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Abstract

Agricultural land markets are crucial for efficient land allocation, yet they face complexities arising from 
land characteristics and the heterogeneous nature of market participants. This study explores how to 
address heterogeneity in the modelling process for land markets models by integrating Deep Reinforcement 
Learning (DRL) into the agent-based model AgriPoliS, to model strategic bidding behaviour. The simulations 
demonstrates that a DRL agent adapts its bidding strategies based on long-term growth objectives, experience, 
competitive interactions and adaptive decision-making leading to increased land rental and farm growth 
compared to a standard agent using a fixed bidding strategy. The results reveal how strategic behaviour not 
only improve individual farm performance but also affect neighbouring farms, emphasizing the dynamic 
interactions within land markets. By capturing the agent’s strategic behaviour, this work contributes towards 
more realistic modelling of agricultural land market dynamics and offers insights into the implications of 
potential land market regulations. Future research will explore multi-agent frameworks to further refine 
these interactions and address the limitations of static bidding strategies.
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1. Introduction

The primary function of agricultural land markets is to facilitate land ownership, utilization, and access, thereby 
efficiently allocating the scarce resource of land and enabling investment and development for farms (De 
Janvry et al., 2001). However, land markets are highly complex due to the unique characteristics of land such 
as immobility, non-renewability and heterogeneous qualities (soil quality, productivity, location). Heterogeneity 
of the actors in terms of farm size, resources, motivation, access to information and decision-making processes 
further adds to the complexity (Margarian, 2014).

Because of these complexities, there is debate about how well land markets function, resulting in increased 
calls for land market regulations by market participants and policy makers. In Germany, for example, 
several federal states have formulated proposals aimed at limiting land concentration per owner or farm and 
controlling sale and rental prices (Deutscher Bundestag, 2018; Landtag von Sachsen-Anhalt, 2020; MLUK, 
2023a; NASG, 2017). These policy initiatives, which have not yet come into force, aim to address issues 
such as the level of land prices, the allocation and distribution of land – including intra- and inter-sectoral 
distribution – and structural problems within farms, which include medium- and long-term effects on the 
efficiency of the sector, the distribution of rents and the exploitation of market power in land transactions. 
In addition to the institutional framework, the potential impact of these or similar regulations depends 
heavily on the structure and dynamics of competition on the land markets and on the individual behaviour 
and objectives of market participants. But there are still lingering questions such as whether these measures 
are effective or work as intended? And how can we analyse them?

These multifaceted complexities make empirical analysis of land markets challenging as addressed by 
Balmann et al. (2021), who discusses different models that deal with different aspects of the land market: 
Spatial competition models, for example, consider the immobility of land and concentrate on the geographical 
distribution of supply and demand, accounting for factors such as transportation costs and location preferences. 
Search and matching models factor in heterogeneity of land quality and the transaction costs of costly search 
and negotiation processes. Auction theory considers potential market power, which arises even without an 
explicit negotiation process due to the typically low number of potential bidders. However, Balmann et al. 
(2021) emphasize the challenges associated with modelling the function of land markets. Capturing all spatial, 
temporal, and especially behavioural aspects of land market interactions is inherently complex. One aspect 
that is particularly difficult to depict in such models are the various actors and the effects of their perceptions 
and actions. Methods that account for the impact of different actors and their perceptions and behaviour, are 
mostly limited to experimental insights. Buchholz et al. (2022) highlights that heterogeneity among farmers 
affects their decision making in agricultural land markets and their response to land market changes. Appel 
and Balmann (2023), for example, hint towards a strong influence of specific actors on the land markets. This 
underscores the need to better account for the heterogeneity of actors in models for analysing land markets 
and the assessment of policy proposals aiming at a stronger regulation of land markets.

In this respect, prior successful applications show that agent-based models (ABMs) like AgriPoliS (Agricultural 
Policy Simulator; Happe et al., 2006) can provide important insights for policy assessments. Agent-based 
models explicitly focus on modelling the interactions among farms (e.g. via land markets) to study emergent 
properties on the system level. While Heinrich et al. (2019) use AgriPoliS to specifically analyse various 
types of land market regulations. Other applications of AgriPoliS such as Happe et al. (2008), Uthes et al. 
(2011) and Appel et al. (2016) implicitly address land market implications of policy reforms, as they assess 
the effects of different policy measures or changes on agricultural structures, which are fundamentally linked 
to land market interactions.

Agent-based models are flexible regarding modelling of agent behaviour. Examples of behavioural approaches 
range from simple rules to computational intelligence, including learning. However, agent-based models of 
the agricultural sector often assume that farm behaviour is driven by profit- or utility-maximizing principles, 
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portraying farmers as perfectly rational price-takers (AgriPoliS, cf. Happe et al. (2006); MP-MAS, cf. Berger 
and Schreinemachers (2006); Schreinemachers and Berger (2011); SWISSLand, cf. Möhring et al. (2016)). 
These approaches often also overlook the complexities of decision-making in real-world scenarios. Common 
weaknesses include the sensitivity of optimization results to uncertain expectations, neglect of strategic 
considerations, and the assumption of perfect rationality among agents.

With this paper, we focus on how incorporating the behaviour of strategically oriented agents – who make their 
bidding decisions based on long-term growth objectives, past experience, current farm conditions, competitive 
interactions, and adaptive decision making – can improve the modelling of land market dynamics. To that 
end, we explore how the integration of Deep Reinforcement Learning (DRL) into the decision-making of 
the agents in the existing agent-based model, AgriPoliS, enables strategic decision making in land markets. 
Such an approach is original for the analysis of agricultural land markets and related policies. To the best 
of our knowledge, there is no agent-based model in the agricultural sector using DRL (cf (Groeneveld et al. 
(2017); Huber et al. (2018); Kremmydas et al. (2018); Storm et al. (2020)).

