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Abstract: Big data analytics capabilities (BDACs) are strategic capabilities that expedite decision-
making processes, empowering organizations to mitigate the impacts of supply chain disruptions.
These capabilities enhance the ability of companies to be more proactive in detecting and predicting
disruptive events, increasing their resilience. This study analyzed the effects BDACs have on firms’
reaction time and the effects companies’ reaction time has on their resilience. The research model
was assessed with 263 responses from a survey with professionals of auto-parts companies in Brazil.
Data were analyzed with the Partial-Least-Squares—Structural Equation Modeling method. Cluster
analysis techniques were also applied. This study found that BDACs reduce reaction time, which, in
turn, improves firms’ resilience. We also observed greater effects in first-tier and in companies with
longer Industry 4.0 journeys, opening further perspectives to investigate the complex mediations
of digital readiness, reaction time, and organizational resilience performance of firms and supply
chains. Our research builds upon the dynamic capabilities theory and identifies BDACs as dynamic
capabilities with the potential to enhance resilience by reducing data, analytical, and decision latencies,
which are recognized as core elements of the reaction time concept, which is particularly crucial
during disruptive supply chain events.

Keywords: big data analytics capabilities; reaction time; organizational resilience; smart manufactur-
ing technologies; auto-parts industry; Industry 4.0

1. Introduction

By integrating cutting-edge technology and growing organizational commitment
to data analytics, companies actively pursue greater responsiveness to supply chain
events, thus improving operational efficiency and adaptability. Technologies, such as
cyber—physical systems, cloud computing, the Industrial Internet of Things (IloT), artificial
intelligence (Al), digital twins, additive manufacturing, machine learning, collaborative
robots, and remote sensing, reflect the increasing overlap between physical and virtual
dimensions in operations and processes management (Yang et al. 2019). From an operations
management perspective, these disruptive innovations introduce a range of new challenges
as transformation systems evolve into intelligent, integrated, responsive, and autonomous
entities. This integration extends to larger ecosystems, like a company’s supply chain,
generating an immense volume of real-time data with the aid of Industry 4.0 technologies
(Jeschke et al. 2017; Miiller et al. 2018; Wang et al. 2016a).

Big data encompass vast and heterogeneous datasets comprising structured and un-
structured data from diverse sources continuously updated in real time (Gupta and George
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2016; Wang and Wang 2020). The unique characteristics associated with big data, including
their velocity, volume, variety, and veracity, pose significant challenges for enterprises,
emphasizing the need to develop specific sorts of capabilities, commonly referred to as
big data analytics (BDA) capabilities. BDA capabilities empower organizations to ensure
data accuracy, cope with data generation and dissemination velocity, manage the mas-
sive volume and diverse types of data, and extract valuable insights to drive informed
decision making.

These capabilities become particularly relevant when considering the occurrence of
disruptive and unplanned events in supply chains. The occurrence of many types of
disruptive and/or unplanned events may require prompt reactions or countermeasures
from companies aiming to mitigate their effects. A disruptive event in a supply chain may
be defined as an unforeseen occurrence that significantly interrupts the normal flow of
operations. Such incidents can range from logistical delays and industrial accidents to
environmental disasters, drastic demand fluctuations, or quality issues (Ladeira et al. 2021).

In general terms, the reaction time to a disruptive event in a firm’s supply chain
includes the time involved in recognition of the event, registration, analysis, and decision
making. Following the proposition of zur Muehlen and Shapiro (2010), reaction time
would comprise data latency, analytical latency, and decision latency. Assuming that higher
levels of analytical capabilities in big data can promote the reduction of these latencies,
it is still unknown whether these antecedent elements would have significant effects on
organizational resilience during adverse situations in firms’ supply chain.

In the organizational context, resilience expresses an organization’s ability to prepare
for, anticipate, and respond or adapt to incremental changes or sudden disruptions in its
value chain. It is an adaptive capability essential for companies to deal with planned or
unplanned changes in a scenario of increasing complexity of operations (Chopra and Sodhi
2004; Craighead et al. 2007; Ergun et al. 2023; Pereira et al. 2014; Pettit et al. 2013).

Our investigation sought to answer four central research questions:

e  QI: Do BDA capabilities play a significant role in reducing organizations’ reaction
time in the face of unexpected incidents or disruptions within their supply chains?

e Q2: Furthermore, what effects does this expedited response have on enhancing organi-
zations’ resilience?

e  (Q3: Does a firm’s position within the supply chain influence the effects BDA capabili-
ties have on reaction time and organizational resilience?

o (Q4: Are the effects of BDA capabilities on reaction time and organizational resilience
greater for companies with longer Industry 4.0 journeys and more intense absorption
of Industry 4.0 smart technologies?

To address these research questions, our study surveyed 263 executives from auto-
motive companies associated with SAE Brazil, an affiliate of SAE International, one of the
main sources of norms and standards for the automotive and aerospace sectors worldwide.
We surveyed CEOs, directors, superintendents, and managers from procurement, logistics,
the supply chain, finance, marketing, and sales areas. The choice of the auto-parts industry
is due to the fact that among the sectors that have already started their journey towards
the visionary model of Industry 4.0, the automotive sector and its entire broad ecosystem—
a network of suppliers, intermediate companies, final consumers, research centers, and
third-party logistics (3PL) providers, among others—make up a very peculiar and special
case. Also, it is noteworthy that industries within this sector are particularly prone, for
various reasons, to quickly embracing smart manufacturing technologies of Industry 4.0
(Lin et al. 2018).

This industry is considered an important case to study supply chain digitalization
and its effects on performance (Fabbe-costes and Lechaptois 2022). However, it is an
industry experiencing radical transformations with the rising dominance of electric vehicles.
This shift encompasses, for example, shared on-demand mobility, connected cars, and
autonomous vehicles, introducing novel challenges and opportunities for firms and their
supply chains. As a result, significant transformations are occurring in the configuration
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and management of their production and assembly lines and supply chain processes
(Bortolini et al. 2017).

Considering the arguments previously outlined, our research aimed to address the
following research gaps, which hold both practical and theoretical relevance:

e  BDACSs’ role in disruption response: Although the concept that BDA capabilities can
reduce reaction time during supply chain disruptions may seem intuitive, there is a
lack of empirical evidence demonstrating the extent to which BDACs directly influence
the speed of response to unforeseen incidents. Particularly important and novel for
our investigation is the description of the effects of BDACs on different and specific
forms of latencies—data latency, analytical latency, and decision latency—which are
fundamental components of reaction time.

e  Effects on organizational resilience: The literature has yet to fully explore the systemic
relationships between reaction time, facilitated by BDACs, and the enhancement of
organizational resilience, particularly during supply chain disruptions.

e Position in the supply chain and BDAC impact: Knowledge is lacking regarding
how a firm’s position within the supply chain (e.g., first-tier vs. indirect suppliers)
influences the effect of BDACs on reaction time and organizational resilience, as many
specificities can be taken into account, such as risk exposure, the quality and speed of
information flow, power dynamics, and supply chain resource allocation priorities,
amongst other relevant dimensions.

e Influence of Industry 4.0 journey length: There are not yet enough studies to assert
whether the level of technological readiness of firms, in relation to the absorption
of smart technologies from Industry 4.0, would have any influence on the potential
effects of BDA capabilities on reaction times to disruptions in the supply chain and
the degree of firms’ resilience in such events.

