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Abstract

This paper studies the impact of loss aversion on decisions regarding the alloca-

tion of wealth between risky and risk-free assets. We use a Value-at-Risk portfolio

model with endogenous desired risk levels that are individually determined in an

extended prospect theory framework. This framework allows for the distinction be-

tween gains and losses with respect to a subjective reference point as in the original

prospect theory, but also for the influence of past performance on the current per-

ception of the risky portfolio value. We show how the portfolio evaluation frequency

impacts investor decisions and attitudes when facing financial losses and analyze the

role of past gains and losses in the current wealth allocation. The perceived portfo-

lio value exhibits distinct evolutions in two frequency segments delimitated by what

we consider to be the optimal evaluation horizon of one year. Our empirical results

suggest that previous research relying on VaR underestimates the aversion of real

individual investors to financial losses.
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1 Introduction

1.1 Background

Optimal portfolio allocation models represent important tools in helping investors to de-

cide upon how to split their wealth among assets. The goal of such models is to find what

is called the optimal allocation, i.e. the one that maximizes expected portfolio returns at

a given risk level. The most well known and broadly used portfolio optimization setting

is the mean-variance model introduced in Markowitz (1952). The employed risk measure

is the variance of portfolio returns. Recent research suggests other ways of quantifying

market risk, such as the so called Value-at-Risk (VaR), defined as the highest expected

loss from financial investments over a specified time horizon and subject to a certain

confidence level.

Acting on the VaR-concept, Campbell, Huisman, and Koedijk (2001) develop a model

for maximizing expected returns subject to both a budget and a desired-VaR constraint.

The latter requires the maximum expected loss to meet an exogenously specified VaR-limit

(the so called desired VaR, henceforth VaR*). One important result of this model is that

the so-called “two-fund separation theorem” applies, as in the classical mean-variance

framework. In other words, neither the investors’ initial wealth nor the desired VaR*

affect the maximization procedure under the VaR constraint. Thus, investors interested

in allocating wealth among risky assets can first determine the risky portfolio composition,

and then decide upon an extra amount of money to be borrowed or lent (i.e. invested

in risk-free assets). The latter takes place according to the individual degree of risk

aversion measured by the selected VaR*. In practice, the former decision is often made by

professional portfolio managers in charge of the construction of an optimal risky portfolio

for their clients. These clients, usually non-professional investors, concentrate on the

second decision step by choosing the amount of money to be invested in the risky portfolio

as a whole, and implicitly fixing the level of the risk-free investment.1 In this context, the

focus of our paper is on the decisions of non-professional investors.2

1In other words, non-professional investors consider the risky portfolio as exogenously given (fixed by
the manager). They are exclusively concerned with determining the final position in risky vs. riskless
assets (i.e. how much money to put in the risky portfolio as a whole, while the rest is allocated to risk-free
assets), according to their own level of risk aversion. We assume that, at the beginning of trading, non-
professional investors already hold well diversified portfolios such as a market index (i.e. the empirical
part of our paper considers the SP500 index as proxy for the risky portfolio). Thus, the problem they
actually face reduces to the allocation of wealth between this risky portfolio (as a whole) and the risk-free
investment alternative.

2The same idea is in keeping with the claim in Markowitz (1952) that the portfolio selection process
develops in two steps. The first one consists of forming beliefs with respect to the future performance
of the potential portfolio components. In the second step, these beliefs underlie the choice of portfolio.
As most academic research has addressed the latter step, we attempt to complete the picture offered in
Markowitz (1952) and try to answer how (non-professional) investors form beliefs about their acceptable
level of risk.
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This separation of the risky and risk-free investments complies with the concept of

“mental accounting”, as first introduced in Thaler (1980). According to Thaler (1992),

people manifest the tendency to frame (i.e. code and evaluate) outcomes in several non-

fungible mental categories or accounts (such as accounts for current income, current wealth

or future income) with different consumption propensities. This mental categorization is

decisive for the perceived utility of those outcomes.

Our paper comes in line with further findings regarding the influence of behavioral

aspects on financial decisions. The prospect theory (abbr. PT) developed in Kahneman

and Tversky (1979) and Tversky and Kahneman (1992) stresses that investors perceive

gains and losses differently with respect to a subjective reference and warily avoid losses

(which is denoted as “loss aversion”). Barberis, Huang, and Santos (2001) apply the

main concepts of the PT to asset pricing, showing that investors derive utility not only

from consumption but also from variations in the perceived value of financial investments.

Moreover, they enrich the PT-formulation claiming that perception of losses appears to

be affected by previous portfolio performance, i.e. by gains and losses accumulated from

past trades and referred to as “cushions”. The idea that past gains and losses may

change the current risk aversion, hence financial decisions, is supported by an empirically

observed phenomenon denoted as the “house money effect” and documented in Thaler and

Johnson (1990). Accordingly, subjects who made money in past gambles appear to behave

less risk aversely in subsequent bets. In other words, past gains make future losses less

painful, while prior losses may increase the risk aversion. A neurobiological explanation of

this human reaction is provided by the “somatic marker hypothesis” in Damasio (1994).

Accordingly, preexisting somatic (i.e. bodily) states can influence new ones by inducing

modifications in the level of activation (threshold) of the new state. As suggested in

Bechara and Damasio (2005), prior somatic states (in our case generated by past series of

gains or losses) can reinforce (impede) the perception of new ones (here, currently expected

gains and losses) by congruous (incongruous) valence (i.e. positivity/negativity). Also,

even when prior performance induces only weak somatic states (known as background

states), it appears to exert an impact on risk aversion. For instance, negative background

states diminish the risk aversion in face of sure losses (because the fear of experience one

more loss after a series of past losses is higher and makes investors more risk loving in the

hope of recovering those losses), while positive background states enhance risk aversion

in face of sure gains (i.e. once several gains are experienced, investor predisposition to

gambling diminishes).

Benartzi and Thaler (1995) develop a plausible explanation for the equity premium

puzzle that relies on the interaction between loss aversion and frequent portfolio evalu-

ations, denoted as “myopic loss aversion” (abbr. mLA). Their findings support the idea
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that, when investors review the performance of their portfolios yearly, the resulting empir-

ical equity premium is consistent with the loss aversion values estimated in the standard

PT framework. The occurrence of mLA has received support from numerous direct ex-

perimental tests, such as Thaler, Tversky, Kahneman, and Schwartz (1997a), Gneezy and

Potters (1997), Gneezy, Kapteyn, and Potters (2003), or Haigh and List (2005). According

to Barberis and Huang (2004a), myopia refers strictly to annual evaluations of gains and

losses, hence the term of narrow framing is better suited to describing the underlying phe-

nomenon. In a financial context, narrow framing illustrates the isolate evaluation of stock

market risk (i.e. unrelated to overall wealth risk). As underlined in Barberis and Huang

(2004b), this isolated evaluation entails an underestimation of the stock desirability, even

though, viewed in a wide utility-risk frame, they represent a good diversification modality.

Also, narrow framing can be interpreted as a consequence of regret at not having taken

another decision (non-consumption utility explanation).3 Another explanation relies on

the (higher) accessibility of (financial) information that justifies its over-important role

in final decisions. As referred to in Kahneman (2003), the easily accessible information

is very appealing for the intuitive (i.e. spontaneous, effortless) way in which people use

to make decisions. Our work draws upon the latter motivation, namely accessibility. We

consider it as better suited to financial decisions because nowadays investors are exposed

to a tremendously high quantity of financial information and need to make decisions in a

fast changing financial environment. Consequently, they tend to perform more frequent

checks on their investments.

1.2 Overview

Our model builds on the portfolio optimization setting with exogenous desired VaR* pre-

sented in Campbell, Huisman, and Koedijk (2001). We extend it by explicitly accounting

for the formation of the individual VaR*-levels. These levels rely on the subjective per-

ception of (non-professional) investors of the risky portfolio performance and of utility

in general, that we formulate in line with PT. In other words, we analyze how non-

professional investors set their subjective VaR* and how this (now endogenous) VaR*

impacts on the wealth allocation between risk-free assets and the risky portfolio.4

3Clearly, this can be also related to the theory of cognitive dissonance introduced in Festinger (1957).
Cognitive dissonance arises from the incompatibility of two cognitions that creates inner tension. It can
exert a strong influence on decision making, being the source of several basic decision heuristics, such as
representativeness, availability, and hindsight bias, as noted in Plous (1993). Specifically, the regret at
not having chosen another alternative creates post-decisional dissonance.

4We consider the mean-VaR optimization framework better suited to combination with the prospect
theory than the classic mean-variance approach. The reason is that the variance represents a symmetric
measure of risk and hence equally accounts for (high) gains and losses, while VaR refers only to the left
tail of the return distribution that corresponds to losses, as underlined in Krokhmal, Palmquist, and
Uryasev (2001). Thus, the distinct subjective perception of gains and losses captured by the prospect
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The first and most important decision of non-professional investors that we analyze

refers to the formulation of VaR*. The value of VaR* determines the optimal portfo-

lio composition and the sum of money to be invested in risk-free assets. As mentioned

above, finding the optimal risky portfolio usually represents the task of professional port-

folio managers and was extensively studied in previous research on portfolio optimization.

However, the resulting values of the total risky vs. the risk-free investment as percent-

ages of total wealth, directly concern non-professional investors. Thus, they become an

object of study in the present work. In our setting, the desired Value-a-Risk (VaR*) is

endogenously defined as the maximum expected loss perceived by individual investors and

depends on past performance, loss aversion, current value of the risky investment and the

expected return premium. We first compute the VaR* and then derive the desired level

of investment in the risky portfolio relative to the risk-free allocation. This allows us to

draw a conclusion about the investor risk aversion and to provide a comparison with the

exogenous-VaR* setting in Campbell, Huisman, and Koedijk (2001).

The endogenous VaR* relies on the subjective perception of the value generated by one

unit of risky project. In Kahneman and Tversky’s (1979, 1992) PT, this value is captured

by the so-called value function. Yet, following Barberis, Huang, and Santos (2001), we

reconsider the original PT-definition of the value function in order to account for the the

idea that individual risk perception is affected by the previous evolution of financial wealth.

Specifically, past performances of the risky investment result in monetary cushions and the

value function is assumed to be linear in both the gain and the loss domain, but steeper in

the latter. Thus, facing past gains (losses) induces a more (less) aggressive behavior, hence

an increase (decrease) in risky portfolio holdings. We present evidence for how different

investment decisions of individual investors can be interpreted as a consequence of different

financial performance histories, how these decisions change subject to the individual degree

of loss aversion, and how our results conform with previously documented findings.

In our model, investors find the optimal solution to their decision problem by maxi-

mizing subjectively perceived utility. This utility is assumed to be derived merely from

changes in financial wealth.5 In line with the PT, the perceived value of risky investments

is denoted as the prospective value. We design two ways of assessing the prospective

value (which reduces in our setting to the expected value of the risky investment). One

definition relies on PT, and another one answers what we call a “worst case scenario”,

where investors are assumed to be concerned with the maximum sustainable (and not

theory may be even more important when VaR is used as measure of risk.
5In other words, investors are interested only in the (perceived) value of their financial investments

(and not in other determinants of utility, such as consumption). This could be due to the fact that
investors narrowly frame, i.e. put excessive emphasis on the importance of financial investments and the
utility they generate. According to Barberis, Huang, and Thaler (2003), this is a common situation in
practice.
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with the expected) loss in the risky investment. Moreover, we study how investor deci-

sions change according to different market conditions, as captured by the PT-part of the

utility function, and how different ways of representing loss aversion can influence util-

ity. For instance, we expect that risk-averse investors reduce their risky holdings, shifting

their positions to more secure investment alternatives. In addition, we consider two fur-

ther measures that are in our view better suited to measuring the real investor attitude

towards financial losses than the simple coefficient of loss aversion. Namely, we calculate

the loss aversion index according to Köbberling and Wakker (2005) and introduce its

counterpart in terms of the prospective value denoting it as global first-order risk aver-

sion. In addition to the loss aversion coefficient, the first measure captures the influence of

past losses and gains, while the second encompasses the expectations about future market

conditions, which are aspects of practical importance for the non-professional financial

decisions.

Acting on the mLA in Benartzi and Thaler (1995), we further study how investment

decisions change under different portfolio evaluation horizons (such as one day, one month,

two months up to one year, then two up to eight years). In other words, we investigate

how the evaluation frequency exerts influence on the risk perception and wealth allocation.

In this context, we estimate the evolution of the prospective value as well as of our two

further measures of the investor attitude towards financial losses (i.e. the loss aversion

index and the global first-order risk aversion), as functions of the evaluation frequency.

Moreover, we address the problem of optimal evaluation horizons. Finally, we derive

equivalent significance levels for VaR* at each trading time and compare them to the

corresponding significance levels used in the original model of Campbell, Huisman, and

Koedijk (2001).

