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I Lemmas and Proofs

A. Lemmas

Lemma 1. The estimators R̄ and β̂ in the linear regression model:

Rt = c+ βFt + ut,

with c an N -dimensional vector of constants, Ft = Gt − Ḡ, with Gt an m-dimensional vector of

factors and Ḡ = 1
T

∑T
t=1Gt, so F̄ = 0, and ut an N -dimensional vector which contains the errors

which are i.i.d. distributed with mean zero and covariance matrix Ω, are independently distributed

in large samples.

Proof: Since R̄ = ĉ+ β̂F̄ = ĉ, and the joint limit behavior of ĉ and β̂ accords with

√
T


 ĉ

vec(β̂)

−
 c

vec(β)


→

d

 ψc

ψβ

 ,

with  ψc

ψβ

 ∼ N (0, (Q−1 ⊗ IN )Σ(Q−1 ⊗ IN )
)
,

since 1
T

∑T
t=1

 1

Ft


 1

Ft


′

→
p
Q =

 1 µ′F

µF QFF

 =

 1 0

0 QFF

 , µF = 0, QFF =

E(FtF
′
t ) = QF̄ F̄ + µFµ

′
F , and

1
T

∑T
t=1


 1

Ft


 1

Ft


′

⊗ utu′t

 →
p

Σ. When ut is i.i.d., Σ =

(Q⊗ Ω), with Ω = var(ut), so

 ψc

ψβ

 ∼ N
0,

 1 0

0 Q−1
FF

⊗ Ω

 ,

and the limit behaviors of R̄ = ĉ and β̂ are thus independent.
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Lemma 2. a. When V̂ff (θ)−1 = V̂ff (θ)−
1
2 ′V̂ff (θ)−

1
2 , θ : 1× 1, fT (θ,X) a linear function of θ, so

∂
∂θ qT (θ,X) = 0, it holds that

∂
∂θ V̂ff (θ)−

1
2 = −V̂ff (θ)−

1
2 V̂qf (θ)V̂ff (θ)−1.

b. ∂
∂θ V̂ff (θ)−

1
2 fT (θ,X) = V̂ff (θ)−

1
2 D̂(θ).

c. ∂
∂θ V̂ff (θ)−

1
2 D̂(θ) = −2V̂ff (θ)−

1
2 V̂qf (θ)V̂ff (θ)−1D̂(θ)− V̂ff (θ)−

1
2 V̂θθ(θ)V̂ff (θ)−1fT (θ,X).

d.

∂
∂θfT (θ,X)′V̂ff (θ)−1D̂(θ) = D̂(θ)′V̂ff (θ)−1D̂(θ)− 2fT (θ,X)′V̂ff (θ)−1V̂qf (θ)V̂ff (θ)−1D̂(θ)−

fT (θ,X)′V̂ff (θ)−1V̂θθ(θ)V̂ff (θ)−1fT (θ,X).

e.
∂
∂θ

(
D̂(θ)′V̂ff (θ)−1D̂(θ)

)
= −4D̂(θ)′V̂ff (θ)−1V̂qf (θ)V̂ff (θ)−1D̂(θ)−

2D̂(θ)′V̂ff (θ)−1V̂θθ(θ)V̂ff (θ)−1fT (θ,X).

f.

∂
∂θ V̂θθ(θ) = −V̂θθ(θ)V̂ff (θ)−1V̂qf (θ)′ − V̂qf (θ)V̂ff (θ)−1V̂θθ(θ).

g.

∂
∂θ

(
fT (θ,X)′V̂ff (θ)−1V̂θθ(θ)V̂ff (θ)−1fT (θ,X)

)
= 2D̂(θ)′V̂ff (θ)−1V̂θθ(θ)V̂ff (θ)−1fT (θ,X)− 4fT (θ,X)′V̂ff (θ)−1V̂qf (θ)V̂ff (θ)−1V̂θθ(θ)V̂ff (θ)−1fT (θ,X).

h.

∂
∂θ

(
D̂(θ)′V̂ff (θ)−1D̂(θ) + fT (θ,X)′V̂ff (θ)−1V̂θθ(θ)V̂ff (θ)−1fT (θ,X)

)
= −4

[
D̂(θ)′V̂ff (θ)−1V̂qf (θ)V̂ff (θ)−1D̂(θ) + fT (θ,X)′V̂ff (θ)−1V̂qf (θ)V̂ff (θ)−1V̂θθ(θ)V̂ff (θ)−1fT (θ,X)

]
.

i. For θ∗ satisfying the population FOC and V (θ) =
(
Vff (θ)
Vθf (θ)

Vfθ(θ)
Vθθ(θ)

)
=
((

1
θ

0
1

)′
Σ
(

1
θ

0
1

)
⊗ Ω

)
, with Ω

kf × kf and Σ = I2, d above implies that

1
2
∂2

∂θ2
Qp(θ)|θ∗ =

(
1

1+(θ∗)2

)3

×
[(
−θ∗

1

)′(
µf (0)

... J(0)

)′
Ω−1

(
µf (0)

... J(0)

)(
−θ∗

1

)
−

(
1
θ∗

)′(
µf (0)

... J(0)

)′
Ω−1

(
µf (0)

... J(0)

)(
1
θ∗

)]
.
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Proof: a. Because V̂ff (θ)−1 = V̂ff (θ)−
1
2 ′V̂ff (θ)−

1
2 , V̂ff (θ)−

1
2 V̂ff (θ)V̂ff (θ)−

1
2 ′ = Ikf and

(∂V̂ff (θ)−
1
2

∂θ

)
V̂ff (θ)V̂ff (θ)−

1
2 ′ + V̂ff (θ)−

1
2

(∂V̂ff (θ)
∂θ

)
V̂ff (θ)−

1
2 ′ + V̂ff (θ)−

1
2 V̂ff (θ)

(∂V̂ff (θ)−
1
2

∂θ

)′
= 0.

This equation implies that ∂
∂θ V̂ff (θ)−

1
2 = −V̂ff (θ)−

1
2 V̂qf (θ)V̂ff (θ)−1, since ∂V̂ff (θ)

∂θ = V̂qf (θ) +

V̂qf (θ)′ which results from the definition of qT (θ,X) = ∂
∂θfT (θ,X).

b. Using the product rule of differentiation:

∂
∂θ V̂ff (θ)−

1
2 fT (θ,X) =

(
∂
∂θ V̂ff (θ)−

1
2

)
fT (θ,X) + V̂ff (θ)−

1
2

(
∂
∂θfT (θ,X)

)
= −V̂ff (θ)−

1
2 V̂qf (θ)V̂ff (θ)−1fT (θ,X) + V̂ff (θ)−

1
2 qT (θ,X)

= V̂ff (θ)−
1
2 D̂(θ).

c. The specification of V̂ff (θ)−
1
2 D̂(θ) is V̂ff (θ)−

1
2 D̂(θ) = V̂ff (θ)−

1
2

[
qT (θ,X)− V̂qf (θ)V̂ff (θ)−1fT (θ,X)

]
:

∂
∂θ

(
V̂ff (θ)−

1
2 D̂(θ)

)
=

(
∂
∂θ V̂ff (θ)−

1
2

)
D̂(θ) + V̂ff (θ)−

1
2

(
∂
∂θ

[
qT (θ,X)− V̂qf (θ)V̂ff (θ)−1fT (θ,X)

])
= −V̂ff (θ)−

1
2 V̂qf (θ)V̂ff (θ)−1D̂(θ) + V̂ff (θ)−

1
2

[
∂
∂θ qT (θ,X)−

(
∂
∂θ V̂qf (θ)

)
V̂ff (θ)−1fT (θ,X)−

V̂qf (θ)
(
∂
∂θ V̂ff (θ)−1

)
fT (θ,X)− V̂qf (θ)V̂ff (θ)−1

(
∂
∂θfT (θ,X))

]
= −V̂ff (θ)−

1
2 V̂qf (θ)V̂ff (θ)−1D̂(θ)− V̂ff (θ)−

1
2 V̂qq(θ)V̂ff (θ)−1fT (θ,X)+

V̂ff (θ)−
1
2 V̂qf (θ)V̂ff (θ)−1V̂qf (θ)V̂ff (θ)−1fT (θ,X)+

V̂ff (θ)−
1
2 V̂qf (θ)V̂ff (θ)−1V̂qf (θ)′V̂ff (θ)−1fT (θ,X)− V̂ff (θ)−

1
2 V̂qf (θ)V̂ff (θ)−1qT (θ,X)

= −2V̂ff (θ)−
1
2 V̂qf (θ)V̂ff (θ)−1D̂(θ)− V̂ff (θ)−

1
2 V̂θθ(θ)V̂ff (θ)−1fT (θ,X).

since ∂
∂θ V̂qf (θ) = V̂qq(θ) and ∂

∂θ qT (θ,X) = 0.

d.

∂
∂θfT (θ,X)′V̂ff (θ)−1D̂(θ)

=
(
∂
∂θ V̂ff (θ)−

1
2 fT (θ,X)

)′
V̂ff (θ)−

1
2 D̂(θ) + fT (θ,X)′V̂ff (θ)−

1
2

(
∂
∂θ V̂ff (θ)−

1
2 D̂(θ)

)
= D̂(θ)′V̂ff (θ)−1D̂(θ)− 2fT (θ,X)′V̂ff (θ)−1V̂qf (θ)V̂ff (θ)−1D̂(θ)−

fT (θ,X)′V̂ff (θ)−1V̂θθ(θ)V̂ff (θ)−1fT (θ,X).

e.
∂
∂θ

(
D̂(θ)′V̂ff (θ)−1D̂(θ)

)
= 2

(
D̂(θ)′V̂ff (θ)−

1
2

)(
∂
∂θ V̂ff (θ)−

1
2 D̂(θ)

)
= −4D̂(θ)′V̂ff (θ)−1V̂qf (θ)V̂ff (θ)−1D̂(θ)−

2D̂(θ)′V̂ff (θ)−1V̂θθ(θ)V̂ff (θ)−1fT (θ,X).
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f. The specification of Vθθ(θ) = Vqq(θ)− Vqf (θ)Vff (θ)−1Vqf (θ)′ is such that:

∂
∂θ V̂θθ(θ)

=
(
∂
∂θ V̂qq(θ)

)
−
(
∂
∂θ V̂qf (θ)

)
V̂ff (θ)−1V̂qf (θ)′ − V̂qf (θ)

(
∂
∂θ V̂ff (θ)−1

)
V̂qf (θ)′−

V̂qf (θ)V̂ff (θ)−1
(
∂
∂θ V̂qf (θ)

)′
= −V̂qq(θ)V̂ff (θ)−1V̂qf (θ)′ + V̂qf (θ)V̂ff (θ)−1V̂qf (θ)V̂ff (θ)−1V̂qf (θ)′+

V̂qf (θ)V̂ff (θ)−1V̂qf (θ)′V̂ff (θ)−1V̂qf (θ)′ − V̂qf (θ)V̂ff (θ)−1V̂qq(θ)

= −V̂θθ(θ)V̂ff (θ)−1V̂qf (θ)′ − V̂qf (θ)V̂ff (θ)−1V̂θθ(θ).

g. The specification of fT (θ,X)′V̂ff (θ)−1V̂θθ(θ)V̂ff (θ)−1fT (θ,X) is such that:

∂
∂θ

(
fT (θ,X)′V̂ff (θ)−1V̂θθ(θ)V̂ff (θ)−1fT (θ,X)

)
= 2

(
∂
∂θ V̂ff (θ)−

1
2 fT (θ,X)

)′
V̂ff (θ)−

1
2 V̂θθ(θ)V̂ff (θ)−1fT (θ,X)+

2fT (θ,X)′V̂ff (θ)−
1
2

(
∂
∂θ V̂ff (θ)−

1
2

)
V̂θθ(θ)V̂ff (θ)−1fT (θ,X)+

fT (θ,X)′V̂ff (θ)−1
(
∂
∂θ V̂θθ(θ)