Our work is theoretically grounded in the dynamic capabilities theory (DCT) as BDA
capabilities are considered relevant capabilities to integrate, build, and reconfigure internal
and external competencies to address rapidly changing environments (Teece et al. 1997).
We view BDA capabilities as having the ability to intentionally expand, modify, or create a
company’s resource pool. This theory is suitable in an environment of Industry 4.0 smart
manufacturing technologies, as all of these disruptive innovations produce and demand
huge amounts of real-time data. We consider BDA capabilities valuable assets to face
disruptive events in firms’ supply chain upstream and downstream flows, consider the
sense and shape of opportunities and threats, seize opportunities, and quickly reconfigure
intangible and tangible assets (Teece 2007). In the case of disruptions or unplanned events
in the supply chain processes, we assume that BDA capabilities will positively affect the
reduction of reaction time and improve firms’ organizational resilience. The DCT has been
adopted in previous studies to describe BDA capabilities (Nisar et al. 2020; Shan et al. 2019).

The contributions of our work in addressing these gaps are manifold, encompass-
ing both practical and theoretical dimensions. Firstly, our study extends the dynamic
capabilities theory by conceptualizing BDACs as a set of dynamic capabilities that enable
organizations to reduce reaction time and enhance resilience in the context of supply chain
disruptions. Additionally, it offers a nuanced understanding of these capabilities amidst
the assimilation of Industry 4.0 smart technologies by firms. This study extends DCT by
demonstrating the positive effects of BDACs as dynamic capabilities on firms’ resilience and
reaction time. Secondly, we propose and evaluate a new research model that empirically
validates the relationships between BDACs, reaction time, and organizational resilience in
the context of a range of unplanned occurrences in a company’s value chain, such as sup-
plier delays, quality issues, environmental disasters, sudden demand shifts, and pandemics,
among other causes. We aim to describe and correlate these reaction times with the levels
of BDACs and organizational resilience scores, offering insights into how organizations
navigate and counter the effects of such challenges. Hence, our research’s main findings
indicate that BDA capabilities significantly influence reaction time and organizational
resilience, with first-tier suppliers and digitally mature companies demonstrating enhanced
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performance in these areas. These findings underline the importance of BDA capabilities
in real-time decision making and the integration of Industry 4.0 technologies in modern
supply chain management. Thirdly, we demonstrate that the length of the journey of imple-
mentation of Industry 4.0 smart manufacturing technologies can influence the relationships
between the model’s variables. This is a relevant contribution to managers and practitioners
because it highlights the importance of time and maturity in digital transformation and
Industry 4.0 adoption processes. Firms that have started to implement their Industry 4.0
processes will take greater advantage of the effects of BDACs on firms’ resilience and
reaction time. And, finally, we demonstrate that a supplier’s position in the supply chain
(first-tier vs. indirect suppliers) is a categorical variable that must be considered when
assessing the outcomes of BDACs, reaction time, and organizational resilience. This is also
a relevant contribution for managers as it highlights the importance of first-tier suppliers
and the need to develop closer and more strategic relationships with them. This opens up
many possibilities for future studies to further deepen the explanations and implications
of such findings by acknowledging the position-specific differences of suppliers and their
effects on supply chain resilience performance.

2. Theoretical Background and Research Hypotheses
2.1. BDA Capabilities

Analytics refers to a set of different IT-enabled resources used to gain information,
answer questions, predict outcomes of problem solutions, and support decision making,
consequently creating competitive advantage (Barbosa et al. 2022; Davenport and Jeanne
2007; Trkman et al. 2010). Davenport (2014) describes the evolution of different types of
analytics from decision support systems (Yang et al. 2008a, 2008b) to Business Intelligence,
Business Analytics, and BDA. This evolution was first characterized by reporting and
extracting information from data and then using statistical tools to support decision making
and prescribe and predict actions.

In a very fast-changing world with huge disruptive innovations, organizations are
seeking to develop and exploit big data ecosystems to create value for their businesses
(Chen et al. 2012; Corte-real et al. 2017; Davenport 2013; Rialti et al. 2019). Big data have
been elevated to the status of a “new paradigm of knowledge assets” (Hagstrom 2012), a
“new frottage for innovation, competition, and productivity” (Manyika et al. 2011), and a
“crucial component for decision-making” in organizations’ business processes (Machado
et al. 2019; Wamba et al. 2016). Big data support companies” innovation, prediction of
market trends, and the optimization of development processes (Xu et al. 2024).

Big data refer to large and very heterogeneous sets of data—structured and
unstructured—{rom different sources that are updated continuously and in real time (Gupta
and George 2016; Wang and Wang 2020). These data sets are considered massive because
they can range from terabytes to zettabytes—e.g., a platform like YouTube supports 500 h of
new content uploads every minute (IBM Corporation 2020). The characteristics associated
with big data (e.g., speed of data dissemination, high volume, a wide variety of sources,
and veracity, among others) bring immense challenges to enterprises, including the urgency
to develop their BDA capabilities. Also, BDA capabilities can help companies ensure data
accuracy (veracity), deal with the speed of data generation and dissemination (velocity),
manage the sheer volume of data, handle a wide range of data types and sources (Barbosa
et al. 2022), and positively impact organizational performance (Atobishi et al. 2024).

Wang, Kung, and Byrd (Wang et al. 2016b) defined BDA capabilities as a firm’s ability
to acquire, store, process, and analyze a large amount of data obtained in different formats
and from different sources and provide meaningful information to users, thus enabling
them to discover business value and develop timely insights. BDA capabilities are often
identified as a higher-order, multidimensional construct, which indicates that several sub-
dimensions determine their primary dimensions (Akter et al. 2016). Shuradze and Wagner
(2016) categorized these capabilities into infrastructure, people, and relationships. Akter
et al. (2016) identified three dimensions of analytical capabilities in big data: organizational
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(management), physical (infrastructure), and human (skills or knowledge). Cosic et al.
(2015), in turn, defined a set of 16 capabilities, which were grouped into four capability
areas: governance, culture, people, and technology. Liu et al. (2022) acknowledge the
existence of big data technical capabilities, which refer to the professional skills used to
extract insights from data and big data managerial capabilities, which refer to the man-
agement skills required to manage big data resources. Barbosa et al. (2017) recognize the
adoption of BDA to manage organizational, technological, and human resources. Among
these capabilities, Huynh et al. (2023) stated that BDA management and technological
capabilities are gaining popularity. Solano and Cruz (2024) also highlight the relevance of
analytical and technological capabilities.

Building analytical capabilities is a crucial determinant of a firm’s competitiveness,
given its role in extracting value and insights from data (Trkman et al. 2010). By integrating
Al and machine learning, companies can leverage analytical skills to (1) comprehensively
and rapidly recount their business processes’ past performance (descriptive analytics);
(2) recognize complex patterns and associations between variables, hence forecasting the
likelihood and impact of future events (predictive analytics); and (3) identify and evaluate
potential actions in alignment with certain constraints and goals (prescriptive analytics)
(Barker et al. 2017; Eisenberg et al. 2019).

2.2. Reaction Time

The seminal conception of reaction time has its origins in the field of experimental
psychology during the 19th century. The concept was developed to infer the lengths of
different cognitive processes and the time it takes for a person to respond to a stimulus.
It is usually measured from the onset of a stimulus until the initiation of the response.
Today, with its specificity, the concept is considered not only in the areas of psychology and
neuroscience but mainly in sports science, healthcare and clinical psychology, ergonomics,
and operations management, amongst other fields of knowledge. In the operations man-
agement theory and practice contexts, the concept may reflect a position of adjustment of
behavior, strategies, norms, and/or policies of organizations, aiming to assume a more
favorable position in the face of the dynamic characteristic of their business environment
(Richey et al. 2022).

In this study, we consider “reaction time” as the period required for an organization to
respond to unexpected disruptions or unplanned events within its value chain. This period
extends from the onset of the disruption to the initiation of actions aimed at mitigating
the effects of the incident. According to Hackatorn (2002) and zur Muehlen and Shapiro
(2010), this timeframe can be segmented into data latency, analysis latency, decision-making
latency, and countermeasures latency. Reaction time comprises the first three latency types.
Figure 1 identifies each of these types of latency and underscores a pivotal phenomenon.
In the occurrence of a disruptive event, there is a potential decline in the business value
when decisions and implementation of actions or countermeasures in response to that
event take longer.

