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When No News is Good News: Multidimensional

Heterogeneous Beliefs in Financial Markets

Abstract

We demonstrate the asset pricing implications of investors’ belief heterogeneity

in the frequency of news arrival and its joint impact with heterogeneous beliefs about

news content. Investors trade volatility derivatives against each other to speculate

on the rate of news arrival: greater disagreement of this kind gives rise to more

extreme derivative positions. When disagreement about news arrival frequency is

low, volatility exhibits mean reversion because extreme optimists and pessimists

incur substantial wealth losses amid intense market swings. In contrast, high dis-

agreement about the news arrival rate leads to volatility persistence. When news

is absent in such environments, volatility sellers dominate, and extreme payoffs are

underweighted in the formation of market expectations, resulting in lower implied

volatility. In this context, “no news” effectively becomes good news for risky asset

valuations.

Key words: News arrival, heterogeneous beliefs, derivatives, volatility

JEL codes: G11, G12, D83, D84



1 Introduction

News plays a central role in financial markets by triggering price adjustments, redis-

tributing wealth, and shaping volatility through the arrival of new information. Yet what

matters is not only what the news says, but also how often it arrives. This distinction

introduces a crucial dichotomy between the content of news (e.g., whether it signals fa-

vorable or unfavorable fundamentals) and the frequency of news arrivals (i.e., how often

informative events occur). While much of the literature focused on disagreement over con-

tent—capturing the classic divide between optimists and pessimists—less attention has

been paid to heterogeneity in beliefs about the tempo of information flow. In practice,

investors may broadly agree on the relative likelihood of good versus bad news, yet differ

in their expectations about how often such news will materialize. This second dimension

of belief is particularly relevant in markets where volatility itself becomes the object of

speculation, such as in options and volatility derivatives. Understanding how these two

dimensions—news content and arrival rate—interact is thus essential for explaining price

dynamics and the persistence of volatility, even in the absence of major surprises.

This paper fills the gap by developing a tractable asset pricing framework that incor-

porates heterogeneity in both the content and frequency dimensions of investor beliefs.

These beliefs translate into positions in both the underlying asset and derivative markets,

allowing us to examine how wealth is redistributed across agents with divergent expecta-

tions. Those that are proven correct ex post accumulate more wealth, thereby exerting

greater influence on asset prices. Bullish and bearish investors benefit, respectively, from

favorable and unfavorable news. Simultaneously, volatility sellers profit when news is in-

frequent and market volatility is low, whereas frequent news arrivals generate persistent

volatility that favors volatility buyers.

Realized frequency of news arrival exerts a subtle yet powerful influence on investor

behavior and market outcomes. More frequent news arrivals reduce wealth-weighted dis-

agreement over content, penalizing investors with incorrect beliefs, while simultaneously

increasing the wealth-weighted average belief about the arrival rate. Crucially, the im-

pact of news arrival frequency on asset prices and volatility depends on the structure

of investor disagreement. When investors broadly agree on the rate of news arrival but

disagree about its content, more frequent news is associated with higher asset prices and

lower implied volatility. In contrast, when disagreement about the news arrival rate itself

is substantial, increased frequency of news lowers asset prices and raises implied volatility.

These patterns highlight the importance of modeling belief heterogeneity along multiple

dimensions to understand complex dynamics in underlying and derivatives markets.
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To formalize these insights, we develop a discrete-time model in which the state of the

world evolves along a trinomial tree representing three possible outcomes “good news,”

“no news,” and “bad news,” that affect the terminal payoff of risky assets. Sometimes,

even scheduled news announcements may correspond to no material change in fundamen-

tals. In such cases, although these announcements are inherently news events, they are

classified as “no news” within this framework. Accordingly, the level of fundamentals is

reflected by the difference between the counts of good and bad news, while their sum

captures the realized frequency of news arrivals.

Agents in this economy hold heterogeneous beliefs, characterized by two parameters:

the perceived probability of news arrival, v, and the conditional probability of “good

news” given arrival, u. These parameters capture disagreement along both the frequency

and content dimensions of news. Initial wealth is distributed according to a flexible and

analytically tractable two-dimensional beta distribution.

Investors trade two risky assets: a market asset that reflects fundamental values, and

a one-period, delta-neutral derivative, similar to a straddle, that provides pure exposure

to gamma. Portfolio allocations embody investors’ subjective beliefs: positions in the

market are shaped by their optimism or pessimism about fundamentals, while positions

in the derivative are primarily driven by their beliefs about the frequency of informative

events. Consequently, derivative holdings serve as an observable proxy for disagreement

over news frequency, enabling us to distinguish between environments characterized by

low and high disagreement.

As agents trade and accumulate gains or losses, the wealth distribution shifts toward

those whose beliefs more closely align with realized outcomes. Asset prices are shaped

by this evolving, wealth-weighted distribution of beliefs. In particular, the market price

reflects a harmonic average of the terminal payoff, aggregated over all possible future

news trajectories and weighted by investors’ current wealth. The risk-neutral variance

of market returns, in turn, captures the belief dispersion within this wealth-weighted

distribution.

Frequent news arrivals affect the shape of the wealth-weighted distribution in distinct

ways. When disagreement is primarily about the content of news, frequent arrivals con-

centrate wealth among agents with more accurate assessments, reducing implied volatility

and supporting higher prices. In contrast, when disagreement centers on the frequency

of news itself, frequent arrivals sustain broader dispersion in beliefs and wealth, thereby

increasing implied volatility and dampening prices. Since more frequent news arrivals also

translate into higher realized volatility, these two scenarios imply different volatility dy-

namics: mean reversion when disagreement is mainly about content, and high persistence
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when it concerns arrival rates.

Exploring further, the relationship between agents’ subjective return expectations and

their derivative positions reveals a U-shaped pattern. Extreme optimists and pessimists

hold larger derivative exposures, anticipating greater volatility, while moderate investors

act as derivative sellers. This pattern underscores the speculative nature of trading driven

by heterogeneous beliefs, with wealth dynamics amplifying the influence of extreme views

on market outcomes.

Furthermore, we demonstrate that investors’ derivative positions are closely linked to

their subjective return expectations. Investors with extreme bullish or extreme bearish

views on market returns tend to take large positions in the volatility derivative, reflecting

strong beliefs about the frequency of news arrivals. In contrast, investors with moderate

expectations act as counterparties and sell this volatility derivative. The model delivers

closed-form expressions for both the wealth distribution across return beliefs and the

corresponding derivative exposures, confirming this U-shaped pattern: extreme return

expectations are associated with higher perceived news frequency and greater derivative

investment.

This framework is particularly well-suited to environments where investors expect the

data-generating process to remain stable and the nature of news to be consistent over a

defined period while acknowledging the possibility of a regime shift before or after this

window. The model also demonstrates flexibility by showing its equivalence to various

alternative setups and interpretations. In particular, its pricing outcomes are equivalent

to those of a representative agent with log utility who learns over time, starting from a

prior belief distribution that mirrors the initial wealth distribution in our setup. Alterna-

tively, the framework can be reinterpreted through the lens of momentum and contrarian

trading strategies: momentum traders assign greater probability to extreme realizations,

expecting trends to persist, while contrarian investors anticipate mean reversion, placing

more weight on outcomes clustered around the average.

Relevant literature. Heterogeneous beliefs shape financial markets and diverse ex-

pectations drive speculative trading and volatility Harrison and Kreps (1978), Scheinkman

and Xiong (2003). Our work builds on the vast literature of heterogeneous beliefs, en-

riching the analysis by modeling belief heterogeneity in both news content (optimistic vs.

pessimistic views) and news arrival frequency—a dimension offering new insights into asset

pricing, volatility, and portfolio dynamics. Another possible dimension of heterogeneity

is agents’ preferences, and it has been studied by Dumas (1989), Chan and Kogan (2002)

although agents’ belief heterogeneity is not taken into account (Shiller (1987), Ben-David,

Graham and Harvey (2013)).
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Earlier works in asset pricing studied the role of disagreement in market efficiency

Figlewski (1978), in evolution of wealth distribution (Zapatero (1998), Jouini and Napp

(2007), Bhamra and Uppal (2014)), in volatility and trading volume (Basak (2005), Baner-

jee and Kremer (2010), Atmaz and Basak (2018)), in the amplification of important but

rare states (Kogan et al. (2006)), in the pricing of derivatives (Buraschi and Jiltsov (2006)),

and in the reactions of prices to public information (Ottaviani and Sørensen (2015)). Our

model extends these by incorporating news frequency and our gamma-exposed derivative

isolates frequency beliefs, enhancing the understanding of derivative pricing. Cao and Ou-

Yang (2008) models options trading driven by differences in signal precision. We extend

that by incorporating wealth effects and analyzing how changes in wealth influence the

dynamics of derivatives trading. We also show frequency disagreement spurs derivative

speculation, notably among extreme optimists/pessimists.

More recently, Martin and Papadimitriou (2022) highlights how sentiment-driven trad-

ing amid belief heterogeneity amplifies both volatility and trading volume, resonating with

our content dimension. Atmaz and Buffa (2023) connects volatility disagreement to vari-

ance risk premia and time varying leverage effect. By modeling news frequency with a

trinomial tree and gamma derivative, we enhance those works by revealing how news

frequency disagreement alongside news content disagreement drives volatility and pricing

dynamics.

Most prior literature restricts to the diffusion setting. Within the papers mentioned

above, one exception is Chen, Joslin and Tran (2012), where a model with heterogeneous

beliefs about disaster risk is considered. The model is tractable, which allows us to study

many issues analytically. The tractability partially benefits from the assumption of log-

utility, which we view as a reasonable benchmark given the results of Martin (2017),

Kremens and Martin (2019), Martin and Wagner (2019), Gao and Martin (2021) and

Martin and Papadimitriou (2022)—representative investor’s perceived risk premium is

equivalent to the risk-neutral variance. It also reflects the fact that we work with a

continuum of beliefs, as in Geanakoplos (2010), Atmaz and Basak (2018), Martin and

Papadimitriou (2022) but unlike the two agents models of Harrison and Kreps (1978),

Scheinkman and Xiong (2003), Basak (2005), Buraschi and Jiltsov (2006), Kogan et al.

(2006), Dumas, Kurshev and Uppal (2009), Banerjee and Kremer (2010), Simsek (2013),

Bhamra and Uppal (2014), Borovička (2020), Chabakauri and Han (2020), and Atmaz

and Buffa (2023). The continuum of beliefs structure allows us to separately identify

the effects of wealth-weighted disagreement and the average belief, which are non-linearly

related in two-agent models.

The remainder of the paper is structured as follows. Section 2 introduces a trino-
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mial tree framework to derive equilibrium asset prices and portfolio holdings. Section 3

explores how the frequency of news arrivals and belief heterogeneity affect asset prices,

volatility, and cross-asset portfolio allocations through their effects on investor expecta-

tions and wealth dynamics. Section 4 demonstrates the equivalence of this framework to

alternative representations and analyzes its Brownian and Poisson continuous-time limits.

Section 5 provides an alternative interpretation of our model in the lens of momentum

and contrarian traders. Section 6 concludes. All proofs of results are in Appendix A.

2 Model

We consider a finite-horizon discrete-time economy with dates t ranging from 0 to T .