The theoretical findings from the first part of our paper are implemented and amended

in the subsequent empirical part. We rely on real market data between 1982-2006, such

as the SP500 index as proxy for the risky portfolio and the US 10-year bond accounting

for the risk-free investment alternative. Also, we analyze various specifications for the

distribution of expected returns, cushions, and model parameters (such as the coefficient

of loss aversion and the sensitivity to past losses). Our empirical findings lead to several

interesting conclusions. First, the risky holdings of non-professional investors substan-

tially vary subject to the portfolio evaluation frequency and to the horizon over which

cushions accumulate. Thus, investors performing annual portfolio evaluations invest on

average between 26 − 50% of their wealth in risky assets, depending on the type of cush-

ion (myopic or cumulative) and on the expected return distribution. These percentages

decrease to values under 2% for the evaluation horizon of one day. Second, the cushions

generated by past portfolio performance appear to drive the current perception of the
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risky prospect. Thus, when investors are unable to accumulate positive significant cush-

ions, most of their wealth is directed to the risk-free investment. In other words, even

when the coefficient of loss aversion remains constant over trading dates, financial wealth

fluctuations determined by the success of previous decisions play a key role in the current

portfolio allocation. Third, the creation of positive and significant cushions is inversely

related to the portfolio evaluation frequency. As this frequency increases, the ability to

accumulate profits decreases and a lower wealth portion will be invested in risky assets.

Fourth, our results support the idea that one year appears to be the most plausible evalu-

ation frequency used by non-professional loss-averse investors in practice, as suggested in

Benartzi and Thaler (1995). Further estimations show that the evolution of the perceived

portfolio utility (i.e. of the prospective value) for different evaluation frequencies can be

decomposed into two distinct intervals, namely one for high evaluation frequencies (below

one year), and a second one for low frequencies (above one year). The prospective value on

the first interval can be analytically represented as a third-order polynomial. It increases

subject to higher evaluation horizons, specifically at enhanced speed for horizons at the ex-

treme quarters of the left one year interval. On the second segment, the prospective value

appears to be upward-sloping and of the fourth degree. A similar segmentation can be

observed for both measures of the actual investor attitude towards financial losses, namely

the loss aversion index and the global first-order risk aversion. Their evolutions can be

described equally well by third-degree polynomials for evaluation frequencies higher than

one year, while for lower frequencies the global first-order risk aversion is approximatively

linear. We argue that these two further measures of the loss attitude provide additional

information on the investor sensitivity to financial losses subject to different performance

histories, which can be of help in isolating practically relevant parameter values. Fifth, the

VaR*-levels assessed within our setting on the basis of real market data point out that, in

practice, the risk aversion of real non-professional investors may be higher than the values

obtained for confidence levels commonly considered in previous theoretical papers, such as

90%, 95% and 99%. Finally, the average equivalent coefficients of loss aversion computed

for fixed confidence levels of 99% and 90% lie far below the widely documented and em-

pirically supported value of 2.25. Again, this implies that previous research considering

these confidence levels underestimates the aversion to losses manifest in practice. The

average coefficient of loss aversion lies around one, which implies that under exogenous

VaR* constraints investors treat gains and losses in the same way.

The remainder of the paper is organized as follows. Section 2 presents the main the-

oretical considerations. We start with a brief review of the optimal portfolio selection

model with exogenous VaR* as in Campbell, Huisman, and Koedijk (2001), on which we

build our own theoretical structure. Section 2.2 takes on the reformulation of the value
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functions in Barberis, Huang, and Santos (2001), out of which we derive the the loss aver-

sion index. In Section 2.3 we introduce the notions of VaR* and propose different ways

of quantifying the endogenous VaR*. The subsequent Section 2.4 frames distinct ways of

assessing the value of the risky portfolio as perceived by individual investors and adopts

the notion of global first-order risk aversion. Section 2.5 treats the influence of variable

portfolio evaluation frequencies on the prospective value and on our additional measures

of the investor attitude towards financial losses. Section 3 illustrates the empirical imple-

mentation of our theoretical model. In particular, Section 3.1 discusses the impact of the

evaluation frequency and of the cushion on the evolution of wealth percentages invested

in the risky portfolio. In Section 3.2, we analyze the evolution of the prospective utility

in time and in the evaluation frequency domain, an investigation that is replicated in Sec-

tion 3.3 for the index of loss aversion and the global first-order risk aversion, subject to

different revision frequencies. Finally, Section 3.4 restates our model in terms of previous

research with exogenous VaR*, where equivalent significance levels of portfolio risk and of

the loss aversion coefficient, that result from the average VaR* computed from our data

and according to our model equations, are inferred. Section 4 summarizes the results and

concludes. Graphics and further results are included in the Appendix.

2 Theoretical model

This section contains the main theoretical considerations of our work. We start by pre-

senting the model of portfolio selection with VaR as the risk measure and an exogenous

desired risk aversion (VaR*) of Campbell, Huisman, and Koedijk (2001). This model has

motivated us to extend the analysis for the case with endogenous VaR*. Subsequently,

we formulate our own setting by referring to the individual perception of risky projects

and detailing the construction of the endogenous measure of risk aversion VaR* and its

implications for individual investor decisions. More precisely, we show how the investor-

desired VaR* can be formulated and how it flows into the prospective value of the risky

investment that investors aim at maximizing. We also enrich the definition of the real

investor attitude towards losses by first calculating the loss aversion index and next the so-

called global first-order risk aversion. Moreover, we analyze how the prospective value and

these two additional risk attitude measures vary subject to different portfolio evaluation

frequencies.

2.1 Optimal portfolio selection with exogenous VaR*

Let us first refresh the portfolio selection model with exogenous VaR* introduced in

Campbell, Huisman, and Koedijk (2001). Accordingly, financial assets are allocated by
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maximizing the expected return subject to the common budget constraint, as well as

to an additional risk constraint, where risk is measured by the so-called Value-at-Risk

(VaR). The optimal portfolio is derived such that the maximum expected loss does not

exceed the VaR*-level indicated by non-professional investors. This VaR* represents the

maximum acceptable loss for a chosen investment horizon and at a given confidence level.

Additionally, investors can borrow or lend money at the fixed market interest rate.

We denote by Wt the investor wealth at time t, by Bt the amount of money to borrow

(Bt > 0) or to lend (Bt < 0) at the fixed risk-free gross return rate Rf , and by VaR* the

individually desired VaR (specified later in this section). Let the risky portfolio consist

of i = 1, . . . n financial assets with single time t prices pi,t and define the set of portfolio

weights at time t as [wt ∈ Rn :
∑n

i=1 wi,t = 1]. Moreover, xi,t = wi,t(Wt+Bt)/pi,t represents

the number of shares of the asset i contained in the portfolio at time t. Obviously, the

portfolio gross return at next trade (Rt+1) depends on the portfolio composition at the

current date wt. With the budget constraint:

Wt + Bt =
n

∑

i=1

xi,tpi,t = x′

tpt, (2.1)

the value of the portfolio at t + 1 results in:

Wt+1(wt) = (Wt + Bt)Rt+1(wt) − BtRf . (2.2)

As the investor desired-VaR (VaR*) is defined as the maximum expected loss over a

given investment horizon and for a given confidence level 1-α6, we can write:

Pt[Wt+1(wt) ≤ Wt − VaR∗] ≤ 1 − α, (2.3)

where Pt is the conditional probability on the available information at time t. Equation

(2.3) represents the risk constraint that (professional) investors have to take into account

in addition to the budget constraint (2.1) when searching for optimal portfolio weights.

The portfolio optimization problem can be now expressed in terms of the maximization

of expected portfolio returns Et[Wt+1(wt)], subject to both the budget restriction and the

VaR*-constraint:

w∗

t ≡ arg max
wt

{(Wt + Bt)Et[Rt+1(wt)] − BtRf}, s.t. (2.1) and (2.3). (2.4)

Here, Et[Rt+1(wt)] represents the expected return of the portfolio given the information

at time t.

6Note that VaR* is considered as the loss in absolute value, being hence positive.
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The optimization problem can be rewritten in an unconstrained way, by replacing (2.1)

in (2.2) and taking expectations:

Et[Wt+1(wt)] = x′

tpt(Et[Rt+1(wt)] − Rf ) + WtRf . (2.5)

Equation (2.5) points out that risk-averse investors are going to put a fraction of their

wealth in risky assets if the expected risky portfolio return is higher than the risk-free

rate Et[Rt+1(wt)] ≥ Rf .

Substituting (2.5) (before taking expectation) in (2.3) gives:

P [x′

tpt(Rt+1(wt) − Rf ) + WtRf ≤ Wt − VaR∗] ≤ 1 − α,

so that

P

[

Rt+1(wt) ≤ Rf −
VaR∗ + Wt(Rf − 1)

x′

tpt

]

≤ 1 − α (2.6)

defines the quantile qt(wt, α) of the distribution of portfolio returns for a given confidence

level 1 − α (or probability of occurrence α).

Thus, the budget constraint can be restated as:

x′

tpt =
VaR∗ + Wt(Rf − 1)

Rf − qt(wt, α)
. (2.7)

Finally, substituting (2.7) in (2.5) and dividing by the initial wealth Wt, we obtain a

new expression to be maximized:

Et[Wt+1(wt)]

Wt

=
VaR∗ + Wt(Rf − 1)

WtRf − Wtqt(wt, α)
(Et[Rt+1(wt)] − Rf ) + Rf . (2.8)

Given that at moment t of maximization, Wt is known and Rf is fixed, the optimal

portfolio composition can be derived as:

w∗

t ≡ arg max
wt

Et[Rt+1(wt)] − Rf

WtRf − Wtqt(wt, α)
. (2.9)

Equation (2.9) shows that, similarly to the traditional mean-variance framework, the

two-fund separation theorem applies, i.e. neither the (non-professional) investor’s initial

wealth nor the desired VaR* affect the maximization procedure. In other words, investors

can first allocate wealth inside the risky portfolio (i.e. among different risky assets) and

second fix the extra amount money to be borrowed or lent (i.e. invested in risk-free assets).

The latter reflects by how much the portfolio VaR varies according to the investor degree

of risk aversion, which is measured by the selected (desired) VaR* level. Replacing (2.1)
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in (2.7), we further derive:7

Bt =
VaR∗ + VaRt

Rf − qt(w∗

t , α)
(2.10a)

VaRt = Wt[qt(w
∗

t , α) − 1]. (2.10b)

Thus, the desired VaR* is imposed by the client prior to the portfolio formation

and enters the portfolio optimization problem in form of a constraint. By contrast, the

portfolio VaR is an output of this optimization and measures the actual maximum loss

that can be incurred at time t at the confidence level 1 − α for the obtained optimal

portfolio w∗.

2.2 The value function

Coming from the main ideas of the Campbell, Huisman, and Koedijk (2001) setting, our

model goes a step further by asking how individual investors set their desired level of

risk aversion VaR*. We elaborate on the construction of an endogenous VaR* and its

implications for the wealth allocation between risky and the risk-free assets.

Investor desires depend on their perception of the value of financial investments. PT

suggests how individual perceptions of financial performance can be formalized by means

of the so-called value function. According to Kahneman and Tversky (1979) and Tversky

and Kahneman (1992), human minds take for actual carriers of value not the absolute

outcomes of a project, but their changes defined as departures from an individual reference

point. The deviations above (below) this reference are labelled as gains (losses). Thus,

the value function is kinked at the reference point and exhibits distinct evolution in the

domains of gains and losses, i.e. it is steeper for losses (a property known as loss aversion).

Also, it shows diminishing sensitivity in both domains (namely, it is concave for gains but

convex for losses).

As noted in Barberis, Huang, and Santos (2001), the view of the original PT over

individual perceptions of risky investments can be enriched by accounting for the potential

impact of past performance (i.e. in addition to the mental distinction between gains and

losses). Accordingly, the value function additionally reflects the influence of a so-called

cushion, defined as the difference between the current value of the risky investment St and

a benchmark level from the past Zt (e.g. the purchasing price of the stock). When this

difference is positive, investors made money from past risky investment, otherwise they

accumulated losses.

7The expression qt(w
∗
t , α)− 1 in Equation (2.10b) should be viewed as the quantile of the net returns

Rt−1 and corresponds to the quantile qt(w
∗
t , α) of the gross returns Rt. Equation (2.10a) can be restated

in terms of net returns as: Bt = (VaR∗ + VaR)/[(Rf − 1) − (qt(w
∗
t , α) − 1)].
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Our approach relies on the formulation of the value function proposed in Barberis,

Huang, and Santos (2001). In their Equations (15) and (16), the reference point changes

with the past performance (from ztRft for zt ≤ 1 to Rft for zt > 1, where zt = Zt/St). We

restate these definitions, in order to obtain identical reference points and similar courses

in the loss domain for both considered cases with positive and negative cushions, as in

the original PT formulation, where gains are defined as the difference between the value

function argument (here Rt+1) and the reference point. Thus, we fix the reference value

in both cases (with prior gains zt ≤ 1 and prior losses zt > 1) to Rft and rearrange the

terms in Equations (15) and (16) in Barberis, Huang, and Santos (2001), obtaining:

vt+1 =







St(Rt+1 − Rft) , for Rt+1 ≥ Rft

λSt(Rt+1 − Rft) + (λ − 1)(St − Zt)Rft , for Rt+1 < Rft

, for zt ≤ 1(⇔ Zt ≤ St),

(2.11)

and

vt+1 =







St(Rt+1 − Rft) , for Rt+1 ≥ Rft

λSt(Rt+1 − Rft) + k(Zt − St)(Rt+1 − Rft) , for Rt+1 < Rft

, for zt > 1(⇔ Zt > St).