The paper is structured as follows: Section 2 focuses on selected concepts related to ABM and DRL. 
Section 3 illustrates AgriPoliS and the experimental set-up for integrating DRL in AgriPoliS. In Section 4, 
the results of the simulation are presented and thereafter discussed in Section 5. In Section 6, a conclusion 
of the paper is presented.

2. State of the art

2.1 Agent-based models and their behavioural approaches

ABM is a bottom-up approach for simulating complex and dynamic systems through modelling the behaviour 
and interactions of entities referred to as agents (Crooks and Heppenstall, 2012). The agents could represent 
individual or collective agents in pursuit of a specific objective(s). The agents are autonomous, heterogeneous, 
active and interact with each other and their environment. Through the individual behaviour and interactions, 
emergent phenomena and system dynamics are observed (Bonabeau, 2002; Railsback and Grimm, 2019).

ABMs usually employ behavioural approaches that are prevalent in agricultural policy analyses, such as 
myopic optimization using mixed-integer programming. Kremmydas et al. (2018) discovered in a literature 
review that approximately 45% of modelling frameworks explicitly employ mathematical programming 
optimization, including alternative methods like positive mathematical programming. Moreover, approximately 
30% of models rely on simple rules, while 25% are based on behavioural heuristics. Similar findings by 
Groeneveld et al. (2017) for agent-based land-use models indicate widespread use of optimization, heuristics, 
and stochastic decision-making components. Further, An (2012) offers a specific methodological classification 
of behavioural models for ABMs, examining coupled human and natural systems. This classification includes 
microeconomic models, space theory-based models, psychosocial and cognitive models, institution-based 
models, experience- or preference-based decision models, participatory ABM, empirical or heuristic rules, 
as well as evolutionary programming and assumptions, and calibration-based models. However, these 
behavioural approaches, especially those used in models for the agricultural sector, do not consider the 
individual strategic behaviour of farms.

An explorative study by Appel and Balmann (2023) emphasizes the effects of individual behaviour on land 
markets. They analyse the spatial influences of different behavioural clusters of farm managers. As a further 
aspect, Appel and Balmann (2023) conclude that the development and actions of a farm are not only influenced 
by other actors on the local land market, but also by the irreversibility of decisions and interactions. Their 
findings also align with the findings from Shang et al. (2021) where technology adoption and diffusion is 
influenced by the farmer’s behaviour, market conditions, institutional frameworks and social networks. 
Capturing these spatial, behavioural and temporal aspects of land market interactions is inherently complex. 
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Machine learning methods (ML) have shown a lot of promises in modelling complex behaviour and have 
the potential to be used to capture land market interactions.

2.2 Machine learning and artificial intelligence used in agriculture

Storm et al. (2020) offer an overview of machine learning (ML) approaches in agricultural and applied 
economics, emphasizing quantitative analysis. They also discuss the use of ML for surrogate models, which 
approximate the mapping between inputs and outputs of complex underlying models, such as learning to 
replicate behavioural characteristics of agent-based models (Shang et al., 2024). Similarly, van der Hoog 
(2017) explores the utilization of artificial neural networks as surrogate models or meta-modelling approaches 
in ABMs to reduce complexity and computational demands. Additionally, both Storm et al. (2020) and van 
der Hoog (2019) mention the potential application of ML and reinforcement learning (RL) in simulation 
models, enabling agents to learn optimal behaviour in dynamic, reactive environments.

In recent years, deep learning approaches based on complex multi-layer artificial neural networks, known as 
deep neural networks (DNNs), have been combined with RL. Such DRL approaches have proven exceptionally 
successful in mastering complex strategic games like Go and Chess. Prominent examples include AlphaGo, 
AlphaGoZero and AlphaZero (Silver et al., 2018; Silver et al., 2017).

Studies show that DRL can improve the precision of behavioural modelling in ABMs by allowing the 
agents to modify their behaviour through interactive learning and interaction with their environment thus 
generating more flexible and adaptive agents who interact with their environment in such a way that results 
in optimal behaviour and thus optimization agents (Dehkordi et al., 2023; Osoba et al., 2020; Turgut and 
Bozdag, 2023; Zhang et al., 2023). For instance, Vargas-Pérez et al. (2023) demonstrated that DRL agents 
outperformed static agents as an aid in building a decision support system for the best media advertising 
investment strategy. Olmez et al. (2022) show that DRL proves useful in creating agents that display 
intelligent and adaptive behaviour through time and space in a predator and prey ABM. Li et al. (2019) 
applies an extended Roth-Erev RL algorithm (Roth and Erev, 1995), for individual agent decision-making 
process in a residential land growth ABM which significantly improved the agents’ adaptive behaviour and 
improved the models’ simulation power. Liang et al. (2020) adopted a DRL algorithm for bidding strategies 
in electricity generating companies while accounting for incomplete information and in high dimensional 
continuous state and action spaces.

RL enables agents to learn which actions (such as bids on the land market) lead to greater long-term rewards 
(such as increased equity capital) through repeated interaction within the environment. Such a RL framework 
is described by Sutton and Barto (2018): It is based on states, actions, transitions and rewards. In a simplified 
RL setup, the algorithm is expressed as a Markov decision process (MDP), represented by a tuple (S, A, T, 
R, π, γ), as elaborated below:

•	 States (S), where S = s1, s2, s3, …, sn, is a finite set of all possible situations that the agents may find 
themselves in within their environment.

•	 Action a1, a2, a3, …, an, is a set of all possible actions that the agents may take within their environment 
based in their current state (s) at every possible time step (t).

•	 Transition (T ) is the transition function between states. Therefore, when an agent takes an action (at) 
at a given timestep (t), it transitions from the old state (st) to a new state (st+1) in the environment.

•	 Reward (R) is the reward resultant in the agent’s action (at) and transitioning to a new state (st+1). 
It is usually represented as a scalar reward and can be either negative or positive. The reward can 
be given at the end of every time step or can be given after the end of several steps. The goal of the 
agent is to maximize the cumulative reward which is the summation of all the rewards received until 
the terminal time step.