Agents could trade three non-redundant assets: 1) a risk-free asset with one-period ma-

turity, zero net supply, and a constant gross return normalized to one; 2) two risky assets

— a long-lived risky asset representing the market with one unit of supply, and a deriva-

tive asset with zero net supply. All agents have logarithmic preferences with respect to

terminal wealth. The optimal portfolios for log utility are myopic.

The state of the world is represented by a trinomial tree, where each node branches

into three potential outcomes for the subsequent period: ‘high’, ‘middle’, and ‘low’, cor-

responding to “good news”, “no news”, and “bad news” about the aggregate terminal

payoff of risky assets. From a single investor’s perspective, the probability distribution of

these three outcomes remains identical and independent across all periods. The payoffs

of the risky assets are structured to guarantee that the market is dynamically complete,

allowing for the replication of any contingent claims.

The model’s trinomial tree framework is designed to accommodate the arrival of in-

formation in a flexible manner, encompassing both anticipated and unexpected events.

Notably, even scheduled announcements, such as FOMC policy statements, are catego-

rized based on the information they convey. If a widely anticipated event introduces

no meaningful deviation from previous communications, it is treated as “no news” within

this structure. This distinction underscores the model’s focus on informational innovation

rather than the mere occurrence of events.

2.1 Agents’ Beliefs

Agents hold heterogeneous and dogmatic beliefs about state evolution—they agree to

disagree. Each agent’s belief is represented by a two-dimensional vector (u, v) ∈ (0, 1)×
(0, 1). Here, v denotes the probability that some news arrives (either “good” or “bad”),
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news
v

no news
1-v

good
u

bad
1-u

good news
uv

bad news
(1-u)v

good news
g

no news
m

bad news
b

Figure 1: Two equivalent representations of one-period trinomial tree

and u is the probability that the news is “good,” conditional on arrival. The parameter v

thus reflects the agents’ perceived frequency of news arrival, while u captures their relative

optimism. These beliefs imply the following probabilities for “good news” (g), “no news”

(m), and “bad news” (b):

g = uv, m = 1− v, b = (1− u)v . (1)

Naturally, the three probabilities sum up to unity: g +m+ b = 1. Conversely, the belief

parameters (u, v) can be recovered from (g,m, b) via:

u =
g

g + b
, v = g + b . (2)

Throughout the remainder of the paper, we use (u, v) to index agents according to

their beliefs. Because of trading, the wealth distribution of agents across different beliefs

is time varying. We use ft(u, v) to represent the wealth distribution at time t.

Our framework incorporates two distinct dimensions of belief heterogeneity. The first

pertains to the perceived volatility of the fundamental, captured by differing expectations

regarding the frequency of news arrival (v). Some agents anticipate a stable fundamental

with “no news” dominating, whereas others expect more frequent realizations of either

“good news” or “bad news.” The second dimension involves disagreement on the content

of fundamental news, as reflected in the relative bullishness (u), which measures the
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(a) Distribution on news content u (b) Distribution on news arrival rate v

Figure 2: Beta distributions of beliefs in u or v

conditional probability of ”good news” relative to ”bad news” when a news event occurs.

A convenient choice of the initial wealth distribution f0(u, v), which allows enough

flexibility for our purposes, is a 2D-beta distribution where u and v are independent

f0(u, v) = f0(u)f0(v) =
uαu0−1(1− u)βu0−1

B(αu0, βu0)

vαv0−1(1− v)βv0−1

B(αv0, βv0)
. (3)

The beta distribution provides a tractable formula for aggregate beliefs and allows us to

characterize the equilibrium in closed form.1

As illustrated in Figure 2, Beta distribution provides the flexibility to host different

situations of heterogeneous beliefs in news arrival rate and news contents. Two limiting

cases are worth mentioning: i) When αv0, βv0 → ∞ while αv0/βv0 remains constant,

all agents converge to a consensus on the probability of the “no news” state, given by

m0 = βv0/(αv0 + βv0). Here, disagreement is solely focused on news content, and the

dispersion in beliefs about the magnitude of the fundamental payoff diminishes as the

sum αu0+βu0 increases. ii) When only disagreement concerning news arrival rate persists

and the divergence in beliefs decreases with an increase in αv0 + βv0—this happens when

αu0, βu0 → ∞ with αu0/βu0 held constant.

1This 2D-beta distribution also encompasses the Dirichlet distribution for three states (g, m, and b)
as a specific case. Notably, when the parameters of the 2D-beta distribution satisfies αv0 = αu0 + βu0,
it reduces to a Dirichlet distribution with parameters (αu0, βv0, βu0) governing the probabilities (g,m, b).
Because Dirichlet distribution treats the three states rotationally symmetric, it associates with a rather
special situation when the disagreement on news content very weakly connected with the disagreement
on news arrival rate. Our framework does not necessarily adhere to this restriction.
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Figure 3: Three possible sample paths at t = 4

The black path is when (n4, ν4) = (2, 2), the red path is when (n4, ν4) = (0, 2), and blue
path is when (n4, ν4) = (0, 4).

2.2 Asset Payoffs

The economy features two risky assets and a risk-free asset. The first risky asset represents

the market, with its price at time t denoted by pt. The second risky asset is a one-period

derivative security, priced at qt at time t, with a non-redundant payoff of xt+1 at time

t + 1. The market prices and derivative payoffs at the next three nodes at time t + 1

are denoted by (pt+1,g, pt+1,m, pt+1,b) and (xt+1,g, xt+1,m, xt+1,b), respectively. Since the

market is dynamically complete with three non-redundant assets, any assumptions about

the derivative’s payoff do not affect the agents’ wealth allocation across different states.

For convenience, we consider derivatives whose payoffs are uncorrelated with the market

under the risk-neutral measure

Cov∗t [xt+1, pt+1] = 0 . (4)

This focus is without loss of generality: any derivative can be transformed into a zero-

delta version by delta-hedging with the underlying asset. The hedged payoff satisfies the

above condition while preserving the span of attainable payoffs. Investors hold the same

quantity of the derivative before and after this transformation.

Let ngt, nmt, and nbt represent the number of “good news,” “no news,” and “bad news”

events, respectively, observed from time 0 to t. Because t = ngt + nmt + nbt, there are

only two variables needed to characterize (ngt, nmt, nbt). Among many equivalent choices
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of factors, we think the following two are intuitive: the level of fundamental news nt and

the cumulative counts of news events νt,

nt = ngt − nbt , νt = ngt + nbt . (5)

Figure 3 illustrates the notation of (nt, νt) with some sample paths. The red and black

paths have the same news count but the net news on the black path is higher. The net

news on the blue and black path are the same, but the news counts on blue path is higher

than the black one.

2.3 Equilibrium

Since the optimal portfolios for log utility are myopic, it is sufficient to consider the one

period portfolio choice problem for an agent with the belief (u, v) is to allocate her wealth

in θ
(u,v)
t units of risky asset 1, ϕ

(u,v)
t units of risky asset 2, and the rest in the risk-free

asset (long or short) to solve the following optimization problem,

max
θt,ϕt

E(u,v)
t log

[
w

(u,v)
t + θ

(u,v)
t (pt+1 − pt) + ϕ

(u,v)
t (xt+1 − qt)

]
, (6)

where wt represents the time t wealth of the individual agent with beliefs (u, v).

Because the market is dynamically complete, agents’ portfolios can be represented

as positions in Arrow-Debreu securities. In equilibrium, agents’ subjective probability

weighted SDFs are equal to the Arrow-Debreu security prices, which correspond to the

risk-neutral measures at each node at that time (since the gross risk-free rate is normalized

to one).

g∗t = g · w
(u,v)
t

w
(u,v)
t+1,g

, m∗
t = m · w

(u,v)
t

w
(u,v)
t+1,m

, b∗t = b · w
(u,v)
t

w
(u,v)
t+1,b

, (7)

where (g∗t ,m
∗
t , b

∗
t ) are risk-neutral probabilities for the three nodes; w

(u,v)
t denotes the

wealth of the agent with beliefs (u, v) at time t; w
(u,v)
t+1,h, w

(u,v)
t+1,m, and w

(u,v)
t+1,l denote this

agent’s wealth at the respective nodes at time t+ 1.

The optimal allocation reflects the agent’s subjective belief about the future, i.e. the

relative weights among the equivalent Arrow-Debreu securities match (g,m, b). The state

dependent one period wealth growth of the agent (u, v) is the ratio between his own belief

and the risk-neutral measure: in the good state, wealth grows by g/g∗t ; in the medium

state, by m/m∗
t ; and in the bad state, by b/b∗t .
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Since the aggregate wealth growth of the entire economy is the change in market

portfolio, the one-period state-by-state realized return on market satisfies

pt+1,g

pt
=

Gt

g∗t

pt+1,m

pt
=

Mt

m∗
t

pt+1,b

pt
=

Bt

b∗t
. (8)

where (Gt,Mt, Bt) are average beliefs weighted by agents’ time-t wealth distribution.

Equation (8) also implies p−1
t is a weighted harmonic mean of the prices on next three

nodes

p−1
1,t = Gtp

−1
t+1,g +Mtp

−1
t+1,m +Btp

−1
t+1,b . (9)

Comparing (7) and (8), we obtain a closed-form expression for the wealth distribution

at time t under the 2D beta initial distribution assumption:

ft(u, v) =
uαut−1(1− u)βut−1

B(αut, βut)

vαvt−1(1− v)βvt−1

B(αvt, βvt)
, (10)

where t = ngt + nmt + nbt and (αut, βut, αvt, βvt) evolve according to

αut = αu0 +
nt + νt

2
, βut = βu0 +

νt − nt

2
, αvt = αv0 + νt, βvt = βv0 + t− νt . (11)

The derivations of (10) and (11) are provided in Appendix A.

The positive and negative fundamental news respectively reallocate wealth towards

more bullish agents (higher u) and more bearish agents (lower u). In contrast, the absence

of news redistributes wealth in favor of agents with lower perceived likelihood of news

occurring (lower v). In Figure 2, we demonstrate how the different news history would

affect wealth distribution. We set the initial wealth distribution across agent (u, v) to be

uniform, i.e. αu0 = βu0 = αv0 = βv0 = 1, and calculate wealth distributions at t = 4 for

three different sample histories (see Figure 3 for visualisation). When realized news arrival

rate is the same, higher net news would shift the wealth distribution on u towards more

bullishness–“no news” is good news. This is reflected by comparing the red and black

lines in Figure 2a. When the realized net news is the same, lower realized intensity would

shift the wealth distribution towards more bullishness. This is reflected by comparing the

blue and red line in Figure 2a. For the wealth distribution across v, what matters is the

realized frequency of news arrival: the higher the frequency, the more wealth is shifted

toward higher values of v. Notably, the red and black paths have the same distribution

at t = 4 because they have experienced the same number of news arrivals.
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We referred to those investors who allocate 100% of their wealth into the market as

Mr. Market —his identity changes over time in our model. To compute Mr. Market’s

belief at time t, we simply take means of the wealth distribution in equation (10).