(2.12)

Here, λ is denoted as the coefficient of loss aversion and the parameter k > 0 captures

the influence of previous losses on the perception of current ones (i.e. the larger the

previous loss is, the more painful the next losses become). We observe that, while the gain

branches of both value functions are invariable to past performance zt, the loss branches

contain a first term that resembles the original PT, i.e. λSt(Rt+1−Rft), but also a second

one revealing the impact of the cushion St − Zt. Moreover, the time t + 1-value of the

risky investment is derived as:

St+1 = (Wt + Bt)Rt+1. (2.13)

Of note is also the fact that the joint impact of the loss aversion coefficient λ and of

past losses k changes the actual investor aversion to losses. This can be easily deduced

by merging Equations (2.11) and (2.12) to:

vt+1 =







Stxt+1 , for xt+1 ≥ 0

[λSt − (1 − πt)k(St − Zt)]xt+1 + πt(λ − 1)Rft(St − Zt) , for xt+1 < 0,

where πt = Pt(zt ≤ 1) is the probability of experiencing past gains and xt+1 = Rt+1 −Rft

the equity return premium. Obviously, the loss branch of the above Equation (2.2) is more

complex than the simple multiple of the gain branch with the loss aversion coefficient,
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as suggested by the PT. In order to capture this complexity, we follow the definition in

Köbberling and Wakker (2005) (p. 121) and derive the index of loss aversion (abbr. LAi)

as the ratio of the left and right derivatives of the value function at the reference point.

In our case:

∂vt+1

∂xt+1

=







St , for xt+1 ≥ 0

λSt − (1 − πt)k(St − Zt) , for xt+1 < 0,

hence we can express the LAi as:

λ̃t =
λSt − (1 − πt)k(St − Zt)

St

= λ − (1 − πt)k(1 − zt). (2.14)

Clearly, LAi contains more information than the simple loss aversion coefficient λ

introduced in the PT: The series of past gains (losses), i.e. zt ≤ 1 (zt > 1), lower

(increase) the actual investor aversion to losses, because they are more (less) confident in

being able to cover prospective losses by past gains. Also, an increased sensitivity to past

losses, i.e. a higher k, in the case with negative past performance zt > 1 yields higher

LAi-values. LAi is to be interpreted analogously to the simple coefficient of loss aversion,

so that higher values point to an enhanced aversion towards financial losses. Henceforth,

in line with the original PT formulation, we mostly refer with “loss aversion” to the loss

aversion coefficient λ and with “actual investor attitude towards financial losses” to the

LAi (and the gRA from Section 2.4).

2.3 The endogenous VaR*

Our first goal is to formulate the maximum loss a-priori expected by individual investors,

i.e. the individual desired VaR*. This value will subsequently enter the optimization

problem and serve non-professional investors to decide between borrowing or lending.

To this end, we start from the literal definition of VaR* as viewed by non-experts, con-

centrating on the notions of “maximum”, “loss”, and “individual”. First, VaR* quantifies

losses. However, according to the PT, what actually counts for individual investors is not

the absolute magnitude of a loss, but rather the subjectively perceived one, as captured

by the value function. Hence, VaR* should rely on the subjective value (or utility) of

losses expressed in the loss branches of the value functions (2.11) and (2.12). It depends

on individual investor characteristics (originating in the subjective view over gains and

losses) and can vary over time. Second, VaR* should represent a (subjective) expecta-

tion because the next period returns Rt+1, on which the evaluation of risky investments

relies, are still unknown at the decision time t. Third, we are looking for a maximal value

such that in calculating VaR* investors must ascribe a maximal occurrence probability

Pt(Et[Rt+1] < Rft) = 1 to the losses in the value function.
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Therefore, we propose that VaR* accounts for the maximum expectation of sustainable

losses as resulting from individual valuations of the risky investment. However, we consider

investors to be sophisticated enough in order to consider that not only the mean, but also

the variation of prospective losses should be considered in order to accurately ascertain

the maximum acceptable loss level. Thus, in a second approximation, we extend the

VaR*-definition by adjusting for the loss variance.

Henceforth, we consider that value functions are weighted by the pure probabilities of

occurrence (and not by non-linear probability functions as stated in the cumulative PT

of Tversky and Kahneman (1992)). According to Equations (2.11) and (2.12), we then

derive:

Et[loss-utilityt+1] = πt[λSt(Et[Rt+1] − Rft) + (λ − 1)(St − Zt)Rft]

+ (1 − πt)[λSt(Et[Rt+1] − Rft) + k(Zt − St)(Et[Rt+1] − Rft)]

= λSt(Et[Rt+1] − Rft) + [πt(λ − 1)Rft − (1 − πt)k(Et[Rt+1] − Rft)](St − Zt)

(2.15a)

V art[loss-utilityt+1] = Et[loss-utility2
t+1] − E2

t [loss-utilityt+1]

= πt[λSt(Et[Rt+1] − Rft) + (λ − 1)(St − Zt)Rft]
2

+ (1 − πt)[λSt(Et[Rt+1] − Rft) + k(Zt − St)(Et[Rt+1] − Rft)]
2

− E2
t [loss-utilityt+1]

= [λSt(Et[Rt+1] − Rft)]
2

+ [πt(λ − 1)2R2
ft − (1 − πt)k

2(Et[Rt+1] − Rft)
2](St − Zt)

2

+ 2[πt(λ − 1)Rft − (1 − πt)k(Et[Rt+1] − Rft)]λSt(Et[Rt+1] − Rft)(St − Zt)

− [λSt(Et[Rt+1] − Rft)]
2

− [πt(λ − 1)Rft − (1 − πt)k(Et[Rt+1] − Rft)]
2(St − Zt)

2

− 2[πt(λ − 1)Rft − (1 − πt)k(Et[Rt+1] − Rft)]λSt(Et[Rt+1] − Rft)(St − Zt)

= πt(1 − πt)[(λ − 1)Rft + k(Et[Rt+1] − Rft)]
2(St − Zt)

2. (2.15b)

Note that while the first term of the expected losses (2.15a) is similar to the loss-

formulation in the PT, the remaining terms point out the influence of the cushion accu-

mulated over past trades. In contrast, the variance of losses (2.15b) is exclusively dictated

by the cushion-part, as individually perceived by investors, and depends on the probabil-

ity of having made gains or losses in the past, on the variance of expected returns with

respect to the reference risk-free rate, and on the squared cushion.

As mentioned above, in a first approximation we stick to the literal definition of VaR*
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as an expectation and design VaR* as the maximum expected loss:

VaR∗1
t+1 = Et[loss-utilityt+1]

= λSt(Et[Rt+1] − Rft) + [πt(λ − 1)Rft − (1 − πt)k(Et[Rt+1] − Rft)](St − Zt).

(2.16)

However, investors may consider loss-variance as an equally important parameter for

determining the maximal sustainable loss. Then, assuming that VaR* follows a cer-

tain distribution (i.e. normal or Student-t)8 with the value ϕ, we introduce the second

(variance-adjusted) VaR* definition:9

VaR∗

t+1 = Et[loss-utilityt+1] − ϕ
√

V art[loss-utilityt+1], (2.17)

which, according to Equations (2.15a) and (2.15b), results in:

VaR∗

t+1 = λSt(Et[Rt+1] − Rft)

+ [(πt − ϕ
√

πt(1 − πt))(λ − 1)Rft − (1 − πt + ϕ
√

πt(1 − πt))k(Et[Rt+1] − Rft)](St − Zt).

(2.18)

Again, expression (2.18) encompasses the twofold loss effect stemming from the loss

aversion coefficient of the original PT and from the cushion of the extended PT introduced

in Barberis, Huang, and Santos (2001).

It is worth noting that, for sure gains (i.e. when πt = Pt(zt ≤ 1) = 1), both VaR*

expressions (2.16) and (2.18) reach a common upper bound:

VaR∗1,up
t+1 = VaR∗up

t = λSt(Et[Rt+1] − Rft) + (λ − 1)Rft(St − Zt), (2.19)

while for sure losses (i.e. when πt = Pt(zt ≤ 1) = 0), the lowest value of:

VaR∗1,lo
t+1 = VaR∗lo

t = λSt(Et[Rt+1] − Rft) − k(Et[Rt+1] − Rft)(St − Zt) (2.20)

is attained.

The definition of VaR* serves to determine the optimal level of borrowing or lending

(Bt) from Equation (2.10a). When VaR* lies “to the left” of the portfolio VaR (i.e. it is

lower in absolute value than VaR), Bt is negative, hence investors become more risk averse

8Although VaR is a very popular measure of risk, it has been criticized because it does not satisfy
one of the four properties for coherent risk measure, namely subadditivity (see Artzner, Delbaen, Eber,
and Heath (1999), Rockafellar and Uryasev (2000) and Szegö (2002)). However, according to Embrechts,
McNeil, and Straumann (1999), VaR becomes subadditive and can be considered as a coherent risk
measure, if used in the case of elliptic joint distributions, such as normal and Student-t with finite
variance.

9Equation (2.17) results from the assumption that:
(VaR∗

t+1 − Et[loss-utilityt+1])/(
√

V art[loss-utilityt+1]) = ϕ ∼ N(0, 1) or t(5).
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and save money. By contrast, for a VaR* higher than VaR in absolute value, investors

augment their risky investment by borrowing extra money. Thus, an empirical analysis

of the evolution of Bt (as conducted in Section 3) can shed some light on the investor risk

behavior.

Also, one interesting topic to investigate lies in estimating the equivalent loss aver-

sion parameter λ∗̄

t that can be obtained for a VaR∗

t+1 = VaR∗ fixed for commonly used

significance levels such as 1%, 5% or 10%. The result is immediate from Definition (2.18):

λ∗̄

t+1 =
VaR∗ + [(πt − v

√

πt(1 − πt))Rft + (1 − πt + v
√

πt(1 − πt))k(Et[Rt+1] − Rft)](St − Zt)

St(Et[Rt+1] − Rft) + (πt − v
√

πt(1 − πt))Rft(St − Zt)
.

(2.21)

Moreover, since λ∗̄

t+1 depends on the fixed (i.e. exogenous) VaR∗, there should exist

no further causal relationship between past and future losses, such that we can set k = 0.

Accordingly, Equation (2.21) becomes:

λ∗̄

t+1 =
VaR∗ + [(πt − v

√

πt(1 − πt))Rft](St − Zt)

St(Et[Rt+1] − Rft) + (πt − v
√

πt(1 − πt))Rft(St − Zt)
. (2.22)

2.4 The prospective value of the risky investment

The estimation of the maximum acceptable individual loss level represents only the first

step in our analysis. As shown in Section 2.1, one of its consequences with direct impact

on non-professional investors resides in the determination of the optimal borrowing level.

This results as a byproduct of the optimization inside the risky portfolio undertaken by

the professional manager. For the non-professional client it amounts to the optimal choice

in terms of wealth percentages allocated between risky and riskless assets.

When investors decide on the optimal sum of money to be put in the risky portfolio

(or equivalently in risk-free assets), they might not exclusively think in terms of VaR*,

but sooner aim at maximizing the utility generated by their financial investments. This

utility is encompassed in the PT by the so called prospective value of the risky investment

Vt+1.
10 Denoting the expected equity return premium by Et[xt+1] = Et[Rt+1] − Rft and

the probability of a positive premium by ωt = Pt(Et[Rt+1] ≥ Rft) = Pt(Et[xt+1] ≥ 0), the

prospective value of the risky investment can be formulated as:

Vt+1 = [ωt+(1−ωt)λ]StEt[xt+1]+(1−ωt){πt(λ−1)Rft−(1−πt)kEt[xt+1]}(St−Zt). (2.23)

Furthermore, we resolve to analyze the evolution of the prospective value for different

portfolio evaluation frequencies, on the grounds that revising portfolio performance at

10Remember that our investors are not concerned with consumption and derive utility merely from
financial wealth fluctuations.
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different time intervals implies drawing back on distinct return values, hence on different

return premia. This implicitly changes the values of several model parameters such as St,

Zt, πt, or ωt affecting the prospective value (2.23), a topic detailed in Section 2.5.

Yet, in practice, risk-averse investors may rely on a slightly different method for eval-

uating expected values of risky prospects. For instance, they may continue to consider

gains as unsure events and account for them as “wishes” (i.e. expectations). However,

losses would be assessed at their maximal impact, so to speak in a “worst case scenario”.

If this is the case, gains flow into the definition of the prospective value as expected gains,

exactly as in Equation (2.23), while losses take the form of VaR*. In other words, investors

are sufficiently wary as to take into account the possibility of experiencing a maximal loss,

hence to put an upper bound (in absolute value) on expected losses. It is this upper bound

that now generates utility (value) to the individual investor, and not the expected loss.

These considerations entail an alternative definition V ∗

t+1 of the prospective value:

V ∗

t+1 = ωtStEt[xt+1] + VaR∗

t+1

= (ωt + λSt)Et[xt+1]

+ [(πt − ϕ
√

πt(1 − πt))(λ − 1)Rft − (1 − πt + ϕ
√

πt(1 − πt))kEt[xt+1]](St − Zt),

(2.24)

where the latter expression was derived according to Equation (2.18). In Section 3.2.2,

we investigate the evolution and implications of both prospective value definitions stated

here.