In the supply chain context, data latency refers to the delay between the occurrence
of an event and the access to event data, its processing, and the availability of the data
analysis. This delay can be challenging when dealing with disruptive events, and its impact
can vary significantly depending on the magnitude of the event. For example, in the
auto-parts supply chain, a sudden shortage of a critical component due to a natural disaster
can lead to significant delays. If the data latency is high, the company may not be able to
quickly access, process, and make available the necessary information to find alternative
suppliers, resulting in prolonged production stoppages and substantial financial losses.
Data need to be converted into formats usable for decision making, taking various forms,
such as notifications, reports, or embedded within key performance indicators. Traditional
analytical methods, which rely on historical data and periodic report generation, fail to
synchronize analytical efforts with the event’s timing, resulting in increased system analytic
latency (zur Muehlen and Shapiro 2010). Data and analysis latency can be collectively called
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“analytic infrastructural latency.” This term encompasses the time required for capturing,
storing, analyzing, and visualizing events. Minimizing analytic infrastructural latency
facilitates early data-driven decision making and action taking in response to events.

Business value 4
perspective

Disruptive event

Data access, processing
and availability of event
data analysis

Business value loss
due to latency

Data driven
decision making

Actions initiated to

mitigate the event

effects Termination of
countermeasure
actions

R B A ettt

'

> '
| R

Data latency ! Analysis latency Decision-making Countermeasures I:
! latenc: latenc !
<4—————— REACTION y oo
| TIME '
: 1

Time

Figure 1. Types of latency and reaction time (adapted from Hackatorn (2002) and from zur Muehlen
and Shapiro (2010)).

Decision-making latency, in turn, is influenced by various complex factors, including
the type and complexity of the problem, the opportunity cost associated with potential
action alternatives, and the trade-offs involved in the decision, among others. In the face of
an unplanned event, reducing decisional latency enables quicker initiation of actions or
countermeasures to mitigate the effects of the event. Reduced decision making and analytic
infrastructural latency are crucial for ensuring the company spends less time accessing,
processing, and analyzing data, which would allow decision makers to efficiently access
comprehensive reports that synthesize time-sensitive information promptly, fostering a
real-time process analytics culture in the organization. The final stage in this latency chain
relates to the actual execution of the decision, known as implementation latency, which
represents the point in time when the decision’s effects are realized, that is, when actions or
countermeasures are enacted in response to events.

When firms are able to speed up their responses to external events, they are able to
make timely informed decisions and optimize their reaction time (Barlette and Baillette
2022). Previous research has shown that BDACs are critical for companies to quickly
respond to their supply chain partners’ needs because they allow them detect and analyze
data in real time (Liu et al. 2022), reducing the reaction time required to deal with unplanned
events. Considering this context, we formulated the first hypothesis of our study.

Hypothesis 1 (H1): BDA capabilities positively affect companies” reaction time (reducing data

latency, analytical latency, and decision latency) in response to disruptive and/or unplanned events
in their supply chain.

2.3. Organizational Resilience

The concept of resilience is both multidisciplinary and multidimensional (Ivanov et al.
2024; Pettit et al. 2013; Ponomarov 2012; Ponomarov and Holcomb 2009). It is considered a
multidisciplinary phenomenon because it is investigated in different areas of knowledge,
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such as physical sciences, engineering, human sciences, social psychology in particular,
and, more recently, operations management.

It is also a multidimensional phenomenon because it refers to a domain that can be
studied from different perspectives or associated with other performance dimensions in
flexibility, agility, or horizontal and vertical process integration. Resilience has been associated
with the visibility and mitigation of disruption effects (Chopra and Sodhi 2004; Christopher
and Lee 2004; Li et al. 2023), agility and responsiveness (Christopher 2000; Christopher and
Towill 2001; Van Hoek et al. 2016), and uncertainty reduction (Craighead et al. 2007; Hallikas
et al. 2004; van der Vorst and Beulens 2002), as well as in association with cross-organizational
collaboration (Scholten and Schilder 2015; Wieland and Wallenburg 2013).

In their conceptualization of resilience, Colicchia and Strozzi (2012) highlight the
proactive nature of firms in managing risks, emphasizing the significance of effectively
identifying risks and vulnerabilities within their supply chains. A similar perspective is
reflected in the research by Bode, Wagner, Petersen, and Ellram (Bode et al. 2011), viewing
supply chain disruption orientation as a means to leverage sustainable competitive ad-
vantages in dynamic markets characterized by increased vulnerabilities and uncertainties.
Alkhatib and Momani (2023) stated that supply chain resilience positively impacts manufac-
turing firms’ operational performance. In other studies, such as those by Eisensberg, Seager,
and Alderson (Eisenberg et al. 2019) and Barker et al. (2017), the concept of resilience
analytics expresses the systematic use of BDA to enhance the ability of companies to be
more proactive in both detecting and predicting disruptive events in their value chain.
Corallo et al. (2023) stated that there are still relevant challenges in processing huge sets of
data in the shortest possible time. Given all of these previous arguments, we proposed the
second hypothesis of this study.

Hypothesis 2 (H2): In the face of disruptive and unplanned events within firms” supply chains, a
decrease in reaction time (including reduced data latency, analytical latency, and decision latency) is
positively associated with higher levels of organizational resilience.

Our study also tested the hypothesis that tier-one suppliers in the auto industry would
be more inclined to and consistent in nurturing BDA capabilities than automaker’s indirect
suppliers, which would lead to lower reaction time and greater effects on organizational
resilience influenced by BDA capabilities.

This industry faces massive changes, which are partly due to the huge transformation
of business models as electric vehicles become increasingly dominant in the global car
market. These changes also encompass the advent of shared on-demand mobility, the con-
nected car, and autonomous vehicles. These shifts are dual-faceted, posing both disruptive
challenges to players throughout the industry and offering a potential path toward growth
and profitability. The trend is that growth in revenues and profits of strategic tier-one
suppliers must come increasingly from the systems needed for the next-generation vehi-
cles, as they play a critical role (and are directly involved) in designing, developing, and
manufacturing such key systems and components for this new industry of electric vehicles.

Amidst the shifting landscape of the automotive sector, first-tier suppliers already bear
significant responsibility for fostering and facilitating the progression of new technological
proficiencies among automakers’ indirect suppliers (e.g., second-tier, third-tier, etc.) re-
quired for next-generation vehicles. The internationalization of automakers’ supply chains
has led to fragmentation among second- and third-tier suppliers, adding complexity to a
more intricate and diverse supply chain network. Also, this fragmentation has increased
the need for transparency and accountability and to address concerns regarding disruption
risks and sustainability issues (Miemczyk et al. 2012).

The fast-paced changes in the auto industry can also be attributed to Industry 4.0’s
smart manufacturing technologies, as we see the step-by-step integration of these cutting-
edge technologies gradually enabling firms to have more transparency and control over the
process flows in the multi-tier supply chain. As Wagire et al. (2021) observed, many manu-
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facturers foresee substantial alterations in their supply chains, operations, and business
models due to Industry 4.0’s ongoing developments, including Al Nevertheless, the techno-
logical disruptive innovations of Industry 4.0, the challenge considering its implementation
in both companies’ and supply chain operations’ contexts, and the rising complexity of sup-
ply chain systems in this industry still need to be more fully comprehended. Considering
these previous concerns, we proposed Hypothesis 3.

Hypothesis 3 (H3): The effects BDA capabilities have on reaction time and organizational
resilience are higher for first-tier suppliers.