•	 RL policy function π defines how the agent chooses the action to take in its current state to maximize 
its cumulative reward i.e. maps that states into action. Discount factor γ is a factor between 0 and 1 
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that discounts future rewards that helps the agent balance between short-term and long-term rewards. 
Values close to 0 indicate actions that lead to long-term rewards. And for a policy π, we can estimate 
a value function Vπ, which is the value of the accumulated reward.

In a simplified way, as depicted in Figure 1, the agent observes the current state of its environment and uses 
this information to decide which action to take. The agent then receives new information and the reward 
because of the action. Based on the new observation, the agent decides whether to take new action or repeat 
the action. The cycle continues until the terminal state. The goal of the agent is to learn the optimal RL policy 
from its environment. One critical aspect of RL is that the agents learn from exploring its environment but 
at the same time exploiting good actions that have been taken before i.e. trade-off between exploration and 
exploitation. In the next section we delve a bit deeper on the model AgriPoliS and the proposed framework 
for the integration of DRL in AgriPoliS.

3. Methodology and experimental set-up

3.1 AgriPoliS

AgriPoliS (Agricultural Policy Simulator) is an ABM used to simulate effect of diverse policies and regulations 
on agricultural structural change over time (Balmann, 1997; Happe et al., 2006). The AgriPoliS environment 
is a virtual landscape with spatially located agricultural farms which are represented as farm agents. The farm 
agents are closely similar to typical farms in the region, heterogenous, have different factor endowments, 
different managerial skills, different farm ages, pursue a defined goal e.g. income maximization and exhibit 
myopic behaviour (Appel et al., 2016; Balmann, 1997; Happe et al., 2006; Sahrbacher et al., 2012). The 
farms are defined prior to initialized based on real farm data, European Union’s Farm Accountancy Data 
Network (FADN), handbook data on farming practices (e.g., for Germany, Association for Technology and 
Construction in Agriculture (KTBL)), farm structural survey (FSS) and/or expert knowledge (Njiru et al., 
2024; Sahrbacher and Happe, 2008).

The land market is at the centre of AgriPoliS where rental plots become available upon expiration/termination of 
existing rental contracts, farms downsizing or farm closures. Farms can solely grow through renting additional 
land through the land rental auction market. The rental market also forms the basis for interaction among the 
agents through their competition for additional land. The rental market takes place at the beginning of the 
production period. The rental plots are spatially distributed and the farm agent incurs transport costs between 
their own farm plots and the plots available (Happe, 2004; Kellermann et al., 2008). The farms present bids 
to the land rental market. The agent with the highest bid receives the plot. The auction is held in an iterative 
manner until all the plots are allocated. The bids (equation 1) reflect the shadow price, q (additional benefit 

Figure 1. Simplified reinforcement learning framework. Adapted from Sutton and Barto (2018).
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of renting the land), the spatial location of the plot (calculated by the transport cost between the farm plots 
and the plots available for rent), TC, and a fixed land rental coefficient, β, which determines the share of the 
shadow price that is passed on to the landowner (Happe, 2004). The remaining share 1-β remains with the 
farmer to cover further costs (including taxes, administrative expenses, fees) and the risk. For β the following 
applies: 0< β <1. In a perfectly competitive market, one would expect β to be 1.0. However, a theoretical 
study by Graubner (2018) emphasizes the potential for spatial price discrimination in the agricultural land 
market. Accordingly, in regions where space plays a significant role, such as those with larger farms, one 
would assume the share transferred to rental prices tends to be lower. In the present study, AgriPoliS simulates 
a region with a limited number of rather large farms. Therefore, β is assumed to be 0.5 for all farms of the 
respective model region.

bid = [q − TC] * β� (1)

Through use of mixed integer programming (MIP), factor endowments (land, labour (family labour, hired 
labour), fixed assets), key production activities (livestock, crops), investment options (machinery, livestock 
housing), financing options (short-term and long-term credit, liquidity) and other activities specific to the 
region (e.g. manure disposal, livestock density restrictions) are represented simultaneously while considering 
resource constraints inherent in agriculture. In each period, the farm agents follow a sequential process 
i.e. participates in the land rental auction market, makes investment, decides on what to produce, does the 
actual production, does the annual farm accountancy, decides on whether to continue or exit farming and 
the process restarts. A typical simulation run in AgriPoliS is done over 25 iterations/time periods.

As the agents are myopic, they only consider decisions one period ahead. This poses significant risks for the 
farm agents such as jeopardising the farms’ financial stability, increased vulnerability to economic shocks 
and reduced resilience to challenges such as changing market conditions. This necessitated the extension of 
the AgriPoliS model towards strategic behaviour through strategic bidding decisions that factor in long-term 
planning while leveraging on past experiences (e.g. previous rental rates), current farm situation (e.g. 
Liquidity), consideration of competitive interactions (e.g. number of farms) and adaptive decision-making.

In our novel approach, the farm agent would come up with a strategic bidding DRL policy based on state 
variables reflecting farm and sector conditions, bid interdependence, and long-term planning. The reward 
mechanism is based on cumulative sum of equity capital at the end of all the iterations. In the next sections, 
details on the methodological and experimentation setup of integrating DRL in AgriPoliS are explained.

3.2 The framework for integrating DRL in AgriPoliS

In this new framework, one agent is equipped with DRL while the other agents used the AgriPoliS behaviour. 
The DRL agent formulates a bid i.e. action based on the current state of the environment which is transmitted 
to the land market and subsequently receives feedback i.e. new states and uses this information to formulate 
a new bid. The iterative process continues until the end of the simulation run, at which point the cumulative 
sum of equity capital is calculated. The technical details are discussed in the following sections while access 
to the ODD+D protocol, datasets and code are available on the AgriPoliS website.