Before closing this section, we introduce a further notion that in our opinion provides

additional information on the actual investor attitude towards financial risks compared

to the simple coefficient of loss aversion. According to the original PT, loss aversion

corresponds to risk aversion of first order in the loss domain. In this spirit, we denote the

first derivative of the prospective value with respect to the expected equity premium as

global first-order risk aversion (abbr. gRA) and formally define it as:

Λt =
∂Vt+1

∂Et[xt+1]
= [ωt+(1−ωt)λ]St−(1−ωt)(1−πt)k(St−Zt) = St[ωt+(1−ωt)λ̃t]. (2.25)

Specifically, the gRA reflects the sensitivity (in terms of first-order changes) of the

prospective value (which can be rendered in traditional terms as investment utility) to

the variation of expected returns (that yields to the variation of the expected equity

premium). In our opinion, the gRA represents another way of quantifying the attitude of

non-professional investors to financial losses that captures complementary features with

respect to the LAi. While the LAi measures the differences in perception (of one unit

risky investment) around the reference, the gRA is more general (and for this reason

termed “global”) and captures the slope of the aggregate individual view over both gain
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and losses. Yet formally the two measures are closely connected with each other, in the

sense that the gRA per unit of risky investment yields a linear transformation of the

LAi weighted by the probability of facing current losses. Consequently, the gRA varies

similarly to LAi with respect to cushions and the sensitivity to past losses. Note however

that LAi and gRA are to be differently interpreted. Specifically, as gRA directly reflects

the changes in the prospective value that is proportional to the attractiveness of financial

investments, higher gRA-values denote a more relaxed loss attitude.

2.5 The impact of the portfolio evaluation frequency

As shown in the previous sections, the expected portfolio returns Et[Rt+1] (hence the

expected return premium Et[xt+1]) play a major role in the formulation of the value

function and consequently of almost all other variables of interest in our model (such as

VaR*, the prospective value, the optimal borrowing level, and also future cushions, gain

probabilities, etc.). Therefore, it is essential to notice that the value of returns directly

depends on the time horizon τ over which they are computed, i.e. or on the portfolio

evaluation frequency 1/τ . We hypothesize that different evaluation frequencies impact

on investor risk behavior and lead to different investment decisions. The main reason

for this resides in the dependence of the computed performance of the risky portfolio

on expected returns, which further gives rise to the dependency of the investor attitude

towards the risky deposit and of the money invested in it on the portfolio evaluation

frequency. The higher this frequency is, the less likely it is that risky returns lie above

riskless ones, thus the more pronounced the investor disappointment concerning the risky

portfolio performance. Since according to the PT registered losses are perceived as more

painful than gains of similar size, risky investments become even less attractive.

The idea that the joint effect of narrow framing (myopia) over financial decisions and

of the reluctance to make losses can dramatically impact risk perception and hence the

subjective desirability of risky investments comes in line with the concept of mLA. The

empirical part of our paper (Section 3) analyzes closely the impact of various evaluation

horizons (ranging from one day to eight years) on the risk-free investment and on the

prospective value, where the focus lies on high evaluation frequencies (the ones that are

more plausible in practice), such as one day, one week, one month, two months and more,

up to one year. In Section 3.2.1, we also plot and empirically assess the analytical forms

of the LAi from Equation (2.14) and of the gRA from Equation (2.25) as functions of the

evaluation frequency. Yet, in order to better understand how the evaluation frequency

impacts the prospective value and the investor attitude towards risk, further explanations

are necessary and the rest of this section is dedicated to detailing this problem.

We start by noting that the first variable affected by the evaluation horizon τ is the
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gross return value Rt(τ) = log(Pt/Pt−τ ) that accounts for the price variation over the

time interval τ . Therefore, the expected return premium Et[xt+1(τ)] = Et[Rt+1(τ)] − Rft

depends on the evaluation frequency.11 For instance, if prices are highly volatile in the

short run but do not change very much in mean in the long run, a higher τ should generate

higher returns. However, even though there are more parameters (such as St, Zt, πt, etc.)

that are computed from Rt(τ) being thus affected by τ , in our (empirical) analysis we

assume all λ, k, and Rf as fixed (i.e. independent of τ). Therefore, the changes of the

prospective value Vt+1 documented in Section 3.2.1 are a consequence of a chain impact

whose very first seed is the evaluation horizon, but that does not imply the loss aversion

coefficient λ.12 Obviously, although this chain reaction (hence its source, τ) does not

change the simple coefficient of loss aversion, it also affects our measures of the actual

attitude towards financial losses LAi and gRA:

λ̃(τ) = λ − [1 − π(τ)]k[1 − z(τ)]

Λ(τ) = S(τ)[ω(τ) + (1 − ω(τ))λ̃(τ)].

As both LAi and gRA are computed as derivatives over the (expected) equity premium,

the variation of x(τ) is excluded. Thus, potential changes of (one of) these measures

subject to the evaluation horizon τ reflect the indirect impact of τ on other model variables

such as π, z, or ω.

In addition, we address a further theoretical issue which is closely related to the impact

of the portfolio evaluation frequency discussed above. Given that this frequency appears

to affect the investor risk perception, thus the level of risky investments, could the reverse

causality hold as well? In other words, for a certain loss aversion value (at time t) is there

an evaluation frequency that is optimal in terms of maximization of the prospective value?

In order to answer this question, we first analyze the direct impact of Rt(τ) on the utility

maximization problem of individual investors. To this end, the c.p. dependence of the

prospective value V (x) from Equation (2.23)13 on x(τ) at time t is taken into account. In

other words, we study the direct dependence of utility on returns, but discard the indirect

effects generated by other model parameters influenced by returns.14 In Section 3.2.1,

we search for a generally valid specification V (τ) that can be inverted in order to deliver

11For reasons of simplicity, we henceforth drop most of the time-indices at places where we discuss the
dependence of the variables calculated at (the fixed) time t on τ .

12This chain reaction takes place in successive steps: (1) τ → Et[xt+1] =: x(τ), (2) x(τ) → St =: S(τ),
(3) S1, S2, ...St → St − Zt =: S(τ) − Z(τ).

13Or the corresponding V ∗(x) from Equation (2.24).
14In essence, this can be considered a plausible assumption. The choice of an optimal current τ takes

place at the fixed time t where the model parameters indirectly affected by τ (i.e. S, Z, π), depend on
past values of x. The only exception is ωt(τ) that depends on τ through Et[xt+1(τ)], but assuming that
investors also assess ω on the basis of past experience (e.g. as the frequency of past positive return premia),
we can confine ourselves to analyze the isolate role of Et[xt+1(τ)] in the prospective value function.
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the optimal τ . Second, in the same empirical part of the paper we analyze the indirect

dependence on the portfolio evaluation frequency by focusing on the two measures of the

actual attitude towards losses LAi and gRA. Observing that they actually change with

τ , we infer analytical specifications of the type λ̃(τ) and Λ(τ) and derive the τ -values at

which they are minimized.

3 Empirical results

This chapter presents empirical findings complying with the theoretical results derived in

Section 2.

The empirical analysis is based on daily data for the SP500 index and the 10-year

nominal returns bond (considered as the risky and the risk-free investment alternative,

respectively), ranging from 01/02/1962 to 03/09/2006 (11,005 observations).15 From this

data set, we construct daily, weekly, monthly (up to eleven months, increasing one month

at the time), yearly and further lower frequency returns (ranging from two to eight years,

with a one-year increment). We divide our sample into two parts on the basis of the fact

that the early 80s mark the beginning of a new era of financial markets, due to the financial

reform in 1979 that significantly changed the trading conditions. Consequently, we reckon

that only the second part of the data (from 03/01/198216 to 03/09/2006, specifically

6,010 observations) is relevant for inferring current market evolutions and consider it as

our “active” data set on which the subsequent empirical investigations are based. The

first part of the sample (from 01/02/1962 to 03/01/1982) serves to estimate the empirical

mean and the standard deviation of the portfolio returns at date zero of the trade (i.e. at

03/01/1982). Yet, the active data set contains an outlier corresponding to the October

1987 market crash which may distort the results. Because the real market data serves

in our work merely as support for simulating trading behaviors, that we view as more

general, this outlier is smoothened out by replacing it with the mean of the ten before

and after data points.17

We consider that non-professional investors perceive risky investments according to

the value functions in Equations (2.11) and (2.12), and calculate the maximum loss level

according to Equation (2.18). The active data set allows us to run the model on the basis

of Sections 2.1 and 2.2 and to derive the desired VaR*, as well as the wealth proportion

invested in the risky portfolio (i.e. in the SP500 index). The remaining money is assumed

to be automatically put in the risk-free 10-year bond. Moreover, investors are assumed

15Descriptive statistics can be found in Tables 5 and 6 of the Appendix.
16It took several years until the financial reform became operative.
17We consider that this method is appropriate for preserving some of the particularities of less probable

market events such as crashes, while at the same time allowing for circumvention of excessive impacts
due to extreme outliers.
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to start trading with an even initial wealth allocation between the risky portfolio and the

bond.18 We also assume that the number of investors is constant, i.e. no investors can

enter or exit the market during the trading interval (corresponding to the second part of

the data).19

3.1 The evolution of the risky investment

In this section we address the interrelated questions of how risky investments develop

subject to different portfolio evaluation frequencies and to distinct ways of assessing the

cushion. Finally, we discuss the impact of applying the simpler definition VaR∗1 (that

merely accounts for maximum expected losses) on the wealth percentages invested in the

risky portfolio.

3.1.1 The impacts of the portfolio evaluation frequency and of the cushion

According to Benartzi and Thaler (1995), loss-averse investors who evaluate the perfor-

mance of their portfolios once a year and employ a linear value function with conventional

PT parameter values, give rise to a market evolution that can explain the equity premium

observed in practice. In this context, we are interested in how varying the portfolio evalu-

ation frequency can change investor decisions, hence the market evolution in our setting.

Furthermore, we ask which is the impact of different ways of assessing the cushion

on investor decisions. First, the value Zt of past portfolio performance that impacts the

valuation of current losses is taken to be identical to the last period risky asset holding

Zt = St−1. This applies to what we denote as myopic cushions. Second, as we assume that

investors do not enter or exit the market during the entire trading interval, it is plausible

to consider that they assess the investment performance starting with date zero. In other

words, they amass what we call cumulative cushions by setting Zt =
t

∑

i=0

Si, which comes

in line with Barberis, Huang, and Santos (2001).

Following Campbell, Huisman, and Koedijk (2001), we start by computing the portfo-

lio VaR in Equation (2.10b) for either (standard) normally or Student-t (with five degrees

of freedom) distributed portfolio gross returns and for a significance level of 5%. In addi-

tion, we account for different ways of computing the expected portfolio returns, namely as

the unconditional mean returns until the last date before the decision time, a zero mean

process, or an AR(1) process. Then, taking λ = 2.25 and k = 3 as in Barberis, Huang,

18A similar assumption is made in Thaler, Tversky, Kahneman, and Schwartz (1997b).
19This assumption implies that the evaluation period is shorter than the lifetime of our loss averse

agents or, equivalently, that investors are long-lived beyond the VaR horizon. Identical assumptions are
made in Basak and Shapiro (2001), Berkelaar, Kouwenberg, and Post (2004), Berkelaar and Kouwenberg
(2006).
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and Santos (2001), as well as πt identical to the empirical frequency of the cases where

zt ≤ 1 (i.e. of the past gains),20 we derive VaR∗

t+1 according to Equation (2.18) on the

basis of myopic or cumulative cushions. This value is then plugged into Equation (2.10a)

in order to determine the optimal level Bt of borrowing or lending.

Table 1 presents the average percentages of wealth St/Wt invested in the risky port-

folio, for both myopic and cumulative cushions, different portfolio evaluation horizons τ ,

normally and Student-t distributed portfolio returns Rt, and expected returns Et[Rt+1]

computed as unconditional mean of past returns.21 Here, St is derived according to Equa-

tion (2.13).

myopic cushions cumulative cushions

Evaluation frequency
Portfolio returns Portfolio returns

Normal Student-t Normal Student-t
1 year 32.65 26.18 49.31 44.83

6 months 19.43 15.76 14.18 12.14
4 months 16.12 13.14 19.38 14.96
3 months 12.86 10.50 18.50 13.73
1 month 7.49 6.18 2.05 1.88
1 week 3.78 3.11 0.44 0.39
1 day 1.88 1.54 0.15 0.15

Table 1: Wealth percentages invested in SP500

Accordingly, when investors are loss averse and use the VaR∗

t+1 from Equation (2.18)

as measure of the maximal acceptable risk, higher portfolio evaluation frequencies entail

lower investments in the risky portfolio, independent of the way of accounting for past

performance (i.e. myopic or cumulative cushions). This result is consistent with previous

findings, such as Benartzi and Thaler (1995) and Barberis, Huang, and Santos (2001),

i.e. that loss-averse investors who perform high frequency evaluations and narrow-frame

financial projects (by overly focusing on long series of past performances) become ex-

tremely risk averse. In particular for myopic cushions, the risky investment reduces to

20Figures 9 (10) in Appendix 5.1 illustrates the evolution of the probability of accumulating prior
gains πt = Pt(zt ≤ 1) for myopic (cumulative) cushions and for yearly and daily evaluation horizons.
When risky portfolios are evaluated once a year, there is almost no difference if investors use myopic
or cumulative cushions. However, for more frequent evaluations the probability of past gains follows a
similar pattern but remains lower, hence an increased degree of myopia manifested with respect to past
performance diminishes the gain occurrence frequency. Specifically, the mean of πt amounts for myopic
(cumulative) cushions to 0.7812 (0.7689) for yearly and 0.5261 (0.6344) for daily evaluations, reinforcing
the idea that checking portfolios less often increases the percentage of gains made from risky investments.