2.4. Smart Manufacturing Technologies of Industry 4.0

We consider Industry 4.0 a synthesis concept to designate the fourth industrial rev-
olution underway and the many disruptive technologies that affect companies’ business
models and how they manage their business processes. Industry 4.0 defines a new stage of
evolution for industrial organizations. One of the main elements of this evolution is the
change in the connectivity between transformation systems, mainly due to the integration
of new information and communication technologies, the IoT, and smart machines operat-
ing in cyber—-physical systems (Bortolini et al. 2017; Dalenogare et al. 2018; Lichtblau et al.
2015). These transformation systems capture, record, and interpret data from the environ-
ment and react to signals from different points of origin in that environment. Unlike other
technologies, they are self-regulating systems, integrating communication with human
actors and other devices at local and global levels (Reischauer 2018).

Industry 4.0 is characterized by higher levels of horizontal integration, referring to
integrating the physical and virtual worlds of the firm’s value chain processes. Higher
levels of horizontal integration enable smart factories to better adapt to the circumstances
of the environment, thus reacting more quickly to events, such as material unavailability,
disruptions in production scheduling, or timely changes in order volumes.

The new technologies also have the potential to positively affect levels of vertical
integration, with people, machines, work centers, production lines, and other resources
being physically and digitally integrated in the form of cyber—physical systems. Industry
4.0 also means the presence of intelligent products capable of gathering and transmitting
information pertinent to the processes involved in their manufacture in real time but also
associated with their consumption by customers. Smart products make it possible to offer
data-driven services, which are collected throughout the life cycle of products (Hermann
et al. 2015; Lee et al. 2015; Lichtblau et al. 2015; Tjahjono et al. 2017), which is quite relevant
in durable goods industries, such as the automotive, electronic, and machinery industries.

The implementation of Industry 4.0 technologies requires organizations to integrate
digital technologies in their operations, business processes, customer relationships, em-
ployee engagement, and, especially, in their sales and supply channels (Siachou et al. 2020).
Industry 4.0 applications can stimulate the adoption of a data-driven decision-making
culture in firms (Chaudhuri et al. 2024). Companies that have started their implementation
process longer would be more mature in terms of technology implementation. To Mettler
and Pinto (2018), this implementation process involves continuous and ongoing adapta-
tions to a changing digital landscape. Companies that have been implementing Industry
4.0 technologies longer are more agile, flexible, decentralized, digitally oriented, and collab-
orative, and they promote more integration among areas. These companies have higher
technological capability performance, comprising assets that enable digital data generation,
processing, and use (Pinto et al. 2023). Although Industry 4.0 smart technologies can link
disruptive technologies to manufacturing systems, researchers have stated that there needs
to be more empirical work on understanding the 14.0 implementation journey and supply
chain digitalization. Given these concerns, Hypothesis 4 was formulated.
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Hypothesis 4 (H4): The effects BDA capabilities have on reaction time and organizational
resilience are greater for companies with longer Industry 4.0 journeys and more intense absorption
of Industry 4.0 smart technologies.

3. Research Methodology

This section presents the study’s methodology and describes (1) the research design
and the sample characterization, (2) the measures, and (3) the data analysis.

3.1. Research Design and Sample Characterization

In order to answer the research questions and validate our structural model, we con-
ducted a descriptive—conclusive study of a quantitative nature, carried out by means of a
survey research method. The data were collected from a group of executives working in
companies associated with SAE Brazil, an affiliate of SAE International, one of the main
sources of norms and standards for the automotive and aerospace sectors worldwide,
with 138,000 technical specialist engineers. SAE Brazil has an estimated membership of
around 6000 associates. The sample comprised 263 respondents, including CEOs, directors,
superintendents, and managers responsible for operations and processes across depart-
ments, such as procurement, logistics, the supply chain, finance, marketing, and sales. The
data were collected by administering questionnaires via email to SAE Brazil associates.
Participants provided their written consent after acknowledging the study’s objectives and
agreeing to respond truthfully to the survey. Responses were treated anonymously, confi-
dentially, and aggregated solely for research purposes. For further inquiries, participants
were encouraged to contact the study coordinator via email.

3.2. Measures

In the first section of the survey instrument, we introduced the items used to measure
the model’s latent variables—BDA capabilities, reaction time, and organizational resilience—
all of which displayed a reflective nature. All measurements were evaluated using a 5-point
Likert scale, ranging from “strongly agree” to “strongly disagree” response options.

The construct of BDA capabilities comprised 10 measurement items, and it has been
adapted from the theoretical framework developed by Wamba et al. (2016) and Gupta and
George (2016). These items encompass the dimensions of management, people, technology,
and data-driven culture. The reaction time latent construct was defined based on the study
published by Hackatorn (2002), which has been subsequently refined by zur Muehlen and
Shapiro (2010). Reaction time expresses the time lag between an event’s occurrence in the
company’s supply chain and the subsequent action to mitigate its effects. In our study, this
construct is enhanced by including measurements from the study by Valadares de Oliveira
and Handfield (2018), covering management capabilities, data governance aspects, and
data visibility and transparency in value chain process areas. As an endogenous construct
in our structural model, organizational resilience mirrors past contributions from Pettit
(2008), Pettit et al. (2013), and Ponomarov (2012). The measurement model consists of
five items to address how effectively companies handle disruptions in their supply chain.
It encompasses four key aspects: disruption response efficiency (restoration of normal
production flows), financial preparedness for disruptions, supply chain connectivity during
disruptions, and internal functioning during disruptions.

The theoretical research model is presented in Figure 2.

Finally, the last section of the questionnaire included questions designed to gather
information on the profiles of the respondents and their respective companies. It included
respondents’ roles, their tenure within the company, whether the company serves as a
direct or indirect supplier to automakers, the annual revenue, the duration of the digital
transformation journey, the presence or absence of a dedicated department for digital
transformation processes, and the degree of adoption of Industry 4.0 advanced technologies.
Regarding this last section, we adopted with minor modifications measurement items
proposed and validated in the work of Dalenogare et al. (2018). This latent variable
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includes first-order constructs: (i) vertical integration; (ii) virtualization; (iii) automation;
(iv) traceability; and (v) flexibility. In addition to these dimensions, the construct includes
an extra item to identify the companies’” use of the IloT, which is a foundational element
of Industry 4.0 primarily focused on connecting devices, machines, and systems across
industrial environments. It enhances connectivity and facilitates real-time data collection,
which is crucial for informed decision making and process optimization.

Organizational
Resilience

BDA
capabilities

Reaction Time

-
o

=

Figure 2. Theoretical research model.
The research questionnaire is presented in Appendix A.

3.3. Data Analysis

This study employed PLS-SEM to examine a hypothetical-conceptual model that
assesses the relationships among the constructs of BDA capabilities, reaction time, and or-
ganizational resilience. In addition, we assessed whether the digital transformation journey
duration and the intensity of absorption of Industry 4.0 smart manufacturing technologies
influence the effects BDA capabilities have on reaction time and organizational resilience.

To validate the structural model, we used SEMinR, a comprehensive package for
SEM in R (Hair et al. 2021). SEMinR is a versatile package that offers a variety of tools
and resources for SEM analysis, including the specification, estimation, evaluation, and
visualization of models.

Data were analyzed with descriptive statistics and multivariate data tests, accord-
ing to PLS-SEM. This method requires that the sample must be large enough to ensure
that the model is estimated accurately and that the results are reliable. It is suggested
that exploratory studies should have a sample size of at least five times the number of
parameters or measurable items in the structural model (Gorsuch 1983; Hatcher 1994; Suhr
2006). The research model proposed comprises three latent variables that, together, have
20 measurement items. Therefore, the total number of respondents who participated in this
study (263 respondents) exceeds the suggested minimum sample size of 200 cases.