Ut(nt, νt) =
1
2
nt +

1
2
νt + αu0

νt + αu0 + βu0

, Vt(nt, νt) =
νt + αv0

t+ αv0 + βv0

. (12)

The first formula in (12) indicates that the ‘bullishness’ of Mr. Market would reflect the

proportion of good news among all the news has arrived since 1
2
nt +

1
2
νt = ngt. This also

means, for a fixed time t and nt, Mr. Market would be less bullish on sample paths with

more volatile news history. The second formula in (12) implies Mr. Market’s view about

the news arrival rate would only be affected by the accumulative counts on the news νt:

increased frequency of news arrival, in the sense of a higher νt/t, would push the wealth

aggregated v up.

2.4 Asset holdings

Agents’ holdings in Arrow-Debreu securities maps into positions in the market portfolio

and the derivative security. For an agent with beliefs (u, v), the optimal positions are

given by:2

θ
(u,v)
t = w

(u,v)
t

E(u,v)
t [pt+1 − pt]

Var∗t [pt+1 − pt]
, ϕ

(u,v)
t = w

(u,v)
t

E(u,v)
t [xt+1 − qt]

Var∗t [xt+1 − qt]
. (13)

According to (13), agents with beliefs equal to the risk-neutral measure (u∗
t , v

∗
t ) would

not hold any risky asset. Since the derivative is constructed to be delta-neutral, investors’

positions in the underlying market portfolio are driven entirely by their bullishness (or

lack thereof), rather than any hedging needs related to the derivative. In another word,

the derivative provides only gamma exposure, introducing non-linear sensitivities in in-

vestors’ wealth to market movements. The gamma exposure of agent (u, v) quantifies the

curvature of wealth w
(u,v)
t with respect to price pt, and can be expressed as the following

transformation of the wealth distribution. We provide the formula of gamma exposure

for agent (u, v) in internet appendix I.A.1.

Without loss of generality, we assume the derivative is convex in the market, implying

positive gamma. In a three-state setting, the derivative payoff must be either convex

or concave in the market price. If the payoff is concave, we can simply redefine a short

position as a long position, thereby ensuring the derivative exhibits convexity.

2We provide derivation in internet appendix I.A.1.
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We proceed to simplify the asset holdings expressions and identify investors who holds

delta-neutral or gamma-neutral portfolios.

Result 1 (Portfolio weights). The agents’ portfolio weights in the underlying market and

the derivative security are represented as:

θ
(u,v)
t pt

w
(u,v)
t

=
E(u,v)
t [pt+1/pt − 1]

E(Ut,Vt)
t [pt+1/pt − 1]

,
ϕ
(u,v)
t qt

w
(u,v)
t

=
E(u,v)

t [xt+1/qt − 1]

Var∗t [xt+1/qt − 1]
(14)

A delta-neutral position requires zero subjective expected return for the market:

E(u,v)
t [pt+1/pt − 1] = 0 . (15)

For a gamma-neutral position, the agent’s belief must lie on the line passing through

Mr. Market’s belief and the risk-neutral belief:

(g,m, b) = κ(Gt,Mt, Bt) + (1− κ)(g∗t ,m
∗
t , b

∗
t ) , where κ is any scalar . (16)

By construction, Mr. Market always expect the market portfolio has a positive return.

For other investors, their holdings in the market portfolio are determined by the ratio be-

tween subjective net return expectation and the market’s average net return expectation.

Those who expect zero market return will hold no position in the market portfolio. In-

vestors who anticipate a positive return would hold position in the market, while those

who take a short position expect a negative return. Investors who have more extreme

views than Mr. Market would take leveraged position in their long or short positions

—the absolute value of their portfolio weight in market will exceed 100%.

Since the derivative provides positive payoffs only in the case of “good news” or “bad

news,” an investor’s subjective expectation of the derivative return E(u,v)
t [xt+1/qt − 1]

increases with g and b, and decreases with m. Investors who believe the fundamental

is more volatile will take a positive position in the derivative, while those with opposite

beliefs will take a negative position. On the diagram of (g,m, b), the boundary that

separates these two groups of investors pass through both Mr. Market’s belief (Gt, Bt)

and the risk-neutral belief (g∗t , b
∗
t ).

2.5 Asset Prices

Although aggregate beliefs are path-dependent, the pricing relationship in equation (9)

enables a tractable valuation of the stock at time t. Specifically, the total value of the
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market at time t can be computed using the weighted harmonic mean of its time-T value

pT (nT ). The same weights also allows us to compute the risk-neutral variance of returns.

Result 2 (Market price and risk-neutral variance). Assuming the trinomial tree has T

periods and the payoffs are pT (nT ) with nT ∈ [−T, T ], the value of the market at time t

is given by

pt =
(
Et

[
p−1
T (nT )

] )−1

, (17)

where the expectation is taken under the wealth-weighted belief distribution over terminal

states nT , given by:

Pr(nT |nt, ft) =
∑

∀ng−nb=nT−nt,
ng+nm+nb=T−t

(
T − t

ng, nm, nb

)
B(αut + ng, βut + nb)B(αvt + ng + nb, βvt + nm)

B(αut, βut)B(αvt, βvt)
.

(18)

The risk-neutral variance of the return from time t to T is given by:

Var∗t [pT/pt − 1] = Et [pT (nT )]Et

[
p−1
T (nT )

]
− 1 . (19)

The probability Pr(nT |nt, ft) encapsulates the collective expectation—weighted by in-

vestor wealth—regarding the likelihood of reaching a terminal state with fundamental

value nT , given current fundamentals nt and the prevailing wealth distribution ft. It is

computed by aggregating over all feasible news trajectories between t and T that lead to

a cumulative net news change of nT − nt. When investor beliefs conform to a 2D-Beta

distribution, this aggregation becomes analytically tractable through the Beta function,

as detailed in Result 2. Ultimately, the market price and risk-neutral variance reflect this

distribution, capturing the wealth-weighted consensus over all possible terminal outcomes.

On average, investors expect that the fundamental increase by Gt−Bt over each period

from t to T ,

E[nT |nt, ft] =
∑
nT

nT Pr(nT |nt, ft) = nt + (T − t)(Gt −Bt) . (20)

Gt −Bt thus measures the wealth-weighted average expectation of fundamental growth.

Next, we examine how wealth distribution affects asset prices, holding current funda-

mentals nt constant. We assume that the terminal marginal utility, p−1
T (nT ), is a convex

function of the fundamental nT . This condition is satisfied by a broad class of payoff
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functions pT (nT ), including exponential, power or affine payoff functions with positive

exponents and coefficients.

Consider two scenarios in which the average level of bullishness is identical, Ut = U ′
t ,

but the degree of disagreement is greater in the first scenario, that is, αut+βut ⩽ α′
ut+β′

ut.

This increased dispersion in beliefs leads to a more spread-out distribution of nT , such

that nT is a mean-preserving spread of n′
T . As a result, the expected terminal marginal

utility is higher in the first scenario:

E[p−1
T (nT )] ⩾ E[p−1

T (n′
T )] , (21)

which, according to equation (17), implies a lower market price. Hence, greater disagree-

ment in news content depresses asset prices.

A higher average market expectation about news arrival rate has a similar effect. Sup-

pose the market, on average, expects good and bad news to happen with equal probability.

Consider two scenarios in which Vt ⩾ V ′
t while the degree of disagreement remains the

same, i.e., αvt + βvt = α′
vt + β′

vt. The increase in average news arrival rate leads to a more

dispersed distribution of nT , making nT a mean-preserving spread of n′
T . Consequently,

the expected terminal marginal utility is higher, and the market price is lower. Thus,

higher levels of news arrival rate also depress asset prices.

3 Analysis of Equilibrium

Section 3.1 analyzes how the frequency of news arrivals influences equilibrium asset prices

and volatility, highlighting the contrasting effects that emerge depending on whether in-

vestors agree or disagree about news arrival rate. Section 3.2 investigates the relationship

between investors’ subjective return expectations and their positions in derivative mar-

kets, revealing how belief heterogeneity shapes cross-asset portfolio allocations.

3.1 How News Arrivals Shape Prices and Volatility

Asset prices are influenced by both the occurrence and absence of news events. The

content of news is salient: positive news signals an improvement in fundamentals and

shifts the wealth distribution in favor of optimistic investors. The frequency of news

arrival also plays a crucial role. Frequent news redistributes wealth among investors

with varying degrees of optimism and additionally empowers those who anticipate high

news arrival rate. Consequently, the historical count of news events, νt, shapes market
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disagreement and aggregate beliefs, and through these mechanisms, volatility expectations

and asset prices.

News arrival exerts two distinct effects on the market. First, frequent news arrivals lead

to a concentration of wealth among agents whose beliefs are correct ex-post, and reduce

disagreement over news content. The level of “agreement” among investors, αut + βut =

αu0 + βu0 + νt, increases with νt. As demonstrated in Section 2.5, this reduction in

disagreement over news content raises asset prices.

Second, a high historical count of news increases the market’s average belief about

future news arrival rate, Vt. This upward shift in expectations places downward pressure

on asset prices. The overall impact depends on the relative strength of these two channels,

which is, in turn, determined by the degree of disagreement among investors regarding

news arrival rate.

When there is no disagreement over news arrival rate, the first channel dominates. We

focus on a specification in which each piece of news has a multiplicative effect:

pT (nT ) = eσnT . (22)

The terminal payoff takes the form of an exponential function of the fundamental. 3

To isolate the effects of belief heterogeneity along specific dimensions, we examine

a benchmark and limit scenario in which all investors share a common view about the

frequency of news arrivals. In this setting, belief heterogeneity arises solely from differ-

ences in investors’ assessments of the likelihood of receiving “good news” versus “bad

news”. The following result shows that frequent news arrivals lower expected volatility

and increase asset prices.

Result 3 (News count and asset prices, no news arrival rate disagreement). Suppose

all agents share a common belief about news arrival rate. Holding constant the average

expectation of the fundamental growth, Gt −Bt, a higher historical news count νt reduces

the risk-neutral variance Var∗t [pT/pt − 1] and increases the ratio of the current asset price

to the current fundamental, pt/e
σnt.

When investors hold similar expectations about the frequency of news arrivals, deriva-

tive trading becomes insignificant, as one key source of speculative demand – heteroge-

neous views on news arrival rate – is absent. In this environment, frequent news arrivals

3This specification lends itself naturally to a continuous-time limit, where the interval between trading
opportunities shrinks to zero. Unlike an arithmetic payoff, the exponential (or geometric) form guarantees
that the payoff remains strictly positive and cannot fall below zero.
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spur more active trading of the underlying asset, concentrating wealth among agents

whose beliefs are more closely aligned with realized fundamentals. For instance, frequent

but offsetting fundamental shocks, neutral on average, tend to benefit moderate investors,

while those with more extreme views are more likely to incur losses. As investor beliefs

converge and expectations about the future stabilize, implied volatility declines and asset

prices rise.

Notably, the lack of disagreement in news arrival rate results in mean reversion of

volatility. Frequent news arrivals lead to high realized volatility in both fundamentals and

asset prices, reflecting the market’s continuous adjustment to new information. However,

news also sustains active trading of the underlying asset, which diminishes disagreement

and consequently lowers implied volatility.

In contrast to Result 3, when disagreement about news arrival rate is strong, the

second channel dominates. A comparison between disagreement in news arrival rate

and disagreement in news content can be made by comparing αv with the degree of

“agreement” in news content αu + βu. If, in the initial wealth distribution, αv0 is lower

than αu0 + βu0, this inequality persists over time. Specifically, for any t:

αvt = αv0 + νt ⩽ αu0 + βu0 + νt = αut + βut (23)

Disagreement about news arrival rate remains persistently high at any point in time. The

following result shows that a higher frequency of news arrival raises implied volatility and

lowers asset prices.