21Similar results are obtained when expected returns are derived as zero mean or the AR(1) process,
both for myopic and cumulative cushions. See Tables 7 and 8 in Appendix 5.2, as well as Footnote
22 below for further comments. For this reason and since unsophisticated investors (such as our non-
professional traders) usually rely on simple descriptive statistics from past data (and less probable on
more complex econometric models such as zero mean or AR(1)) for formulating return expectations, we
henceforth concentrate on the case when expected returns are derived from average past returns.
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half when switching from yearly to four-monthly evaluations. By contrast, investors using

cumulative cushions turn out to be substantially less risk averse when evaluating their

portfolios once a year. However, as the evaluation frequency increases (i.e. already for

quarterly evaluations), the attractiveness of risky investment is perceived as lower when

past results are accumulated over time than when merely the last period is accounted

for. In essence, investors who use cumulative cushions end up by putting almost all their

money in the risk-free asset (i.e. for daily evaluations).22 Thus, the risk aversion ap-

pears to increase much faster when cushions are based on all previous trades relative to

short-term cushions. Yet, independently of the way the cushions are computed, the risk

aversion of investors appears to be lower for normally than for Student-t distributed port-

folio returns. Interestingly, the yearly results with cumulative cushions under the normal

distribution almost perfectly match the so called TIAA-CREF typical allocation (with

slightly less than 50% as stock investment) mentioned in Benartzi and Thaler (1995).

Henceforth, we proceed in line with Barberis, Huang, and Santos (2001) and rely on

cumulative cushions.23 Given that VaR has been proven to be an adequate market risk

measure for normal distributions, we mostly analyze the case with normally distributed

gross returns.

In a next step, we are interested in the interdependence among risky portfolio returns,

cushions and wealth percentages invested in the risky portfolio. In order to analyze this

issue, we fix the evaluation frequency at one year and plot the annual returns of the

index SP500, the evolution of the cushion St − Zt generated by series of past gains or

losses, and the resulting yearly wealth percentages invested in the risky portfolio. As

mentioned above, the past performance benchmark is set to be the risky investment value

in the previous year Zt = St−1, gross returns are considered as normally distributed, and

expected returns are derived as the unconditional mean of past returns. Figure 1 points

to a positive correlation of the three variables (SP500 yearly returns, yearly cushions, and

yearly percentage investments in the risky portfolio).24 Remember that the sample covers

the last 24 years of analysis (from 03/01/1983 to 03/01/2006), such that every point on

the horizontal time-axis corresponds to the 03/01 of each year. The proportion of wealth

22According to Table 8 in Appendix 5.2, the risky investment becomes exactly zero for daily evaluations
when expected returns are derived as an AR(1) process. Note also that for an AR(1) process there
is almost no difference between the allocations with myopic and cumulative cushions. For zero-mean
expected returns and cumulative cushions, investors start with much higher risky allocations for yearly
evaluations relative to the benchmark case with unconditional-mean return expectations, but at eleven
months these allocations already resemble each other. In the same zero-mean case, but for myopic
cushions, allocations are lower for yearly evaluations and decrease for higher evaluation frequencies but
approach the benchmark more slowly.

23The results of identical tests performed for myopic cushions are available upon request.
24Indeed, the correlation between the SP500-returns and the yearly cushions amounts to 0.6607, the one

between the cushions and the wealth percentage invested in risky assets to 0.6835, while the correlation
between returns and the risky investment yields 0.5484.
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invested in the risky portfolio appears to be mainly generated by the previous bull market

observable in the SP500 returns.25

The importance of the cushion for investor decisions can be traced back to Equation

(2.18) which reveals a twofold structure of the individual VaR*. The first term on the

left-hand side accounts for the expectation of future portfolio returns weighted by the loss

aversion coefficient λ, while the second term is responsible for the influence of previous

performance (as encompassed by the cushion St − Zt). We denote them as the PT-

term and the cushion term, respectively. Accordingly, positive expectations with respect

to the future evolution of the risky portfolio coupled with a positive cushion (i.e. past

gains) should reduce investor aversion to financial losses. Consequently, given that VaR*

directly enters Bt and hence St, the wealth proportion invested in the risky portfolio St/Wt

increases, as illustrated in Figure 1. This effect is reversed when both return expectations

and cushions become negative. Moreover, it is interesting to observe that small changes

in the cushion at the beginning of the effective trade period26 allow for high variations

in the portfolio allocation. This first investor reaction turns strongly against investing

money in risky assets, but the increase in cushions makes it smooth over time, so that it

ends by following fairly close the cushion evolution. This result is again in line with the

concept of loss aversion, i.e. the lower the cushion of wealth accumulated in past trades

is, the more loss-averse investors become because they dispose of less back-up for later

contingent losses. Moreover, this lowers the wealth fraction invested in risky assets.27

At this point, a further interesting empirical question arises: how long does it take

for an investor performing frequent evaluations to quit the risky market? In order to

answer this question, let us further assume that investors start with an initial investment

in risky assets of 50% of the total wealth. Figure 2 points out the dramatic effect of high

evaluation frequencies for investors who act upon cumulative cushions, i.e. when portfolio

performance is checked every single day, investors get out of the risky market in not even

half a year.28 This behavior can also be explained in the context of Equation (2.18),

according to which highly volatile SP500-returns and very low cumulative cushions (as

generated by the daily change in position and apparent in Figure 2) result in an enhanced

acceptable risk level VaR*. This captures the picture of an extremely risk-averse investor.

However, investors with very short memory (one single day) concerning the past portfolio

25Specifically, this proportion reaches its maximum of 53.91% two periods after that SP500-returns
attain a maximum value (which is in 1998), which coincides with the time when the yearly cushion are
highest (i.e. 4775).

26Remember that the effective trade (i.e. the observations that effectively underlie the estimation
procedure) begins at 03/01/1982.

27Gneezy and Potters (1997) test for the influence of experienced gains and losses on risk behavior, but
find no significant effect. However, as noted on p. 641, their experimental framework deviates from real
market settings, as considered in our model.

28In particular, their risky investments decrease from a maximum of 57.49% in the fifth day to 9.86%
in the 14th day, and remain below 1.74% after the day 116.
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Figure 1: Evolution of SP500 returns, myopic and cumulative cushions, and percentages
invested in the risky portfolio for yearly portfolio evaluations
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performance turn out to amass cushions that are higher in absolute value, but vary around

an average of zero. Consequently, as each day can bring substantial change in the perceived

past performance, they constantly allocate a low wealth percentage to risky assets.29
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Figure 2: Evolution of SP500 returns, myopic and cumulative cushions, and percentages
invested in the risky portfolio for daily portfolio evaluations

29The maximum risky investment is 10.26% and corresponds to the outlier found for the October ’87
market crash.
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3.1.2 An analysis with unadjusted VaR*

Finally, we analyze the investor behavior for a VaR* that exclusively accounts for maxi-

mum expected losses, as defined in Equation (2.16). The results confirm the mLA, in the

sense that investors who merely account for the average expected losses in formulating

individual risk constraints decrease their risky investments for higher evaluation frequen-

cies. However, Table 9 in Appendix 5.2 points out that for myopic cushions, the use of

VaR∗1 entails similar risky investments30 relative to the adjusted VaR*. However, notice-

able differences can be observed for cumulative cushions, when VaR∗1-investors start with

lower risky allocations for yearly evaluations than their more sophisticated VaR*-peers,

but reduce their risky investments subject to higher evaluation frequencies more slowly

(faster) up to (above) five months, ending up by investing nothing in risky assets.31 In

essence, the evaluation frequency of one year, which is considered as standard in the lit-

erature, renders the adjustment in the VaR*-formula unimportant with respect to the

wealth percentages dedicated to risky assets.

3.2 The evolution of the prospective value

This section first presents the influence of the evaluation frequency on the prospective

value, then comments on the case when investors account for the “worst case scenario” in

assessing the value of risky investments.

3.2.1 The impact of the portfolio evaluation frequency

According to the results in Section 3.1, the measured performance of the risky portfolio

varies with the evaluation horizon τ . In order to closer analyze the impact and to de-

termine an optimal value of τ (on average over all decision times t), we first recall the

observation made in Section 2.5 that τ exerts direct influence on the expected returns,

thus on the expected return premium Et[xt+1] = Et[Rt+1] − Rft. Therefore, the evalu-

ation time affects the prospective value of the risky investment from Equation (2.23).32

Here, we distinguish between two terms with relevant contribution to the formation of

V (Et[xt+1]), namely the first term on the right hand side of Equation (2.23) that stands

for the prospective value as considered in the original PT (that we denote as the PT-

effect), and the second one (called the cushion effect) generated by the cushions of past

gains or losses suggested in Barberis, Huang, and Santos (2001).

Figure 3 illustrates the evolution of the prospective value in Equation (2.23) and the

contributions of these two effects, for evaluation frequencies of one year and one day,

30Specifically, these investments are only slightly lower on average.
31The risky investment already amounts to zero for a two-month evaluation horizon.
32The effects of the alternative prospective value definition (2.24) are discussed in Section 3.2.2.
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respectively. Recall that cushions cumulate from the beginning of the trade and investors

anticipate normally distributed gross returns. On first inspection of the panel (a) in

Figure 3, we find that the prospective value V (Et[xt+1]) relies on the PT-effect only at

the beginning of the trade, as investors do not dispose of sufficient monetary provisions.

Once positive cushions started to accumulate, the cushion effect clearly plays the lead

role in the perceived risky value. This leading is even more pronounced for daily portfolio

evaluations (panel b), where the cushion effect actually overlays the prospective value,

the PT-effect being almost nil.33
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Figure 3: Prospective value evolution for daily and yearly evaluations

In the subsequent Figure 4, we now plot the prospective value and its two components

(the PT- and the cushion effect) as functions of the evaluation horizon τ , which ranges

from one month to eight years, namely in monthly increments of up to one year and yearly

increments thereafter.34 As expected, the perceived riskiness of financial investments

decreases as investors perform rarer evaluations. An apparent puzzling result is that V

looms negative at the frequency of two years. There is one particularity of our market

33Specifically, the mean PT-effect amounts to −0.0066.
34In order to obtain a suggestive graphic representation, we consider all frequencies from one to twelve

months and discard the observations for one day and one week. An evaluation frequency of eight years
implies that investors can only make three portfolio checks during our estimating sample. Therefore, a
further increase of the evaluation time becomes senseless.
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data that may have driven this result, namely that the two-year SP500-(log)returns turn

out to be extremely variable (see Figure 11 in Appendix 5.3). These repeated changes of

direction render investor decisions very difficult and result in negative values, because the

non-professional investors are not able to cumulate positive cushions.35
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Figure 4: Prospective value evolution for different evaluation frequencies

The evolution of the prospective value in the evaluation horizon domain depicted in

Figure 4 turns out to exhibit two distinct segments of different evolution, delimitated by an

evaluation frequency of around one year, where a kink becomes apparent. This reinforces

the idea that in practice, one year indeed represents a “critical” evaluation frequency.

As documented in Benartzi and Thaler (1995), a decade ago (non-professional) investors

actually used to perform yearly portfolios checks. Nowadays, due to the high amount of

information available at almost no cost and to the enhanced dynamic of market events,

we claim that a tendency to reconsider the problem of splitting their money between risky

and risk-free assets more often becomes manifest. Thus, investor perceptions sooner lie

in the left segment of the curve in Figure 4 (on which our subsequent analysis focus on

as well). Yet, one year remains an important anchor in the investor minds given that,

on one hand, various events (such as release of annual activity reports) take place with

this frequency and, on the other hand, non-professional investors may not be sufficiently

impatient (perhaps because they do not dispose of sufficient time and financial resources)

to perform portfolio checks more often.

The apparent segmentation of the prospective value for evaluation frequencies lower

vs. higher than one year motivates us to have a closer look at the two separate evaluation

frequency segments illustrated in Figure 5. We attempt to finding an analytical form that

underlies this evolution and that would allow us to conjecture upon an optimal evaluation

frequency.

35Moreover, the problem gets worse since we have only twelve observations.
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Figure 5: Prospective value evolution on the two relevant evaluation frequency segments

For our usual case with λ = 2.25 and k = 3, the analytical functionals that best match

the prospective value data V (τ) in Figure 5 consist of a third-order polynomial for τ ≤ 1

year and a fourth-order one for τ ≥ 1 year. The corresponding estimates of the curvature

coefficients are given in Table 10 in Appendix 5.3. In addition, similar courses are found for

further degrees of narrow framing such as k ∈ {0; 10; 20}, as illustrated in the subsequent

Figure 12. In the left evaluation horizon segment, this analytical representation points out

a three-stage evolution of the perceived risky value subject to higher evaluation frequencies

(i.e. that reach from one month to one year). In other words, it appears that going from

monthly to four-monthly evaluations entails substantial advances of the prospective value.