3.2.1 The objective

In AgriPoliS, every farm agent makes decisions independently and interacts with other agents through different 
markets, of which the land market is the most important. As the decisions are made by optimizing the profit 
only for the current year, they are myopic and might not be optimal for the agent’s long-term development. 
The objective is to find a bidding strategy in the land market that maximizes a single farm agent’s long-term 
equity capital by enhancing the agent with reinforcement learning ability and therefore making strategic 
bidding decisions in the land rental markets that maximizes the agents’ long-term growth.



Njiru et al.� Volume 28, Issue 2, 2025

398
International Food and Agribusiness Management Review

3.2.2 The environment

As this work serves mainly as proof of concept, the investigated region is deliberately made small. It consists 
of seven typical farms from the agricultural region, Altmark in Germany. One of the farms is designated as 
the DRL agent while the other 6 farms are standard AgriPoliS farms. The framework consists of three logical 
components as shown in Figure 2. The first component is the machine learning unit (MLU), through which 
the bidding strategy can be learnt. The second component is the adapted AgriPoliS environment where the 
simulation take place, henceforth referred to as the APS-ENV. The third component is a message queue 
system that allows reliable communication between the MLU and the APS-ENV both locally and remotely 
and is referred to as the COM-MQ.

This modular framework design allows the independent development of the MLU with respect to not only 
the different training algorithms and parameters but also the programming languages and computer operating 
systems.

An agent in AgriPoliS henceforth referred to as the DRL agent is trained with the MLU to formulate strategic 
bids also known as actions which are then transmitted into the APS-ENV via COM-MQ. The resultant 
data i.e. states and rewards are transmitted back to the MLU through the COM-MQ. Essentially, in this 
framework, the actions go from MLU through COM-MQ to APS-ENV while the states and rewards flow 
in the opposite direction.

3.2.3 The state space

The state space reflects the current state of the farm and region, the interdependence of bids on other farm 
level decisions (e.g. how higher/lower bids affect the investments) and long-term planning effect. The 
selected variables to represent a DRL agent’s state are shown in Table 1. There are two different soil types 
(arable and grazing) and 47 different investment options. A state has 67 variables because some variables are 
differentiated between the soil types. The agent receives state st and uses the information to prepare the bid.

3.2.4 The action

In the standard AgriPoliS Model, the β is fixed at 0.5 representing 50% of the valuation while for this new 
framework the DRL agent’s β is determined by a neural-network-based DRL architecture. The action space 
is thus a continuous variable.

3.2.5 The reward

Since the goal is to learn a bidding strategy that maximizes the agent’s long-term reward, the DRL agent only 
gets a reward at the terminal state. A state is terminal, if it is the state at the end of an AgriPoliS simulation 

Figure 2. Reinforcement learning framework within AgriPoliS.
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Table 1. Variables representing DRL agent states.
Name Type Number of 

variables
Level Notes

Terminating 
plots

List of 
integers

10 Farm Distribution of plot numbers over rest contract length 
(1 to 5 years). This is differentiated between arable 
land and grassland

Liquidity Real 1 Farm Ability to of the farm to meet short term liabilities
Farm age Integer 1 Farm Age of the farm
Investments List of 

real
47 Farm Remaining life of the investments

Previous 
rental rate

Real 2 Farm The latest amount of rent paid by the agents. This is 
differentiated between arable land and grassland

Management 
coefficient

Real 1 Farm This is reflecting the farms’ managerial ability by 
manipulating the variable costs. 

Free plots Integer 2 Region Number of available (remaining) free plots in the 
region. This is differentiated between arable land and 
grassland

Number of 
farms

Integer 1 Region Number of competing farms

Average rent 
price

Real 2 Region The average rental rate in the region for the previous 
year. This is differentiated between arable land and 
grassland.

run. For the experiments, the simulation run is over 10 years with the first year denoted as iteration 0 being 
the initialization run. The reward in this case is the cumulative sum of its equity capital over the simulation 
run. We use cumulative sum of equity rather than final equity to encourage consistent improvement in farm 
performance across iterations rather than focusing only on the final state. Emphasizing the final equity value, 
on the other hand, could lead to riskier strategies that prioritize highest profits in certain iteration, while 
potentially risk the farms stability. In addition, models trained exclusively on final equity values are expected 
to show increased sensitivity to the number of iterations considered. In contrast, the use of cumulative rewards 
mitigates this sensitivity by encouraging the agent to consider both short-term and long-term profitability, 
and thereby assumingly promoting a balanced and robust learning curve that includes both immediate gains 
and sustainable performance.

Let’s denote the transition from the state s to s′ by taking the action a as (s, a, s′), then the cumulative reward 
R can be described as

R s a s ri( , , )

if s′ is a terminal state, otherwise R(s, a, s′) = 0. Here ri is the equity capital of the DRL agent after the ith 
year in the simulation with AgriPoliS.

3.2.6 The algorithm and experimental set up

In Figure 3, the detailed processes in the three components in the framework are illustrated. All data flows 
through COM-MQ are indicated with blue lines, whilst the black lines show the data flows within a subsystem 
APS-ENV or MLU. “partial rewards” within COM-MQ means the equity capital after every single year. 
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The process begins by initializing the APS-ENV, the DRL policy network with random weights, the play 
buffer for storing the training data, episode (the number of iterations for every AgriPoliS simulation run), 
episodes per epoch, the number of epochs among other parameters. A summary of values of the parameters 
is presented in Table 2. As the action space is continuous, the learning is approached through a deterministic 
policy gradient algorithm (Silver et al., 2014). In this algorithm only one DRL policy network is used, the 
input of which is the state and output the action. The learning is iterative with fixed number of epochs. In 
each epoch, it goes through three steps: training data collection, network update and DRL policy testing.