Result 4 (News count and asset prices, prominent news arrival rate disagreement). Sup-

pose αv0 ⩽ αu0 + βu0 in the initial wealth distribution. Holding constant the average

expectation of the fundamental growth, Gt − Bt, a higher historical news count νt in-

creases the risk-neutral variance Var∗t [pT/pt − 1] and lowers the ratio of the current asset

price to the current fundamental, pt/e
σnt.

Frequent news arrivals, even when neutral in their aggregate effect, can lead to sig-

nificant fluctuations in investor beliefs and substantial wealth redistribution. Derivative

sellers are particularly vulnerable, as their positions are exposed to sharp market move-

ments. These shifts often transfer wealth to investors with extreme views on market re-

turns. This dynamic amplifies the likelihood of extreme outcomes in the wealth-weighted

distribution of beliefs, thereby increasing implied volatility and depressing current asset

prices. Consequently, markets tend to fare worse during periods of volatile but offsetting

fundamental swings than during periods of relative informational silence or “no news.”
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(a) Agreement on v (b) Disagreement on v

Figure 4: Differences in probability across sample paths: high νt minus low νt

Each bar illustrates the difference in the probability mass assigned to state nT=6, evaluated
at time t = 4. Black bars above the zero indicate states where the blue path assigns higher
probability than the red path. Hollow bars with dashed borders indicate states where the
blue path assigns lower probability.

Result 4 highlights a critical link between volatility dynamics and the disagreement in

news arrival rate. When investors disagree about the frequency of news arrivals, volatil-

ity becomes more persistent. These disagreements fuel sustained derivative trading, as

opposing beliefs generate ongoing speculative demand. A history of volatile price move-

ments signals elevated future option prices, as market participants anticipating continued

turbulence gains more influence. In essence, high realized volatility today translates into

high implied volatility going forward, making derivatives more expensive and reflecting

the market’s expectation of continued instability.

Example.—Consider a T = 6 period example with an initial wealth distribution in

which u is uniformly distributed and all agents share the belief that v = 1/2. The blue

path in Figure 3 features more frequent news arrivals than the red path. By time t = 4,

the wealth-weighted distribution of the terminal payoff along the blue path becomes more

concentrated relative to the red path. Figure 4a visualizes this contrast: black bars above

zero indicate states where the blue path assigns higher probability than the red path,

while hollow bars with dashed borders indicate states where it assigns lower probability.

This reduced wealth-weighted disagreement along the blue path results in a higher price.

The result is reversed under an alternative initial wealth distribution, where both u and

v are uniformly distributed. At t = 4, the wealth-weighted distribution of the terminal
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payoff under the blue path becomes more dispersed than under the red path, as shown in

Figure 4b. Greater dispersion along the blue path results in a lower price.

3.2 Derivative Investments and Subjective Return Expectation

Next, we delve into the relationship between investors’ position in the derivative security

and their subjective return expectations for the underlying asset. As shown in (13),

investors’ positions in the underlying asset are linear in these subjective expectations.

Consequently, this relationship also reveals how investors’ holdings in the derivative and

the underlying asset are connected.

We group investors according to their subjective expectations of the underlying asset’s

returns. Using result 1, we then derive a closed-form expression for the wealth distribution

across these beliefs, denoted by ft(r).

Result 5 (Wealth share across beliefs in expected returns). Define the variable z(r), k

and γ,

z(r) =
(1 + r)g∗tm

∗
t − g∗tMt

Gtm∗
t − g∗tMt

, k =
Gtm

∗
t − g∗tMt

g∗tMt − Bt

b∗t
g∗tm

∗
t

, γ =
g∗tm

∗
t

G∗
tm

∗
t − g∗tM

∗
t

, (24)

the wealth share of agents who believe expected return of underlying is r satisfies

ft(r) =
γkβutzαvt−1(1− z)βut+βvt−1B(βut, βvt)

(k + 1)βutB(αut, βut)B(αvt, βvt)
F1

(
βut;αvt + βvt − 1, 1− αut;βut + βvt; 1− z,

k(1− z)

1 + k

)
,

for z > 0, and

ft(r) =
γk(−kz)αvt−1(1 + kz)αutB(αut, βvt)

(1 + k)αut+βvt−1B(αut, βut)B(αvt, βvt)
F1

(
αut;αvt + βvt − 1, 1− βut;αut + βvt; 1 + kz,

1 + kz

1 + k

)
,

for z < 0. The function F1(. . . ) represents the Appell hypergeometric function, and (αut, βut, αvt, βvt)

follows the same definition as in (11).

The left panels of I.A.1 illustrate the path-dependent feature of the wealth distribution

across beliefs of net return of market. The three colored lines correspond to the sample

paths shown in Figure 3. Utilizing this closed-form solution, we examine how varying

outlooks on market performance translate into their derivative positions.

Although the choice of derivative payoff structure does not impact the equilibrium

allocation or wealth distribution, specifying this structure simplifies the interpretation of

asset holdings presented above. A payoff structure for the derivative security uncorrelated
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with the market is given by:

xt+1,g = pt(b
∗
t −Bt) , xt+1,m = 0 , xt+1,b = pt(Gt − g∗t ) . (25)

The derivative resembles a straddle, yielding zero payoff in the case of “no news”, while

providing positive payoffs in response to both “good news” and “bad news”. The return

of this derivative is uncorrelated with the market under the risk-neutral measure. In

the context of options trading, the delta of the derivative is equal to zero. Therefore, the

derivative can be interpreted as a delta-neutral combination of call and put options on the

market portfolio, with a strike price at the “no news” realization pt+1,m. This structure

allows for a clear connection between the investors’ view on volatility and their dollar

positions in the derivatives market.

Building upon the relationship between investors’ beliefs and their market positions,

it follows that optimists, who anticipate positive returns on the underlying asset, will es-

tablish long positions in the market. Conversely, pessimists, expecting negative returns,

will short the market. Extending this further, investors holding extreme bullish views will

exhibit portfolio allocations that resemble long call options, benefiting disproportionately

from significant upward price movements. Conversely, those with extreme bearish senti-

ments will hold portfolios akin to long put options, profiting most from substantial price

declines.

More broadly, investors’ market outlook correlates with their derivative positions. The

subsequent result examines the average derivative position for investor groups segmented

based on their subjective expectations of market returns.

Result 6 (Aggregated gamma positioning across same beliefs of return). For cohort of

investors with same subjective expectation r for the market return, the wealth-weighted

‘average portfolio weight’ in the derivative satisfies

E

[
ϕ
(u,v)
t qt

w
(u,v)
t

∣∣∣∣∣ r
]
=

1

1− v∗t

(
E[v|r]− v∗t +

(v∗t − Vt)

E(Ut,Vt)[r]
r

)
, (26)

where E[v|r] denotes the wealth-weighted average news arrival rate v among investors with

expectation r with the following close form expression: when z ⩾ 0,

E[v|r] = z + z(1− z) · βut
βut + βvt

·
F1

(
βut + 1;αvt + βvt, 1− αut;βut + βvt + 1; 1− z, k(1−z)

1+k

)
F1

(
βut;αvt + βvt − 1, 1− αut;βut + βvt; 1− z, k(1−z)

1+k

)
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and when z < 0, we have

E[v|r] = −kz + (−kz)(1 + kz) · αut

αut + βvt

F1

(
αut + 1;αvt + βvt, 1− βut;αut + βvt + 1; 1 + kz, 1+kz

1+k

)
F1

(
αut;αvt + βvt − 1, 1− βut;αut + βvt; 1 + kz, 1+kz

1+k

)
The variable z(r) and k follow the same definition in (24) and F1(. . . ) represents the

Appell hypergeometric function.

The wealth-weighted average news arrival rate, E[v|r], exhibits a U-shaped relation-

ship with the subjective expected return r. Investors with highly optimistic or pessimistic

expectations also tend to hold extreme views about the news arrival rate, resulting in

E[v|r] = 1 at the boundaries of possible returns, r = Gt/g
∗
t − 1 and r = Bt/b

∗
t − 1.

In contrast, those with more moderate expectations typically assign lower average news

arrival rates. Figures 5a and 5b illustrate this relationship under low and high disagree-

ment in news arrival rates, using (αv, βv) = (100, 100) and (1, 1), respectively. While both

exhibit the U-shape, the low-disagreement case produces a noticeably flatter curve near

the center, reflecting stronger consensus among investors.

Differences in news arrival rate expectations naturally lead to variation in derivative

positions. Figures 5c and 5d show the derivative holdings of investor cohorts, expressed

as fractions of total wealth in the economy. These holdings are obtained by multiplying

the wealth distribution in (18) with the corresponding portfolio weights from (26).

Since every derivative contract has both a buyer and a seller, aggregate net positions

must sum to zero. Market clearing thus requires that the extreme positions of highly

optimistic or pessimistic investors be offset by counterparties. This role is primarily filled

by investors with more moderate beliefs, who act as derivative sellers. These participants,

with less extreme views on market returns, provide essential liquidity and facilitate trade

execution. The equilibrium in the derivatives market emerges from the interaction be-

tween investors expressing strong views on news arrival rate and those accommodating

these trades through more tempered expectations. 4

Derivative positions offer an empirically observable metric to distinguish between cases

of low and high disagreement about the news arrival rate, as discussed in section 3.1.

When disagreement about the news arrival rate is low, E[v|r] stays close to the market

average Vt across most investor cohorts. Consequently, derivative portfolio weights are

small, leading to limited investments in derivative markets, as illustrated in Figure 5c.

4In the online appendix I.A.4, we plot all the figures’ time variation at time t = 1, 2, 3, 4 to demonstrate
how different sample paths would affect the wealth distribution, gamma positioning across agents’ market
return expectation.

20



(a) Wealth weighted beliefs of v across r
Low news arrival rate disagreement

(b) Wealth weighted beliefs of v across r
High news arrival rate disagreement

(c) Gamma exposure across r
Low news arrival rate disagreement

(d) Gamma exposure across r
High news arrival rate disagreement

Figure 5: Beliefs of market return and gamma positioning

The figure reports wealth-weighted average news arrival rate v and Gamma exposures
for the cohort of investors with expected return r. In the left panels (5a and 5c), the
initial wealth distribution reflects low disagreement in the news arrival rate dimension,
characterized by (αu0, βu0, αv0, βv0) = (1, 1, 100, 100). In contrast, the right panels (5b and
5d) assume a uniform initial wealth distribution across agents, with (αu0, βu0, αv0, βv0) =
(1, 1, 1, 1). Terminal payoff at T = 6 is chosen to follow exponential function e0.05nT . See
Figure 3 for an illustration for the possible sample paths that leads to the corresponding
wealth distribution and gamma position at t = 4.
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In contrast, high disagreement gives rise to significantly larger derivative positions, as

shown in Figure 5d. These large derivative investment and the resulting shift in wealth

distribution is the central force behind the volatility persistence result in 4.

4 Further discussions

This framework applies broadly but is especially relevant in scenarios where investors

anticipate receiving consistent types of news over a specific period. For instance, investors

expected frequent updates about the pandemic in early 2020 and about tariffs in the

second quarter of 2025. The start and end of such periods map into the initial date 0 and

end date T in our model.