Yet, a further increase in the evaluation frequency from five to ten months exhibits a much

lower impact on the variation of V . Finally, when non-professional investors decrease the

frequency of portfolio evaluation from ten months to one year, they perceive again higher

and faster increasing prospective values. In the right segment, the evolution is more

complex, but again middle-range evaluation frequencies (between four and seven years)

demand lower variations of the prospective value. However, this more complex course may

be in part determined by the negative V obtained at the two-years evaluation horizon.

We also note the resulting jump (kink) in the prospective value at what we consider to

be the reference frequency of τ = 1 year that complies with the idea of loss aversion.36

Section 5.3 in the Appendix summarizes some results of the various sensitivity checks

performed for further values of the loss aversion coefficient λ and of the past-losses sen-

sitivity parameter k.37 Tables 11, 12, and 13 present the prospective value evolution for

the entire range of considered parameter values. As in practice it is less plausible that

investors revise their portfolios less often than once a year, we briefly comment on the

36Specifically for λ = 2.25 and k = 3, V (1 year−) = 6, 519.56 6= 6, 273.3 = V (1 year+)). Many authors
consider the loss aversion to be defined by the kink of the value function at the reference point. See
Tversky and Kahneman (1992), Berkelaar, Kouwenberg, and Post (2004), or Köbberling and Wakker
(2005) among others.

37Further results are available on request.
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findings for evaluation frequencies higher than one year (i.e. in the left evaluation hori-

zon segment) in the sequel. First, the fitted curves for this segment depicted in Figures

12(a) and 13(a) emphasize the fact that while for λ = 2.25 the perceived risky value does

not appear to change much subject to a higher sensitivity to past losses k, the reactions

of investors showing different degrees of loss aversion (as measured by the index λ) are

distinct for a fixed k = 3. In the latter case (i.e. k = 3), the third-order polynomial

specification provides an acceptable fit for λ ≤ 2.25 (namely, it explains more than 70%

variation in the data as measured by the adjusted R2). However, for high degrees of loss

aversion (λ = 3) only a sixth-degree polynomial reaches an adjusted R2 of over 40%.

Moreover, while “veritable” loss-averse investors (with λ > 1) perceive risky investments

to be more attractive as they perform evaluations less often, investors with λ ≤ 1 manifest

the opposed tendency towards a more favorable perception for more frequent evaluations.

Clearly, the reversal takes place for the “neutral” case with λ = 1, where the prospective

value turns out to be low and less variable. Also, the variation of V over the evaluation

horizon increased subject to higher values of the loss aversion coefficient λ. As expected in

almost all cases with λ ≥ 138, the maximum V is to be found for the maximal evaluation

horizon of the left segment, which is one year.

Returning to the question concerning the optimal evaluation frequency, it appears

natural to assume that investors who are exclusively concerned with financial investments

(and not with other sources of utility such as consumption) attempt to maximize the

prospective value of their risky portfolios. Smart investors could look for an optimal

evaluation frequency, i.e. one that maximizes the prospective value (at a given decision

time t or analogously on average).39 The functional form fitted to our data set for the

prospective value in Appendix 5.3 (see again Table 10 and Figure 12) for the left evaluation

horizon segment (i.e. τ ≤ 1 year), show that loss-averse investors (with λ ≥ 1) perceive

the investment value as being maximal for the maximal evaluation time of this domain,

i.e. one year. As mentioned above, we consider this segment as the sole one relevant

in practice.40 In the same spirit, the highest evaluation frequency of one day entails a

minimal expected value of the risky portfolio, pushing investors to step out of the risky

market and to allocate (almost) all their money to risk-free assets. In other words, loss-

averse investors should check the performance of their risky investments as seldom as

38Only in the extreme case with λ = 3, the values of V at ten monthly evaluations are higher for all
considered k-values.

39Actually, the optimality of the evaluation frequency should be sooner understood from the viewpoint
of portfolio managers, whose interest is to attract more clients willing to invest money in risky assets.
Recommending these clients undertake performance checks in the “optimal” frequency should maximize
the budget at managers’ disposal. In the same context, Gneezy and Potters (1997) suggest that managers
could manipulate the evaluation period of prospective clients.

40For the right segment (i.e. τ ≥ 1 year), the fitted polynomials exhibit a maximum at the lowest
evaluation frequency of eight years and a local one between four and five years.
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possible in order to maximize the corresponding prospective value of their investments.

Under practical informational constraints that govern financial markets nowadays,41 one

year appears to be the most reasonable evaluation time that would increase the perceived

returns of risky investments.

3.2.2 An analysis under the “worst case scenario”

For the “worst case scenario” described in Section 2.4, investors may use a slightly different

definition of the prospective value, as suggested in Equation (2.24). Figure 6 plots the

evolution of both Vt+1 in line with the original PT and the new V ∗

t+1. Apparently, the

latter is smaller and less variable but follows the same qualitative pattern.42 Thus, the

discussion on the evolution of the prospective value in the evaluation frequency domain

conducted in Section 3.2.1 should also be valid in the “worst case scenario”, at least in

qualitative terms. Thus, the hypothesis that prudent investors perceive risks according to

this “worst case” appears to be acceptably realistic (at least in the domain of evaluation

frequencies) because it generates result patterns that are similar to those stemming from

considerations of the original PT.

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06
−2000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000
V
V*

Figure 6: Prospective value V vs. the “worst case scenario” V ∗ for cumulative cushions
and yearly evaluations

41Such as the huge amount of financial data available at almost no cost to each individual investor and
the high interest raised by financial events in general. These natural market conditions entail an increase
in the evaluation frequency below the limit of one year, such that investor perceptions lie sooner in the
left evaluation-horizon domain and the crossover to the second segment is improbable.

42Indeed, the mean V̄ = 6955.5 while V̄ ∗ = 2626.7.
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3.3 The evolution of the actual attitude towards financial losses

In this section, we address the question of how the attitude of non-professional investors,

as captured by the LAi from Equation (2.14) and the gRA from Equation (2.25), vary

subject to different portfolio evaluation frequencies. As discussed in Section 2.5, this

variation reflects an indirect impact in the sense that it does not directly result from the

changes of the equity premium with τ , but on the collateral influence of τ on other model

parameters such as the cushion St − Zt and the probability of past gains πt. For both

LAi and gRA, we conduct empirical investigations similar to the above analysis on the

prospective value.

3.3.1 The impact of the portfolio evaluation frequency on the loss aversion

index

In the traditional PT-framework, the index of loss aversion LAi reduces to the simple

coefficient of loss aversion λ (when the curvatures of the gain and loss branches of the value

function are identical), hence it does not change with the portfolio evaluation frequency.

The myopic loss aversion addresses the joint effect of this (fixed) index and the variation

of returns due to more frequent evaluations. By contrast, in our extended framework the

LAi itself fluctuates subject to the revision frequency and this effect overlaps the return

variation resulting in perceptions of the risky investment that depend on the evaluation

horizon. Thus, it is interesting to observe the evolution of the actual attitude towards

losses subject to different portfolio evaluation frequencies. In particular, the LAi defined in

Equation (2.14) exhibits the same twofold formal representation as the prospective value.

A first term corresponding to the PT-effect consists of the coefficient of loss aversion λ and

a second one is analogous to the cushion effect and depends on the relative cushion 1− zt,

on the sensitivity to past losses k, and on the probability of past losses 1−πt. Clearly, for

positive but small cushions and low k-values (i.e. k ≤ 3), the first term dominates and

renders investors more reluctant to losses for higher λ.

We commence by analyzing the LAi-evolution for our benchmark case with λ = 2.25

and k = 3, the course of which is depicted in Figure 7. Apparently, LAi slightly increases

on average for lower evaluation frequencies, a tendency that may appear counterintuitive

at first. However, note that investors who check the performance of their risky portfolios

less often (e.g. once every three years) and detect losses should become more averse to

losses in general, as they have less flexibility in changing the portfolio composition to avoid

future losses (e.g. the next evaluation will be undertaken only after three more years and

34



investors have to bear the losses during the next three years).43

Figures 14 and 15 in Appendix 5.4 illustrate the LAi evolution for λ = 2.25 and

different values of k, as well as for k = 3 and different λ, respectively. As expected, LAi

does not vary much subject to the coefficient of loss aversion λ for a fixed k and for k = 0,

it reduces to the simple coefficient of loss aversion λ. Yet, LAi becomes sensitive to the

choice of the parameter describing the reaction intensity to past losses k. Surprisingly,

it appears to diminish for increasing values of the sensitivity to past losses k. Also, for

k > 0, LAi takes values that are always lower than the coefficient of loss aversion λ (or

equivalently than LAi in the case with k = 0). This reaction originates in Equation (2.14)

and the fact that the absolute cushion 1−zt is on average positive for almost all considered

evaluation frequencies.44 When non-professional investors impose high penalties on past

losses (i.e. k is big) and the current state is indeed a loss, they become extremely loss

averse, which is formally equivalent to the fact that LAi substantially grows to exceed

λ. However, when the current state is a gain and positive cushions have so far been

accumulated (i.e. the average past performance is positive), investor perception cannot

be characterized by extreme values of k. In fact, there is no meaningful interpretation of

the case with high k and past positive cushions, although it can be represented formally

(as in Figure 14). The practical importance of our graphical illustrations refers to cases

when negative cushions are coupled with current losses and we can observe how LAi grows

for higher k-values.45 Table 14 in Appendix 5.4 attempts to distinguish among practically

relevant and irrelevant cases.

Moreover, in the left segment (i.e. high evaluation frequency) LAi turns out to be

more variable the higher the λ-values and exhibits local minima (maxima) at one and

ten (three and eight) months. This pattern extends over the right segment for portfolio

evaluations more frequent than once every four years and is reversed for lower evaluation

frequencies. A local minimum (maximum) becomes manifest around two (six) years. Note

that for higher k-values, the LAi for ten months is almost as low as the global minimum

of LAi obtained for the lowest evaluation horizon of one month, which meets the findings

in Benartzi and Thaler (1995), who refer to ten months as to the evaluation period that

explains the equity premium observed in practice when investors use a piecewise linear

value function and linear probability weights.

As in Section 3.2.1, we perform separate fitting procedures for each of the two evalua-

43Of course, this situation can lead the investors to increase their portfolio revision frequency. However,
this is an open question that we left for future research.

44For λ = 2.25 and k = 3, there are only two negative mean values at five and six years. See Figure
16 in Appendix 5.4. At these two frequencies (which are in essence of no practical interest), LAi indeed
increases for higher k, as apparent in Figure 14.

45As stressed above, this is the case for five and six yearly portfolio evaluations in Figure 14 for λ = 2.25
and k = 3.
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Figure 7: Evolution of the loss aversion index on the two relevant evaluation frequency
segments
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tion horizon segments (i.e. lower and higher than one year).46 Table 15 in Appendix 5.4

presents the estimated fitting coefficients for λ = 2.25 and k = 3. The simplest specifi-

cation describing quite well the evolution of LAi on each of the two evaluation frequency

segments is a third-degree polynomial.47 For λ = 2.25, while to the left of the evaluation

horizon of one year the LAi grows with τ , its form reminds of a sinusoid to the right of the

reference point, where this pattern is more pronounced due to the enhanced sensitivity to

past losses as described by k. The local extremal points are clearly not as pronounced as

for the raw courses in Figure 14. However, the overall minimum is obtained at the max-

imum evaluation frequency of one month, then there is another local minimum between

nine and ten months (between one and two years) in the left (right) segment.48 Note that

this evolution pattern fitted for different k-values in our usual case with λ = 2.25 persists

for λ = 3, but is reverted for coefficients of loss aversion which are implausible according

to PT (and denote the opposite of loss averse investors) λ ≤ 1.49

3.3.2 The impact of the portfolio evaluation frequency on the global first-

order risky aversion

Motivated by the above findings concerning the evolution of LAi as a function of the

evaluation horizon τ , we now turn our attention to the second measure of the loss atti-

tude introduced in the theoretical part, namely the gRA. As stressed in the theoretical

part of our paper, the gRA per unit of current risky holdings (St) represents a linear

transformation of LAi. Being derived from the prospective value, it also encompasses

some further more general elements such as the probabilities of current gains and losses.

We expect that the same intuition holds and the gRA shows similar but somewhat less

complex structure in the two evaluation frequency segments.

As illustrated in Figure 8 for our usual case with λ = 2.25 and k = 3, and in Figures

17 and 18 in Appendix 5.4 for further values of those two parameters, the gRA course

follows the main evolution pattern observed for LAi. It increases slightly for lower portfolio

evaluation frequencies, as well as subject to the coefficient of loss aversion λ for a fixed

sensitivity to past losses k. However, gRA turns to be more sensitive to the variation of λ

46Further numerical results are available upon request.
47In terms of the adjusted R2, this specification explains over 70% of the data variation in each of

the analyzed cases with moderate levels of λ and k. Exceptions are some of the cases with very high
k in the high evaluation frequency segment, such as λ = 0.5 and k = 20, where the third-polynomial
merely achieves an adjusted R2 of 45.61%. Also, for λ = 3, the cubic polynomial provides the best fit
but explains only between 50− 60% of the data variation for all k in this segment. Interesting to note is
that in the case that can be considered as “neutral” in terms of the loss aversion coefficient λ = 1, simple
lines already provide a good description of the LAi for highly frequent portfolio revisions.