To collect training data, the DRL policy network is used to obtain actions enhanced with noise to encourage 
exploration. Since the DRL agent only get nonzero reward at terminal states, the simulations with AgriPoliS 
will not be stopped or interrupted and they are rollout episodes with the same length, the number of simulation 
years. The reward is given at the end of a simulation/episode, i.e. cumulative sum of the equity capital. Only 
episodes with largest rewards are used for training. The state action pair (s, a) in these episodes are used for 
updating the DRL policy network. These pairs with the rewards of their episodes are put in a memory called 
play buffer. The play buffer is updated, if new episodes have larger rewards.

The update of the DRL policy network exploits supervised learning algorithms where states are the inputs 
and actions from the play buffer are target values. Concretely we use mean squared error (MSE) as the loss 
function and ADAM (Adaptive Moment Estimation) as the optimizer.

After updating the DRL policy network, the last step in an epoch is to test the DRL policy learned. This is 
a standard simulation run with AgriPoliS, obtaining the actions from the updated DRL policy network, but 
without additional noises. The learn behaviour can be seen in the rewards of the testing runs of all the epochs.

The algorithm combines Monte Carlo tree search (MCTS) with supervised learning like the algorithm  
in AlphaGo (Silver et al., 2016). Although here the search tree is not explicit but implicitly saved in the 
play buffer.

Figure 3. Detailed dataflow of DRL in AgriPoliS.
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Table 2. Training parameters for the reinforcement learning
Parameter Value Notes

N 2000 Number of epochs
S 30 Number of simulations (episodes) per epoch
Y 10 Number of years per simulation (episode)
N_hidden 2 Number of hidden layers of DRL policy network
S_hidden 16 Size of hidden layers of policy network
LR 1e–4 Learning rate of DRL policy network
Batch 8 Batch size

To make the algorithm more understandable, the pseudocode in Python style is given below.

Algorithm: MLU reinforcement learning algorithm

def initialization (N, S, Y, ENV):		  # ENV is an instance of APS-ENV
	 P.init()				    # initialization of DRL policy network P with arbitrary weights
	 PlayBuffer=[]			   # the play buffer for training data
	 noise.reset()			   # reset noise generator
	 num_epochs=N			   # number of epochs
	 num_simulations=S		  # number of simulations per epochs
	 num_years=Y			   # number of years for every simulation with AgriPoliS
	 best_reward=0			   # best episode reward
	 MQ .init(ENV)			   # MQ is an instance of COM-MQ

def simulation(test=False):		  # Simulation with AgriPoliS
	 y=0				    # current year
	 episode=[]
	 R=0
	 while y < num_years:
		  state=MQ.get_state()
		  action=P(state,w)		 # action from DRL policy network
		  if not test:
			   action += noise()
		  MQ.send_action(action)
		  equity=MQ.get_equity()
		  R=R + equity
		  if not test:
			   episode.append((state,action))
		  y += 1
	 return R
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def main(N, S, Y, ENV):
	 initialization(N, S, Y, ENV)
	 e=0					     # current epoch
	 while e < num_epochs:
		  s=0				    # current simulation
		  while s < num_simulations:
			   R=simulation()
			   if R > best_reward:
				    PlayBuffer.update(episode)
			   best_reward=R
			   s += 1
		  P.update()			   # Learning with MSE loss function and ADAM
						      # optimizer using training data from PlayBuffer
		  R=simulation(test=True)	 # test the learned DRL policy
		  e += 1
		  output (e, R)			   # output the test run

3.3 Evaluation

Unlike in traditional ML methods, evaluation is not based on the loss function as the optimal reward is 
unknown and the training data is dynamically updated, the value of the loss function varies with the epochs 
and therefore it is not suitable to indicate the quality of the learnt DRL policy. The DRL learnt behaviour 
is evaluated by the output of the cumulative sum of equity capital from the testing run in every epoch. 
Comparison is also made between the DRL agent and the Baseline agent in terms of rented land, bidding 
strategy and the cumulative sum of equity capital.

3.4 The agents set-up

There are 7 farm agents spatially located in the region (Figure 4). A description of the farm agents at 
initialization is provided in Table A1 in the Appendix. The farm agents are heterogeneous and stable implying 
relatively low risk of the farms exiting farming within a simulation since the reward is only calculated at the 
end of the simulation run. The farms are also active in the land market, albeit with varying levels of activity 
as shown in the Baseline scenario which is a standard AgriPoliS run without DRL (Figure 5).

In the first part, Farm 4 (F4) is designated as the DRL agent because it is neither too aggressive nor too 
passive regarding the rental market while the other farms are designated as the standard AgriPoliS agents. 
In the second part, the DRL experiments are repeated while setting the other farms as the DRL agents to test 
the flexibility and adaptability of the framework to other farms with different structures. The results from 
the experiments are presented in Section 4.

4. Simulation results

In this section, the results from the APS-ENV and MLU integration are presented. In section 4.1, a single 
DRL agent (F4) was trained to compete against 6 standard AgriPoliS agents (Baseline agents) in the land 
market. The behaviour of the DRL agent was evaluated based on cumulative rewards, total rented plots and 
the bidding strategy and then compared to the Baseline agent representing the standard AgriPoliS behaviour 
without DRL. In Section 4.2, the flexibility of the framework to be adapted to other agents is explored. Here, 
the simulations were replicated by designating different farm agents as the DRL agent and subsequently 
comparing the results to those of the Baseline agent.
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Figure 5. Baseline scenario for farm size in AgriPoliS.
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Figure 4. Regional representation of farms in AgriPoliS. Note: regions in AgriPoliS are modelled as tori, which 
means that neighbouring regions wrap around each other, creating a continuous loop without boundaries.
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4.1 Training the DRL agent

The DRL agent (F4) was trained and the learnt behaviour over 2000 epochs was generated. The DRL agent’s 
highest cumulative sum of equity capital reflects a 7.29% increase relative to the Baseline agent’s cumulative 
sum of equity capital (Table 3).