Different statistical tests were carried out to evaluate the measurement models. The
unidimensionality of the constructs was verified using Cronbach’s alpha (CA) and compos-
ite reliability measures. Tests were also conducted to evaluate convergent validity, using
factor loadings and the average variance extracted (AVE) measures. Finally, we evaluate
the discriminant validity of the measurement models through an analysis of cross-loadings
and the heterotrait-monotrait ratio (HTMT).

In order to validate the structural model, we calculated the R2 for the endogenous
variables in the model and examined the values and statistical significance of path coeffi-
cients. Additionally, tests were performed to evaluate the magnitude or size of the direct
effects between constructs in the model (f test).
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Finally, we conducted a cluster analysis employing the k-means method to identify
clusters of homogeneous companies within the sample. The analysis focused on the dura-
tion of the digital transformation journey, the intensity of smart manufacturing technology
absorption, and the position of these companies within the supply chain (first-tier and
indirect suppliers).

4. Findings
4.1. Descriptive Data Analysis

As previously outlined, the data collection phase resulted in 263 valid responses. Some
initial descriptive sample data are presented below. Regarding job position and tenure
in the company, the sample was mostly composed of professionals with over five years
of professional experience in the company (239 cases), and over half of the respondents
(151 cases) occupied the position of CEO, superintendent, and logistics and supply chain
operations directors/managers. Out of the 263 respondents, over half (161 cases) worked
in first-tier supplier companies to automakers in the country.

The majority of the surveyed companies (83.6% of the total) can be characterized
as medium-sized (131 cases) and large-sized (89 cases) in terms of the number of direct
employees. Regarding revenue, most respondents worked in companies with revenue
ranging from more than USD 60 million and less than or equal to USD 100 million (40.7%).

Also, 112 companies (42.6%) began their digital transformation between 3 and 5 years
ago, 61 companies (23.2%) more than 10 years ago, 27 companies (10.3%) less than 3 years
ago, 26 companies (9.9%) between 7 and 10 years ago, 14 companies (5.3%) between 5 and
7 years ago, and 23 companies (8.7%) have not yet started. In terms of the presence of
an area/function or team responsibility for digital transformation, 155 companies (58.9%)
had a specific area dedicated to this function, while 108 companies (41.1%) did not. The
responsibility was mainly dispersed amongst CEOs, general directors, or superintendents
in 49 companies (31.6%); directors/managers of operations, logistics, and the supply chain
in 48 companies (30.9%); and assistants/supervisors of operations, logistics, and the supply
chain in 33 companies (21.3%). A summary of these sample descriptive statistics can be
found in Table 1.

Table 1. Respondents’ and companies’ profiles.

Dimension Classification Number of %
Responses
Working More than 5 years 239 90.90
experience in the
company Between 3 and 5 years 24 9.13
Director/manager of operations, logistics, and
. 91 34.6
supply chain
CEO, general director, superintendent 60 22.8
Position in the Purchasing assistant/supervisor 41 15.6
organization Operations, logistics, and supply chain 39 148
assistant/supervisor ’
Financial assistant/supervisor 13 494
Director /manager of marketing 11 4.18
Director /commercial and sales manager 8 3.04
Direct supplier of parts/modules or systems to
161 61.2
Company’s automakers
position .
Supplier of parts/modules or systems to other 102 38.8

suppliers in the automakers’ supply chain
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Table 1. Cont.
Dimension Classification Number of %
Responses
100 to 499 43 16.3
Number of 500 to 999 131 4938
employees
1000 or greater 89 33.8
More than USD 18 and less than USD 60 54 20.5
More than USD 60 and less than or equal to 107 407
Annual gross USD 100 ’
revenue (in US More than USD 100 and less than USD 140 18 6.84
million dollars)
More than USD 140 and less than USD 200 41 15.6
More than USD 200 43 16.3
Has not initiated 23 8.75
Less than 3 years 27 10.27
Digital . More than 3 and up to 5 years 112 42.6
transformation
journey More than 5 and up to 7 years 14 5.32
More than 7 and up to 10 years 26 9.89
More than 10 years 61 23.19
CEO, ger}eral director, 49 316
superintendent
Director/manager of operations,
. . 48 30.9
Area or logistics, and supply chain
department . .
responsible for Pk e 3 213
the digital PPy P
transformation Financial assistant/supervisor 13 8.3
process Commercial and sales manager 8 5.1
Purchasing assistant/supervisor 4 2.5
None 108 41.1

4.2. Measurement Model Validation

The convergent validity of the constructs was evaluated regarding their respective
measurement items. Out of the 20 items distributed across the three latent variables,
10 presented loadings above the commonly used threshold value of 0.7, with some even
higher at 0.8. As indicated by Hair et al. (2021), social science studies often present
weak indicator loadings (<0.708) for newly developed scales. Rather than automatically
removing indicators, Hair et al. (2021) state that indicators with loadings between 0.40 and
0.708 should only be removed if this increases reliability or convergent validity above the
threshold. Content validity should also be considered when deciding whether to delete an
indicator. By taking into account such observations, we decided to keep those items with
loadings slightly below the value of 0.7, as they still contribute to the overall evaluation of
the latent constructs of our model.

We also evaluate the construct’s convergent validity using AVE, which is the mean
value of the squared loadings. A minimum of 0.50 is needed for a construct to explain 50%
or more of its indicators” variance. Considering the three constructs of the model, only
the latent variable of BDA capabilities presented an AVE value (0.416), which is slightly
below the recommended threshold (0.5). Reaction time and organizational resilience latent
variables presented an AVE value of 0.518 and 0.627, respectively.

The second step in reflective measurement model assessment involves examining
the internal consistency reliability, which is the extent to which indicators measuring the
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same construct are associated with each other. Joreskog’s composite reliability rhoC and
Cronbach’s alpha are commonly used to assess internal consistency reliability in PLS-SEM.
Reliability values between 0.60 and 0.70 are acceptable, while values between 0.70 and
0.90 are satisfactory to good. Values above 0.90 may indicate redundant indicators and lead
to lower construct validity. In our study, all Cronbach’s alpha and the composite reliability
rhoA and rhoC values sat slightly above the limit of 0.80, indicating that there were no
unidimensionality problems considering the research model’s latent variables.

All mean values and standard deviations for the measurement items of the model, as
well as the results of the convergent validity tests and internal consistency reliability, are
summarized in Appendix A.

Finally, tests were conducted to evaluate the discriminant validity of the measurement
models. Discriminant validity exists when the loading of an item that composes a certain
block of variables (a construct) is higher than the loadings of that item with other constructs
in the structural model. One way to test the constructs’ discriminant validity is through
cross-loading analysis. Table 2 shows the cross-loading values of the items and constructs
in the model. These data indicate no discriminant validity issues were observed regarding
the measurement models.

Table 2. Cross-loading results.