)
V̂ff (θ)−1fT (θ,X)

= 2D̂(θ)′V̂ff (θ)−1V̂θθ(θ)V̂ff (θ)−1fT (θ,X)−

2fT (θ,X)′V̂ff (θ)−1V̂qf (θ)V̂ff (θ)−1V̂θθ(θ)V̂ff (θ)−1fT (θ,X)−

fT (θ,X)′V̂ff (θ)−1V̂θθ(θ)V̂ff (θ)−1V̂qf (θ)′V̂ff (θ)−1fT (θ,X)−

fT (θ,X)′V̂ff (θ)−1V̂qf (θ)V̂ff (θ)−1V̂θθ(θ)V̂ff (θ)−1fT (θ,X)

= 2D̂(θ)′V̂ff (θ)−1V̂θθ(θ)V̂ff (θ)−1fT (θ,X)−

4fT (θ,X)′V̂ff (θ)−1V̂qf (θ)V̂ff (θ)−1V̂θθ(θ)V̂ff (θ)−1fT (θ,X).

h. It follows from e and g above.

i. Use d above for the special case with Vff (θ) = (1+θ2)Ω, Vqf (θ) = θΩ, µf (θ) =

(
µf (0)

... J(0)

)(
1
θ

)
,

D(θ) =

(
µf (0)

... J(0)

)(
−θ
1

)
1

1+θ2
, Vθθ(θ) = (1 + θ2)−1Ω and since θ∗ satisfies the population FOC:

1
2
∂
∂θQp(θ)|θ∗ =

(
1
θ∗

)′(
µf (0)

... J(0)

)′
Ω−1

(
µf (0)

... J(0)

)(
−θ∗

1

)(
1

1+(θ∗)2

)2

= 0.

Lemma 3. The FOC (divided by two) for a stationary point θs of the population objective function

reads:

1
2
∂
∂θ′Qp(θ

s) = 0 ⇔ µf (θs)′Vff (θs)−1D(θs) = 0, (1)
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with

D(θ) = J(θ)−
[
Vq1f (θ)Vff (θ)−1µf (θ) . . . Vqmf (θ)Vff (θ)−1µf (θ)

]
(2)

and J(θ) = ∂
∂θ′µf (θ),

Vqif (θ) = limT→∞E
[
T ( ∂

∂θi
(fT (θ,X)− µf (θ)))

(
fT (θ,X)− µf (θ)

)′]
, i = 1, . . . ,m. (3)

Proof: The derivative of Qp(θ) with respect to θ consists of two parts. The derivative of µf (θ)

with respect to θ : J(θ) = ∂
∂θ′µf (θ), and the derivative of Vff (θ)−1 with respect to θ. To obtain the

derivative of Vff (θ)−1 with respect to θ, we start out with the derivative of Vff (θ) with respect to

θ :

vec(Vff (θ)) = lim
T→∞

vec(var
(√

TfT (θ,X)
)

)

= lim
T→∞

vec

E
 1

T

T∑
t=1

T∑
j=1

(
ft(θ)− µf (θ)

) (
fj(θ)− µf (θ)

)′
= lim

T→∞
E

 1

T

T∑
t=1

T∑
j=1

[(
fj(θ)− µf (θ)

)
⊗
(
ft(θ)− µf (θ)

)]
∂

∂θ′
vec(Vff (θ)) = lim

T→∞

∂

∂θ′
E

 1

T

T∑
t=1

T∑
j=1

[(
fj(θ)− µf (θ)

)
⊗
(
ft(θ)− µf (θ)

)]
= lim

T→∞
E

 1

T

T∑
t=1

T∑
j=1

[(
∂

∂θ′
fj(θ)−

∂

∂θ′
µf (θ)

)
⊗
(
ft(θ)− µf (θ)

)]+

lim
T→∞

E

 1

T

T∑
t=1

T∑
j=1

[(
fj(θ)− µf (θ)

)
⊗
(
∂

∂θ′
ft(θ)−

∂

∂θ′
µf (θ)

)]
= lim

T→∞
E

 1

T

T∑
t=1

T∑
j=1

[
(qj(θ)− J(θ))⊗

(
ft(θ)− µf (θ)

)]+

lim
T→∞

E

 1

T

T∑
t=1

T∑
j=1

[(
fj(θ)− µf (θ)

)
⊗ (qt(θ)− J(θ))

]
= (vec (Vq1f (θ)) . . . vec (Vqmf (θ))) + (vec (Vq1f (θ)′) . . . vec (Vqmf (θ)′))

with qj(θ) = ∂
∂θ′ fj(θ) = (q1,j(θ) . . . qm,j(θ)) and

Vqif (θ) = limT→∞E
(
T ( ∂

∂θi
(fT (θ,X)− µf (θ)))

(
fT (θ,X)− µf (θ)

)′)
, i = 1, . . . ,m.

We can now specify the derivative of the objective function with respect to θ:
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1
2
∂
∂θ′Qp(θ) = µf (θ)′Vff (θ)−1 ∂µf (θ)

∂θ′ −
1
2 ((µf (θ)⊗ µf (θ))′(Vff (θ)−1 ⊗ Vff (θ)−1) ∂

∂θ′ vec(Vff (θ))

= µf (θ)′Vff (θ)−1J(θ)− 1
2 ((µf (θ)⊗ µf (θ))′(Vff (θ)−1 ⊗ Vff (θ)−1)

(vec (Vq1f (θ)) . . . vec (Vqmf (θ))) + (vec (Vq1f (θ)′) . . . vec (Vqmf (θ)′))

= µf (θ)′Vff (θ)−1J(θ)−
1
2

[(
µf (θ)′Vff (θ)−1Vq1f (θ)Vff (θ)−1µf (θ) . . . µf (θ)′Vff (θ)−1Vqmf (θ)Vff (θ)−1µf (θ)

)
+(

µf (θ)′Vff (θ)−1Vq1f (θ)′Vff (θ)−1µf (θ) . . . µf (θ)′Vff (θ)−1Vqmf (θ)′Vff (θ)−1µf (θ)
)]

= µf (θ)′Vff (θ)−1
[
J(θ)−

(
Vq1f (θ)Vff (θ)−1µf (θ) . . . Vqmf (θ)Vff (θ)−1µf (θ)

)]
= µf (θ)′Vff (θ)−1D(θ),

with D(θ) = J(θ)−
[
Vq1f (θ)Vff (θ)−1µf (θ) . . . Vqmf (θ)Vff (θ)−1µf (θ)

]
. See also Kleibergen (2005).

Lemma 4. The FOC (divided by two) for a stationary point θ̂
s
of the CUE sample objective

function reads:
1

2

∂

∂θ′
Q̂s(θ̂

s
) = 0⇔ fT (θ̂

s
, X)′V̂ff (θ̂

s
)−1D̂(θ̂

s
) = 0, (4)

with

D̂(θ) = qT (θ,X)−
[
V̂q1f (θ)V̂ff (θ)−1fT (θ,X) . . . V̂qmf (θ)V̂ff (θ)−1fT (θ,X)

]
(5)

and

V̂ (θ) =

 V̂ff (θ) V̂fq(θ)

V̂qf (θ) V̂qq(θ)

 , (6)

with V̂qf (θ) = V̂fq(θ)
′ = (V̂q1f (θ)′ . . . V̂qmf (θ)′)′, V̂qq(θ) = (V̂qiqj (θ)) : i, j = 1, . . . ,m; and V̂ff (θ),

V̂qif (θ), V̂qiqj (θ) are kf × kf dimensional matrices for i, j = 1, . . . ,m.

Proof: See Lemma 3 above and also Kleibergen (2005).

Lemma 5. When Assumptions 1 and 2 hold and for θ∗ the pseudo-true value minimizing the

population continuous updating objective function:

√
T
(
fT (θ∗, X)− µf (θ∗)

)
→
d
ψf (θ∗),

√
Tvec

(
D̂(θ∗)−D(θ∗)

)
→
d
ψθ(θ

∗),
(7)

7



with J(θ) = ∂
∂θ′µf (θ),

D̂(θ) = qT (θ,X)−
[
V̂q1f (θ)V̂ff (θ)−1fT (θ,X) . . . V̂qmf (θ)V̂ff (θ)−1fT (θ,X)

]
D(θ) = J(θ)−

[
Vq1f (θ)Vff (θ)−1µf (θ) . . . Vqmf (θ)Vff (θ)−1µf (θ)

]
,

Vθif (θ) = limT→∞E
[
T ( ∂

∂θi
(fT (θ,X)− µf (θ)))

(
fT (θ,X)− µf (θ)

)′]
, i = 1, . . . ,m,

V̂ (θ) =

 V̂ff (θ) V̂fq(θ)

V̂qf (θ) V̂qq(θ)

 ,

(8)

where V̂qf (θ) = V̂fq(θ)
′ = (V̂q1f (θ)′ . . . V̂qmf (θ)′)′, V̂qq(θ) = (V̂qiqj (θ)) : i, j = 1, . . . ,m; V̂ff (θ),

V̂qif (θ), V̂qiqj (θ) are kf × kf dimensional matrices, ψθ(θ∗) = ψq(θ
∗)−Vqf (θ∗)Vff (θ∗)−1ψf (θ∗) inde-

pendent of ψf (θ∗), and

ψf (θ∗) ∼ N(0, Vff (θ∗)),

ψθ(θ
∗) ∼ N(0, Vθθ(θ

∗)),
(9)

with Vθθ(θ) = Vqq(θ)− Vqf (θ)Vff (θ)−1Vfq(θ).

Proof: The joint limit behavior of fT (θ,X) and qT (θ,X) at the pseudo-true value θ∗ reads:

√
T

 fT (θ∗, X)− µf (θ∗)

vec(qT (θ∗, X)− J(θ∗))

→
d

 ψf (θ)

ψq(θ)

 .

We pre-multiply it by

R̂(θ∗) =

 Ikf 0

−V̂qf (θ∗)V̂ff (θ∗)−1 Ikfm

→
p

 Ikf 0

−Vqf (θ∗)Vff (θ∗)−1 Ikfm

 = R(θ∗),

to obtain

√
T

R̂(θ∗)

 fT (θ∗, X)

vec(qT (θ∗, X))

−R(θ∗)

 µf (θ∗)

vec(J(θ∗))


→

d
R(θ∗)

 ψf (θ∗)

ψq(θ
∗)

 ⇔

√
T

 fT (θ∗, X)− µf (θ∗)

vec(D̂(θ∗)−D(θ∗))

→
d

 ψf (θ∗)

ψθ(θ
∗)

 ,
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with ψθ(θ
∗) = ψq(θ

∗)− Vqf (θ∗)Vff (θ∗)−1ψf (θ∗), which is independent of ψf (θ∗) since

R(θ∗)V (θ∗)R(θ∗)′ =

 Vff (θ∗) 0

0 Vθθ(θ
∗)

 ,

where Vθθ(θ
∗) = Vqq(θ

∗) − Vqf (θ∗)Vff (θ∗)−1Vqf (θ∗)′, so ψf (θ∗) and ψθ(θ
∗) are uncorrelated and

independent since they are normally distributed random variables. See also Lemma 1 in Kleibergen

(2005).