During a finite period, investors have limited opportunities to update their beliefs

based on news realizations. For simplicity, our analysis assumes that investors hold dog-

matic beliefs. Nonetheless, the pricing in our model is equivalent to that of a representative

agent who, starting with specific prior beliefs, gradually learns the probability governing

the true fundamental news process, as demonstrated in subsequent analysis in section 4.1.

Within this period, trading generates substantial wealth redistribution while allowing

the majority of investors to survive. Section 4.2 then considers the Poisson continuous-

time limit, demonstrating that disagreement over the news arrival rate could persist and

have a significant impact on asset prices.

4.1 The wisdom of the crowd

Pricing in the heterogeneous-agent economy is identical to pricing in an economy with

a representative agent with log utility whose prior belief at time 0 about probability of

future news process has the same distribution as in (3), and the agent updates his or her

beliefs over time following Bayes’ rule. 5

While such a model would not be consistent with our model since heterogeneous beliefs

are absent, hence no trade is happening, the comparison between those two models reveals

a feature of financial markets in our model: market as a whole is “learning” about the

truth over time through the redistribution of wealth — hindsight winners get wealthier

and their beliefs becomes more important in pricing.

5The above result has been established in Martin and Papadimitriou (2022) in a binary tree setting
where there is only disagreement on news content and the disagreement is modelled by 1D beta distri-
bution. In our model, if we force all agents agree the news would always arrive with probability one, i.e.
all agents agree v = 1, we can recover Martin and Papadimitriou (2022).
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The wisdom of the crowd requires speculation for all dimensions of beliefs exist and

also the presence of truth within the agent population —some agents must perceive the

truth of (u, v) (or (g,m, b)). On the contrary, if agents all agree on a news arrival rate

that deviates from the truth, or agree on a news content that is too bullish (or bearish),

the representative agent (Mr. Market) will never learn about the truth.

Since market becomes a weighing machine in the long run—as Benjemin Graham

famously said, a natural question raises when considering long term survival of agents

with ‘wrong beliefs’. It turns out the Kullback-Leibler divergence—defined as KL(a, b) =

a log(a/b) + (1 − a) log(1 − a)/(1 − b) for Bernoulli distributions with parameters a and

b—between any agent’s belief and the truth will control how fast an agent with wrong

belief becomes irrelevant in the long run. This fundamental insight is a key theme in the

literature on belief selection and wealth dynamics (e.g., Blume and Easley (2006)).

Result 7 (Survival). Assume there is truth (utrue, vtrue) that guarantees the data gener-

ating process of fundamental news, the wealth share of agent with beliefs (u, v) will decay

exponentially when t → ∞ at the rate of

KL(vtrue, v) + vtrue KL(utrue, u) .

Result 7 indicates the true news arrival rate affects survival negatively—the rarer the

news is, the longer it takes for agents with wrong beliefs to be extinct. Moreover, when the

true news arrival rate is low, having an accurate understanding of the flow of information

is more crucial than knowing whether the news will be positive or negative. In later

sections, where we discuss continuous time limits of our trinomial tree model, we would

show that agents with inaccurate belief of v will survive if news of fundamental follows

Poisson process while it is not the case in the Brownian limits—disagreement of v would

not persist in a diffusion world.

4.2 Poisson limits

The trinomial tree model allows us to explore various realistic continuous-time limits.

The information about fundamental may either comes discretely in lumps or arrives con-

tinuously in small increments. The former can be formally modeled as a Poisson process,

while the latter is represented by a Brownian motion. Analysis in section I.A.2 demon-

strates that in a Brownian limit, widespread disagreement about the frequency of news

arrivals cannot be sustained, while minor disagreements have negligible effects on asset

prices. In contrast, the Poisson limit allows disagreement over the news arrival frequency
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to persist and significantly influence prices.

In this Poisson limit, we partition the interval [0, T ] into N = T/δ periods. Each

piece of news is assumed to have a substantial impact on fundamentals, and the terminal

payoff remains identical to the discrete-time case: pT = eσnT . With αu0, βu0, and αv0 held

constant and independent of N , and βv0 defined as

βv0 = αv0

(
λ−1 N

T
− 1

)
,

the cross-sectional averages of (u, v) are given by Eu = αu0/(αu0 + βu0) and E v = λδ.

In the limit as N → ∞ and δ → 0, the counts of “good news” and “bad news” events

follow Poisson distributions. Agents with heterogeneous beliefs about the news arrival

rate can survive in the market. The impact of such disagreement on expected wealth

growth is captured by the Kullback–Leibler divergence:

KL(vtrue, v) = vtrue log

(
vtrue
v

)
+ (1− vtrue) log

(
1− vtrue
1− v

)
. (27)

As N → ∞, both vtrue and v approach zero. The second term, representing the expected

effect during no news periods, remains bounded. Moreover, since news arrives infrequently,

the cumulative impact of news events—captured by the first term, vtrue log(vtrue/v)—is

also limited. Together, these bounds ensure that agents with incorrect beliefs survive.

Taking the limit N → ∞, we obtain market price and risk-neutral variance.

Result 8 (Poisson limit). In the Poisson limit, the market price at time t is given by

pt =eσnt [1− Λt(e
σ − 1)]αvt

2F1

(
αvt, αut;αut + βut;

eσ − e−σ

eσ − 1− Λ−1
t

)−1

, (28)

where Λt = (T − t)/(αv0λ
−1+ t), 2F1(. . .) denotes the Gauss hypergeometric function, and

the expressions for αvt, αut, and βut are provided in (11).

The risk-neutral variance of the return from t to T is:

Var∗[pT/pt − 1] = p−1
t eσnt

[
1 + Λt(1− e−σ)

]−αvt

2F1

(
αvt, αut;αut + βut;

eσ − e−σ

1 + Λ−1
t − e−σ

)
− 1 .

(29)

Example.— Consider T = 20, where we set αu0 = βu0 = 1 and λ = 0.1, and the

terminal payoff is specified as e0.05nT . Figure 6 presents price and volatility trajectories

following a “good news” event at t = 6 and a “bad news” event at t = 12, under both
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(a) Market Prices (b) Volatility Strike

Figure 6: Price and volatility trajectories

The figure shows price and volatility trajectories with and without disagreement about
the news arrival rate v. Parameters are set as αu0 = βu0 = 1 and λ = 0.1, and the
terminal payoff at T = 20 is specified as e0.05nT . Solid black lines depict the case without
disagreement in v, while dashed green lines represent the case with high disagreement,
where αv0 = 2.

no disagreement and high disagreement about the news arrival rate v. The right panel

6b shows
√

Var∗[pT/pt − 1]/(T − t), the (risk-neutral) volatility per unit time over the

remaining horizon [t, T ]. It also represents the volatility strike of the simple variance swap,

which is introduced by Martin (2011). 6 The solid black path, reflecting no disagreement

about the news arrival rate, aligns with result 3, where derivative prices decline following

news arrivals. In contrast, the dashed green path, representing high disagreement about

the news arrival rate, reflects result 4, with derivative prices rising after news events.

6A well-known derivative related to the VIX index is the variance swap. In this contract, one party
pays the other the difference between the actual variance of an asset’s returns and a preset strike vari-
ance. Martin (2011) noted that the usual log-normal assumption may not hold during crises times, and
introduced a jump-robust version called the simple variance swap. In our model, the contract payoff is(

pt+1 − pt
pt

)2

+

(
pt+2 − pt+1

pt

)2

+ · · ·+
(
pT − pT−1

pt

)2

.

The time t price of this payoff is equal to the risk-neutral variance Var∗[pT /pt − 1].
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h

b=(1-h)(1-h+ε)

h+ε

1-h-ε

g=h (h+ε)

m=2h(1-h)-ε

1-h

h-ε

1-h+ε

Figure 7: Recombining binary tree with time varying probabilities

5 Momentum and contrarian traders

Our trinomial tree model could be specialised as a recombining binary tree model, where

agents beliefs about the binary distribution could switch between odd and even periods.

Consider an alternative parametrisation of (g, m, b):

g = h(h+ ε), m = 2h(1− h)− ε, b = (1− h)(1− h+ ε) . (30)

where h ∈ (0, 1) and ε is small number around zero.7 As illustrated in Figure 7, h captures

agents’ belief of good news and ε captures whether agent is a momentum or contrarian

trader: those with positive ε are momentum traders while those with negative ε believes

in reversal.

In this formulation, agents beliefs could be characterized by the pair (h, ε). A higher

value of h corresponds to more bullish belief on average, while a positive value of ε

indicates agent is a short term momentum trader while a negative value of ε indicates

agent is a short term contrarian.

Interestingly, two agents with the same beliefs of v in the trinomial tree setting could

have completely different views about (h, ε) when switching to the recombining binary

7The technical condition for (g,m, b) to be probability measure is when ε has to satisfy

max(−h, h− 1,−h2 − (1− h)2) ≤ ε ≤ min(h, 1− h, 2h(1− h)).

The more extreme h is, the narrower the range of ε is around 0.
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tree setting. Using (30), we could compute

u =
h2 − (1− h)ε+ ε

h2 + (1− h)2 + ε
, v = h2 + (1− h)2 + ε . (31)

The more positive ε (momentum trader) is, the higher of the value of v and the same

for those with very extreme views on h. Here, v but no longer measures the frequency

of news arrival but continue to reflect the agent’s beliefs about the likelihood of extreme

outcomes. Holding h constant, a higher value of v corresponds to a belief in momentum,

while a lower value reflects an expectation of reversal. Intuitively, agents who expect

trends to persist assign greater probability to extreme realizations, whereas contrarian

agents anticipate outcomes clustered around the mean.

If we allow agents to trade in each of those odd and even periods, the market is

dynamically complete with only the underlying asset. Or, equivalently, if we allow agents

to trade only at the end of those even periods, the model would be identical to the

trinomial tree setting where agents would implement their views through a combination

of derivatives and the underlying asset. For instance, a momentum investor may either

follow a momentum-based dynamic trading strategy or take a positive gamma position

using options, both of which profit from sustained directional movements. Conversely, a

contrarian investor could take a negative gamma position that profits from price reversals

and market stabilization.

Consistent with the analysis in Section 3, market outcomes endogenously redistribute

wealth across heterogeneous investors, amplifying the influence of those whose beliefs

prove ex-post correct. In environments where there is pronounced disagreement between

momentum and contrarian expectations, the realized path of fundamental shocks can play

a critical role in either stabilizing or destabilizing the market. Rapidly oscillating paths

stabilize the market by validating reversal-oriented strategies and concentrating wealth

among reversal believers. In contrast, persistent trends that revert only after a delay

increase market volatility and reward momentum-oriented investors.

6 Conclusion

Our study underscores the critical role of multidimensional belief heterogeneity in shaping

financial market dynamics, revealing how disagreements over news content and arrival

frequency drive asset pricing, volatility, and portfolio decisions. By introducing a trinomial

tree framework that incorporates a gamma-exposed derivative, our model isolates the

distinct effects of those two belief dimensions, demonstrating that frequent news can both
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mitigate content disagreement by redistributing wealth to accurate believers and amplify

volatility when news frequency expectations diverge. The model is tractable and produces

an U-shaped pattern of Gamma exposure among optimists and pessimists of market

return, which highlights the speculative nature of trading driven by these heterogeneous

beliefs.