48In particular, the evaluation horizon (in months) at which the LAi in the left segment is minimal
amounts to 9.6169 for k = 3, 9.4316 for k = 10, and 9.0406 for k = 20. The same values (in years) for
the minima in the right segment are 1.9498 for k = 3, 1.8328 for k = 10, and 1.6204 for k = 20.

49Specifically for λ ∈ {0.5; 1}, LAi exhibits negative slope in the left segment.
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compared to the LAi, given that it decreases in k for a fixed λ as long as portfolio revisions

are performed more often than every four years. From this viewpoint, the gRA reflects

more accurately the attitude of investors who heavily penalize past losses (i.e. exhibit a

high k) and who become more averse to financial losses in general. For λ = 2.25, the

global minimum of gRA is again attained for the highest evaluation horizon of one month

and, local minima in the left (right) segment are found for two, six, and ten months (two

years) portfolio evaluations for k ≤ 10 and at four and ten months (one and four years)

for k = 20. The negative values of gRA for k = 20 easily result from the Definition (2.25),

where for positive cushions and high sensitivity to past losses k but moderate loss aversion

coefficient λ, the second term (in the middle expression) dominates the first PT-equivalent

term and becomes negative. Hence, in practice investors may be hardly as averse to past

losses as suggested by k > 10 (at least when experiencing past gains on average, as it is

the case for our data set).
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Figure 8: Evolution of the global first-order risk aversion on the two relevant evaluation
frequency segments

Third-degree polynomials appear to fit the left evaluation horizon segment acceptably

well for our standard case with λ = 2.25, at least for moderate sensitivity to past losses

(k ≤ 10). For k = 20, the evolution of gRA turns to be more complex and variable,

with a minimum at quarterly portfolio evaluations, but in line with the above arguments
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and with the corresponding considerations with respect to LAi we can consider this case

as implausible in practice. These findings are similar to the evolution of the prospective

value for evaluation frequencies higher than one year. Thus, the gRA appears to increase

faster at the ends of the left segment, namely for evaluations performed more often than

once every four months as well as between eight months and one year.50 In the right

segment, linear specifications are already sufficient for describing the evolution of gRA.

The estimated coefficients for k = 3 are given in Table 15. These results hold for all the

other considered values of the loss aversion coefficient.51

In sum, we can conclude that LAi and gRA effectively represent improvements over

the common loss aversion coefficient λ, as they address additional factors that impact

on the loss attitude such as past performance and expectations about the future market

conditions. Thus, the above analysis offers a more complete picture over the causes and

manifestations of how this attitude towards financial losses fluctuates subject to different

portfolio evaluation frequencies.

3.4 A comparison with the portfolio optimization framework

This section proposes to translate the results obtained in our framework (where investors

subjectively derive the maximum acceptable level of losses) in terms of the portfolio opti-

mization “language” spoken by professional managers. To this end, we calculate equivalent

significance levels and equivalent average indices of loss aversion that correspond to the

VaR* derived according to our model and imposed as fixed risk constraints in the portfolio

optimization problem.

3.4.1 VaR*-equivalent significance levels

One further question of interest arises from the use of the VaR∗ as a measure of risk in

the portfolio optimization model in Section 2.1. Statistically, VaR∗ represents the lower

quantile of portfolio returns at a given (i.e. fixed) significance level α (or confidence level

1 − α), where usually α ∈ [1, 10]%. The individually optimal VaR∗

t+1 that is previously

derived by investors on the basis of subjective considerations according to Equation (2.18)

is compared to the portfolio VaR in Equation (2.10b), in order to determine how investor

wealth is going to be split between the risky portfolio and the risk-free bond (where the

sum to be invested in risk-free assets is formalized in Equation (2.10a)). We denote by

α∗

t the significance level that corresponds to the VaR∗

t+1 computed in our model. Thus,

if the portfolio VaR at time t corresponds to an α > α∗

t (or equivalently, to a confidence

50The inflexion points of the fitted polynomial for λ = 2.25 and k = 3 lie at 4.4746 and 7.3503 months.
51For all considered values of λ, the adjusted R2 lies over 75%. For k = 20, only fourth-degree

polynomials achieve adjusted R2 of over 40%. However, for λ = 1 simple lines explain more than 75% of
the data variation.
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level 1 − α < 1 − α∗

t ), then the sign of Equation (2.10a) is negative. In other words, too

much risk would arise by putting the entire wealth in the risky portfolio, so that, in order

to accommodate the desired (lower) risk level, a percentage of the investor wealth should

be lent, i.e. invested in the risk-free asset (Bt < 0). On the contrary, if α < α∗

t , then

the portfolio risk meets the individual risk requirements (being lower than the subjective

risk threshold) and investors borrow extra money (Bt > 0) in order to increase their

SP500-holdings.

In this section, we determine the significance levels corresponding to the values of

VaR∗

t+1 derived from Equation (2.18) for normally and Student-t distributed gross returns

and cumulative cushions.

Evaluation frequency
Portfolio returns

Normal Student-t
1 year 0.00 0.00

6 months 0.00 0.00
4 months 0.00 0.00
3 months 0.00 0.00
1 month 0.00 0.00
1 week 0.00 0.00
1 day 0.00 0.00

Table 2: Portfolio-equivalent significance levels of the estimated VaR∗

t+1 (α∗).

Table 2 presents equivalent significance levels averaged over time (α∗) and provides

striking results. As stated above, classical portfolio selection models based on VaR assume

that investors chose significance levels α in the interval [1, 10]%. Our findings show that for

any evaluation frequency higher than one year, this assumption does not comply with real

market data as the equivalent significance level α∗ lies below the theoretically acceptable

interval (being practically zero). Thus, even the lowest significance level of 1% proposed

in standard portfolio optimization models is not able to capture the risk aversion of non-

professional investors acting according to our setting. In other words, investors may be

substantially more risk averse in practice than considered in theory.

3.4.2 Portfolio-equivalent indices of loss aversion

The previous section shows that non-professional investors who are influenced by their

personal history of gains and losses and in general behave according to the assumptions of

our model are more risk averse than commonly described by in terms of significance levels

α ∈ [1, 10]%. In the same context, we now address the impact of an exogenous VaR* as

originally employed in Campbell, Huisman, and Koedijk (2001), on the values of the loss

aversion coefficient λ∗̄

t+1, computed according to Equation (2.22) in our model. To this
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end, we go back to the conventional significance levels of 1% and 10% and estimate an

homologous exogenous VaR* as derived from Equation (2.10b) that would correspond to

the portfolio VaR at one of these two significance levels. This equivalent VaR* serves to

compute λ∗̄

t+1 according to Equation (2.22).

Tables 3 and 4 present equivalent wealth percentages that would be invested in the

risky portfolio at the two significance levels mentioned above (1% and 10%, respectively)

but are obtained imposing VaR*-values that result from our model. Remember that the

portfolio VaR in Equation (2.10b) is estimated using a 5% significance level that is going

to be considered as the benchmark for the values in these tables (i.e. it corresponds to

100% risky investments). The same tables also show the average equivalent coefficient of

loss aversion λ∗̄ and consider the cases with normally or Student-t distributed portfolio

returns and cumulative cushions.

Wealth % λ∗̄

Evaluation frequency
Portfolio returns Portfolio returns

Normal Student-t Normal Student-t
1 year 69.10 47.65 0.91 0.83

6 months 65.54 42.53 0.97 0.97
4 months 64.48 41.04 0.97 0.97
3 months 63.43 39.59 0.97 0.97
1 month 61.64 37.12 0.98 0.99
1 week 60.14 35.10 1.07 0.99
1 day 59.35 34.05 1.00 1.00

Table 3: Wealth percentages invested in SP500 and the average λ∗̄, for α = 0.01

Wealth % λ∗̄

Evaluation frequency
Portfolio returns Portfolio returns

Normal Student-t Normal Student-t
1 year 116.47 120.91 0.68 1.12

6 months 118.37 122.95 1.09 1.09
4 months 118.94 123.55 1.12 1.09
3 months 119.49 124.13 1.15 1.08
1 month 120.45 125.11 1.09 1.07
1 week 121.25 125.92 1.02 1.02
1 day 121.67 126.34 1.01 1.02

Table 4: Wealth percentages invested in SP500 and the average λ∗̄, for α = 0.10

Accordingly, the equivalent recommendations from our model at 1% (10%) significance

lie well below (above) the benchmark VaR at 5%. This points out a higher (lower) risk

aversion in our endogenous VaR*-framework (after restating it in terms of the exogenous-
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VaR model) relative to the portfolio risk measured by VaR. Comparing Tables 3 and 4,

we can observe that the lower the significance level (or the higher the confidence level) the

more risk averse is the non-professional investor, i.e. the proportion of wealth invested in

the risky portfolio is smaller than 100%. However, even the lowest percentages in Table

3 are still much higher than those in Table 1, where VaR* is treated as endogenous. In-

terestingly, the results for α = 1% are consistent with our previous findings supporting

the mLA, as the wealth percentage invested in risky assets decreases for higher evalua-

tion frequencies. By contrast, when α increases to 10%, this phenomenon is reversed and

investors appear to allocate more money to the risky portfolio for more frequent evalua-

tions. As mLA is a widely documented phenomenon, we can conclude that the traditional

portfolio optimization framework fails once more to capture the real investor behavior in

a consistent way.

Similar conclusions can be drawn for the loss aversion coefficient λ∗̄ derived for conven-

tional significance levels assumed in previous research, the values of which are much lower

than 2.25, the empirical level estimated in the original PT and largely used in previous

empirical research.52 For the majority of the considered combinations of α-values and

evaluation frequencies, we obtain λ∗̄ ≃ 1, a level that indicates identical perception over

gains and losses according to the value function from Equations (2.11) and (2.12) (and

recalling that k = 0). Actually, this “neutral” level of one is exceeded merely for high eval-

uation frequencies, namely over one week (six months) for α = 1% (10%). This reinforces

our earlier claim that even assuming low significance levels (for example α = 1% as is the

common case in previous portfolio optimization research) entails an underestimation of

the loss attitude of real investors captured by the specific coefficient λ.

4 Summary and conclusions

In this paper we investigate the risk behavior of non-professional investors facing problems

of fixing a maximal acceptable level of financial losses and of splitting money between risk-

free assets and a risky portfolio (capital allocation). We assume that these investors are

loss averse, narrowly frame financial investments and perceive future portfolio returns as

being influenced by past portfolio performance.

We extend the portfolio allocation model developed in Campbell, Huisman, and Koedijk

(2001) in order to incorporate the effect of a desired VaR* that is now subjectively as-

sessed by individual loss-averse investors. Thus, the first task of non-professional investors

consists of fixing a VaR*-level that is subsequently communicated to professional portfolio

managers in charge of finding the optimal portfolio composition. The portfolio optimiza-

52Such as Barberis, Huang, and Santos (2001), Benartzi and Thaler (1995).
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tion procedure also delivers the optimal sum of money to be invested in risk-free assets,

which represents another important decision variable for the non-professional investor.

In modeling the investor’s perception over the risky investment that yields the subjec-

tive VaR*, we rely on the notion of myopic loss aversion introduced in Benartzi and Thaler

(1995) and employ the extended subjective valuation of prospective risky investments pro-

posed in Barberis, Huang, and Santos (2001). We integrate these behavioral explanations

in the portfolio decision framework mentioned above, enriching the two models with orig-

inal findings that stem both from theoretical consideration and empirical results obtained

on the basis of real market data (such as SP500 and US 10-year bond price series).

Considering that investors are merely concerned with financial investments as source

of utility, we theoretically model their perceptions regarding the utility of risky assets

and define the maximum individually sustainable level of financial losses VaR*. This

level serves in deciding upon the optimal amount of money to be invested in the risky

portfolio. Also, we assess the utility of risky prospects captured by the prospective value

and apply an extended definition of loss aversion (residing in the loss aversion index

according to Köbberling and Wakker (2005) as well as a coefficient of global first-order

risk aversion) that attempts to better capture the actual attitude towards financial losses

of real investors. Moreover, we investigate the influence of different evaluation frequencies

on the prospective value and on the actual loss attitude and point out a way to derive an

optimal horizon of performance revisions under consideration of practical constraints.