Figure 6 displays the cumulative sum of equity capital for the DRL agent over 2000 epochs. The graph 
demonstrates that the DRL agent surpassed the performance of the Baseline agent from the first epoch and 
continues to improve over subsequent epochs to stabilize to approximately 7.9 million euros around the 
1000th epoch.

Figure 7a illustrates that the strategy resulting in the highest cumulative reward was not a fixed bidding 
strategy but rather that the DRL agent varied the beta coefficient between the iterations during a simulation 
run. Furthermore, the DRL agent’s farm size increased because of renting more plots of land from the land 
rental market compared to the Baseline agent’s farm size (Figure 7b).

The land rental market is key for interaction among the farms because one farm can only grow if other farms 
downsize or even exit. Consequently, it was vital to investigate how DRL affected other farms through their 
interaction in the land market (Figure 8).

Table 3. Comparison of the agent’s equity capital (Baseline vs DRL).
Baseline agent (F4) DRL agent (F4) Relative change (%)

Initial equity capital (€) 789 808 789 808 –
Annual average equity capital (€) 820 786 880 586 7.29
Cumulative sum of equity capital (€) 7 387 073 7 925 292 7.29

Figure 6. Cumulative reward for the DRL agent over 2000 epochs.
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Figure 7. (a) Best bidding strategy for the DRL agent. (b) Evolution of farm size (ha).
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Figure 8. Effect of learning on farm size for other farms.
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Table 4. Comparison of the cumulative sum of equity capital for all the farms.
Farm agent Baseline cumulative reward DRL maximum cumulative reward Relative change (%)

F0 2 288 694 2 287 647 −0.05
F1 3 932 183 4 022 778 2.30
F2 6 850 762 6 976d853 1.84
F3 12 669 940 12 868 645 1.57
F4 7 387 073 7 925d292 7.29
F5 7 889 960 8 613 919 9.18
F6 8 354 720 9 120 867 9.17

For example, F5 experienced a decline in the farm size in the DRL scenario compared to the Baseline 
scenario because of less rented plots due to the DRL bidding strategy. The size of F0 remained relatively 
low indicating that F0 was not that active on the land market in both scenarios. The same effect was also 
observed for all the farms as illustrated in Fig. A1 in the Appendix.

4.2 Flexibility of the framework

Based on the success of the training process in Section 4.1, and to test the adaptability and flexibility of the 
framework, experiments were repeated using the same network architecture and hyperparameters for all the 
other farms. The results were evaluated based on the same reward structure i.e. the farm agent’s cumulative 
sum of equity capital and compared with the Baseline.

Based on the metrics in Table 4, it is evident that there was an increase in the cumulative sum of equity 
capital for all the farms in the DRL scenario compared to their Baseline except for Farm 0 which showed 
a slight decrease of 0.05% in the cumulative sum of equity capital with DRL. F0, F1, F2 experienced a 
modest increase of 2.30, 1.84 and 1.57%, respectively, in the cumulative sum of equity capital. F4 to F6 saw 
significant increase of 7.29, 9.18 and 9.17%, respectively, in the cumulative sum of equity capital with DRL.

Figure 9 displays the cumulative sum of equity capital at every epoch relative to the Baseline. The results 
across 2000 epoch demonstrate variations in the speed of learning among the farm agents. F0 however, 
performed worse even after learning over 2000 epochs. An investigation as to whether restricting training 
to 2000 epochs caused the lack of convergence was conducted. A 2-fold increase in the number of epochs 
did not improve the learning for the agent. This shows that the agent did not benefit from learning and this 
is further reinforced by the fact that the farm seemed to rent relatively the same (very low) number of rental 
plots in both DRL and Baseline scenarios (Figure 10a). In contrast, F6 rented significantly more land when 
using DRL as compared to the Baseline (Figure 10b). This also led to a significant increase in their farm 
size and subsequent increase in their cumulative sum of equity capital (Table 4). Also, all the other farms 
rented more plots of land by using DRL as compared to the Baseline. However, farms F1 to F3 showed 
negligible increment in rented plots between the DRL and Baseline scenarios (Figure A2 in the Appendix). 
This is also reflected by a relatively low increase in their cumulative sum of equity capital. Like F6, F5 
rented significantly more land when using DRL as compared to the Baseline which is also in line with their 
significant increase of cumulative sum of equity capital.

In Figure 11, an illustration of bidding strategies for selected individual farms indicates that by varying their 
bidding coefficient the farm agents can maximize their rewards (see Figure A4 in the Appendix for the best 
bidding strategy of the farms not presented here). Every farm had a unique best bidding strategy while all 
the other farms maintained a fixed bidding strategy in the DRL scenario.
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Figure 9. Relative change in cumulative reward in DRL compared to the baseline for all farms.

5. Discussion

In this paper, we explored how the integration of DRL into the decision making of agents in AgriPoliS 
enables strategic behaviour and interactions. The exploration began by constructing an advanced framework 
consisting of a learning unit (MLU), communication unit (COM-MQ) and an adapted AgriPoliS environment 
(APS-ENV). Through the framework, a single agent learnt a bidding strategy that maximized their cumulative 
reward i.e. cumulative sum of equity capital based on state variables reflecting farm and regional conditions, 
bid interdependence, and long-term planning. The results were then compared to a Baseline scenario (standard 
AgriPoliS agent) where the agent used a fixed bidding coefficient. The DRL agent demonstrated superior 
adaptability and strategic decision-making compared to the standard AgriPoliS agent.

The strategic superiority of the farm agent is demonstrated by their greater competitiveness on the land 
market and stronger farm growth, as demonstrated by the increased farm size (Figure 7b). Comparatively, 
the DRL agent performed better than the Baseline agent as shown by the increase in the cumulative sum 
of equity capital (Table 3 and Figure 6). Additionally, the results indicate that the best strategy based on 
the state variables significantly differ from the use of a fixed bidding coefficient (Figure 7a). On the other 
side, the bidding strategy proved to be detrimental to other farm agents (with standard fixed β) as the DRL 
agent outbid them in their quest to rent more land from the land rental market (Figure 8). Overall, the DRL 
framework underlines how adaptive decision-making can promote a farm’s long-term growth.