These findings deepen our understanding of how complex belief structures influence

behaviors of underlying and derivative markets, providing new insights on volatility per-

sistence and asset valuation. Future research could explore empirical validations of these

dynamics or extend the model to incorporate additional belief dimensions, further enrich-

ing the analysis of financial markets under heterogeneous expectations.
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Borovička, Jaroslav. 2020. “Survival and Long-Run Dynamics with Heterogeneous Be-

liefs Under Recursive Preferences.” Journal of Political Economy, 128(1): 206–251.

Buraschi, Andrea, and Alexei Jiltsov. 2006. “Model Uncertainty and Option Markets

with Heterogeneous Beliefs.” Journal of Finance, 61(6): 2841–2897.

Cao, H Henry, and Hui Ou-Yang. 2008. “Differences of opinion of public informa-

tion and speculative trading in stocks and options.” The Review of Financial Studies,

22(1): 299–335.

Chabakauri, Georgy, and Brandon Yueyang Han. 2020. “Collateral constraints and

asset prices.” Journal of Financial Economics, 138(3): 754–776.

Chan, Yeung Lewis, and Leonid Kogan. 2002. “Catching Up with the Joneses:

Heterogeneous Preferences and the Dynamics of Asset Prices.” Journal of Political

Economy, 110(6): 1255–1285.

29



Chen, Hui, Scott Joslin, and Ngoc-Khanh Tran. 2012. “Rare Disasters and Risk

Sharing with Heterogeneous Beliefs.” Review of Financial Studies, 25(7): 2189–2224.

Cox, John C, Stephen A Ross, and Mark Rubinstein. 1979. “Option pricing: A

simplified approach.” Journal of financial Economics, 7(3): 229–263.

Dumas, Bernard. 1989. “Two-Person Dynamic Equilibrium in the Capital Market.”

Review of Financial Studies, 2(2): 157–188.

Dumas, Bernard, Alexander Kurshev, and Raman Uppal. 2009. “Equilibrium

Portfolio Strategies in the Presence of Sentiment Risk and Excess Volatility.” Journal

of Finance, 64(2): 579–629.

Figlewski, Stephen. 1978. “Market ”Efficiency” in a Market with Heterogeneous Infor-

mation.” Journal of Political Economy, 86(4): 581–597.

Gao, Can, and Ian W. R. Martin. 2021. “Volatility, Valuation Ratios, and Bubbles:

An Empirical Measure of Market Sentiment.” Journal of Finance, 76(6): 3211–3254.

Geanakoplos, John. 2010. “The Leverage Cycle.” In NBER Macroeconomic Annual

2009. Vol. 24, , ed. Daron Acemoglu, Kenneth Rogoff and Michael Woodford, 1–65.

Chicago:University of Chicago Press.

Harrison, J. Michael, and David M. Kreps. 1978. “Speculative Investor Behavior

in a Stock Market with Heterogeneous Expectations.” Quarterly Journal of Economics,

92(2): 323–336.

Jouini, Elyes, and Clotilde Napp. 2007. “Consensus Consumer and Intertemporal

Asset Pricing with Heterogeneous Beliefs.” Review of Economic Studies, 74(4): 1149–

1174.

Kogan, Leonid, Stephen A. Ross, Jiang Wang, and Mark M. Westerfield. 2006.

“The Price Impact and Survival of Irrational Traders.” Journal of Finance, 61(1): 195–

229.

Kremens, Lukas, and Ian W. R. Martin. 2019. “The Quanto Theory of Exchange

Rates.” American Economic Review, 109(3): 810–843.

Martin, Ian. 2011. “Simple variance swaps.” National Bureau of Economic Research.

Martin, Ian, and Dimitris Papadimitriou. 2022. “Sentiment and speculation in a

market with heterogeneous beliefs.” American Economic Review, 112(8): 2465–2517.

30



Martin, Ian W. R. 2017. “What is the Expected Return on the Market?” Quarterly

Journal of Economics, 132(1): 367–433.

Martin, Ian W. R., and Christian Wagner. 2019. “What is the Expected Return on

a Stock?” Journal of Finance, 74(4): 1887–1929.

Ottaviani, Marco, and Peter Norman Sørensen. 2015. “Price Reaction to Informa-

tion with Heterogeneous Beliefs and Wealth Effects: Underreaction, Momentum, and

Reversal.” American Economic Review, 105(1): 1–34.
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A Mathematical Appendix

Proof for equations (10) and (11). Comparing the individual wealth growth and ag-

gregate wealth growth equations in (7) and (8), we could derive the following equation

for change of wealth distribution

ft+1(g,m, b)

ft(g,m, b)
=

{ g
Gt

, ‘good news’ at t+ 1
m
Mt

, ‘no news’ at t+ 1

b
Bt

, ‘bad news’ at t+ 1

Solving this recursively back from t to 0, the wealth distribution ft(g,m, b) should satisfy

ft(g,m, b) = λt f0(g,m, b) gngtmnmtbnbt

where the constant λt is path-dependent. Take integrals of both sides, we have

1 =

∫
λt f0(g,m, b) gngtmnmtbnbt dg dmdb,

and it implies

λt =
B(αu0, βu0)B(αv0, βv0)

B(αut, βut)B(αvt, βvt)
,

where αut = αu0 + ngt, βut = βu0 + nbt, αvt = αv0 + ngt + nbt, and βvt = βv0 + nmt.

Converting the notation of (ngt, nmt, nbt) into (nt, νt), we obtain result in equations (10)

and (11).

Proof for result 1. The risk-neutral variance of pt+1 − pt could be expressed as:

Var∗t [pt+1 − pt] = g∗t p
2
t+1,g +m∗

tp
2
t+1,m +B∗

t p
2
t+1,b − p2t

= pt
(
Gtpt+1,g +Mtpt+1,M +Btpt+1,b − pt

)
= pt EUt,Vt

t [pt+1 − pt] . (A1)

Multiplying the first equation in (13) by pt/w
(u,v)
t , and the second by qt/w

(u,v)
t , and

substituting in (A1), we obtain the result in (14). A delta-neutral position entails zero

investment in the market, θ
(u,v)
t = 0, which in turn implies that the agent’s subjective

return for the market E(u,v)
t [pt+1/pt − 1] is equal to zero.

Similarly, a gamma-neutral position requires zero investment in the derivative, i.e.,

ϕ
(u,v)
t = 0, which corresponds to a zero subjective expected return on the derivative:

E(u,v)
t [xt+1/qt−1] = 0. The zero return condition, together with the probability constraint
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g +m + b = 1, defines a line in the three-dimensional probability space. Since both Mr.

Market’s belief and the risk-neutral belief satisfy these conditions, the set of gamma-

neutral beliefs must lie along the line connecting Mr. Market’s belief to the risk-neutral

belief.

Proof for result 2. Due to (9), we could solve from T backwards to t the value 1/pt. It

is merely the linear combination of wealth-weighted aggregate beliefs of all possible future

sample paths between t and T multiplying with the one over terminal payoff 1/pT (st). To

formally prove this is statement, let (a, b, c) be the number of moves that correspond to

(high, middle, low) of a sample path from t to T . They must satisfy

a− c = nt, a+ b+ c = T − t .

The above could be solved in terms of b as

a =
1

2
(T − t+ n− b), c =

1

2
(T − t− n− b).

and (a, c) are integers only when b and T − t−n are both odd or even numbers (T − t+n

is always the same as T − t − n). Since the arguments for two cases when n is positive

and negative are symmetric, we focus on n > 0. If T − t − n is odd number, b starts

from t+1, otherwise it starts from t. The size of b can not exceeds T − t− n for c stays

non-negative. Once b is fixed, the value of a and c are chosen. There are (T−t)!
a!b!c!

possible

paths that satisfies this characteristic, i.e. a times high, b times middle and c times low.

We now prove that those paths could be merged since they make equal contribution

to the coefficient cn. To show this, it suffices to show the three basic cases: 1) two trips

of ‘middle-low’ and ‘low-middle’ would give the same risk-neutral probability given the

same initial condition; 2) two trips of ‘middle-high’ and ‘high-middle’ are equivalent; 3)

two trips of ‘low-high’ and ‘high-low’ are equivalent.

The risk-neutral variance of the return from t to T , pT/pt − 1, is given by:

1

p2t
E∗

t [p
2
T − p2t ] = Et[pT (nT )]/pt − 1 (A2)

Substituting in (17), we obtain (19).

Proof for result 3. The risk-neutral variance of the market return satisfies

Var∗t [pT/pt − 1] = E∗
t

[
p2T/p

2
t

]
− 1 = Et [pT |nt, ft] /pt − 1
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Holding news arrival rate v and the average expectation of the fundamental growth Gt−Bt

constant, a higher historical news count νt ⩾ ν ′
t reduces disagreement in bullishness u and

resulting in a more concentrated distribution of fundamental growth nT − nt, such that

n′
T − n′

t is a mean-preserving spread of nT − nt. As a result,

p−1
t =

∑
nT−nt

Pr(nT − nt|nt, ft) e
−σ(nT−nt) e−σnt

⩽
∑

n′
T−n′

t

Pr(n′
T − n′

t|n′
t, f

′
t) e

−σ(n′
T−n′

t) e−σnt = (p′t)
−1 e−σ(nt−n′

t) (A3)

confirming pt/e
σnt ⩾ p′t/e

σn′
t . Similarly,

Et [pT |nt, ft] =
∑

nT−nt

Pr(nT − nt|nt, ft) e
σ(nT−nt) eσnt

⩽
∑

n′
T−n′

t

Pr(n′
T − n′

t|n′
t, f

′
t) e

σ(n′
T−n′

t) eσnt = Et [p
′
T |n′

t, f
′
t ] e

σ(nt−n′
t) (A4)

Multiplying the above two inequalities, we obtain

Var∗t [pT/pt − 1] ⩽ Et [p
′
T |n′

t, f
′
t ] /p

′
t − 1 = Var∗t [p

′
T/p

′
t − 1] (A5)

Proof for result 4. Suppose news arrival rate disagreement is stronger than the Dirich-

let benchmark αv0 ⩽ αu0 + βu0. Holding the average expectation of the fundamental

growth Gt −Bt constant, a higher historical news count νt ⩾ ν ′
t suggests that

1. g + b = v first-order stochastically dominates g′ + b′ = v′

2. g − b = (2u− 1)v second-order stochastically dominates g′ − b′ = (2u′ − 1)v′

Thus, nT − nt is a mean-preserving spread of n′
T − n′

t. The rest follows from the proof of

Result 3.

Proof for results 5 and 6. Consider the group of agents whose subjective expectation

of the market return equals r:

E(u,v)
t [pt+1/pt − 1] = r . (A6)
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We can express u as a function of v and r:

u =
pt+1,m − pt+1,b

pt+1,g − pt+1,b

+
(1 + r)pt − pt+1,m

(pt+1,g − pt+1,b)v
(A7)

When r < pt+1,m/pt−1, u stays in [0, 1] if and only if v ∈ [(pt+1,m−(1+r)pt)/(pt+1,m−
pt+1,b), 1]. When r > pt+1,m/pt − 1, u stays in [0, 1] if and only if v ∈ [((1 + r)pt −
pt+1,m)/(pt+1,g − pt+1,m), 1].