Lemma 6. When Assumptions 1 and 2 hold, θ∗ is the minimizer of the population continuous

updating objective function and

µ̃f (θ∗) = limT→∞
√
Tµf (θ∗)

D̃(θ∗) = limT→∞
√
TD(θ∗)

(10)

with µ̃f (θ∗) and D̃(θ∗) finite valued kf and kf ×m dimensional continuously differentiable functions

of θ∗, so µ̃f (θ∗)′Vff (θ∗)−1D̃(θ∗) ≡ 0, the limit behavior of (half) the derivative of the CUE sample

objective function at θ∗ is characterized by:

Ts(θ∗)→
d

µ̃f (θ∗)′Vff (θ∗)−1Ψθ(θ
∗) + ψf (θ∗)′Vff (θ∗)−1D̃(θ∗) + ψf (θ∗)′Vff (θ∗)−1Ψθ(θ

∗), (11)

with vec(Ψθ(θ
∗)) = ψθ(θ

∗), so the expected value of the limit of the derivative of the sample CUE

objective function is equal to zero at the pseudo-true value θ∗ :

limT→∞E [T × s(θ∗)] = 0. (12)

Proof: The joint limit behaviors of fT (θ∗, X), D̂(θ∗) and V̂ff (θ∗) are such that:

Ts(θ∗) =
(√

TfT (θ∗, X)
)′
V̂ff (θ∗)−1

(√
TD̂(θ∗)

)
→
d

[
µ̃f (θ∗) + ψf (θ∗)

]′
Vff (θ∗)−1

[
D̃(θ∗) + Ψθ(θ

∗)
]

= µ̃f (θ∗)′Vff (θ∗)−1Ψθ(θ
∗) + ψf (θ∗)′Vff (θ∗)−1

[
D̃(θ∗) + Ψθ(θ

∗)
]

=
(
µ̃f (θ∗) + ψf (θ∗)

)′
Vff (θ∗)−1Ψθ(θ

∗) + ψf (θ∗)′Vff (θ∗)−1D̃(θ∗),

where vec(Ψθ(θ
∗)) = ψθ, since µ̃f (θ∗)′Vff (θ∗)−1D̃(θ∗) = 0. Because ψf (θ∗) and ψθ(θ

∗) are indepen-

dently distributed, this shows that the expected value of the limit of the score of the CUE sample

9



objective function equals zero at the pseudo-true value θ∗.

Lemmas 7-10: The general proof of the robustness of the DRLM test under strong misspecification

is conducted in a sequence of steps. We start with proving Lemma 7. Thereafter we work in Lemmas

8-10 towards a higher order expansion of the sample score. Lemma 8 therefore constructs a higher

order expansion for the covariance matrix estimator of the sample moment vector, V̂ff (θ), while

Lemma 9 does so for the centered Jacobian estimator D̂(θ). Lemma 10 combines these results to

construct a higher order expansion of the sample score, which we use to show its limit behavior

under different strengths of misspecification and identification. Next, based on Lemma 10, the proof

of Theorem 4 shows that the DRLM test in Theorem 4 is size correct.

Lemma 7. Under Assumption 1∗, for θ equal to the pseudo-true value θ∗, we have:

√
T


fT (θ,X)− µf (θ)

vec(D̂(θ)−D(θ))

vech(V̂ff (θ)− Vff (θ))

→d


ψf (θ)

ψθ(θ)

ψff (θ)

 ∼ N(0, V̄(θ)), (13)

with

V̄(θ) =


Vff (θ) Vθf (θ)′ Vff,f (θ)′

Vθf (θ) Vθθ(θ) Vff,θ(θ)
′

Vff,f (θ) Vff,θ(θ) Vff,ff (θ)

 , (14)

and we have the following specification for the covariance matrices:

Vθf (θ) = limT→∞E
[
T
(
vec(D̂(θ)−D(θ))

) (
fT (θ,X)− µf (θ)

)′]
= 0

Vθθ(θ) = limT→∞E

[
T
(
vec(D̂(θ)−D(θ))

)(
vec(D̂(θ)−D(θ))

)′]
= Vqq(θ)− Vqf (θ)Vff (θ)−1Vqf (θ)′

(15)

Proof of Lemma 7: To construct an appropriate weight matrix for the sample score which also

incorporates the effect of strong misspecification, we redefine Assumption 1∗ in Lemma 7, which

is the analog of Lemma 5, so it concerns the three different elements of the sample score. We

pre-multiply the expression in Assumption 1∗ by

R(θ) =


Ikf 0 0

−Vqf (θ)Vff (θ)−1 Imkf 0

0 0 I 1
2kf (kf+1)


10



and note that

R̂(θ)


fT (θ,X)

vec(qT (θ,X))

vech(V̂ff (θ))

 =


fT (θ,X)

vec(D̂(θ))

vech(V̂ff (θ))

 ,R(θ)


µf (θ)

vec(JT (θ))

vech(Vff (θ))

 =


µf (θ)

vec(D(θ))

vech(Vff (θ))

 ,

so when θ equals the pseudo-true value θ∗ :

√
T

R̂(θ)


fT (θ,X)

vec(qT (θ,X))

vech(V̂ff (θ))

−R(θ)


µf (θ)

vec(J(θ))

vech(Vff (θ))




=
√
T


fT (θ,X)− µf (θ)

vec(D̂(θ)−D(θ))

vech(V̂ff (θ)− Vff (θ))



→
d


ψf (θ)

ψθ(θ)

ψff (θ)

 ∼ N(0, V̄(θ)).

with V̄(θ) = R(θ)V(θ)R(θ)′.

Lemma 8. When Assumptions 1∗ and 2 hold and θ equals the pseudo-true value θ∗, a higher order

decomposition of V̂ff (θ)−1 reads

V̂ff (θ)−1 = Vff (θ)−1 − Vff (θ)−1
(
V̂ff (θ)− Vff (θ)

)
Vff (θ)−1+

Vff (θ)−1
(
V̂ff (θ)− Vff (θ)

)
Vff (θ)−1

(
V̂ff (θ)− Vff (θ)

)
Vff (θ)−1 + op(T

−1).
(16)

Proof: To obtain the higher order specification of V̂ff (θ)−1, we specify it as

V̂ff (θ)−1 =
[
Vff (θ) +

(
V̂ff (θ)− Vff (θ)

)]−1

= Vff (θ)−
1
2

[
Ikf + Vff (θ)−

1
2

(
V̂ff (θ)− Vff (θ)

)
Vff (θ)−

1
2

]−1

Vff (θ)−
1
2

= Vff (θ)−1 − Vff (θ)−1
(
V̂ff (θ)− Vff (θ)

)
Vff (θ)−1 + Vff (θ)−1(

V̂ff (θ)− Vff (θ)
)
Vff (θ)−1

(
V̂ff (θ)− Vff (θ)

)
Vff (θ)−1 + op(T

−1),

where the op(T−1) order of the remainder term results from the
√
T convergence rate of the covari-

ance matrix estimator.
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Lemma 9. When Assumptions 1∗ and 2 hold and θ equals the pseudo-true value θ∗, the higher

order specification of D̂(θ) reads:

D̂(θ) = D(θ) + Ψθ(θ)/
√
T + op(T

− 1
2 ). (17)

with vec(Ψθ(θ)) = ψθ(θ) as in Lemma 6.

Proof: Results from Lemma 5.

Lemma 10. When Assumptions 1∗ and 2 hold, θ equals the pseudo-true value θ∗ and de-

pending on the convergence rate of D(θ) and µf (θ), the specification of the score vector ŝ(θ)′ =

D̂(θ)′V̂ff (θ)−1fT (θ,X) reads for:

1. D̃(θ∗) = limT→∞
√
TD(θ∗), µ̃f (θ∗) = limT→∞

√
Tµf (θ∗) both finite and non-negligible:

T ŝ(θ∗)′ =


Vff (θ∗)−1(D̃(θ∗) + Ψθ(θ

∗))

(Im ⊗ Vff (θ∗)−1µ̃f (θ∗))

0


′

ψf (θ∗)

ψθ(θ
∗)

ψff (θ∗)

+Op(T
− 1
2 )

2. D(θ∗), µ̃f (θ∗) = limT→∞
√
Tµf (θ∗) both finite and non-negligible:

√
T ŝ(θ∗)′ =


Vff (θ∗)−1D(θ∗)

0

0


′

ψf (θ∗)

ψθ(θ
∗)

ψff (θ∗)

+Op(T
− 1
2 )

3. D̃(θ∗) = limT→∞
√
TD(θ∗), µf (θ∗) both finite and non-negligible:

√
T ŝ(θ∗)′ =


0

(Im ⊗ Vff (θ∗)−1µf (θ∗))

0


′

ψf (θ∗)

ψθ(θ
∗)

ψff (θ∗)

+Op(T
− 1
2 )

4. D(θ∗), µf (θ∗) both finite and non-negligible:

√
T ŝ(θ∗)′ =


Vff (θ∗)−1D(θ∗)

(Im ⊗ Vff (θ∗)−1µf (θ∗))

−D′kf
(
Vff (θ∗)−1µf (θ∗)⊗ Vff (θ∗)−1D(θ∗)

)

′

ψf (θ∗)

ψθ(θ
∗)

ψff (θ∗)

+Op(T
− 1
2 ).

with Dkf the k
2
f × 1

2kf (kf + 1) dimensional duplication matrix so vec(Vff (θ)) = Dkf vech(Vff (θ)).
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Proof: We consider the four cases one by one.

1. For D̃(θ∗) = limT→∞
√
TD(θ∗), µ̃f (θ∗) = limT→∞

√
Tµf (θ∗) both finite, D̃(θ∗)′Vff (θ∗)−1µ̃f (θ∗) =

0, the higher order specification of the score at the pseudo-true value θ∗ then reads:

T ŝ(θ∗)′ =
(√

TD̂(θ∗)
)′
V̂ff (θ∗)−1

(√
TfT (θ∗, X)

)
= D̃(θ∗)′Vff (θ∗)−1ψf (θ∗) + Ψθ(θ

∗)′Vff (θ∗)−1µ̃f (θ∗) + Ψθ(θ
∗)′Vff (θ∗)−1ψf (θ∗) +Op(T

− 1
2 )

=


Vff (θ∗)−1(D̃(θ∗) + Ψθ(θ

∗))

(Im ⊗ Vff (θ∗)−1µ̃f (θ∗))

0


′

ψf (θ∗)

ψθ(θ
∗)

ψff (θ∗)

+Op(T
− 1
2 )

where we used that Kkfm(Vff (θ∗)−1µ̃f (θ∗) ⊗ Im) = (Im ⊗ Vff (θ∗)−1µ̃f (θ∗)) for Kpr the pr × pr

dimensional commutation matrix so for the p × r dimensional matrix A : vec(A) = Krpvec(A′),

vec(A′) = Kprvec(A), vec(Ψθ(θ
∗)) = ψθ(θ

∗).

