2.
1-DAY 1-WEEK 1-MONTH

Sample1 Sample2 Sample1 Sample2 Sample1 Sample2

HAR-RV 0.2242 0.5693 0.9268 0.9671 0.9929 0.9933
HAR-RV-VBS 0.2462 0.5964 0.9281 0.9683 0.9929 0.9933
HAR-RV-SB 0.247 0.6063 0.9284 0.9684 0.9932 0.9934
HAR-RV-SB-VBS 0.2751 0.6146 0.9307 0.9695 0.9933 0.9934

Table 9. Loss function values for out-of-sample forecasting.
MAE MSE RMSE MAPE QLIKE

1-day HAR-RV 27.4846496 3082.3348805 55.5187795 0.4828582 12.15608
HAR-RV-VBS 29.8249030 2825.5711936 53.1561021 0.9651824 9.452772
HAR-RV-SB 30.1992042 3051.7679375 55.2428089 0.6754943 13.62258
HAR-RV-SB-VBS 31.720395 2624.748218 51.232297 1.179675 8.846167

1-week HAR-RV 4.2493449 69.3521325 8.3277928 0.1151712 6.82639
HAR-RV-VBS 4.8032075 67.5840474 8.2209517 0.1936859 6.842171
HAR-RV-SB 4.3065354 63.4602906 7.9661967 0.1300311 6.826794
HAR-RV-SB-VBS 5.545689 68.264191 8.262215 0.269310 6.876887

1-month HAR-RV 0.92266384 3.59290193 1.89549517 0.04988561 5.92362
HAR-RV-VBS 1.01115922 3.45428263 1.85857005 0.06223437 5.922597
HAR-RV-SB 1.3612582 4.1759564 2.0435157 0.0940295 5.935592
HAR-RV-SB-VBS 0.98000226 3.45322453 1.85828537 0.05559051 5.922385
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could lead to reduced accuracy in predictions. Future research may consider incorporating the leverage
effect into a model for predicting ETH price volatility and try to use some Machine Learning models like
short- and long-term memory networks.
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