The theoretical results are supported and extended by our empirical findings which,

in sum, show that non-professional investors allocate the main part of their wealth to

risk-free assets. A smaller sum is put into the risky portfolio for increased frequencies of

revising its performance. Also, financial wealth fluctuations determined by the success of

previous decisions exert a significant impact on the current portfolio allocation, making

investors without substantial gain cushions firmly refuse holding risky assets. One year

appears to be a critical evaluation frequency, optimal from the viewpoint of maximizing

risky holdings and commonly used in practice. This evaluation frequency splits individual

perceptions over risky investments (captured by the prospective value) and over finan-

cial losses in general (captured by the loss aversion index and the global first-order risk

aversion) into two qualitatively different segments with distinct evolutions. Moreover, the

computation of equivalent values of the significance level and of the loss aversion coefficient

that correspond to confidence levels commonly assumed in previous research suggests an

underestimation of the attitude of real non-professional investors to financial losses.
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5 Appendix

5.1 Descriptive statistics and the probability of prior gains

SP500
Evaluation frequency

Quarterly Yearly
Mean 0.017 0.066

Median 0.018 0.071
Std.Dev. 0.079 0.136
Kurtosis 2.661 -0.9659
Skewness -0.671 -0.205

Max. 0.290 0.345
Min. -0.302 -0.207
Obs. 175 43

Table 5: Log-difference of the SP500 index for quarterly and yearly portfolio evaluations

10-year
Evaluation frequency

Quarterly Yearly
Mean 0.017 0.073

Median 0.017 0.070
Std.Dev. 0.006 0.026
Kurtosis 0.623 0.974
Skewness 0.951 1.042

Max. 0.036 0.142
Min. 0.009 0.037
Obs. 175 43

Table 6: 10-year bond return for quarterly and yearly portfolio evaluations
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Figure 9: Evolution of the probability of prior gains πt = Pt(zt ≤ 1) for myopic cushions
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Figure 10: Evolution of the probability of prior gains πt = Pt(zt ≤ 1) for cumulative
cushions
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5.2 The wealth percentages invested in SP500

myopic cushions cumulative cushions

Evaluation frequency
Portfolio returns Portfolio returns

Normal Student-t Normal Student-t
1 year 19.89 17.53 46.96 40.12

6 months 13.17 11.43 14.75 12.65
4 months 12.27 10.53 29.81 22.83
3 months 10.23 8.72 28.05 20.65
1 month 6.49 5.49 1.99 1.90
1 week 3.52 2.94 0.43 0.38
1 day 1.82 1.50 0.15 0.15

Table 7: Percentage investment in SP500 for expected returns = zero mean

myopic cushions cumulative cushions

Evaluation frequency
Portfolio returns Portfolio returns

Normal Student-t Normal Student-t
1 year 39.97 32.65 38.00 38.00

6 months 26.16 20.52 26.68 20.13
4 months 19.01 15.20 37.87 27.87
3 months 14.33 11.62 34.86 23.67
1 month 7.79 6.42 2.13 1.93
1 week 3.82 3.13 0.00 0.00
1 day 0.00 0.00 0.00 0.00

Table 8: Percentage investment in SP500 for expected returns = AR(1)

46



myopic cushions cumulative cushions

Evaluation frequency
Portfolio returns Portfolio returns

Normal Student-t Normal Student-t
1 year 25.34 21.18 47.04 43.41

6 months 16.62 13.85 26.84 26.30
4 months 14.45 12.09 8.27 7.80
3 months 11.89 9.86 7.86 6.82
1 month 7.20 5.96 0.00 0.00
1 week 3.73 3.07 0.00 0.01
1 day 1.91 1.55 0.00 0.00

Table 9: Wealth percentages invested in SP500 using VaR∗1

5.3 The prospective value as a function of the portfolio evalua-

tion frequency
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Figure 11: Two-year SP500 returns for λ = 2.25 and k = 3
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Fitted model
Coefficient 95%-confidence

Goodness of fit
estimates interval

τ ≤ 1 year
a3 = 30.22 (12.37, 48.08)

a3τ
3 + a2τ

2 a2 = −568.4 (−920.5,−216.4) R2: 0.8143
+a1τ + a0 a1 = 3, 220 (1, 210, 5, 230) Adjusted R2: 0.7446

a0 = −2, 491 (−5, 634, 652.6) RMSE: 833.1
τ ≥ 1 year

b4 = 275.3 (41.69, 508.9)
b4τ

4 + b3τ
3 b3 = −4, 842 (−9, 067,−617.7) R2: 0.9558

+b2τ
2 + b1τ + b0 b2 = 29, 220 (3, 222, 55, 220) Adjusted R2: 0.8968

b1 = −67, 200 (−129, 500,−4, 861) RMSE: 3,123
b0 = 48, 820 (2, 217, 95, 420)

Table 10: Estimated prospective value evolution as a function of the portfolio evaluation
frequency for λ = 2.25, k = 3
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(b) τ ≥ 1 year: fourth-order polynomials

Figure 12: Curve-fitting for the prospective value on the two relevant evaluation
frequency segments for λ = 2.25 and k ∈ {0; 3; 10; 20}
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(a) τ ≤ 1 year: third-order polynomials
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(b) τ ≥ 1 year: fourth-order polynomials

Figure 13: Curve-fitting for the prospective value on the two relevant evaluation
frequency segments for λ ∈ {0.5; 1; 2.25; 3} and k = 3
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Evaluation frequency

1 day 1 week 1 month 2 months 3 months 4 months 5 months
λ = 0.5
k = 0 -22.41 -774.78 -946.11 -558.91 -828.40 -1072.19 -871.46
k = 3 -23.55 -809.63 -846.89 -532.06 -843.84 -1116.66 -863.46
k = 10 -23.23 -829.60 -900.71 -471.98 -973.28 -1386.02 -916.78
k = 20 -27.13 -873.80 -666.05 -567.40 -1024.00 -1876.70 -923.65
λ = 1
k = 0 0.00 -0.04 0.46 2.23 6.20 11.23 21.66
k = 3 -0.03 -0.25 -2.14 -4.69 -5.89 -11.38 -5.37
k = 10 -0.09 -0.72 -7.54 -17.87 -30.84 -54.14 -54.62
k = 20 -0.18 -1.37 -12.87 -25.24 -45.00 -87.87 -78.91

λ = 2.25
k = 0 17.03 61.20 294.14 1322.08 3563.08 3631.33 2933.67
k = 3 17.11 62.11 305.26 1296.84 3597.88 3640.67 2796.66
k = 10 17.48 64.56 319.82 1278.58 3618.99 3693.37 2569.44
k = 20 17.65 67.39 360.72 1217.59 3404.81 3940.34 2437.73
λ = 3
k = 0 -44107.17 72.67 357.35 2296.12 8591.95 8271.97 5150.70
k = 3 -21085.72 74.13 364.20 2317.36 9735.66 7004.40 4961.41
k = 10 32626.32 74.94 439.08 2341.81 12750.13 8266.93 4633.40
k = 20 109346.83 78.37 491.56 2679.36 12763.28 6991.29 6449.35

Table 11: Prospective value evolution for evaluation frequencies up to five months and
different parameter values
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Evaluation frequency

6 months 7 months 8 months 9 months 10 months 11 months 12 months
λ = 0.5
k = 0 -1115.90 -993.57 -1028.76 -1097.26 -1023.67 -1268.19 -2467.59
k = 3 -1083.11 -920.89 -1023.88 -1071.85 -1038.19 -1350.60 -2984.25
k = 10 -1034.21 -603.16 -1017.94 -1074.05 -1069.67 -1541.96 -4147.73
k = 20 -949.35 -447.25 -941.04 -1218.97 -929.38 -1440.39 -343.41
λ = 1
k = 0 32.16 1.42 38.99 42.88 69.67 58.28 2.97
k = 3 -13.75 -27.26 -9.02 -14.41 -12.32 -26.87 -91.19
k = 10 -85.66 -73.11 -86.00 -119.63 -125.29 -149.24 -265.29
k = 20 -106.93 -95.89 -109.68 -139.73 -176.94 -221.82 -296.50

λ = 2.25
k = 0 2241.31 2181.99 2805.10 3647.67 2449.35 3837.94 5933.59
k = 3 2120.01 2042.33 3490.35 3423.85 2237.29 3772.57 6955.50
k = 10 1793.25 1610.40 3192.06 3170.63 1804.37 3783.51 8750.43
k = 20 1876.08 929.33 4151.86 3949.50 1441.88 3824.06 10263.26
λ = 3
k = 0 3399.66 3414.29 4293.73 7173.57 3687.13 5054.86 7520.72
k = 3 3214.24 3222.21 3669.12 8055.53 3483.86 5052.01 5454.59
k = 10 2694.63 2682.72 5136.55 9095.14 2980.94 6798.98 9325.27
k = 20 3153.57 -654.15 6899.74 8882.01 2315.59 7142.13 8458.05

Table 12: Prospective value evolution for evaluation frequencies from six months τ ≤ 1
year and different parameter values
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Evaluation frequency

2 years 3 years 4 years 5 years 6 years 7 years 8 years
λ = 0.5
k = 0 -3011.96 -3082.98 -4964.06 -7691.76 -6554.58 -8661.21 -10830.26
k = 3 -3011.96 -3082.98 -4964.06 -7691.76 -6554.58 -8661.21 -10830.26
k = 10 -3011.96 -3082.98 -4964.06 -7691.76 -6554.58 -8661.21 -10830.26
k = 20 -3011.96 -3082.98 -4964.06 -7691.76 -6554.58 -8661.21 -10830.26
λ = 1
k = 0 78.63 266.14 -513.17 -146.00 1526.51 796.55 -1022.60
k = 3 78.63 266.14 -513.17 -146.00 1526.51 796.55 -1022.60
k = 10 78.63 266.14 -513.17 -146.00 1526.51 796.55 -1022.60
k = 20 78.63 266.14 -513.17 -146.00 1526.51 796.55 -1022.60

λ = 2.25
k = 0 -3661.13 3039.21 10741.69 6573.43 7016.68 11768.80 28926.98
k = 3 -5160.30 2706.18 11063.19 6942.36 7657.57 12192.57 28926.98
k = 10 -4767.64 2101.49 11245.85 7803.19 9152.97 13181.36 28926.98
k = 20 -3983.72 1605.80 10672.11 9032.94 11289.26 14593.92 28926.98
λ = 3
k = 0 -14104.02 945.54 19154.46 4220.01 2415.15 9731.33 35683.30
k = 3 -14158.12 1736.78 21797.33 4595.20 3163.75 10388.47 35683.30
k = 10 -14284.37 3042.36 30479.43 5470.66 4910.49 11921.81 35683.30
k = 20 -14464.71 10135.65 31160.75 6721.31 7405.84 14112.28 35683.30

Table 13: Prospective value evolution for evaluation frequencies higher than one year
and different parameter values
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5.4 The actual attitude towards financial losses as a function of

the portfolio evaluation frequency
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Figure 14: The loss aversion index on the two relevant evaluation frequency segments for
λ = 2.25 and k ∈ {0; 3; 10; 20}

1m 2m 3m 4m 5m 6m 7m 8m 9m 10m 11m 1y
0

0.5

1

1.5

2

2.5

3
λ=2.25
λ=0.5
λ=1
λ=3

(a) τ ≤ 1 year

1y 2y 3y 4y 5y 6y 7y 8y
0

0.5

1

1.5

2

2.5

3

3.5
λ=2.25
λ=0.5
λ=1
λ=3

(b) τ ≥ 1 year

Figure 15: The loss aversion index on the two relevant evaluation frequency segments for
λ ∈ {0.5; 1; 2.25; 3} and k = 3
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Figure 16: The average absolute cushion 1 − z for different evaluation frequencies,
λ = 2.25, and k = 3

Cushions
Sensitivity to past losses

ks (small) kl (large)

z < 1 (gains)
likely not likely

(λ̃s
t < λ) (λ̃l

t < λ̃s
t < λ)

z > 1 (losses)
likely likely

(λ̃s
t > λ) (λ̃l

t > λ̃s
t > λ)

Table 14: Possible scenarios for LAi, where λ̃s
t (λ̃l

t) stand for LAi under small (large)
values of k

Fitted model
Coefficient 95%-confidence

Goodness of fit
estimates interval

τ ≤ 1 year *A first-order power specification performs identically well.

a3 = 0.0004866 (−0.000337, 0.00131)
a3τ

3 + a2τ
2 a2 = −0.01146 (−0.0277, 0.004782) R2: 0.6055

+a1τ + a0 a1 = 0.08541 (−0.007317, 0.1781) Adjusted R2: 0.4576
a0 = 1.994 (1.849, 2.139) RMSE: 0.03844

τ ≥ 1 year
b3 = −0.006142 (−0.01023,−0.00205)

b3τ
3 + b2τ

2 b2 = 0.07538 (0.01961, 0.1312) R2: 0.9177
+b1τ + b0 b1 = −0.2239 (−0.4462,−0.0015) Adjusted R2: 0.856

b0 = 2.361 (2.115, 2.607) RMSE: 0.03592

Table 15: Estimated evolution of the loss aversion index as a function of the portfolio
evaluation frequency for λ = 2.25, k = 3
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Figure 17: The global first-order risk aversion on the two relevant evaluation frequency
segments for λ = 2.25 and k ∈ {0; 3; 10; 20}
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Figure 18: The global first-order risk aversion on the two relevant evaluation frequency
segments for λ ∈ {0.5; 1; 2.25; 3} and k = 3

Fitted model
Coefficient 95%-confidence

Goodness of fit
estimates interval

τ ≤ 1 year
a3 = 112.7 (4.283, 221.2)

a3τ
3 + a2τ

2 a2 = −1, 999 (−4, 138, 140) R2: 0.7668
+a1τ + a0 a1 = 11, 120 (−1, 092, 23, 330) Adjusted R2: 0.6793

a0 = −10, 940 (−30, 030, 8, 161) RMSE: 5062
τ ≥ 1 year

b1 = 9, 644 (4, 917, 14, 370) R2: 0.8059
b1τ + b0 b0 = 17, 310 (−6, 558, 41, 190) Adjusted R2: 0.7736

RMSE: 12,520

Table 16: Estimated evolution of the global first-order risk aversion as a function of the
portfolio evaluation frequency for λ = 2.25, k = 3
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