2. ForD(θ∗), µ̃f (θ∗) = limT→∞
√
Tµf (θ∗) both finite and non-negligible andD(θ∗)′Vff (θ∗)−1µ̃f (θ∗) =

0, the higher order specification of the score at the pseudo-true value θ∗ then reads:

√
T ŝ(θ∗)′

= D̂(θ∗)′V̂ff (θ∗)−1
(√

TfT (θ∗, X)
)

=
[
D(θ∗) + (D̂(θ∗)−D(θ∗))

]′
[
Vff (θ∗)−1 − Vff (θ∗)−1

(
V̂ff (θ∗)− Vff (θ∗)

)
Vff (θ∗)−1 + Vff (θ∗)−1

(
V̂ff (θ∗)− Vff (θ∗)

)
Vff (θ∗)−1(

V̂ff (θ∗)− Vff (θ∗)
)
Vff (θ∗)−1

] [√
Tµf (θ∗) +

√
T (fT (θ∗, X)− µf (θ∗))

]
+ op(T

−1)

= D(θ∗)′
[
Vff (θ∗)−1 − Vff (θ∗)−1

(
V̂ff (θ∗)− Vff (θ∗)

)
Vff (θ∗)−1+

Vff (θ∗)−1
(
V̂ff (θ∗)− Vff (θ∗)

)
Vff (θ∗)−1

(
V̂ff (θ∗)− Vff (θ∗)

)
Vff (θ∗)−1

]
[√

Tµf (θ∗) +
√
T (fT (θ∗, X)− µf (θ∗))

]
+Op(T

− 1
2 )

= D(θ∗)′Vff (θ∗)−1µ̃f (θ∗) +D(θ∗)′Vff (θ∗)−1ψf (θ∗) +Op(T
− 1
2 )

= D(θ∗)′Vff (θ∗)−1ψf (θ∗) +Op(T
− 1
2 )

=


Vff (θ∗)−1D(θ∗)

0

0


′

ψf (θ∗)

ψθ(θ
∗)

ψff (θ∗)

+Op(T
− 1
2 )

3. For D̃(θ∗) = limT→∞
√
TD(θ∗), µf (θ∗) both finite and non-negligible and D̃(θ∗)′Vff (θ∗)−1µf (θ∗) =
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0, the higher order specification of the score at the pseudo-true value θ∗ then reads:

√
T ŝ(θ∗)′

=
(√

TD̂(θ∗)
)′
V̂ff (θ∗)−1 (fT (θ∗, X))

=
[√

TD(θ∗) +
√
T (D̂(θ∗)−D(θ∗))

]′
[
Vff (θ∗)−1 − Vff (θ∗)−1

(
V̂ff (θ∗)− Vff (θ∗)

)
Vff (θ∗)−1 + Vff (θ∗)−1

(
V̂ff (θ∗)− Vff (θ∗)

)
Vff (θ∗)−1(

V̂ff (θ∗)− Vff (θ∗)
)
Vff (θ∗)−1

] [
µf (θ∗) + (fT (θ∗, X)− µf (θ∗))

]
+ op(T

−1)

=
[
D̃(θ∗) + Ψθ(θ

∗)
]′
Vff (θ∗)−1µf (θ∗) +Op(T

− 1
2 )

= Ψθ(θ
∗)′Vff (θ∗)−1µf (θ∗) +Op(T

− 1
2 )

=


0

(Im ⊗ Vff (θ∗)−1µf (θ∗))

0


′

ψf (θ∗)

ψθ(θ
∗)

ψff (θ∗)

+Op(T
− 1
2 ).

4. For D(θ∗), µf (θ∗) both finite and non-negligible and D(θ∗)′Vff (θ∗)−1µf (θ∗) = 0, the higher

order specification of the score at the pseudo-true value θ∗ then reads:

√
T ŝ(θ∗)′

=
√
TD̂(θ∗)′V̂ff (θ∗)−1fT (θ∗, X)

=
√
T
[
D(θ∗) + (D̂(θ∗)−D(θ∗))

]′[
Vff (θ∗)−1 − Vff (θ∗)−1

(
V̂ff (θ∗)− Vff (θ∗)

)
Vff (θ∗)−1 + Vff (θ∗)−1

(
V̂ff (θ∗)− Vff (θ∗)

)
Vff (θ∗)−1(

V̂ff (θ∗)− Vff (θ∗)
)
Vff (θ∗)−1

] [
µf (θ∗) + (fT (θ∗, X)− µf (θ∗))

]
+Op(T

− 1
2 )

=
√
TD(θ∗)′Vff (θ∗)−1µf (θ∗)−D(θ∗)′Vff (θ∗)−1

[√
T
(
V̂ff (θ∗)− Vff (θ∗)

)]
Vff (θ∗)−1µf (θ∗)+[√

T (D̂(θ∗)−D(θ∗))
]′
Vff (θ∗)−1µf (θ∗) +D(θ∗)′Vff (θ∗)−1

[√
T (fT (θ∗, X)− µf (θ∗))

]
+Op(T

− 1
2 )

= −D(θ∗)′Vff (θ∗)−1
[√

T
(
V̂ff (θ∗)− Vff (θ∗)

)]
Vff (θ∗)−1µf (θ∗)+

Ψ′θVff (θ∗)−1µf (θ∗) +D(θ∗)′Vff (θ∗)−1ψf (θ∗) +Op(T
− 1
2 )

=


Vff (θ∗)−1D(θ∗)

(Im ⊗ Vff (θ∗)−1µf (θ∗))

−D′kf
(
Vff (θ∗)−1µf (θ∗)⊗ Vff (θ∗)−1D(θ∗)

)

′

ψf (θ∗)

ψθ(θ
∗)

ψff (θ∗)

+Op(T
− 1
2 ).

Lemma 11. Under the regularity conditions that: (i) Xt is i.i.d.; (ii) f(θ,Xt), qit(θ,Xt), and

f(θ,Xt)qit(θ,Xt)
′ all have finite second moments:

V̂ (θ)→
p
V (θ) ,
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where qit(θ,Xt) = ∂ft(θ,Xt)
∂θi

,

V̂ (θ) =

 V̂ff (θ) V̂fq(θ)

V̂qf (θ) V̂qq(θ)

 ,

with V̂qf (θ) = V̂fq(θ)
′ = (V̂q1f (θ)′ . . . V̂qmf (θ)′)′, V̂qq(θ) = (V̂qiqi(θ)), and

V̂ff (θ) =
1

T

T∑
t=1

(f(θ,Xt)− fT (θ,X)) (f(θ,Xt)− fT (θ,X))
′

V̂qif (θ) =
1

T

T∑
t=1

(qit(θ,X)− qiT (θ,X)) (f(θ,Xt)− fT (θ,X))
′

V̂qiqi(θ) =
1

T

T∑
t=1

(qit(θ,X)− qiT (θ,X)) (qit(θ,X)− qiT (θ,X))
′
.

Proof: Because of the similarities in V̂ff (θ), V̂qif (θ), V̂qiqi(θ), we just show V̂ff (θ)→
p
Vff (θ) :

V̂ff (θ) = 1
T

∑T
t=1 (f(θ,Xt)− fT (θ,X)) (f(θ,Xt)− fT (θ,X))

′

= 1
T

∑T
t=1 f(θ,Xt)f(θ,Xt)

′ − fT (θ,X)fT (θ,X)′

→
p

E(f(θ,Xt)f(θ,Xt)
′)− µf (θ)µf (θ)′

= Vff (θ) .

Remark on Assumption 2 For the sample score to converge to the population score, the deriva-

tive of the sample covariance estimator has to converge to the derivative of the population covariance

matrix. Assumption 2(i) requests a consistent covariance estimator for V (θ). For Assumption 2(ii),

Kleibergen (2005, p.1120) states that (see also the proof of Lemma 3 in the Online Appendix):

∂vec(Vff (θ))

∂θ′
= (vec(Vq1f (θ)′)...vec(Vqmf (θ)′)) + (vec(Vq1f (θ))...vec(Vqmf (θ))), (18)

so Assumption 2(ii) calls for

∂vec(V̂ff (θ))

∂θ′
= (vec(V̂q1f (θ)′)...vec(V̂qmf (θ)′)) + (vec(V̂q1f (θ))...vec(V̂qmf (θ))), (19)

to hold as well. Hence, the covariance matrix estimator V̂ff (θ) has to be such that the V̂qf (θ), which

results from the derivative of V̂ff (θ) with respect to θ, is also a consistent estimator of Vqf (θ). This

15



puts further conditions on V̂ff (θ). If, for example, f̄t(θ) is a martingale difference series while q̄t(θ) is

not, a heteroskedastic autocorrelation consistent covariance matrix estimator for V̂ff (θ) could just

be a White covariance matrix estimator (see White (1980)), but it would not imply a consistent

estimator for Vqf (θ) through its derivative with respect to θ. The same consistent covariance matrix

estimator thus has to be involved in all elements of V̂ (θ) and Assumption 2(i) has to hold for it.

If so, Assumption 2(ii) essentially results from Assumption 2(i). When using the same covariance

matrix estimator for all elements of V (θ), Assumption 2(i) holds under the conditions for consistency

of (heteroskedastic autocorrelation consistent) covariance matrix estimators; see, e.g., White (1980),

Newey and West (1987). It is worth noting that for the purpose of conducting the double robust

Lagrange multiplier test, the covariance estimator V̂ (θ) is only calculated under the hypothesized

pseudo-true value, not the CUE. Thus, it is quite straightforward to have the consistency of V̂ (θ), as

shown by Lemma 11, where the low-level regularity conditions under which Assumption 2(i) holds

in the leading i.i.d. case are provided.

Lemma 12. For a given data set of realized values for linear moment equations, the sum of

fT (θ,X)′V̂ff (θ)−1fT (θ,X) and vec(D̂(θ))′V̂θθ(θ)
−1vec(D̂(θ)) is a constant function of θ. In addition,

the derivative of DRLM(θ) with respect to θ can be written as follows.

a. When m = 1 and fT (θ,X) is linear in θ, the derivative of DRLM(θ) with respect to θ reads:

1
2
∂
∂θDRLM(θ) = T ×

(
fT (θ,X)′V̂ff (θ)−1D̂(θ)

fT (θ,X)′V̂ff (θ)−1V̂θθ(θ)V̂ff (θ)−1fT (θ,X)+D̂(θ)′V̂ff (θ)−1D̂(θ)

)
×{

D̂(θ)′V̂ff (θ)−1D̂(θ)− fT (θ,X)′V̂ff (θ)−1V̂θθ(θ)V̂ff (θ)−1fT (θ,X)−

2fT (θ,X)′V̂ff (θ)−1V̂qf (θ)V̂ff (θ)−1D̂(θ) + 2fT (θ,X)′V̂ff (θ)−1D̂(θ)×
fT (θ,X)′V̂ff (θ)−1V̂qf (θ)V̂ff (θ)−1V̂θθ(θ)V̂ff (θ)−1fT (θ,X)+D̂(θ)′V̂ff (θ)−1V̂qf (θ)V̂ff (θ)−1D̂(θ)

fT (θ,X)′V̂ff (θ)−1V̂θθ(θ)V̂ff (θ)−1fT (θ,X)+D̂(θ)′V̂ff (θ)−1D̂(θ)

}
.

(20)

b. When the data is i.i.d., m = 1, and fT (θ,X) is linear in θ : V̂ (θ) has a Kronecker product

structure so we can specify V̂ff (θ) = v̂ff (θ)V̂ , V̂qf (θ) = v̂qf (θ)V̂ and V̂θθ(θ) = v̂θθ(θ)V̂ , with v̂ff (θ),

v̂qf (θ), v̂θθ(θ) scalar functions of θ and V̂ a kf × kf dimensional covariance matrix estimator, and

the derivative of DRLM(θ) becomes:

1
2
∂
∂θDRLM(θ) =

(
V̂ff (θ)−

1
2 fT (θ,X)

)′(
V̂θθ(θ)−

1
2 D̂(θ)

)
fT (θ,X)′V̂ff (θ)−1fT (θ,X)+D̂(θ)′V̂θθ(θ)−1D̂(θ)

×{
T × D̂(θ)′V̂θθ(θ)

−1D̂(θ)− T × fT (θ,X)′V̂ff (θ)−1fT (θ,X)
}
×
(
v̂θθ(θ)
v̂ff (θ)

) 1
2

.