To further evaluate the adaptability of the DRL framework, simulations were repeated across all farm agents 
using the same hyperparameters, allowing us to assess its flexibility for heterogeneous farm types. The 
results showed that the framework could be applied effectively to other farms exhibiting different structures 
and financial capabilities (Figure 9). With the DRL bidding decisions being adaptive and driven by past 
experiences, current farm situation, regional conditions, and competitive interactions, it is therefore sensible 
that the bidding strategies differed across the farms further illustrating how the heterogeneity of farms leads 
them to different bidding strategies and thus difference in farm growth. However, at this stage, the learning 
processed is more effective for farm agents with high activity on the land market and not for farms with 
minimal land market activity (Figure 10). Although it should be theoretically possible that farms with low 
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Figure 10. Evolution of farm size(ha) for selected farms.
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Figure 11. Best bidding strategy for selected farms.
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activity on the land market could benefit from additional tuning of the hyperparameters for enhanced learning, 
this might not be too relevant for studying land market interactions. Land market dynamics are driven by a 
few very strong actors (Appel and Balmann, 2023) and therefore it should be sufficient to model improved 
strategic behaviour for some agents while others show the default behaviour. These results underline the 
potential of the DRL framework to model the dynamics of land markets more realistically by reflecting the 
strategic heterogeneity among farms.

Building on these findings, we can consider the broader implications of adapting standard AgriPoliS agents’ 
bidding strategies beyond a fixed coefficient. The results could be understood as an indication that assuming 
a constant bidding coefficient of 0.5 for standard AgriPoliS agents might just be too low. However, Graubner 
(2018) emphasizes the potential for spatial price discrimination in the agricultural land markets: Due to 
distance costs, farms face a convex (price-elastic) regional land supply, resulting in imperfect competition 
and a reduced share of income from land being transferred to rental prices. This theoretical work is also 
underpinned by empirical studies. For instance, Kilian et al. (2012) examined the share of expected income 
from land (direct payments) capitalized into land prices, finding incidences ranging from 28 to 79% for 
Germany (Bavaria), depending on the direct payment type and land category. Although direct payments 
are only a part of the expected additional income used to determine shadow prices and, consequently, land 
market bids, these findings suggest that farmers typically bid only a fraction of their shadow price. Assuming 
an optimized fixed bidding coefficient for each standard AgriPoliS agent, we estimate these coefficients to 
range between 0.44 and 0.77 (see Table A2 in the Appendix). The bidding strategy employed by the DRL 
agent surpasses this optimized fixed coefficient by adaptively adjusting its renting coefficient to the specific 
individual and land market conditions in each iteration. These results indicate that strategic advantage in 
the land market is not simply a matter of having a higher or lower bidding coefficient, but rather lies in 
adaptively adjusting bidding decisions based on past experiences, current farm situation, regional conditions, 
and competitive interactions, resulting in optimized spatial and temporal price discrimination.

While our findings underscore the value of the DRL framework for enabling adaptive bidding strategies for 
a more realistic modelling of land market dynamics, certain limitations must be acknowledged in terms of 
the study’s scope and computational feasibility. In this study, the region was modelled with 7 farm agents, 
whereas a typical real-world region, would comprise several hundred farms, creating a more dynamic 
environment and requiring simulations that could extend over several days, weeks or even months. This 
simplification helped to reduce complexities such as training time, computational cost (memory, processing 
power) and convergence to a stable solution. Future studies could aim to model larger regions by addressing 
these complexities through approaches like parallelized training, automated hyper-parameter optimization 
and use of faster GPUs.

A key criticism of DRL is that the agent learns through repeated simulated interactions with the environment, 
allowing them to experience millions of possible scenarios – an advantage not available to real-life farmers 
who face external constraints and limited information. However, in this framework, the information provided 
to the DRL agent (Table 1) mirrors what a well-informed and well-connected regional farm manager might 
realistically possess. Just as a farm manager would rely on a combination of experience, knowledge, and 
intuition to refine their bidding strategies over time, the DRL agent refines its bidding strategies over time 
based on experience and evolving expertise. These aspects of experience and intuition cannot be captured by 
traditional normative models (Buchholz et al., 2022). While DRL cannot explicitly cover all these aspects 
either, it enables agents to learn optimal strategies through iterative adjustments, creating a form of experience 
or intuition. Furthermore, our analysis (Figure 6) illustrates that the DRL agent effectively leveraged the 
available information to make competitive decisions, resulting in increased cumulative equity capital from 
the outset. This suggests that strategic behaviour can emerge even without extensive information (Silver 
et al., 2021). While indeed DRL has the theoretical potential to provide virtually unlimited information 
through extensive iterations and data, our study was constrained by computational limitations, prompting us 
to only provide information in Table 1 to the DRL agent which does not completely reflect the complexity 
of human decision making.
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Another critical aspect of the presented DRL framework is the assumption that other agents adopt a fixed 
bidding strategy throughout the simulation. This simplification creates a relatively stationary environment, 
allowing the DRL to exploit the static behaviour of the other agents. In reality, however, other farms would 
adjust their behaviour in response to unsuccessful bids. These adjustments would have implications at 
both the farm and regional levels, introducing an additional layer of modelling complexity that has not 
been effectively addressed yet. To capture this additional layer of complexity, future work will focus on 
advancing the current DRL framework towards a multi-agent deep reinforcement learning (MADRL) 
approach. In such an advanced framework, multiple agents would use DRL to determine their bidding 
decision in the land market, rather than relying on a rule-based heuristic like the fixed bidding coefficient. 
MADRL is particularly useful for modelling more complex interactions, competition, and dependencies 
among agents. With MADRL, agents can sense and respond to other agents’ strategies, which may lead 
to higher efficiency, fiercer competition or even collaboration among them (Busoniu et al., 2008; Osoba 
et al., 2020). This approach would enable us to study optimal land allocation among farm agents, potential 
improvements of land use and investment planning, and possible increases in earnings. Through improved 
behavioural strategies, it could also contribute to discussions on how farms may adapt to, or even circumvent 
land market regulations. Despite these advantages, MADRL introduces certain challenges, particularly in 
managing the complexity of a continuously changing environment: as all agents learn simultaneously, the 
environment becomes non-stationary making it more challenging for the agents to strategically adjust their 
actions. Additionally, as the number of agents increases, the ‘curse of dimensionality’ intensifies, with a 
corresponding rise in the number of state and action variables to consider – introducing computational 
challenges that we are actively working on.