Substituting (A7) into (3), the conditional distribution of v given r satisfies

ft(v|r) ∝ (v + kz)αut−1 (v − z)βut−1 vαvt−αut−βut(1− v)βvt−1 , (A8)

where z as a function of r represents the scaled return and k is a constant

z =
(1 + r)pt − pt+1,m

pt+1,g − pt+1,m

=
1 + r −Mt/m

∗
t

Gt/g∗t −Mt/m∗
t

, (A9)

k =
pt+1,g − pt+1,m

pt+1,m − pt+1,b

=
Gt/g

∗
t −Mt/m

∗
t

Mt/m∗
t −Bt/b∗t

. (A10)

Integrating the joint distribution ft(v, z) over v yields the marginal distribution of z:

ft(z) =

(
k

k + 1

)βut B(βut, βvt)

B(αut, βut)B(αvt, βvt)
zαvt−1(1− z)βut+βvt−1

F1

(
βut;αvt + βvt − 1, 1− αut, βut + βvt; 1− z,

k(1− z)

1 + k

)
for z > 0 and

ft(z) =
k

(k + 1)αut

B(αut, βvt)

B(αut, βut)B(αvt, βvt)
(−kz)αvt−1(1 + kz)αut+βvt−1

F1

(
αut;αvt + βvt − 1, 1− βut;αut + βvt; 1 + kz,

1 + kz

1 + k

)
for z < 0. Substituting into ft(r) = pt/(pt+1,g − pt+1,m)ft(z), we obtain the two equations

in Result 5.

From the distribution ft(v|r), the conditional expectation E[v|r] can be expressed in

terms of ratios of Appell hypergeometric functions. This expression allows us to compute

the wealth-weighted average derivative position for this group of agents. Specifically, when
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z ⩾ 0, we obtain:

E[v|r] = z + z(1− z) · βut

αut + βvt

·
F1

(
βut + 1;αvt + βvt, 1− αut; βut + βvt + 1; 1− z, k(1−z)

1+k

)
F1

(
βut;αvt + βvt − 1, 1− αut; βut + βvt; 1− z, k(1−z)

1+k

) .

When z < 0, we obtain:

E[v|r] = −kz + (−kz)(1 + kz) · αut

βut + βvt

F1

(
αut + 1;αvt + βvt, 1− βut;αut + βvt + 1; 1 + kz, 1+kz

1+k

)
F1

(
αut;αvt + βvt − 1, 1− βut;αut + βvt; 1 + kz, 1+kz

1+k

) .

For agent with belief (u, v), the expected excess payoff of the derivative is given by:

E(u,v)
t [xt+1 − qt] = pt(b

∗
t −Bt)uv + pt(Gt − g∗t )(1− u)v − pt(b

∗
tGt − g∗tBt)

=
Var∗t [pt+1]

pt+1,g − pt+1,b

(
v − v∗t +

(v∗t − Vt)

E(Ut,Vt)[r]
r
)
=

Var∗t [xt+1 − qt]

m∗
t qt

(
v − v∗t +

(v∗t − Vt)

E(Ut,Vt)[r]
r
)
.

(A11)

Substituting this expression into (14), we obtain (26).

Proof for result 7. For the discussion in this section, we assume there is true probability

measure (utrue, vtrue) that guarantees the data generating process of fundamental news.

We also assume there is no learning, so agents would stick to their dogmatic beliefs.

We define the wealth share of agent (u, v) at time t with sample history (nt, νt) as

Ω(u, v;nt, νt) =
u

1
2
nt+

1
2
νt(1− u)

1
2
νt− 1

2
ntvνt(1− v)t−νtf0(u, v)∫

u
1
2
nt+

1
2
νt(1− u)

1
2
νt− 1

2
ntvνt(1− v)t−νtf0(u, v)dudv

We want to compute the asymptotic decay rate (exponentially) of the above quantity,

which is the following limit

lim
t→∞

− log Ω(u, v;nt, νt)

t
= lim

t→∞
−1

t
log

u
1
2
nt+

1
2
νt(1− u)

1
2
νt− 1

2
ntvνt(1− v)t−νtf0(u, v)∫

u
1
2
nt+

1
2
νt(1− u)

1
2
νt− 1

2
ntvνt(1− v)t−νtf0(u, v)dudv

Note that in large time t limit, we could write

νt = tvtrue, nt = ngt − nbt = t(utruevtrue − (1− utrue)vtrue) = t(2utruevtrue − vtrue)
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and this means we can write

− 1

t
log
(
u

1
2
nt+

1
2
νt(1− u)

1
2
νt− 1

2
ntvνt(1− v)t−νt

)
= −vtrue log v − (1− vtrue) log(1− v)− vtrue (utrue log u+ (1− utrue) log(1− u))︸ ︷︷ ︸

−h(utrue, vtrue;u, v)

and also compute

lim
t→∞

1

t
log

∫
u

1
2
nt+

1
2
νt(1− u)

1
2
νt− 1

2
ntvνt(1− v)t−νtf0(u, v)dudv

= lim
t→∞

1

t
log

∫
exp(t h(utrue, vtrue;u, v) + log f0(u, v))dudv

= supu,v{h(utrue, vtrue;u, v)}

Note that the maximum of h(utrue, vtrue;u, v) is achieved at (utrue, vtrue) because the fol-

lowing quantity is always positive when (u, v) ̸= (utrue, vtrue) (this is the so called Gibbs’s

inequality in information theory, which guarantees the relative entropy is always positive

between two probability measures)

h(utrue, vtrue;utrue, vtrue)− h(utrue, vtrue;u, v)

= vtrue log
vtrue
v

+ (1− vtrue) log
1− vtrue
1− v

− vtrue

(
utrue log

utrue

u
+ (1− utrue) log

1− utrue

1− u

)
> 0

Thus we could conclude

lim
t→∞

− log Ω(u, v;nt, νt)

t

= vtrue log
vtrue
v

+ (1− vtrue) log
1− vtrue
1− v

+ vtrue

(
utrue log

utrue

u
+ (1− utrue) log

1− utrue

1− u

)
= KL(vtrue, v) + vtrueKL(utrue, u)

Proof for result 8. Let ξ = v/δ denote the continuous-time Poisson arrival rate of

news. As δ → 0, the distribution of ξ at time t converges to a Gamma distribution

ξ ∼ Γ(αvt , αv0λ
−1 + t).

For an agent with belief (u, ξδ), the arrival rate of “good news” is ξu and bad news

ξ(1−u). The counts of “good news” and “bad news” for the time interval [t, T ] respectively
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follow Poisson distributions ngT − ngt ∼ Poisson( ξu(T − t) ), nbT − nbt ∼ Poisson( ξ(1 −
u)(T − t) ).

Using the moment generating functions for ngT − ngt, nbT − nbt and ξ, we find that

p−1
t = e−σnt E[e−σ(nT−nt)|ft] = e−σnt

∫
e−σ(ngT−ngt)−σ(nbT−nbt)ft(u, ξ)dξdu

= e−σnt

∫
exp

(
ξu(T − t)(e−σ − 1) + ξ(1− u)(T − t)(eσ − 1)

)
ft(u, ξ)dξdu

= e−σnt

∫ (
1−

u(T − t)(e−σ − 1) + (1− u)(T − t)(eσ − 1)

αv0λ−1 + t

)−αvt

uαut−1(1− u)βut−1

B(αut, βut)
du

= e−σnt

(
1− (T − t)(eσ − 1)

αv0λ−1 + t

)−αvt

2F1

(
αvt, αut;αut + βut;−

eσ − e−σ

(αv0λ−1 + t)/(T − t)− (eσ − 1)

)
.

The final step uses Euler’s integral representation for the hypergeometric function 2F1.

Similarly,

E[pT ] = eσnt E[eσ(nT−nt)|ft]

= eσnt

∫ (
1−

u(T − t)(eσ − 1) + (1− u)(T − t)(e−σ − 1)

αv0λ−1 + t

)−αvt

uαut−1(1− u)βut−1

B(αut, βut)
du

= eσnt

(
1 +

(T − t)(1− e−σ)

αv0λ−1 + t

)−αvt

2F1

(
αvt, αut;αut + βut;

eσ − e−σ

(αv0λ−1 + t)/(T − t) + (1− e−σ)

)
.

Substituting the above expression into (19), we obtain (29).
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I.A.1 Individual’s optimal portfolio choices

I.A.1.1 Agent’s optimal position

Recall that we stated for an agent with beliefs (u, v), the optimal positions are given by

(same as (13) in the paper)

θ
(u,v)
t = w

(u,v)
t

E(u,v)
t [pt+1 − pt]

Var∗t [pt+1 − pt]
, ϕ

(u,v)
t = w

(u,v)
t

E(u,v)
t [xt+1 − qt]

Var∗t [xt+1 − qt]
.

Derivation for Equation (13). The subjective expectation of the price change pt+1−pt,

for an agent characterized by belief parameters (u, v) and represented by probabilities

(g,m, b), is given by:

E(u,v)
t [pt+1 − pt] = g(pt+1,g − pt) +m(pt+1,m − pt) + b(pt+1,b − pt) . (I.A.1)

Using equation (7),

g = g∗t ·
w

(u,v)
t+1,g

w
(u,v)
t

, m = m∗
t ·

w
(u,v)
t+1,m

w
(u,v)
t

, b = b∗t ·
w

(u,v)
t+1,b

w
(u,v)
t

. (I.A.2)

Substituting into (I.A.1) and simplifying,

E(u,v)
t [pt+1 − pt]

=
1

w
(u,v)
t

[
g∗tw

(u,v)
t+1,g(pt+1,g − pt) +m∗

tw
(u,v)
t+1,m(pt+1,m − pt) + b∗tw

(u,v)
t+1,b(pt+1,b − pt)

]
=

1

w
(u,v)
t

[
g∗t θ

(u,v)
t (pt+1,g − pt)

2 +m∗
t θ

(u,v)
t (pt+1,m − pt)

2 + b∗t θ
(u,v)
t (pt+1,b − pt)

2

]
=

1

w
(u,v)
t

θ
(u,v)
t Var∗t [pt+1 − pt] , (I.A.3)

where the second equality follows from the fact that the risk-neutral covariance between

the derivative payoff and the market price is zero.

This concludes the proof for the market demand θ
(u,v)
t . The proof for the derivative

demand ϕ
(u,v)
t follows analogously.
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I.A.1.2 Gamma exposure for individual agent

Γ(u,v) =
2g∗t b

∗
t

pt (Gtb∗t − g∗tBt)

[
g −m

Gt −Mt

− m− b

Mt −Bt

]
ft(u, v) (I.A.4)

Recall the variables (g,m, b) in (I.A.4) can be expressed in terms of (u, v) using (1).