Measurement Item BDA Capabilities Reaction Time Organ.l z.atlonal
Resilience
BDAC1 0.5592 0.2398 0.3818
BDAC2 0.6639 0.4703 0.5462
BDAC 3 0.5514 0.3774 0.3848
BDAC 4 0.5868 0.3305 0.2311
BDAC5 0.6576 0.2470 0.3620
BDAC 6 0.5422 0.2580 0.2664
BDAC?7 0.7301 0.4557 0.3726
BDAC S8 0.6986 0.5312 0.4932
BDAC9 0.5655 0.4991 0.5160
BDAC10 0.8327 0.4543 0.4722
REA 1 0.6699 0.7472 0.5488
REA 2 0.4145 0.7285 0.6298
REA 3 0.5154 0.6930 0.5912
REA 4 0.2721 0.6886 0.3926
REA5 0.4190 0.7942 0.5289
REA 6 0.3398 0.6569 0.4950
RES 1 0.5062 0.5813 0.7611
RES 2 0.6386 0.6730 0.7596
RES 3 0.4812 0.5753 0.8447
RES 4 0.3910 0.5256 0.7980

Discriminant validity was also assessed using the HTMT method. Although the Fornell
and Larcker (1981) test has traditionally been used to assess discriminant validity in SEM,
recent research (Hair et al. 2021; Henseler et al. 2015; Radomir and Moisescu 2019) has shown
that this test might be not reliable for identifying discriminant validity problems in empirical
applications, particularly when the indicator loadings on a construct are similar. Therefore,
the HTMT of correlations is recommended as an alternative method to assess discriminant
validity (Hair et al. 2021, p. 79). Discriminant validity problems are present when HTMT
values are very high. A value below 0.90 indicates that discriminant validity between two
reflective constructs has been established. A lower, more conservative threshold value is
suggested when constructs are conceptually more distinct, such as 0.85 or less.

The data presented in Table 3 indicate that no discriminant validity problems were ob-
served. However, the value found when examining the correlations between the constructs
of reaction time and organizational resilience is at the boundary range.
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Table 3. Discriminant validity—heterotrait-monotrait ratio (HTMT) criterion values.
1egs . . Organizational
BDA Capabilities Reaction Time o
Resilience
BDA capabilities
Reaction time 0.69
Organizational resilience 0.75 0.90

4.3. Structural Model Assessment

We utilized a range of multivariate statistical tests to validate the structural model. This
involved identifying the determination coefficients (R?) and path coefficients, conducting
significance tests of regressions and correlations, and calculating effect sizes (f?).

The data in Table 4 indicate that the latent variable BDA capabilities can explain
approximately 40% of the proportion of reaction time construct variance. Following some
commonly used thresholds for interpreting R? values, this result means a moderate amount
of the variance explained (Hair et al. 2021). The latent variable reaction time can explain or
predict approximately 56% of the proportion of organizational resilience variance. Consid-
ering that R? values between 0.50 and 0.75 are commonly recognized as indicating a good
fit of the model to the data, the results demonstrated that the latent variable reaction time
may explain a substantial amount of organization resilience variance.

Table 4. Coefficients of determination (R2).

Path (R?) (Adjusted R?)
BDA capabilities -> reaction time 0.406 0.404
Reaction time -> organizational resilience 0.566 0.564

We tested the research’s four hypotheses in the second step of the structural model
assessment. Firstly, we evaluated the path coefficients for the relationships presented in
research Hypotheses 1 and 2. Through the bootstrapping technique, the generation of the
standard error allowed us to calculate the t-values for the established hypotheses (paths).
For the 5% significance level, the parameter for the t-value is above 1.96.

As it can be observed from the data summarized in Table 5, the two path coefficients
can be considered high, and they are statistically significant. The results indicated that
the first hypothesis was supported, suggesting that BDA capabilities significantly affect
the reaction time (a path coefficient of 0.637). The second hypothesis was also supported
once the reaction time construct significantly affected organizational resilience (with a path
coefficient of 0.752).

Table 5. Hypothesis 1 and Hypothesis 2 test results for the proposed model.

Hypothesis Relationships CoeIf);::lilents t-Values I;ZI;;’:)};‘::ZIS
H1 BDA capabilities -> 0.637 12.959 Yes

reaction time

H2 Reaction time -> 0.752 27.436 Yes
organizational resilience

Figure 3 presents the structural model’s R? values and path coefficients.

The determination coefficients (R?) of the endogenous constructs and the model’s
path coefficient values, indicated in Figure 2, describe a strong association between the
latent variables of the structural model. Additionally, we conducted the f2 test to describe
the strength of these effects. A general guideline suggests that values of 0.02, 0.15, and
0.35 represent the exogenous latent variable’s small, medium, and large effects (Cohen
1988) when assessing f2. Effect sizes below 0.02 indicate no effect. As illustrated in
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Table 6, the impact of the exogenous latent variable BDA capabilities on reaction time and
organizational resilience can be deemed significant with large effect sizes.

A=0.747

BD analytics Organizational
Resilience

r? = 0.566

Reaction Time

capabilities = 0.406

Figure 3. Research model: path coefficients and R? values.

Table 6. Effect size ( f2 test).

Construct Name Reaction Time Organizational Resilience
BDA capabilities 0.6845 -
Reaction time - 1.3019

As it can be seen from these results, the proportion of variance explained by the
endogenous variables in our model may be taken as significant, as well as the direct pre-
dictor effects of BDA capabilities and reaction time on organizational resilience outcomes,
therefore validating Hypotheses 1 and 2 of the research.

Hypothesis 3 investigated if the effects BDA capabilities have on reaction time and
organizational resilience are greater for first-tier suppliers. To test H3, two groups were
formed with the aid of cluster analysis, which is a generic term for a wide range of
numerical methods with the common goal of uncovering or discovering groups or clusters
of observations that are homogeneous and separated from other groups. This analysis
showed that 161 companies were reported as direct suppliers in this study (cluster 1), while
102 companies were reported as indirect suppliers to automakers (cluster 2). The null
hypothesis tested was that there would be no difference in the mean values of the two
groups regarding the effects BDA capabilities have on reaction time and organizational
resilience. Table 7 shows that the differences in median values between the two groups
were considered significant regarding the constructs of reaction time and organizational
resilience. In both cases, the results of the companies in cluster 1 (first-tier suppliers) can be
considered slightly superior, thereby validating H3.

Table 7. Supplier position in the automaker supply chain (first-tier x indirect suppliers).

Constructs Cluster Size Median p-Value
BDA capabilities OEM direct supplier 160 3.60 0.475
OEM indirect supplier 103 3.90
Reaction time OEM direct supplier 160 417 <0.001
OEM indirect supplier 103 3.83
Organizational resilience OEM direct supplier 160 4.25 <0.001

OEM indirect supplier 103 3.75
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Years of digital transformation

More than 10 years -

More than 7 to 10 years 4

More than 5 to 7 years 4

More than 3 to 5 years 4

Less than 3 years

Did not initiate 4

Finally, we tested Hypothesis 4, which stated that the effects BDA capabilities have on
reaction time and organizational resilience are higher for companies with longer Industry
4.0 journeys and more intense absorption of Industry 4.0 smart technologies. To test
Hypothesis 4, we also conducted a cluster analysis. From the data of the 263 survey
respondents, two clusters were obtained using the K-means method. These two groups can
be observed in Figure 4.
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Figure 4. Two clusters using the K-means method.

Figure 4 indicates that, in many cases, an Industry 4.0 journey that is not yet very long
may or may not be accompanied by a greater intensity in the absorption of technologies
(because there are companies that reported greater intensity in the absorption of new
technologies but that are still in an early stage of Industry 4.0 adoption). However, data
indicate that companies with a longer Industry 4.0 journey are also the ones that strongly
seek to absorb the innovative Industry 4.0 smart manufacturing technologies.

Tables 8 and 9 show that cluster 1 is characterized by companies with shorter Industry
4.0 implementation and average smart manufacturing technology absorption scores ranging
between 2 and 4 points on a scale of 1 to 5. On the other hand, cluster 2 is characterized by
companies with longer Industry 4.0 implementation and higher average smart manufacturing
technology absorption scores ranging between 3 and 5 points on a scale of 1 to 5.

Table 8. Characterization of clusters by Industry 4.0 journey time.