6. Conclusion

The aim of this paper was to explore how farms strategic decision-making behaviour in land markets could 
be captured more accurately by integrating DRL as an alternative behavioural approach in AgriPoliS. In this 
framework, a single DRL agent learns adaptively from the environment, enabling them to generate bids, 
focusing on long-term growth. The agent’s decisions are informed by state variables that capture the farm’s 
status, regional conditions, and competitive interactions thus simulating aspects of long-term planning, 
experience, and adaptive decision making in the land markets. Within this set-up, the agent competed against 
the standard myopic behaviour of traditional AgriPoliS agents.

The experiments demonstrated that the DRL agent was more competitive in the land market and managed 
to increase their long-term growth as indicated through increases in farm size and cumulative sum of equity 
capital. As the DRL agent’s farm expanded through strategic bidding, other farms faced a corresponding 
decrease in rented land. Additionally, when different farms designated as the DRL agent, they adopted 
unique bidding strategies resulting in increased, though varied, growth for the respective farm. These results 
underscore the potential of using DRL in capturing strategic decision-making for heterogeneous farms, laying 
the foundation for further exploration of strategic farm behaviour in agricultural modelling. The findings 
provide valuable insight into improving potentials in modelling of farm decisions and behaviours, addressing 
a gap where most models rely on rule-based heuristics or myopic decision making in land markets.

Future work will expand the model to include a larger region with more farms, introducing greater competition 
and improving the realism of the representation of regional farm structures. Additionally, we plan to extend 
the framework to MADRL, enabling multiple agents to use DRL to learn and adjust their strategies over 
time. Such a model could serve as a valuable tool for modellers, practitioners and policymakers, helping to 
explore land market dynamics and assess the effects of proposed land market regulations.
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Appendix

Table A1. Description of farm at initialization (iteration 0).
Farm name

F0 F1 F2 F3 F4 F5 F6

Farm type Crop farm Crop-farm Crop farm Dairy farm Mixed farm Mixed farm Mixed farm
Land (ha)
	 Owned land 10 22 14 32 24 24 31
	 Rented land 13 35 97 57 40 40 31
Selected indicators
	 Farm age 43 52 44 55 44 64 64
	 Variable cost 
coefficienta

0.89 0.99 0.89 1.07 1.07 1.00 0.95

	 Land assets 
(× €1000)

166.06 373.31 616.04 488.11 368.93 368.93 510.23

	 No of 
investmentsb

1 1 4 6 6 6 6

	 Type of 
investment

Machine6 Machine5 Extcattle4 Dairy4 Pigs3 Pigs3 Pigs4

Machine4 Robot2 Intcattle2 Intcattle2 Intcattle2
Machine5 Vealer3 Dairy2 Dairy2 Dairy1

Machine5 Parlour2 Parlour2 Parlour1
Machine6 Vealer3 Vealer3 Machine5
Machine5 Machine5 Machine5 Machine7

Machine7 Machine7
	 Liquidity  

(× €1,000)
−10.51 −57.34 −102.47 533.45 151.47 111.58 122.45

	 Equity capital 
(× €1000)

176.71 328.65 544.13 1181.45 782.33 782.33 782.33

This is reflecting the farms’ managerial ability by manipulating the variable costs. There are 47 different types of investments with 
different capacities, lifetimes and costs. The agents are free to dispose, buy or even switch to different type of machinery. There are 
43 different crop and livestock production activities.
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Figure A1. Effect of learning on the farm sizes of all the farms in the region
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Figure A2. Evolution of farm size for the remaining farms.



Njiru et al.� Volume 28, Issue 2, 2025

420
International Food and Agribusiness Management Review

Iteration
(a) Farm 1

B
et
a 
co
effi

ci
en
t

Iteration
(b) Farm 2

B
et
a 
co
effi

ci
en
t



Njiru et al.� Volume 28, Issue 2, 2025

421
International Food and Agribusiness Management Review

Iteration
(c) Farm 3

B
et
a 
co
effi

ci
en
t

Iteration
(d) Farm 5

B
et
a 
co
effi

ci
en
t

Figure A3. Best bidding strategy for the remaining farms.
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Table A2. Comparison between fixed, optimal fixed and flexible rental factor (β).
Farm agent Cumulative reward

Baseline (β=0.5) Optimal fixed β (optimal β in parentheses) DRL (flexible β)* 

F0 2 288 694 2 291 395 (0.51) 2 287 647
F1 3 932 183 4 023 643 (0.59) 4 022 778
F2 6 850 762 6 896 696 (0.44) 6 976 853
F3 12 669 940 12 833 917 (0.59) 12 868 645
F4 7 387 073 7 840 896 (0.62) 7 925 292
F5 7 889 960 8 211 464 (0.77) 8 613 919
F6 8 354 720 9 025 105 (0.75) 9 120 867
* See Figure A2.

Figure A4. Relative change in cumulative reward in DRL compared to the Baseline for all farms. *See 
Figure 10, Results.