(21)
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Proof: Starting out from a linear moment equation with µf (θ) = µf (0) + J(0)θ, so fT (θ,X) =

µ̂f (0) + Ĵ(0)θ :

d =

 µ̂f (0)

vec(Ĵ(0))


′

v̂ar

√T
 µ̂f (0)

vec(Ĵ(0))



−1 µ̂f (0)

vec(Ĵ(0))


=

 µ̂f (0) + Ĵ(0)θ

vec(Ĵ(0))


′

v̂ar

√T
 µ̂f (0) + Ĵ(0)θ

vec(Ĵ(0))



−1 µ̂f (0) + Ĵ(0)θ

vec(Ĵ(0))


=

 fT (θ,X)

vec(D̂(θ))


′

v̂ar

√T
 fT (θ,X)

vec(D̂(θ))



−1 fT (θ,X)

vec(D̂(θ))


= fT (θ,X)′V̂ff (θ)−1fT (θ,X) + vec(D̂(θ))′V̂θθ(θ)

−1vec(D̂(θ)),

which shows that the sum of fT (θ,X)′V̂ff (θ)−1fT (θ,X) and vec(D̂(θ))′V̂θθ(θ)
−1vec(D̂(θ)) does not

depend on θ, since d does not depend on θ given a realized data set.

a. Given the specifications of the derivatives in Lemma 2, the derivative of DRLM(θ) when

m = 1 and fT (θ,X) is linear in θ reads:

1
2
∂
∂θDRLM(θ)

= 1
2T

∂
∂θ

{
fT (θ,X)′V̂ff (θ)−1D̂(θ)

[
fT (θ,X)′V̂ff (θ)−1V̂θθ(θ)V̂ff (θ)−1fT (θ,X)+

D̂(θ)′V̂ff (θ)−1D̂(θ)
]−1

D̂(θ)′V̂ff (θ)−1fT (θ,X)

}
= T

[
fT (θ,X)′V̂ff (θ)−1V̂θθ(θ)V̂ff (θ)−1fT (θ,X) + D̂(θ)′V̂ff (θ)−1D̂(θ)

]−1

fT (θ,X)′V̂ff (θ)−1D̂(θ)(
∂
∂θ D̂(θ)′V̂ff (θ)−1fT (θ,X)

)
− 1

2T
(

fT (θ,X)′V̂ff (θ)−1D̂(θ)

fT (θ,X)′V̂ff (θ)−1V̂θθ(θ)V̂ff (θ)−1fT (θ,X)+D̂(θ)′V̂ff (θ)−1D̂(θ)

)2

(
∂
∂θ

[
fT (θ,X)′V̂ff (θ)−1V̂θθ(θ)V̂ff (θ)−1fT (θ,X) + D̂(θ)′V̂ff (θ)−1D̂(θ)

])
= T

(
fT (θ,X)′V̂ff (θ)−1D̂(θ)

fT (θ,X)′V̂ff (θ)−1V̂θθ(θ)V̂ff (θ)−1fT (θ,X)+D̂(θ)′V̂ff (θ)−1D̂(θ)

){
D̂(θ)′V̂ff (θ)−1D̂(θ)−

2fT (θ,X)′V̂ff (θ)−1V̂qf (θ)V̂ff (θ)−1D̂(θ)− fT (θ,X)′V̂ff (θ)−1V̂θθ(θ)V̂ff (θ)−1fT (θ,X)+

2
[fT (θ,X)′V̂ff (θ)−1V̂qf (θ)V̂ff (θ)−1V̂θθ(θ)V̂ff (θ)−1fT (θ,X)+D̂(θ)′V̂ff (θ)−1V̂qf (θ)V̂ff (θ)−1D̂(θ)]

fT (θ,X)′V̂ff (θ)−1V̂θθ(θ)V̂ff (θ)−1fT (θ,X)+D̂(θ)′V̂ff (θ)−1D̂(θ)
fT (θ,X)′V̂ff (θ)−1D̂(θ)

}
.

b. In case of i.i.d. data, m = 1, and fT (θ,X) linear in θ, V̂ (θ) has a Kronecker product structure so

V̂ff (θ) = v̂ff (θ)V̂ , V̂qf (θ) = v̂qf (θ)V̂ and V̂θθ(θ) = v̂θθ(θ)V̂ , with v̂ff (θ), v̂qf (θ), v̂θθ(θ) scalar and

V̂ a kf × kf matrix, the ratio in the last line of the above expression simplifies to v̂qf (θ)
v̂ff (θ) so:
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1
2
∂
∂θDRLM(θ)

= T
(

fT (θ,X)′V̂ff (θ)−1D̂(θ)

fT (θ,X)′V̂ff (θ)−1V̂θθ(θ)V̂ff (θ)−1fT (θ,X)+D̂(θ)′V̂ff (θ)−1D̂(θ)

)
(
D̂(θ)′V̂ff (θ)−1D̂(θ)− fT (θ,X)′V̂ff (θ)−1V̂θθ(θ)V̂ff (θ)−1fT (θ,X)

)
=

( (
V̂ff (θ)−

1
2 fT (θ,X)

)′(
V̂θθ(θ)−

1
2 D̂(θ)

)
fT (θ,X)′V̂ff (θ)−1fT (θ,X)+D̂(θ)′V̂θθ(θ)−1D̂(θ)

)
(
TD̂(θ)′V̂θθ(θ)

−1D̂(θ)− TfT (θ,X)′V̂ff (θ)−1fT (θ,X)
)(

v̂θθ(θ)
v̂ff (θ)

) 1
2

.

B. Proof of Theorem 1

We can specify the limit behavior of Ts(θ∗) as:

Ts(θ∗)′ →
d

a+ b+ c,

with a = Ψθ(θ
∗)′Vff (θ∗)−1µ̃f (θ∗), b = D̃(θ∗)′Vff (θ∗)−1ψf (θ∗) and c = Ψθ(θ

∗)′Vff (θ∗)−1ψf (θ∗). To

obtain the bound on the limiting distribution of the DRLM statistic, we next further characterize

the limit behavior of the above components. We first do so for m = 1.

m=1: We specify a, b and c as:

a = Ψ∗′θ G
′µ∗,

b = D∗′G′ψ∗f ,

c = Ψ∗′θ G
′ψ∗f ,

which results from a singular value decomposition of Vff (θ∗)−
1
2Vθθ(θ

∗)
1
2 :

Vff (θ∗)−
1
2Vθθ(θ

∗)
1
2 = LGK ′,

with L and K kf × kf dimensional orthonormal matrices and G a diagonal kf × kf dimensional

matrix with the non-negative singular values in decreasing order on the main diagonal and we used

that µ∗ = L′Vff (θ∗)−
1
2 µ̃f (θ∗), D∗ = K ′Vθθ(θ

∗)−
1
2 D̃(θ∗), ψ∗f = L′Vff (θ∗)−

1
2ψf (θ∗) ∼ N(0, Ikf ),

Ψ∗θ = K ′Vθθ(θ
∗)−

1
2 Ψθ(θ

∗) ∼ N(0, Ikf ) and independent of ψ∗f .

Using the above, the limit behavior of the DRLM statistic can be specified as:

DRLM(θ∗)→
d

[
Ψ∗′θ G

′µ∗ +D∗′G′ψ∗f + Ψ∗′θ G
′ψ∗f
]′[(

µ∗ + ψ∗f
)′
GG′

(
µ∗ + ψ∗f

)
+ (D∗ + Ψ∗θ)

′
G′G (D∗ + Ψ∗θ)

]−1

[
Ψ∗′θ G

′µ∗ +D∗′G′ψ∗f + Ψ∗′θ G
′ψ∗f
]

=
[Ψ∗′θ Gµ

∗+D∗′Gψ∗f+Ψ∗′θ Gψ
∗
f ]
2

[(µ∗+ψ∗f)
′
G2(µ∗+ψ∗f)+(D∗+Ψ∗θ)

′
G2(D∗+Ψ∗θ)]

.
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The limiting distribution of the DRLM statistic only depends on the 3kf parameters present in kf ,

G, µ∗ and D∗. The 3kf results since the limiting distribution is invariant to multiplying G by a

positive scalar so the largest element of G, G11, can be set to one. This implies that G contains

kf − 1 non-negative elements which are not preset to 0 or 1. The number of elements in both µ∗

and D∗ equals kf .

When µ∗ and D∗ equal zero, the limit behavior of DRLM(θ∗) becomes:

DRLM(θ∗)|µ∗=D∗=0 →
d

[Ψ∗′θ G
′ψ∗f ]

2

[ψ∗′f G2ψ∗f+Ψ∗′θ G
2Ψ∗θ]

� χ2(1),

since both [Ψ∗′θ G
′ψ∗f ]

2

ψ∗′f G
2ψ∗f

∼ χ2(1) and [Ψ∗′θ G
′ψ∗f ]

2

Ψ∗′θ G
2Ψ∗θ

∼ χ2(1) and “�”indicates stochastically dominated,

i.e., for a continuous non-negative scalar random variable u � χ2(m) : Pr
[
u > cvχ2(m)(α)

]
≤ α, for

α ∈ (0, 1] and with cvχ2(m)(α) the (1− α)× 100% critical value for the χ2(m) distribution.

Similarly, when the length of µ∗ and/or D∗ goes to infinity:

limµ∗′µ∗→∞DRLM(θ∗)

limD∗′D∗→∞DRLM(θ∗)

limµ∗′µ∗→∞,D∗′D∗→∞DRLM(θ∗)

 →
d
χ2(1).

The limit behavior is identical with respect to the different elements of µ∗ and D∗. Figure A1 shows

for a pre-specified fixed value of G that the distribution function associated with the limit behavior

of DRLM(θ∗) is a non-increasing function of either the length of µ∗ or D∗. Figure A1 also shows

the difference with the χ2(1) distribution function which makes it clear that the χ2(1) distribution

dominates the limiting distribution of the DRLM statistic for this specific value of G. Since G is a

diagonal matrix with only non-negative elements, this behavior holds also for all other values of G

so the limit behavior of DRLM(θ∗) is bounded by the χ2(1) distribution:

limT→∞ Pr
[
DRLM(θ∗) > cvχ2(1)(α)

]
≤ α.

m > 1: We specify a, b and c as:

a = Ψ∗′θ µ
∗,

b = D∗′ψ∗f ,

c = Ψ∗′θ ψ
∗
f ,

with G = (Im ⊗ Vff (θ∗)−
1
2 )Vθθ(θ

∗)
1
2 , Ψ∗θ = Vff (θ∗)−

1
2 Ψθ(θ

∗), vec(Ψ∗θ) = Gψ∗θ, ψ
∗
θ ∼ N(0, Ikfm),
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ψ∗f = Vff (θ∗)−
1
2ψf (θ∗) ∼ N(0, Ikf ) and independent of ψ∗θ, µ

∗ = Vff (θ∗)−
1
2 µ̃f (θ∗), D∗ = Vff (θ∗)−

1
2 D̃(θ∗),

vec(D∗) = Gvec(D̄∗) and D̄∗ is a kf ×m dimensional matrix.

Figure A1: Distribution function of the DRLM statistic for a fixed value of G as a function of the

length of either µ∗ or D∗.
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Using the above, the limit behavior of the DRLM statistic can be specified as:

DRLM(θ∗)→
d

[
Ψ∗′θ µ

∗ +D∗′ψ∗f + Ψ∗′θ ψ
∗
f

]′[(
Im ⊗

(
µ∗ + ψ∗f

))′
GG′

(
Im ⊗

(
µ∗ + ψ∗f

))
+ (D∗ + Ψ∗θ)

′
(D∗ + Ψ∗θ)

]−1

[
Ψ∗′θ µ

∗ +D∗′ψ∗f + Ψ∗′θ ψ
∗
f

]
.

The limiting distribution of the DRLM statistic depends on the k2
fm

2 + kfm + kf + 1 parameters
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present in: G, D∗, µ∗, kf and m. Since the limiting distribution is invariant to multiplying G by a

positive scalar, we normalize G such that one diagonal element of G, say G11, is equal to one. This

explains the number of parameters affecting the limiting distribution of the DRLM statistic.

When µ∗ and D∗ equal zero, the limit behavior of DRLM(θ∗) becomes:

DRLM(θ∗)|µ∗=D∗=0 →
d

ψ∗′f Ψ∗θ

[(
Im ⊗ ψ∗f

)′
GG′

(
Im ⊗ ψ∗f

)
+ Ψ∗′θ Ψ∗θ

]−1

Ψ∗′θ ψ
∗
f � χ2(m),

since ψ∗′f Ψ∗θ [Ψ∗′θ Ψ∗θ]
−1

Ψ∗′θ ψ
∗
f ∼ χ2(m) and ψ∗′f Ψ∗θ

[(
Im ⊗ ψ∗f

)′
GG′

(
Im ⊗ ψ∗f

)]−1

Ψ∗′θ ψ
∗
f ∼ χ2(m).