Duration of Digital Cluster 1 (n = 161) Cluster 2 (n = 102)
Transformation Journey n % n %
Not initiated 23 14.29 0 0.00
Less than 3 years 19 11.80 8 7.84
More than 3 and up to 5 years 83 51.55 29 28.43
More than 5 and up to 7 years 8 497 6 5.88
More than 7 and up to 10 years 7 4.35 19 18.63

More than 10 years 21 13.04 40 39.22
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Table 9. Characterization of clusters by an average score of the intensity of absorption of 14.0 smart
manufacturing technologies.

Average Score of the Intensity of

Absorption of Smart Manufacturing (nC:liztf)r(z/o) (nC:liZt;r(%/o)
Technologies of 14.0 (1-5)
1to2 0% 0%
2t03 23% 0%
3to4 77% 63%
4t05 0% 37%

We used the nonparametric test of Mann-Whitney to compare these two independent
groups in terms of their medians. Specifically, the test determines whether the distributions
of the two groups are different based on their ranked scores. The test provides information
about whether there is a significant difference between the medians of the two groups
being compared, as well as the level of significance of this difference.

As shown in Table 10, the median values are different between the two respondent
groups, and these differences are statistically significant. In particular, it is noted that the
group with a longer digital transformation journey and greater intensity in the absorption
of Industry 4.0 technologies (cluster 2) presented better scores for the constructs of BDA
capabilities, reaction time, and organizational resilience. Hence, these findings confirmed
the fourth hypothesis formulated in this study.

Table 10. Median differences between respondent groups (cluster 1 and cluster 2).

Constructs Cluster Size Median p-Value

BDA capabilities 1 161 3.50 <0.001
2 102 4.25

Reaction time 1 161 3.83 <0.001
2 102 4.17

Organizational 1 161 4.00 <0.001

resilience

2 102 4.50

5. Discussion

The results of this study provide strong evidence that BDA capabilities positively
influence reaction time, which, in turn, positively influences organizational resilience. The
results showed that BDA capabilities can explain 40% of the variance in reaction time; that
is, BDA capabilities are a powerful way to reduce reaction time. The results indicate a
significant relationship between reaction time and organizational resilience, with reaction
time explaining 56% of the variance in resilience.

Hypothesis H1 has been confirmed in line with previous studies, which state that BDA
capabilities positively affect companies’ reaction time in response to disruptive and/or
unplanned events in their value chain. Thereby, we extend previous research by specifically
analyzing the influence BDA capabilities have on reaction time. Given the constant and
dynamic nature of data in today’s environment, organizations must adopt fast and efficient
analysis approaches capable of handling diverse data types and formats (Jabbar et al. 2020).

Effective decision making relies on rapid responses to changing circumstances (Chen
et al. 2021). BDA capabilities enable companies to quickly adapt to changing business
environments, resolve inconsistencies, and respond to competitive pressures (Vera-Baquero
et al. 2016). By effectively handling vast volumes of real-time data, BDA capabilities
prove invaluable in ensuring timely and efficient analysis (Vera-Baquero et al. 2016). As
such, BDA capabilities fulfill the requirements for effective decision making and empower
organizations to leverage real-time data for strategic advantage. BDA capabilities improve
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awareness and informed decision making, reliability, and information connectivity by
generating business insights based on data from several sources (Rad et al. 2022).

Our study’s findings are aligned with previous research that observed that BDA capabil-
ities can increase data throughput and reduce latency in data processing to achieve real-time
analysis and visualization (Yao and Wang 2020). By fostering BDA capabilities across the
supply chain, companies have the potential to minimize delays in insight generation, data
transformation, and inferencing. This facilitates real-time monitoring and processing, thereby
reducing the time lag between data generation and insight extraction. Moreover, BDA capa-
bilities support establishing a distributed system that fosters efficient information sharing
and prompt notifications in the face of supply chain disruptions (Dey 2022).

This study has also confirmed H2, which states that the lower the reaction time, the
higher the level of resilience of companies in facing disruptive and/or unplanned events in
their value chain. Previous studies have found that key Industry 4.0 technologies positively
impact resilience (Marcucci et al. 2022). Real-time BDA applications can mitigate damaging
impacts and enhance the capacity to recover from extreme events quickly (Yao and Wang
2020). Hence, BDA improves supply chain resilience through predictive practices and
capabilities (Bianco et al. 2023). Due to increased visibility and real-time information
sharing, the risk is reduced, and supply chains are better-prepared for recovery planning
and collaborative decision making (Dey 2022). Previous research has shown that supply
chain visibility increases the impact of Industry 4.0 technologies on supply chain resilience
(Qader et al. 2022).

When supply chain partners collaborate and connect with each other, real-time infor-
mation flow is enabled (Scholten and Schilder 2015), and reaction time is reduced. Hence,
quickly capturing and sharing information is critical for detecting problems and planning
recovery from disruptions (Dey 2022). While previous studies have focused on the direct
effects of BDA on supply chain resilience, our study extends previous research by showing
a positive relationship between reaction time and resilience.

This study has identified that the effects BDA capabilities have on reaction time and
organizational resilience are higher for first-tier suppliers, thereby supporting H3. These
results are to be taken up in consideration of the proper nature of interactions between
companies and specific forms of governance and segmentation, as inter-organizational
relationships may be characterized, in broad terms, as either (1) arm’s length, transaction-
based interactions or (2) cooperative, relational interactions (Dwyer et al. 1987; Poppo
and Zenger 2002; Rinehart et al. 2004; Vachon and Klassen 2006). While an arm’s length
approach emphasizes short-term relationships and minimizing dependence on suppliers,
a cooperative approach puts less emphasis on short-term deliverables. It seeks to foster
processes that lead to long-term operational and innovative enhancements. These more
collaborative relationships may include designing contractual and informational mecha-
nisms to align incentives, share information, increase commitment, and generate common
goals between buyers and strategic suppliers. This is especially true in the case of the
auto industry, where tier-one suppliers foster their role in designing or co-designing parts
of the vehicle or producing complete systems for the assembly firms and make specific
geographical and equipment investments in physically concentrated plants nearby the
assembly plant, seeking to reduce logistical costs as well as facilitate innovative and other
collaborative efforts.

The automotive sector may be one of the most supplier-dependent industries in
contemporary supply chains (Simpson and Power 2005). In the case of the Brazilian auto
industry, since the early 1990s, the Brazilian economy has opened up to the world, and the
automotive industry has undergone a broad transformation. As noticed in other national
economies, the traditional vertical structures of assemblers began to yield to smaller units
with fewer suppliers, establishing a tiered structure that revolutionized the supply chain.
In this new scenario, tier-one suppliers have begun to play an entirely different role.
Also, new producers entered the country, establishing new operations and/or acquiring
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Brazilian companies, leading to a shift in the value-added sequence and a reduction in
vertical integration.

The confirmation of Hypothesis H4 validates that the longer a company’s Industry 4.0
journey, the more they absorb Industry 4.0 Smart manufacturing technologies with greater
intensity. Companies that have long gone through a 14.0 journey are considered more digitally
mature, flexible, resilient, collaborative, and capable of innovating and experimenting. They
also perform slightly better when utilizing technology (Pinto et al. 2023).

5.1. Managerial Contributions

This study also presents contributions to managers of companies in the manufacturing
sector, especially in the automotive industry, which is the largest and most dominant
manufacturing sector (Zailani et al. 2015). The automotive industry is highly competitive
and innovative, and it has been at the forefront of the developments of Industry 4.0 and
smart manufacturing technologies worldwide (Eslami et al. 2023). Our study also answers
calls made by researchers to capture the perspective of automotive sectors in developing
and under-developed countries (Ghadge et al. 2022) and to examine the case of Brazil as
the country is an important market in the automobile industry (Masiero et al. 2017).