Derivation for (I.A.4). The expression is derived by constructing a Lagrange interpolat-

ing polynomial w(p) that expresses the agent’s wealth as a function of price, based on the

wealth–price pairs from three scenarios: (pt+1,g, w
(u,v)
t+1,g), (pt+1,m, w

(u,v)
t+1,m), and (pt+1,b, w

(u,v)
t+1,b).

w(p) =w
(u,v)
t+1,g ·

(p− pt+1,m)(p− pt+1,b)

(pt+1,g − pt+1,m)(pt+1,g − pt+1,b)
+ w

(u,v)
t+1,m · (p− pt+1,g)(p− pt+1,b)

(pt+1,m − pt+1,g)(pt+1,m − pt+1,b)

+ w
(u,v)
t+1,b ·

(p− pt+1,g)(p− pt+1,m)

(pt+1,b − pt+1,g)(pt+1,b − pt+1,m)
. (I.A.5)

The gamma exposure corresponds to the second derivative of wealth w(p) with respect to

the price. Since w(p) is quadratic, Γ(u,v) is equal to twice the quadratic coefficient. We

compute the following

Γ(u,v) =
2

pt+1,g − pt+1,b

[
w

(u,v)
t+1,g − w

(u,v)
t+1,m

pt+1,g − pt+1,m

−
w

(u,v)
t+1,m − w

(u,v)
t+1,b

pt+1,m − pt+1,b

]

=
2

pt+1,g − pt+1,b

 w
(u,v)
t+1,g

w
(u,v)
t

w
(u,v)
t

pt
− w

(u,v)
t+1,m

w
(u,v)
t

w
(u,v)
t

pt

pt+1,g

pt
− pt+1,m

pt

−

w
(u,v)
t+1,m

w
(u,v)
t

w
(u,v)
t

pt
− w

(u,v)
t+1,b

w
(u,v)
t

w
(u,v)
t

pt

pt+1,m

pt
− pt+1,b

pt


=

2ft(u, v)

pt+1,g − pt+1,b

[
g −m

Gt −Mt

− m− b

Mt −Bt

]
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I.A.2 Brownian limits

To consider a Brownian limit, the interval [0, T ] is partitioned into N = T/δ periods,

each with length δ. The terminal payoff is defined as pT (nT ) = eσ
√

T
N
nT , reflecting that

each piece of news has a smaller effect on the fundamental, which is scaled as
√

T/NnT .

This is the same setting as in Cox, Ross and Rubinstein (1979). As the number of steps

increases, the wealth distribution parameters (αu0, βu0, αv0, βv0) may also be adjusted to

ensure meaningful limiting behavior.

However, substantial disagreement over news arrival rate cannot persist, while minor

disagreements have negligible effects on asset prices. By result (7), agents with beliefs

v ̸= vtrue lose wealth each period at a strictly positive rate. As the number of trading

periods grows, their repeated mistakes drive their wealth share to zero for any t > 0.

Conversely, suppose an agent’s belief is represented by a sequence v(N) → vtrue. The

difference in expected fundamental between agents (u, vtrue) and (u, v(N)) is given by:

Eu,vtrue
[√

T/N nT

]
− Eu,v(N)

[√
T/NnT

]
=

√
TN(2u− 1)

[
vtrue − v(N)

]
. (I.A.6)

Keeping the terminal payoff bounded requires that
√
TN(2u− 1) remains bounded. This

ensures that the expectation gap vanishes as N grows, meaning the disagreement is too

small to generate difference in perceived fundamental growth and hence no effect on prices.

The previous analysis does not rule out the possibility of preserving disagreement of

news content in the Brownian limit. As an illustration, we set the parameters as following

αu0 =
1

2
λθN +

1

2
η
√
N , βu0 =

1

2
λθN − 1

2
η
√
N , αv0 = λθN , βv0 = αv0(λ

−1 − 1) ,

where αu0 + βu0 = αv0 always hold and the 2D-Beta distribution in (3) would reduce

to Dirichlet distribution B(αu0, βu0)B(αv0, βv0) = B(αu0, βv0, βu0). The cross-sectional

average of (u, v) would be

Eu =
1

2
+

ηλ

2θ
N− 1

2 , E v = λ,

where θ captures the disagreement of news content and the model reduce to homogeneous

belief case when θ → ∞. Note that the disagreement of news arrival rate does not

affect Ẽv and those with inaccurate beliefs of v would become irrelevant in the diffusion

limit—parameter θ only effectively capture the disagreement of news content.

Applying results 2 and equation (19) in the large-N limit, we obtain closed-form

expressions for the prices of the market and risk-neutral variances.
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Result 9 (Brownian limit). In the Brownian limit, the market price at time t is

pt = exp

[
η

θ

1− ϕ

1 + ϕ
σ
√
T +

(
1 +

1

θ

1− ϕ

1 + ϕ

)
ηtσ
√
ϕT − 1 + θ−1 + ϕ

2

1− ϕ

1 + ϕ
λσ2T

]
. (I.A.7)

where ϕ = t/T and ηt = nt/
√
ϕN .

The risk-neutral variance of the return from t to T is given by:

Var∗[pT/pt − 1] = exp

(
(1 + θ−1 + ϕ)

1− ϕ

1 + ϕ
λσ2T

)
− 1 . (I.A.8)

The above Brownian limit corresponds to that of a binary tree model with only hetero-

geneous beliefs about news content: everyone agrees that news always come with a fixed

probability λ and everyone knows it’s the truth. 8 The risk-neutral variance between t

and T is deterministic and unaffected by news realizations.

Proof for result 9. By construction, from Mr. Market’s point of view at time 0, the

variables (ngT , nmT , nbT ) follows a Dirichlet distributionB(α, β, γ) = B(1
2
θλN+1

2
η
√
N, θN(1−

λ), 1
2
θλN − 1

2
η
√
N). It is then straight forward to compute the reciprocal of initial price

using result 2. To get a close form formula, we use Paul and Plackett (1978). In the

limit when N → ∞, the variable nT = ngT − nbT follows normal distribution with the

mean EnT = N
(

α−γ
α+β+γ

)
= η

θ

√
N and the variance var[nT ] = N

(
λ− η2

θ2
N−1

)
1+θ
θ

→
λ1+θ

θ
N . Thus the following random variable nT/

√
N follows a normal distribution in

large N limit nT√
N

∼ N
(

η
θ
, λ(1+θ)

θ

)
. Consequently, the reciprocal of price is given by

p−1
0 = E exp

(
−σ

√
T nT√

N

)
and it implies p0 = exp

(
η
θ
σ
√
T − λ(1+θ)

2θ
σ2T

)
.

For market price at time t, we need to adjust the wealth distribution and also the

number of periods. The number of periods left is N(1− t/T ) = N(1−ϕ), where ϕ = t/T .

The random variables (ngT − ngt, nmT − nmt, nbT − nbt) follows a Dirichlet distribution at

time t Bt(α
′, β′, γ′) = Bt(

1
2
θλ(1 + ϕ)N + 1

2
η
√
N + 1

2
ηt
√
ϕN, θ(1 + ϕ)N(1 − λ), 1

2
θλ(1 +

ϕ)N − 1
2
η
√
N − 1

2
ηt
√
ϕN). The parameter ηt captures the wealth transfer between 0 and

t among agents because of heterogeneous beliefs about news content ηt =
nt√
ϕN

. The price

at time t can then be written as p−1
t = Et p

−1
T = e−ηtσ

√
ϕT Et

(
expσ

√
T/N(nt − nT )

)
.

The large N limits for mean and variance of nT − nt (which would be Gaussian dis-

tributed), according to Paul and Plackett (1978), shall be Et[nT−nt] = (1−ϕ)N α′−γ′

α′+β′+γ′ =

8The case when λ = 1 has been studied extensively in Martin and Papadimitriou (2022). At time

t = 0, equation (I.A.7) has a simple expression p0 = exp
[
η
θσ

√
T − 1+θ

2θ λσ2T
]
.
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η+ηt
√
ϕ

θ
1−ϕ
1+ϕ

√
N and vart[nT−nt] = (1−ϕ)N

(
λ−

(
η+ηt

√
ϕ

θ
1−ϕ
1+ϕ

)2
N−1

)
1+θ(1+ϕ)
θ(1+ϕ)

→ λ1+θ(1+ϕ)
θ(1+ϕ)

(1−

ϕ)N . We can then compute pt as

pt = exp

(
η

θ

1− ϕ

1 + ϕ
σ
√
T +

(
1 +

1

θ

1− ϕ

1 + ϕ

)
ηtσ
√

ϕT − λ(1 + θ + θϕ)

2(θ + θϕ)
(1− ϕ)σ2T

)
The risk-neutral variance. Similar argument gives us

E pT (nT ) = lim
N→∞

E exp

(
σ
√
T

nT√
N

)
= exp

(
η

θ
σ
√
T +

λ(1 + θ)

2θ
σ2T

)
.

Thus, we have V0→T = exp
(

λ(1+θ)
θ

σ2T
)
.

I.A. –5



I.A.3 Wealth Distribution and Portfolio Weights

(a) Wealth distribution across r
Low news arrival rate disagreement

(b) Wealth distribution across r
High news arrival rate disagreement

(c) Portfolio weights in ‘straddle’ across r
Low news arrival rate disagreement

(d) Portfolio weights in ‘straddle’ across r
High news arrival rate disagreement

Figure I.A.1: Low disagreement in news arrival rate

The figure reports wealth distribution and portfolio weights for the cohort of investors
with expected return r. In the left panels (I.A.1a and I.A.1c), the initial wealth dis-
tribution reflects low disagreement in the news arrival rate dimension, characterized by
(αu0, βu0, αv0, βv0) = (1, 1, 100, 100). In contrast, the right panels (I.A.1b and I.A.1d)
assume a uniform initial wealth distribution across agents, with (αu0, βu0, αv0, βv0) =
(1, 1, 1, 1). Terminal payoff at T = 6 is chosen to follow exponential function e0.05nT . See
Figure 3 for an illustration for the possible sample paths that leads to the corresponding
wealth distribution and gamma position at t = 4.
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I.A.4 Figure 5 and I.A.1 at different periods

(a) t = 1 (b) t = 2

(c) t = 3 (d) t = 4

Figure I.A.2: Wealth distribution across r

The initial wealth across agents are assumed to be uniformly distributed, i.e.
(αu0, βu0, αv0, βv0) = (1, 1, 1, 1). The three colored lines corresponds to the three sam-
ple paths in Figure 3. Terminal payoff at T = 6 is chosen to follow exponential function
e0.05nT .
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(a) t = 1 (b) t = 2

(c) t = 3 (d) t = 4

Figure I.A.3: Wealth weighted beliefs of v across r

The initial wealth across agents are assumed to be uniformly distributed, i.e.
(αu0, βu0, αv0, βv0) = (1, 1, 1, 1). The three colored lines corresponds to the three sam-
ple paths in Figure 3. Terminal payoff at T = 6 is chosen to follow exponential function
e0.05nT .
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(a) t = 1 (b) t = 2

(c) t = 3 (d) t = 4

Figure I.A.4: Portfolio weights in ‘straddle’ across r

The initial wealth across agents are assumed to be uniformly distributed, i.e.
(αu0, βu0, αv0, βv0) = (1, 1, 1, 1). The three colored lines corresponds to the three sam-
ple paths in Figure 3. Terminal payoff at T = 6 is chosen to follow exponential function
e0.05nT .
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(a) t = 1 (b) t = 2

(c) t = 3 (d) t = 4

Figure I.A.5: Gamma exposure across r

The initial wealth across agents are assumed to be uniformly distributed, i.e.
(αu0, βu0, αv0, βv0) = (1, 1, 1, 1). The three colored lines corresponds to the three sam-
ple paths in Figure 3. Terminal payoff at T = 6 is chosen to follow exponential function
e0.05nT .
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