Similarly, when using a singular value decomposition of D∗ :

D∗ = LDGDK
′
D,

with LD and KD kf × kf and m×m dimensional orthonormal matrices and GD a diagonal kf ×m

dimensional matrix with the non-negative singular values in decreasing order on the main diagonal,

we can specify the limit behavior of the DRLM statistic:

DRLM(θ∗)→
d

[
KDΨ̄′θL

′
Dµ
∗ +KDG

′
DL
′
Dψ
∗
f +KDΨ̄′θL

′
Dψ
∗
f

]′[(
Im ⊗

(
µ∗ + ψ∗f

))′
GG′

(
Im ⊗

(
µ∗ + ψ∗f

))
+(

LDGDK
′
D + LDΨ̄θK

′
D

)′ (
LDGDK

′
D + LDΨ̄θK

′
D

)]−1

[
KDΨ̄′θL

′
Dµ
∗ +KDG

′
DL
′
Dψ
∗
f +KDΨ̄′θL

′
Dψ
∗
f

]
=

[
Ψ̄′θµ̄+G′Dψ̄f + Ψ̄′θψ̄f

]′ [(
Im ⊗

(
µ̄+ ψ̄f

))′
ḠḠ′

(
Im ⊗

(
µ̄+ ψ̄f

))
+(

GD + Ψ̄θ

)′ (
GD + Ψ̄θ

)]−1 [
Ψ̄′θµ̄+G′Dψ̄f + Ψ̄′θψ̄f

]
,

where Ψ∗θ = LDΨ̄θK
′
D, ψ̄f = L′Dψ

∗
f , µ̄ = L′Dµ

∗, Ḡ = (KD⊗LDVff (θ∗)−
1
2 )Vθθ(θ

∗)
1
2 , vec(Ψ̄θ) = Ḡψ∗θ,

ψ∗θ ∼ N(0, Ikfm). The resulting limit behavior is such that when the length of µ∗ or the m singular

values in GD go to infinity:

limµ∗′µ∗→∞DRLM(θ∗)

limG∗D,ii→∞, i=1,...,mDRLM(θ∗)

limµ∗′µ∗→∞,G∗D,ii→∞, i=1,...,mDRLM(θ∗)

 →
d
χ2(m).

Since G is positive semi-definite, it can be verified numerically that for any fixed G, the distribution

function associated with the limit behavior of DRLM(θ∗) is non-increasing when any element of µ∗

or G∗D,ii → ∞, i = 1, . . . ,m increases. The limit behavior of DRLM(θ∗) is therefore bounded by
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the χ2(m) distribution:

limT→∞ Pr
[
DRLM(θ∗) > cvχ2(m)(α)

]
≤ α.

m > 1 and Vff (θ) = vff (θ)V̄ , Vθθ(θ) =
(
Σθθ(θ)⊗ V̄

)
, Σθθ(θ) : m×m dimensional matrix: We

specify a, b and c as:

a = Σθθ(θ)
1
2 Ψ∗′θ µ

∗vff (θ)−
1
2 ,

b = Σθθ(θ)
1
2D∗′ψ∗fvff (θ)−

1
2 ,

c = Σθθ(θ)
1
2 Ψ∗′θ ψ

∗
fvff (θ)−

1
2 ,

with µ∗ = vff (θ∗)−
1
2 V̄
− 1
2

f µ̃f (θ∗), D∗ = V̄ −
1
2 D̃(θ∗)Σθθ(θ)

− 1
2 , ψ∗f = vff (θ∗)−

1
2 V̄ −

1
2ψf (θ∗) ∼ N(0, Ikf ),

Ψ∗θ = V̄ −
1
2 Ψθ(θ

∗)Σθθ(θ)
− 1
2 ∼ N(0, Ikfm) and independent of ψ∗f .

Using the above, the limit behavior of the DRLM statistic can be specified as:

DRLM(θ∗)→
d

[
Ψ∗′θ µ

∗ +D∗′ψ∗f + Ψ∗′θ ψ
∗
f

]′[(
µ∗ + ψ∗f

)′ (
µ∗ + ψ∗f

)
Im + (D∗ + Ψ∗θ)

′
(D∗ + Ψ∗θ)

]−1

[
Ψ∗′θ µ

∗ +D∗′ψ∗f + Ψ∗′θ ψ
∗
f

]
.

The limiting distribution of the DRLM statistic only depends on the 2+kf+kfm parameters present

in kf , m, µ∗ and D∗. To reduce this further, we conduct a singular value decomposition of D∗ :

D∗ = LD∗GD∗K
′
D∗ ,

with LD∗ and KD∗ kf×kf and m×m dimensional orthonormal matrices and GD∗ a diagonal kf×m

dimensional matrix with the non-negative singular values in decreasing order on the main diagonal.

Using next that Ψ̄θ = L′D∗Ψ
∗
θKD∗ ∼ N(0, Ikfm), µ̄ = L′D∗µ

∗ and ψ̄f = L′D∗ψ
∗
f ∼ N(0, Ikf ), we can

specify the limit behavior as:

DRLM(θ∗)→
d

[
Ψ̄′θµ̄+G′D∗ ψ̄f + Ψ̄′θψ̄f

]′[(
µ̄+ ψ̄f

)′ (
µ̄+ ψ̄f

)
Im +

(
GD∗ + Ψ̄θ

)′ (
GD∗ + Ψ̄θ

)]−1

[
Ψ̄′θµ̄+G′D∗ ψ̄f + Ψ̄′θψ̄f

]
,

which only depends on the m singular values in GD∗ and the length of µ̄. The distribution function

of the limit behavior is again a non-decreasing function of the length of µ̄ and the m singular values

in GD∗ , so its limit behavior is bounded by the χ2(m) distribution.
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Definition of the parameter space In Andrews and Guggenberger (2017), the asymptotic size

of the KLM test is proven to equal the nominal size and the accompanying parameter space on the

distributions of the observations is stated for both i.i.d. and dependent data settings.

To start out with the i.i.d. setting, define for some κ, τ > 0 and M <∞, the parameter space:

F =
{
F : {Xt : t ≥ 1} are i.i.d. under F, E(ft(θ

∗)) = µf (θ∗), for

θ∗ = arg minθ∈Rm µf (θ)′Vff (θ)−1µf (θ), Vff (θ) = E
((
ft(θ)− µf (θ)

) (
ft(θ)− µf (θ)

)′)
E

(∥∥∥∥∥
(
ft(θ

∗)′
...
(
vec
(
∂
∂θ′ ft(θ

∗)
))′)2+κ

∥∥∥∥∥
)
≤M and λmin(Vff (θ∗)) ≥ τ

}
,

where λmin(A) is the smallest characteristic root of the matrix A. The parameter space above is

identical to the one in Andrews and Guggenberger (2017) Equation (3.3) except that it is defined for

the pseudo-true value θ∗ defined as the minimizer of the population continuous updating objective

function for which µf (θ∗) is not necessarily equal to zero.

Since we are after proving the size correctness of the DRLM test which tests hypotheses specified

on the pseudo-true value θ∗, we define the recentered Jacobian:

D(θ) = J(θ)−
[
Vq1f (θ)Vff (θ)−1µf (θ) . . . Vqmf (θ)Vff (θ)−1µf (θ)

]
, J(θ) = ∂

∂θ′µf (θ),

Vθif (θ) = E
[
( ∂
∂θi

(ft(θ)− µf (θ)))
(
ft(θ)− µf (θ)

)′]
, i = 1, . . . ,m,

Vff (θ) = E
((
ft(θ)− µf (θ)

) (
ft(θ)− µf (θ)

)′)
.

The pseudo-true value is then such that

µf (θ∗)′Vff (θ∗)−1D(θ∗) = 0.

To guarantee with probability one, a non-singular value of the limit value of the sample analog

of Vff (θ∗)−1D(θ∗), V̂ff (θ∗)−1D̂(θ∗), Andrews and Guggenberger (2017) provide a number of addi-

tional conditions on the parameter space F . Since we allow for misspecification, these conditions

have to hold when using the recentered Jacobian D(θ) instead of the Jacobian J(θ) as in An-

drews and Guggenberger (2017). Taken together these conditions imply that the singular values of

Vff (θ∗)−1D(θ∗) should be bounded away from zero and the same applies for the quadratic form

of the orthonormal vectors resulting from the singular value decomposition of Vff (θ∗)−1D(θ∗) with

respect to the covariance matrix of vec(D̂(θ∗)). We refer to Andrews and Guggenberger (2017) for

the definition of this reduced parameter space.
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Parameter space The parameter spaces in Andrews and Guggenberger (2017) imply Lemma 10.2

in their Supplementary Appendix which coincides with our Lemma 5 except that Lemma 5 allows

for a population mean function µf (θ∗) different from zero. Jointly with some weak laws of large

numbers, the limiting distributions resulting from Lemma 10.2 in the Supplementary Appendix of

Andrews and Guggenberger (2017) provide the building blocks for their Theorem 11.1, which states

that the asymptotic size of the KLM test equals the nominal size. Since the parameter spaces also

imply our Lemma 5 whose resulting limiting distributions alongside some weak laws of large numbers

imply Lemma 6 and Theorem 1, which states that the limiting distribution of the DRLM statistic

is bounded by a χ2(m) distribution, the parameter spaces thus also imply that the asymptotic size

of the DRLM test equals the nominal size.

For the dependent times-series setting, κ, τ > 0, d > (2 + κ)/κ and M < ∞, the space of

distributions is defined by:

Fts= {F : {Xt : t = 0, 1, . . .} are stationary and strong mixing under F with strong

mixing numbers {αF (p) : p ≥ 1} that satisfy αF (p) ≤ Cp−d, E(ft(θ
∗)) = µf (θ∗),

θ∗ = arg minθ∈Rm µf (θ)′Vff (θ)−1µf (θ),

Vff (θ) = E
[
limT→∞

1
T

∑T
t=1

∑T
j=1

(
ft(θ)− µf (θ)

) (
fj(θ)− µf (θ)

)′]
,

E

(∥∥∥∥∥
(
ft(θ)

′ ...
(
vec
(
∂
∂θ′ ft(θ)

))′)2+κ
∥∥∥∥∥
)
≤M and λmin(Vff (θ∗)) ≥ τ

}

which again, except for the usage of the pseudo-true value θ∗ and a possibly non-zero mean of ft(θ
∗),

is identical to Equation (7.2) in Andrews and Guggenberger (2017). Identical to the i.i.d. setting,

Andrews and Guggenberger (2017) provide a number of additional conditions on the parameter space

Fts, to guarantee with probability one, a non-singular value of the limit value of the sample analog

of Vff (θ∗)−1D(θ∗), V̂ff (θ∗)−1D̂(θ∗). Replacing the value of the Jacobian, J(θ), by the recentered

Jacobian, D(θ), in the conditions from Andrews and Guggenberger (2017) then implies that also for

our setting the limit value of the V̂ff (θ∗)−1D̂(θ∗) is non-singular with probability one. The resulting

parameter space then again implies our Lemma 5 from which Theorem 1 follows, so the asymptotic

size of the DRLM test coincides with the nominal size.

C. Proof of Theorem 2

We first construct the limit behavior of D̂(0) when the pseudo-true value of θ equals θ∗. We use

that under the conditions imposed for this theorem,
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D(θ) = J(0)− µf (θ) θ
1+θ2

D(0) = J(0)

so

√
T
(
D̂(0)−D(0)

)
→
d

ψθ(0) ⇔
√
T
(
D̂(0)−D(θ∗)− µf (θ∗) θ∗

1+(θ∗)2

)
→
d

ψθ(0) ⇔
√
T Ω̂−

1
2 D̂(0) →

d
D̄(1 + (θ∗)2)−

1
2 + µ̄(1 + (θ∗)2)−

1
2 θ∗ + ψ∗θ(0),

with ψθ(0) ∼ N(0,Ω), D̃ = limT→∞
√
TD(θ∗), D̄ = Ω−

1
2 D̃(1 + (θ∗)2)

1
2 , µ̃f = limT→∞

√
Tµf (θ∗),

µ̄ = Ω−
1
2 µ̃f (1 + (θ∗)2)−

1
2 , and ψ∗θ(0) a standard normal kf dimensional random vector.