The outcomes of this study suggest that strong BDA capabilities are closely linked
to the reduction of reaction time, enabling firms to respond more quickly and effectively
to supply chain disruption events, such as supplier delays, quality issues, environmental
disasters, pandemics, and other causes of disruptions. Hence, we argue that a more
comprehensive understanding among operations managers of the components of reaction
time—as defined in our research by data latency, analytical latency, and decision latency—
will be of great assistance to enhance resilience in the face of disruptions. This is of particular
interest and relevance in a complex context like the auto-parts industry.

This interpretation might prompt a call for more research into the exact mechanisms
through which BDAs contribute to reducing latency (improving reaction time) and fostering
supply chain resilience in disruptive events and how firms can most effectively develop
and utilize these capabilities to improve their overall competitive performance.

5.2. Theoretical Contributions

This study also presents theoretical contributions. The proposed research model
extends the literature by exploring the relationship between BDA capabilities, reaction time,
and organizational resilience in a context where firms face disruptive and/or unplanned
events in their value chain. As far as we know, there has not been any previous research that
has explored these concepts in a research model similar to the one presented in this study.

The conceptualization of this study is embedded in the dynamic capabilities theoret-
ical perspective (Teece 2007; Teece et al. 1997), as we see BDA capabilities as relevant to
“integrate, build, and reconfigure internal and external competencies to address rapidly
changing environments” (Teece et al. 1997, p. 516), particularly in a very fast-changing and
dynamic environment. In such a context of disruptive technological innovations, one of the
current major roles of strategic management will be addressing the need to adapt, integrate,
and reconfigure resources, as well as organizational skills and functional competencies
to respond to the challenges of the external environment (Eisenhardt and Martin 2000;
Ponomarov 2012; Ponomarov and Holcomb 2009). Although our research objective was not
intentionally designed to investigate how firms” dynamic capabilities can be nurtured and
fostered for the benefit of the competitive advantage of companies and their supply chains,
the validation of our theoretical model contributes to a nuanced understanding of such
dynamic capabilities. The study explores the relationship between BDA capabilities and
specific latencies in reaction time—data, analytical, and decision latencies—in seeking to
describe their effects on organizational resilience in the context of a sector that is currently
facing significant challenges brought on by the Industry 4.0 revolution.

Furthermore, BDA capabilities may be considered a critical component of supply chain
orientation (SCO) (Esper et al. 2010), recognizing their strategic implications in helping
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manage supply chain flows. Such an approximation becomes even more appealing when
considering the recent developments in the operations management body of knowledge,
with the concepts of SCO supplier fit and SCO customer fit, as well as their positive impact
on firms’ operational and customer performance in return on assets and return on sales, as
demonstrated in the work of Gligor et al. (2022).

Thus, our research expands the dynamic capabilities framework by highlighting the
role of a firm’s BDA capabilities in reducing latency and improving reaction time when
companies are obliged to face disruptive events in their supply chains. The outcomes of this
research provide insights for improving and expanding the dynamic capabilities theoretical
approach, particularly when investigating the disruptive innovations of Industry 4.0.

6. Conclusions

This study highlights the significant role of big data analytics (BDA) capabilities
in reducing companies’ reaction time to disruptive or unplanned events in their value
chain and enhancing organizational resilience. The structural model was validated us-
ing SEM and cluster analysis, providing robust evidence for the proposed relationships.
The findings demonstrate that BDA capabilities are crucial strategic tools for fostering
supply chain agility and resilience, particularly in the highly competitive and fast-paced
automotive industry.

Additionally, the research shows that a company’s position within the supply chain
affects its scores on BDA capabilities, reaction time, and organizational resilience. The
study also confirms that digitally mature companies, which have been on their digital
transformation journey longer, are more agile, flexible, decentralized, and innovative,
thereby extending the literature on Industry 4.0 implementation and its impact on organi-
zational performance.

While this study presents valuable insights, it is important to acknowledge its limita-
tions, such as the focus on companies associated with SAE Brazil. Future research should
consider other industries and countries to test the robustness of the proposed model and
explore the mechanisms through which BDA capabilities contribute to resilience during dis-
ruptive events, potentially using qualitative methods. Despite these limitations, the study
offers practical and theoretical implications, particularly in the context of digital transforma-
tion and Industry 4.0, emphasizing the need for organizations to leverage BDA capabilities
to enhance their agility and resilience in an increasingly volatile business environment.
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Appendix A. Descriptive Statistics, Convergent Validity, and Reliability Tests

Construct Code Item Description Loadings AVE rhoC rhoA Cronbach’s Mean Std.
Alpha Dev.
BDAC 1 The organization uses cloud services to process and 0.559 0.416 0.875 0.853 0.843 0.2398 0.3818
analyze data.
BDAC 2 0.664 4.10 0.652
The organization has access to a large amount of
unstructured data (from sources, such as social
BDAC 3 networks, websites, videos, images, among others) that 0.551 3.48 1.073
can be quickly analyzed by its technicians and/or data
scientists.

The organization can effectively integrate internal and
BDAC 4 external data from multiple sources (especially with 0.587 3.56 0.897
suppliers and direct customers).

The organization has professionals in different areas of
BDACS5 the company with the necessary skills and experience to
analyze data, using this knowledge in the execution of

their tasks/activities.

0.658 3.77 0.717

Big Data Th . X . .
Analytics e organization prov1de5 tra}nlng n deCISlontspPport
Capabiliti BDAC 6 systems (such as data mining and use of artificial 0.542 3.49 0.855
apabilities . . i .
1nte1hgence for predictive analysis, among others).

The managers involved in data analysis in the company
have a good grasp of the information requirements of
BDAC7 different area or process managers within the 0.730 3.92 0.722
organization, as well as those of its suppliers and
customers.

The managers involved in data analysis in the company
BDAC 8 are capable of analyzing data collaboratively with both 0.699 3.87 0.727
area and process managers within the organization and : ’ ’
its suppliers and customers.

The managers involved in data analysis in the company
are capable of anticipating and being proactive in
BDAC9 considering the information needs of various area or 0.566 3.77 0.723
process managers in the company, as well as those of the
organization’s suppliers and customers.

The organization considers data to be a valuable asset
BDAC10 for the business and for managing its processes in the 0.833 4.16 0.788
supply chain.

When a disruptive or unplanned event occurs, the
REA 1 organization has fairly quickly access to data and 0.747 0.518 0.865 0.822 0.815 3.66 0.889
information about the event.

When a disruptive or unplanned event occurs, the
REA 2 organization is able to fairly quickly analyze data and 0.729 4.04 0.659
gather information about the event.

When a disruption or unplanned event occurs, the
REA 3 organization makes decisions fairly quickly once it has 0.693 4.14 0.794
access to data and analyzes data about the event.

Reaction Time In our company, the data are dynamically updated,

REA 4 allowing a real-time view of the different processes 0.689 3.94 0.702
and/or areas of the organization.

There is a governance structure in place in the company
REA 5 to monitor and identify disruption events and put into 0.794 3.97 0.717
action plans to mitigate the effects of these events.

Your value chain partners share with your company an
REA 6 aligned vision as to how to proceed and discuss actions 0.657 4.08 0.768
to be implemented in disruption situations.

In the face of a disruptive or unplanned event, the
RES 1 organization was able to respond to the disruptive

SO : 0.761 0.627 0.870 0.803 0.801 3.88 0915
situation in a way that quickly restored normal
production flows.
In the face of a disruptive or unplanned event, the
Organizational RES 2 organization was well-prepared to deal with potential 0.760 411 0.764

Resilience financial effects caused by the disruption.

In the face of a disruptive or unplanned event, the
RES 3 organization was able to maintain a satisfactory level of 0.845 379 0.739
connectivity with other agents in the supply chain
during the period of impact of the disruption.

In the face of a disruptive or unplanned event, the
RES 4 organization was able to maintain a satisfactory level of 0.798 413 0.678
functioning of its internal functions.
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