Next, we consider µ̂f (0) :

µf (θ) = µf (0) + J(0)θ

= µf (0) +D(0)θ

so

√
T
(
µ̂f (0)− µf (0)

)
→
d

ψf (0) ⇔
√
T
(
µ̂f (0)− µf (θ∗) +D(0)θ∗

)
→
d

ψf (0) ⇔
√
T
(
µ̂f (0)− µf (θ∗) 1

1+(θ∗)2 +D(θ∗)θ∗
)
→
d

ψf (0) ⇔
√
T Ω̂−

1
2 µ̂f (0) →

d
µ̄(1 + (θ∗)2)−

1
2 − D̄(1 + (θ∗)2)−

1
2 θ∗ + ψ∗f (0),

with ψf (0) ∼ N(0,Ω) and independent of ψθ(0), and ψ∗f (0) a standard normal kf dimensional

random vector.

D. Proof of Theorem 3

We prove Theorem 3 in two parts: Part a. deals with i.i.d. data and Part b is for a general

covariance matrix setting.

a. The derivative of the DRLM statistic is:

1
2
∂
∂θDRLM(θ) =

(
fT (θ,X)′V̂ff (θ)−1D̂(θ)

[fT (θ,X)′V̂ff (θ)−1fT (θ,X)+D̂(θ)′V̂θθ(θ)−1D̂(θ)]

)
(
TD̂(θ)′V̂θθ(θ)

−1D̂(θ)− TfT (θ,X)′V̂ff (θ)−1fT (θ,X)
)
.

Lemma 12 shows that the denominator of the first component is constant over θ. The numerator of

the first component equals ( 1
2×) the score of the sample CUE objective function. The expression
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of the derivative of the DRLM statistic thus shows that it equals zero when either the score of the

sample CUE objective function equals zero, or the two statistics in the second part of the expression

are equal.

The derivative of the DRLM statistic shows that the closed set of non-significant values contains

a stationary point of the CUE sample objective function different from the CUE. When considering

a line from the CUE to the closed set, the DRLM statistic reaches its maximal value in between the

CUE and the closed set. Since the DRLM statistic is significant for values outside the closed set, it

is significant at its maximal value. On the line from its maximal value to the closed set, the DRLM

statistic is declining. The expression of the derivative of the DRLM statistic shows that this decline

results from the increase of the CUE objective function, TfT (θ,X)′V̂ff (θ)−1fT (θ,X), towards the

stationary point inside the closed set. Since the CUE objective function is only increasing from the

maximal value of the DRLM statistic towards the stationary point of the CUE objective function

inside the closed set, all values of the CUE objective function inside the closed set exceed its value

at the maximizer of the DRLM statistic. Since the latter is significant, we can therefore consider all

values inside the closed set to be significant as well without altering the size of the test.

b. For the non-Kronecker case a similar argument applies. The derivative is now:

1
2
∂
∂θDRLM(θ) = T

(
fT (θ,X)′V̂ff (θ)−1D̂(θ)

fT (θ,X)′V̂ff (θ)−1V̂θθ(θ)V̂ff (θ)−1fT (θ,X)+D̂(θ)′V̂ff (θ)−1D̂(θ)

){
D̂(θ)′V̂ff (θ)−1D̂(θ)−

2fT (θ,X)′V̂ff (θ)−1V̂qf (θ)V̂ff (θ)−1D̂(θ)− fT (θ,X)′V̂ff (θ)−1V̂θθ(θ)V̂ff (θ)−1fT (θ,X)+

2
[fT (θ,X)′V̂ff (θ)−1V̂qf (θ)V̂ff (θ)−1V̂θθ(θ)V̂ff (θ)−1fT (θ,X)+D̂(θ)′V̂ff (θ)−1V̂qf (θ)V̂ff (θ)−1D̂(θ)]

fT (θ,X)′V̂ff (θ)−1V̂θθ(θ)V̂ff (θ)−1fT (θ,X)+D̂(θ)′V̂ff (θ)−1D̂(θ)
fT (θ,X)′V̂ff (θ)−1D̂(θ)

}
.

We first note that

D̂(θ)′V̂ff (θ)−1D̂(θ) =
(
V̂θθ(θ)

− 1
2 D̂(θ)

)′
A′A

(
V̂θθ(θ)

− 1
2 D̂(θ)

)
and

fT (θ,X)′V̂ff (θ)−1V̂θθ(θ)V̂ff (θ)−1fT (θ,X) =
(
V̂ff (θ)−

1
2 fT (θ,X)

)′
AA′

(
V̂ff (θ)−

1
2 fT (θ,X)

)
for A = V̂ff (θ)−

1
2 V̂θθ(θ)

1
2 , so AA′ and A′A are both positive definite matrices. An increase of

fT (θ,X)′V̂ff (θ)−1fT (θ,X) resulting from a change in θ then also implies an increase in fT (θ,X)′

V̂ff (θ)−1V̂θθ(θ)V̂ff (θ)−1fT (θ,X) and decreases, because of Lemma 12, in both D̂(θ)′V̂θθ(θ)
−1D̂(θ)

and D̂(θ)′V̂ff (θ)−1D̂(θ). This allows us to extend the argument from the proof of Theorem 3a:
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The expression of the derivative of the DRLM statistic shows that the closed set of non-significant

values contains a stationary point of the CUE sample objective function different from the CUE.

On the line from the CUE to the closed set, the DRLM statistic is maximal and significant outside

the closed set. The expression of the derivative of the DRLM statistic shows that its decline from

its maximal value to the closed set largely results from the increase of the CUE objective function,

TfT (θ,X)′V̂ff (θ)−1fT (θ,X). Since the CUE objective function is only increasing from the maximal

value of the DRLM statistic towards the stationary point of the CUE objective function inside the

closed set, all values of the CUE objective function inside the closed set exceed its value at the

maximizer of the DRLM statistic. Since the latter is significant, we can therefore consider all values

inside the closed set to be significant as well without altering the size of the test. Thus, the power

improvement rule does not affect the size of the test.

E. Proof of Theorem 4

1. For D̃(θ∗) = limT→∞
√
TD(θ∗), µ̃f (θ∗) = limT→∞

√
Tµf (θ∗), the top two elements of


V̂ff (θ∗)−1D̂(θ∗)

(Im ⊗ V̂ff (θ∗)−1fT (θ∗, X))

−D′kf
(
V̂ff (θ∗)−1fT (θ∗, X)⊗ V̂ff (θ∗)−1D̂(θ∗)

)


are of a larger order of magnitude than the bottom element. Hence, the resulting specification of the

DRLM statistic corresponds with the one in Definition 1 plus an op(1) term, so Theorem 1 proves

that it is size-correct.

2. For D(θ∗), µ̃f (θ∗) = limT→∞
√
Tµf (θ∗) are both finite and non-negligible, the top element of


V̂ff (θ∗)−1D̂(θ∗)

(Im ⊗ V̂ff (θ∗)−1fT (θ∗, X))

−D′kf
(
V̂ff (θ∗)−1fT (θ∗, X)⊗ V̂ff (θ∗)−1D̂(θ∗)

)


is of a larger order of magnitude that the remaining elements. The resulting specification of the

DRLM statistic therefore corresponds with the one in Definition 1 plus an op(1) term for which

Theorem 1 proves that it is size-correct.
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3. For D̃(θ∗) = limT→∞
√
TD(θ∗), µf (θ∗) both finite and non-negligible, the second element of


V̂ff (θ∗)−1D̂(θ∗)

(Im ⊗ V̂ff (θ∗)−1fT (θ∗, X))

−D′kf
(
V̂ff (θ∗)−1fT (θ∗, X)⊗ V̂ff (θ∗)−1D̂(θ∗)

)


is of a larger order of magnitude that the remaining elements. The resulting specification of the

DRLM statistic therefore corresponds with the one in Definition 1 plus an op(1) term for which

Theorem 1 proves that it is size-correct.

4. For D(θ∗), µf (θ∗) both finite and non-negligible, all three elements of


V̂ff (θ∗)−1D̂(θ∗)

(Im ⊗ V̂ff (θ∗)−1fT (θ∗, X))

−D′kf
(
V̂ff (θ∗)−1fT (θ∗, X)⊗ V̂ff (θ∗)−1D̂(θ∗)

)


are of the same order of magnitude. Also fT (θ∗, X)→
p
µf (θ∗), D̂(θ∗)→

p
D(θ∗) and

√
T ŝ(θ∗)′ →

d


Vff (θ∗)−1D(θ∗)

(Im ⊗ Vff (θ∗)−1µf (θ∗))

−D′kf
(
Vff (θ∗)−1µf (θ∗)⊗ Vff (θ∗)−1D(θ∗)

)

′

ψf (θ∗)

ψθ(θ
∗)

ψff (θ∗)


so combined with Lemma 7, Ŵ(θ∗0) = Ŵ (θ∗0) + Ŵs(θ

∗
0) provides a consistent estimator of the co-

variance matrix. Hence, the limit behavior of the DRLM statistic is χ2(m) so the DRLM test is

size-correct.

II Additional Results

A. Simulation: Nonlinear GMM

We use a log-normal data generating process to simulate consumption growth and asset returns in

accordance with the CRRA moment condition:

E

[
δ
(
Ct+1
Ct

)−γ
(ιkf +Rt+1)− ιkf

]
= µf (δ, γ). (22)
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Let 4ct+1 = ln
(
Ct+1
Ct

)
and rt+1 = ln(ιkf +Rt+1), which are i.i.d. normally distributed:

 4ct+1

rt+1

 ∼ NID(µ, V ) ≡ NID


 0

µ2,0

 ,
 Vcc,0 Vcr,0

Vrc,0 Vrr,0


 ,

with µ2,0 = (µ2,1,0 . . . µ2,kf ,0
)′ the mean of rt+1, Vcc,0 the (scalar) variance of 4ct+1, Vrc,0 = V ′cr,0 =

(Vrc,1,0 . . . Vrc,kf ,0)′ the kf×1 dimensional covariance between rt+1 and4ct+1, and Vrr,0 = (Vrr,ij,0) :

i, j = 1, . . . , kf , the kf × kf dimensional covariance matrix of rt+1. This DGP has also been used in

Kleibergen and Zhan (2020), where the covariance matrix V = [Vcc,0, Vcr,0;Vrc,0, Vrr,0] is calibrated

to data. We will change the value of µ2,0 to vary the magnitude of the misspecification through a

constant c as detailed below. We will also alter the correlation coeffi cient of 4ct+1 and rt+1 through

multiplying a constant c̃ to vary identification.

We use the data generating process described above to jointly simulate consumption growth

and asset returns. When the discount factor δ is fixed at its true value, γ is the single structural

parameter of interest; see, for example, Savov (2011) and Kroencke (2017).

Given pre-set values of δ0, µ2,0, Vcc,0, Vrc,0 and Vrr,0, the CRRA moment equation is such that:

µf (γ)

= E

[
δ0

(
Ct+1

Ct

)−γ
(ιkf +Rt+1)− ιkf

]

= E




exp (ln(δ0)− γ4ct+1 + rt+1,1)

...

exp
(
ln(δ0)− γ4ct+1 + rt+1,kf

)
− ιkf



=


exp

(
ln(δ0) + µ2,1,0 + 1

2

(
Vrr,11,0 + γ2Vcc,0 − 2γVrc,1,0

))
...

exp
(

ln(δ0) + µ2,kf ,0
+ 1

2

(
Vrr,kfkf ,0 + γ2Vcc,0 − 2γVrc,kf ,0

))
− ιkf .

We also need the explicit expression of Vff (γ):
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Vff (γ) = E
[
(ft(γ)− µf (γ))(ft(γ)− µf (γ))′

]
= V ar

(
eln(δ)−γ4ct+1+rt+1

)

=




exp
(
ln(δ0) + µ2,1,0 + 1

2

(
Vrr,11,0 + γ2Vcc,0 − 2γVrc,1,0

))
...

exp
(

ln(δ0) + µ2,kf ,0
+ 1

2

(
Vrr,kfkf ,0 + γ2Vcc,0 − 2γVrc,kf ,0

))



exp

(
ln(δ0) + µ2,1,0 + 1

2

(
Vrr,11,0 + γ2Vcc,0 − 2γVrc,1,0

))
...

exp
(

ln(δ0) + µ2,kf ,0
+ 1

2

(
Vrr,kfkf ,0 + γ2Vcc,0 − 2γVrc,kf ,0

))

′�

exp

(−γιkf ... Ikf)
 Vcc,0 Vcr,0

Vrc,0 Vrr,0

(−γιkf ... Ikf)′
− ιkf ι′kf

 ,

where � stands for the element-by-element multiplication.

The population moment function µf (γ) and the population covariance matrix Vff (γ) provided

above are employed to compute the pseudo-true value γ∗:

γ∗ = argminγ µf (γ)′Vff (γ)−1µf (γ). (23)

We need to compute the pseudo-true value numerically, since no closed form expression is available

when there is misspecification. This also explains why we use the log-normal setting so we have

an analytical expression of the population moment function, and only use one structural parameter

since numerical optimizing in higher dimensions is both computationally demanding and can be

imprecise.1

For correctly specified GMM, µf (γ) = 0 holds so we solve for µ2,0 :

µ2,0 = −ιkf ln(δ0)− 1
2




Vrr,11,0

...

Vrr,kfkf ,0

+ ιkf γ
2Vcc,0 − 2γVrc,0

 . (24)

For the misspecified setting, we use an an auxiliary µ̃2 that makes µf (γ) = 0 and then subtract

1We note that in other models of interest, the pseudo-true value does not necessarily change as the magnitude of
misspecification varies; see Hansen and Lee (2021) for an IV model where their defined pseudo-true value is invariant
to misspecification.
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a vector of constants, cιkf , to introduce misspecification in the DGP:

µ2,0 = µ̃2 − cιkf . (25)

The sample moment function and its derivative now only depend on γ :

fT (γ,X) = 1
T

∑T
t=1 ft(γ), ft(γ) = δ0

(
Ct+1
Ct

)−γ
(ιkf +Rt+1)− ιkf ,

qT (γ,X) = 1
T

∑T
t=1 qt(γ), qt(γ) = −δ0 ln

(
Ct+1
Ct

)(
Ct+1
Ct

)−γ
(ιkf +Rt+1).

(26)

We use the Eicker-White covariance matrix estimators, see White (1980):

V̂ff (γ) = 1
T

∑T
t=1(ft(γ)− fT (γ,X))(ft(γ)− fT (γ,X))′,

V̂qf (γ) = 1
T

∑T
t=1(qt(γ)− qT (γ,X))(ft(γ)− fT (γ,X))′,

V̂qq(γ) = 1
T

∑T
t=1(qt(γ)− qT (γ,X))(qt(γ)− qT (γ,X))′,

V̂θθ(γ) = V̂qq(γ)− V̂qf (γ)V̂ff (γ)−1V̂qf (γ)′,

(27)

which are employed for the compuation of the DRLM statistic.

For the simulation studies with multiple parameters, we further jointly test the pseudo-trues

of δ and γ and illustrate the size of the DRLM test in Figure A2. Thus, δ is treated as an extra

parameter instead of the fixed δ0 in the aforementioned expressions. Similar to the single parameter

case presented in the paper, Figure A2 shows that the rejection frequencies of the DRLM test do

not exceed the nominal 5% for varying strengths of identification and misspecification.

Figure A2: Rejection frequencies of 5% significance DRLM tests of H0 : δ∗ = δ∗0, γ
∗ = γ∗0 with

m = 2, kf = 5 as a function of misspecification c and the strength of identification c̃.
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B. Simulation: Linear IV

Figure A3: Rejection frequencies of 5% significance Hansen and Lee (2021) t-test and DRLM

of H0 : θ∗ = θ∗0 with m = 1, kf = 4 as a function of the strengths of identification R2, and

misspecification α .
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We take the data generating process for the linear IV model in Hansen and Lee (2021) to illustrate

the proposed DRLM test in Figure A3, where the first-stage R2 is a measure of the identification

strength, and α is a measure of misspecification. We consider a simulation setting as in Hansen

and Lee (2021) with m = 1, kf = 4, and the sample size is set to 250; for further details of the

data generating process, we refer to Hansen and Lee (2021). As expected, Figure A3 shows that the

DRLM test remains size-correct regardless of the magnitudes of misspecification and identification

while the Hansen and Lee (2021) t-test is over rejecting when identification is weak.

C. Application: Epstein-Zin

We extend our empirical analysis from Figure 12 to a similar setting with Epstein-Zin (1989) pref-

erences in Figure A4, where there are three parameters of interest, δ, γ, and θ, with δ the discount

rate, γ the relative rate of risk aversion and θ the elasticity of intertemporal substitution. Panels

A4.1 and A4.2 contain the 95% confidence sets that result from the GMM-AR and DRLM tests,

respectively.

Similar to Figure 12 in the paper, Panel A4.1 shows that the GMM-AR test rejects plausible

values of the parameters, so its 95% confidence set only consists of unrealistically large values of γ.
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In contrast, Panel A4.2 shows that the DRLM test yields a joint confidence set that does contain

economically meaningful values.

Figure A4: 95% confidence regions of (δ, γ, θ) for Epstein-Zin utility.

Panel A4.1: GMM-AR Panel A4.2: DRLM

Notes: The three parameters δ, γ, and θ result from the Epstein-Zin preferences, see Epstein and Zin (1989),

with E

[
δθRθ−1

m,t+1

(
Ct+1
Ct

)−θγ
(ιN +Rt+1)− ιN

]
= µf (δ, γ, θ).

D. Application: Linear IV regression using Card (1995) data

To further show the ease of implementing the DRLM test for applied work, we use the return on

education data from Card (1995). Card (1995) uses proximity to college as the instrument in an IV

regression of (the log) wage on (length of) education. For more details on the data, we refer to Card

(1995). The instruments used in our specification are three binary indicator variables which show

the proximity to a two-year college, a four-year college and a four-year public college, respectively.

The included exogenous variables are a constant term, age, age2, and racial, metropolitan, family

and regional indicator variables. All three binary instruments have their own local average treatment

effects, which in case of heterogeneous treatment effects leads to misspecification of the linear IV

regression model since it considers them to be identical, see Imbens and Angrist (1994).

Figure A5 shows the values of the GMM-AR, LR, KLM and DRLM statistics around the CUE. It

also shows their critical value functions at the 5% level. The other area of small values of the DRLM

statistic is left out, since it would be discarded by the power enhancement rule. The J-statistic,

which equals the minimal value of the GMM-AR statistic, is 2.99 with a p-value of 0.22. The first

stage F -statistic is 7.01. This suggests that the return on education is likely weakly identified, see
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Stock and Yogo (2005), which then also implies that the J-test does not have much power. Its

quite low p-value can thus as well indicate misspecification, which results from distinct local average

treatment effects for the different instruments. Since there are three instruments, the IS statistic is

about 21 (≈ 3×7.01), so the LR no-identification statistic equals 18 (= IS−J) and is significant at

the 6% level (6% conditional critical value is 17.9, conditioning statistic=32.5) which explains the

bounded 95% confidence sets. Lee (2018) constructs misspecification-robust standard errors for the

two stage least squares estimator when the local average treatment effects differ, but the resulting

t-test is not valid here because of the likely weak identification of the return on education indicated

by the small first stage F -statistic and the value of the LR no-identification statistic. This makes

the DRLM test more appealing, since it is robust to both misspecification and weak identification.

Kitagawa (2015) further shows that the validity of the instruments for the Card data depends on the

specification of the model. Figure A5 then shows that allowing for misspecification further enlarges

the identification-robust confidence set for the return on education.

Figure A5: Tests of the return on education using Card (1995) data with the DRLM (solid black),

KLM (dashed black), LR (solid red) and GMM-AR (solid blue) statistics and their 95% (conditional)

critical value lines (dotted in the color of the test they refer to).
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E. DRLM using conditional critical values

Figure 1 in the paper also shows that the DRLM test is conservative when the lengths of both µ̄ and

D̄ are small. To reduce the conservativeness of the DRLM test at these low values, we can calibrate

a feasible conditional critical value function following Guggenberger et al. (2019), who propose

data-dependent conditional critical values to improve the performance of the subvector Anderson

and Rubin test. The data-dependent conditional critical values of Guggenberger et al. (2019) adapt

to the strength of identification, while for the DRLM test, we consider the conditional critical values

based on the maximum of µ̄′µ̄ and D̄′D̄, since we study the joint setting of both misspecification and

weak identification. Taking Figure 1 for example, when the maximum of µ̄′µ̄ and D̄′D̄ is less than

two-hundred and fifty, we computed a feasible 95% conditional critical value function and used it to

generate the corresponding Figure A6 for the size-improved DRLM test.2 The contour lines in Figure

A6 show that the conservativeness of a 5% significance DRLM test has been reduced substantially

from an area where the maximal length of µ̄ and D̄ is less than twenty to an area where their sum

is less than ten.

Figure A6: Rejection frequency of 5% significance DRLM tests of H0 : θ∗ = θ∗0 using a conditional

95% critical value as a function of the lengths of µ̄ and D̄, m = 1, kf = 25.
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F. Subvector inference

θ∗ = (θ∗1 . . . θ
∗
m)′ with m ≥ 1. Without loss of generality, consider, e.g., the 95% confidence set of θ∗1

when m > 1. We briefly discuss how to use the DRLM test for constructing such a confidence set.

2The conditional critical value function we calibrated for Figure A6 is f(r) = 2.4+(brc0.35)×(3.84−2.4)/(2500.35)
for r ≤ 250 and f(r) = 3.84 for r > 250, with r the conditioning variable and b.c the entier function.
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One straightforward approach is to use the projection method, see also Dufour and Taamouti

(2005). It starts with constructing the joint 95% confidence set of θ∗ by inverting the DRLM test,

and then projects the joint confidence set of θ∗ on the axis of θ∗1. The resulting confidence set of θ
∗
1

has at least 95% coverage, so it is valid but conservative.

A second approach is to substitute the CUE for the parameters θ∗2 . . . θ
∗
m under the hypothesized

value θ∗1,0 of θ
∗
1. In other words, under H0 : θ∗1 = θ∗1,0, first compute the restricted CUE of θ

∗
2 . . . θ

∗
m,

and then use the hypothesized θ∗1,0 and the restricted CUE of θ
∗
2 . . . θ

∗
m for calculating the DRLM

statistic. This approach, however, is not necessarily size correct for the DRLM test since Guggen-

berger et al. (2012) show that it does not control the size of the KLM test. Kleibergen (2021) shows

that it does control the size of the conditional likelihood ratio test in the correctly specified linear

IV regression model, but this test is not size correct under misspecification.

A third approach is to orthogonalize the parameters using the reparametrization proposed in Han

and McCloskey (2019). Since the identification of the parameters involves both the misspecification

and the Jacobian, as further discussed in Kleibergen and Zhan (2024), it would not be straightforward

to do so. We therefore relegate this to future work.
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